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We revisit the minimal supersymmetric left–right model with B − L = 2 triplet Higgs fields and show
that a self-consistent picture emerges with automatic R-parity conservation even in the absence of
higher-dimensional operators. By computing the effective potential for the Higgs system including heavy
Majorana neutrino Yukawa couplings we show that the global minimum of the model can lie in the
charge and R-parity conserving domain. The model provides natural solutions to the SUSY phase problem
and the strong CP problem and makes several interesting predictions. Quark mixing angles arise only after
radiative corrections from the lepton sector are taken into account. A pair of doubly charged Higgs fields
remain light below TeV with one field acquiring its mass entirely via renormalization group corrections.
We find this mass to be not much above the Bino mass. In the supergravity framework for SUSY breaking,
we also find similar upper limits on the stau masses. Natural solutions to the μ problem and the SUSY
CP problem entails light SU(2)L triplet Higgs fields, leading to rich collider phenomenology.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Left–right symmetric extensions of the Standard Model (SM)
based on the gauge group [1] SU(3)C × SU(2)L × SU(2)R × U (1)B−L

have many attractive features. These include an understanding of
the origin of parity violation, and a compelling rationale for small
neutrino masses via the seesaw mechanism. The enlarged gauge
symmetry allows for parity to be defined as an exact symmetry,
which is broken only spontaneously. Right-handed neutrino is re-
quired to exist in order to complete the SU(2)R multiplet, and so
neutrino mass is natural. In the domain of flavor physics, the su-
persymmetric version of this theory resolves several problems of
the popular Minimal Supersymmetric Standard Model (MSSM):

(i) R-parity emerges as an exact symmetry of MSSM, prevent-
ing rapid proton decay and providing a naturally stable dark
matter candidate [4]. This is possible if the SU(2)R × U (1)B−L

gauge symmetry is broken down to U (1)Y by Higgs triplet
fields carrying B − L = ±2. R-parity, which is part of the origi-
nal B − L symmetry, will remain unbroken even after symme-
try breaking in this case.

(ii) It solves the SUSY CP problem [2,3] because of parity invari-
ance. Parity makes the Yukawa couplings and the correspond-
ing SUSY breaking A terms Hermitian, and the gluino mass

* Corresponding author.
E-mail address: kaladi.babu@okstate.edu (K.S. Babu).
0370-2693/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2008.09.018
and the μ term real. The electric dipole moments of fermions
will then vanish at the scale of parity restoration.

(iii) Finally, it has all the ingredients necessary to solve the strong
CP problem without the need for an axion, again by virtue of
parity symmetry [2,3]. This is achieved by ensuring that the
quark mass matrix has a real determinant, which is possible
since the Yukawa couplings are Hermitian.

Previous studies of this model focussed on two versions:
(i) A TeV scale version where R-parity is spontaneously broken
by the vacuum expectation value (VEV) of the right-handed sneu-
trino [5], or alternatively (ii) an R-parity conserving version [6,7]
where non-renormalizable (NR) higher-dimensional operators were
included and played an essential role. The reason for considering
only these two versions is that in the absence of the above fea-
tures, i.e., 〈ν̃c〉 �= 0, or the presence of NR operators, the global
minimum of the theory that is both R-parity conserving and par-
ity violating, breaks electric charge and is therefore unacceptable.
In the first version with 〈ν̃c〉 �= 0, the W R scale must necessarily
be in the TeV range [5], whereas in the second one, it is nec-
essarily above 1011 GeV. In the first version, SUSY dark matter
candidate is lost. In the second version, the possibility of solving
strong CP problem via parity symmetry is eliminated due to the
essential presence of higher-dimensional operators which makes
θ̄ large. It is also difficult to solve the SUSY phase problem, since
these higher-dimensional operators typically generate parity violat-
ing effects in the fermion mass matrices. Extensions of the minimal
model which use additional Higgs multiplets have been proposed.
Ref. [8] introduces Higgs doublets in addition to triplets, but in
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such models R-parity conservation is exterior to parity symmetry.
In Ref. [9] B − L = 0 Higgs triplets are introduced in addition to
the B − L = ±2 triplets, which is clearly non-minimal.

In this Letter we revisit the minimal SUSYLR model with B −
L = 2 Higgs triplets. We assume that the higher-dimensional op-
erators are absent or small, so that the solutions to the strong CP
and the SUSY phase problems are still intact. The global minimum
of the tree-level Higgs potential is either charge violating, or R-
parity violating, as noted. However, we find that inclusion of the
heavy Majorana neutrino Yukawa couplings in the effective poten-
tial automatically cures this problem. The vacuum that preserves
both electric charge and R-parity can naturally be the global min-
imum of the full potential. We study the consequences of such a
setup.1

The main results of our investigation can be summarized as fol-
lows:

(i) In this general class of models, there are two doubly charged
Higgs and Higgsino fields with masses below a TeV. One com-
bination of these doubly charged Higgs boson fields has a
vanishing mass at the scale of SU(2)R × U (1)B−L breaking (de-
noted as v R ). So its mass is calculable, arising through renor-
malization group effects between v R and the weak scale. We
find its squared mass to be positive with the Higgs boson hav-
ing a mass close to the Bino mass.

(ii) There exist two pairs of Higgs doublets in the low energy, al-
though one pair is unlikely to be observed directly at the LHC.
This naturally leads to calculable flavor violation, which are
within experimental limits.

(iii) Renormalization group evolution plays a crucial role in the
generation of quark mixing angles. In fact, an asymmetry in
the μ terms of the Higgs doublets generated by the leptonic
Yukawa couplings is what induces CKM mixings.

(iv) In the version that solves the SUSY phase and the strong CP
problems and which provides an understanding of the μ prob-
lem, there are also light SU(2)L triplet superfields with TeV to
sub-TeV scale masses with interesting collider signature [10,
11]. These fields couple to left-handed leptons with the cou-
plings proportional to the heavy Majorana neutrino masses.

2. The basic structure of the model

Quarks and leptons in the model have the following left–
right symmetric assignment under the SU(3)C × SU(2)L × SU(2)R ×
(1)B−L gauge group:

Q

(
3,2,1,

1

3

)
=

(
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d

)
, Q c

(
3∗,1,2,−1

3

)
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(
dc

−uc

)
,
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(
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e

)
. (1)

The minimal Higgs sector consists of the following superfields:
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2

δ++
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Δ̄(1,3,1,−2) =
(
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δ̄0

δ̄−− − δ̄−√
2

)
,
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⎛
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2

⎞
⎠ ,

1 It is not strictly required that the vacuum we live in correspond to the global
minimum of the potential. Metastable vacua are acceptable, provided that the tun-
nelling rate from that vacuum to the true vacuum is sufficiently slow in comparison
to the age of the Universe.
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⎛
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2
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Φa(1,2,2,0) =
(

φ+
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2
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1 φ−
2

)
a

(a = 1 − 2), S(1,1,1,0). (2)

This is the minimal Higgs system in the following sense. The
(Δc +Δ̄c) fields are needed for SU(2)R ×U (1)B−L symmetry break-
ing without inducing R-parity violating couplings. The (Δ + Δ̄)

fields are their left-handed partners needed for parity invariance.
Two bidoublet fields Φa are needed in order to generate quark and
lepton masses and CKM mixings. The singlet field S is introduced
so that SU(2)R × U (1)B−L symmetry breaking occurs in the super-
symmetric limit.

The superpotential of the model is given by

W = Yu Q T τ2Φ1τ2 Q c + Yd Q T τ2Φ2τ2 Q c

+ Yν LT τ2Φ1τ2Lc + Y	LT τ2Φ2τ2Lc

+ i
(

f ∗LT τ2ΔL + f LcT τ2Δ
c Lc)

+ S
[
Tr

(
λ∗ΔΔ̄ + λΔcΔ̄c) + λ′

ab Tr
(
ΦT

a τ2Φbτ2
) − M2

R

] + W ′,

(3)

where

W ′ = [
MΔ Tr(ΔΔ̄) + M∗

Δ Tr
(
ΔcΔ̄c)]

+ μab Tr
(
ΦT

a τ2Φbτ2
) + M S S2 + λS S3. (4)

Yu,d and Yν,	 in Eq. (3) are quark and lepton Yukawa coupling ma-
trices, while f is the Majorana neutrino Yukawa coupling matrix.
The W ′ term listed in Eq. (4) is optional, in fact when terms in
W ′ are set to zero, the theory has an enhanced R-symmetry. Un-
der this R-symmetry, {Q , Q c, L, Lc} fields have charge +1, S has
charge +2, and all other fields have charge zero with W carrying
charge +2. While the general setup of the minimal model includes
W ′ , the special case of W ′ = 0 is interesting, as it leads to an un-
derstanding of the μ term. In the supersymmetric limit, the VEV of
the singlet S is zero, but after SUSY breaking, 〈S〉 ∼ mSUSY. Thus the
μ term for the bidoublet Φ will arise from the coupling λ′

ab , with a
magnitude of order mSUSY [12]. It is also in the limit where W ′ = 0
that the SUSY CP problem and the strong CP problem can be ex-
plained naturally. The main difference between the cases W ′ �= 0
and W ′ = 0 from the low energy perspective is that in the latter
case the left-handed triplet superfields (Δ + Δ̄) will remain light,
also with masses of order mSUSY.

The superpotential of Eq. (3) is invariant under the parity trans-
formation under which Φ → Φ†, Δ → Δc ∗ , Δ̄ → Δ̄c ∗ , S → S∗ ,
Q → Q c ∗ , L → Lc ∗ , θ → θ̄ , etc. Parity invariance implies that the
Yukawa coupling matrices Yu,d, Yν,	 are Hermitian, i.e. Yu = Y †

u ,
etc. Additionally, λ′

ab are real, as is M2
R . This means that the ef-

fective μ terms of the bidoublet will be real, provided that 〈S〉 is
real. If the Φ VEVs are also real, this setup will provide a solution
to the SUSY CP problem and the strong CP problem [2,3]. Below
we will study under what conditions this is achieved and what
the implications of this theory are.

We will work in the ground state corresponding to the follow-
ing charge preserving VEV pattern for the triplet fields:

〈
Δc 〉 = (

0 v R

0 0

)
,

〈
Δ̄c 〉 = (

0 0
v̄ R 0

)
. (5)

The VEVs of the left-handed triplet fields (Δ + Δ̄) are assumed to
be zero since no interaction in the model induces such VEVs. There
are two important implications of this setup:
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(i) Above the parity breaking scale M R , this model has an en-
hanced global U (3, c) (complexified U (3)) symmetry which is
broken by the above VEVs to U (2, c). This leads to five mass-
less superfields. Three of these superfields are absorbed by the
gauge fields via the super-Higgs mechanism. There remains
two light superfields, which are the doubly charged Higgs and
Higgsino fields δc−−

and δ̄c++
. These fields will consistently ac-

quire masses of order TeV or less, as we shall explicitly show
in the next section. Even after soft SUSY breaking terms are
turned on, there is a U (3) symmetry in the potential, which
leads to one massless doubly charged Higgs boson (and its
conjugate). This field will acquire positive squared mass from
the renormalization group evolution below v R proportional to
the Bino mass M1.

(ii) The bi-doublet fields, when expressed in terms of the compo-
nents Hu,a, Hd,a (a = 1,2), have a symmetric mass matrix in
W due to parity symmetry which requires μ12 = μ21. (When
W ′ = 0, μi j = λ′

i j〈S〉.) Therefore, if we make one pair of dou-
blets light at the scale v R , it would lead to vanishing CKM
mixing angle. This happens in spite of having two Yukawa
coupling matrices. Consistency then requires that both pairs
of doublets be light below v R . In this case RGE extrapolation
brings in an asymmetry between μ12 and μ21. Thus, not only
are the potential problems solved by RGE extrapolation, but
the resulting scenario becomes very predictive.

3. Symmetry breaking and the mass of the doubly charged Higgs
boson

To be specific, we will analyze the model with W ′ = 0 of
Eq. (3). In the SUSY limit we have from the vanishing of D and
F terms,

|v R | = |v̄ R |, λv R v̄ R = M2
R , 〈S〉 = 0. (6)

It is easy to determine the VEV of S field that is generated after
SUSY breaking. Only linear terms in SUSY breaking are relevant for
this purpose. We have

V soft = AλλS Tr
(
ΔcΔ̄

) − CλM2
R S + h.c. (7)

Minimization of the resulting potential yields

〈S∗〉 = 1

2|λ| (Cλ − Aλ). (8)

Note that this is of order mSUSY. If the coupling |λ| is somewhat
small, then 〈S〉 can be above the SUSY breaking scale. This feature
can be used to make one pair of Higgs doublet superfields some-
what heavier than the SUSY breaking scale. However, the masses
of doubly charged fermionic fields, which are equal to |λ|〈S〉 must
remain below a TeV. Phenomenology of doubly charged Higgsino
has been studied in Refs. [10,11,13,14].

Parity symmetry requires M2
R and Cλ be real. If the trilinear

soft breaking terms are proportional to the corresponding Yukawa
coupling matrices, then we have Aλ real as well. Proportionality
will require Aλλ = A0λ, with the universal A0 being real. Since the
trilinear A terms in the quark sector must be Hermitian by parity,
and since the Yukawa coupling matrices are Hermitian, A0 must be
real. This condition is realized in many models of SUSY breaking
such as Poloni type supergravity breaking, gauge mediated SUSY
breaking, anomaly mediated SUSY breaking, etc. We shall adopt
this proportionality relation for all the A terms. We see that 〈S〉 is
then real. The resulting μ terms will also be real. This helps solve
the strong CP problem and the SUSY phase problem.

The full potential of the model relevant for symmetry breaking
has F term, D term and soft SUSY breaking contributions. They are
given by
V F = ∣∣λTr
(
ΔcΔ̄c) + λ′

ab Tr
(
ΦT

a τ2Φbτ2
) − M2

R

∣∣2

+ |λ|2∣∣Tr
(
ΔcΔc †) + Tr

(
Δ̄cΔ̄c †)∣∣,

V soft = M2
1 Tr

(
Δc †Δc) + M2

2 Tr
(
Δ̄c †Δ̄c) + M2

S |S|2
+ {

AλλS Tr
(
ΔcΔc †) − CλM2

R S + h.c.
}
,

V D = g2
R

8

∑
a

∣∣Tr
(
2Δc †τaΔ

c + 2Δ̄c †τaΔ̄
c + Φaτ

T
a Φ

†
a
)∣∣2

+ g′ 2

8

∣∣Tr
(
2Δc †Δc + 2Δ̄c †Δ̄c)∣∣2

. (9)

Minimizing the potential yields the following two complex con-
ditions:

v∗
R

[
|λ|2|S|2 + M2

1 + g2
R

(
|v R |2 − |v̄ R |2 + X

2

)
+ g′ 2(|v R |2 − |v̄ R |2)]

+ v̄ R

[
λAλ S + |λ|2

(
v R v̄ R − M2

R

λ

)∗]
= 0,

v̄∗
R

[
|λ|2|S|2 + M2

2 − g2
R

(
|v R |2 − |v̄ R |2 + X

2

)
− g′ 2(|v R |2 − |v̄ R |2)]

+ v R

[
λAλ S + |λ|2

(
v R v̄ R − M2

R

λ

)∗]
= 0, (10)

where we defined X = ∑2
a=1〈|φ0

1 |2 −|φ0
2 |2〉a . Applying these condi-

tions, we obtain the following mass squared matrix for the doubly
charged Higgs bosons (δc−−∗

, δ̄c++
).

M2
δ++ =

(−2g2
R

(|v R |2 − |v̄ R |2 + X
2

) − v̄ R
v∗

R
Y Y ∗

Y 2g2
R

(|v R |2 − |v̄ R |2 + X
2

) − v R
v̄∗

R
Y

)
,

(11)

where Y = λAλ S +|λ|2(v R v̄ R − M2
R

λ
)∗ . It is clear that as the D term

is set to zero, there is one massless mode in this sector. Actually,
if v R is much larger than the SUSY breaking terms, turning on the
D term makes one of the masses negative. This is the pseudo-
Goldstone boson of the model. There is no inconsistency, as this
zero squared-mass will turn positive via RGE evolution.

Below the scale v R , the mass matrix of the doubly charged
Higgs boson fields has the form

M2
δ++ =

(
M2++ + μ2

δ + δ1 (Bμ)δ + δ12

(Bμ)∗δ + δ∗
12 M2−− + μ2

δ + δ2

)
, (12)

where μδδ
++δ−− is the effective superpotential mass term, M2++

and M2−− are the soft mass parameters, and δi denote RGE correc-
tion factors corresponding to running from v R down to the SUSY
breaking scale. Eq. (12) should match Eq. (11) at v R , which im-
plies that M2++ 
 M2−− , |(Bμ)δ | 
 M2++ +μ2

δ at v R . In the large v R

limit, the light Higgs resulting from Eq. (11) is (δ∗−− − δ++)/
√

2,
so the squared mass of this state, including RGE corrections is
[δ1 + δ2 − 2 Re(δ12)]/2. There is an upper limit on this mass, which
can be derived as follows. Let us ignore the off-diagonal entry for
the moment. The renormalizaion group equation for M2++ has the
form [15]

dM2++
dt

= − c

16π2
g2

1 M2
1 + · · · , (13)

where c = (96/5). Here we have displayed only the positive con-
tributions to the mass-squared, which would be relevant for deter-
mining the upper limit. Along with

dg1 = b1
2

g3
1,

dM1 = 2b1
2

g2
1 M2

1, (14)

dt 16π dt 16π
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we can solve for M2++ . In the present model b1 = (78/5) when the
(Δ + Δ̄) are light, and b1 = 12 when these fields are heavy. We
find

M2++(mZ ) <
24

5b1
M2

1(mZ )

[
α2

1(v R)

α2
1(mZ )

− 1

]
. (15)

The gauge couplings in this model will remain perturbative up to
about 1012 GeV when b1 = (78/5) and up to about 1014 GeV when
b1 = 12. If we choose α1(v R) = 0.1, we find the upper limit on
M++ < 3.7M1 (for the case where b1 = 12). The running of the
(Bμ)δ will also contribute to the mass of this state, but this evo-
lution depends on other SUSY breaking parameters. We expect the
entire contribution to be of order few times M1.

4. Effective potential and the global minimum of the theory

Let us now turn attention to the electric charge and/or R-parity
breaking global minimum of the model and see how this problem
is cured by taking loop corrections induced by the heavy Majorana
neutrino Yukawa couplings into account. We will show that the re-
sults of Ref. [5] gets significantly modified, allowing for the desired
charge conserving minimum to be the global minimum for some
domain of the parameters.

It is easy to see why the tree-level potential has a deeper min-
imum that violates electric charge and/or R-parity. In the desired
minimum which preserves these quantum numbers, the VEVs of
the triplet fields are as shown in Eq. (5). Consider the following
alternative VEV configuration:

〈
Δc 〉 = 1√

2

(
0 v R

v R 0

)
,

〈
Δ̄c 〉 = 1√

2

(
0 v̄ R

v̄ R 0

)
. (16)

This pattern of course breaks electric charge. All terms in the scalar
potential are exactly the same for this configuration of VEVs and
that of Eq. (5), except in the SU(2)R D-terms. Since the VEVs of
Eq. (16) are along τ1, the D-terms vanish for this configuration,
while it is nonzero and positive for the desired configuration. This
proves that the desired VEV pattern does not correspond to the
global minimum of the potential.

We proceed to compute the Coleman–Weinberg potential of the
model by keeping one family of neutrino Yukawa couplings to the
Δc field, as shown by the f coupling in Eq. (3). To be able to com-
pare different minima, we use the general background with the
full Δc and Δ̄c fields. The field-dependent masses of the (ec, νc)

fermionic and scalar fields can be expressed in terms of the invari-
ant combinations

D2
1,2 = 1

2

[
Tr

(
Δc †Δc) ±

√
Tr

(
Δc †Δc

)2 − Tr
(
ΔcΔc

)
Tr

(
Δc †Δc †

) ]
.

(17)

We also define D̄2
1,2 in an analogous way, with the replacement

of Δc by Δ̄c in Eq. (17). Including the soft SUSY breaking contri-
butions, the F -term contributions, and the D-term contributions,
the field-dependent masses of the sleptons (ẽc, ν̃c), and the corre-
sponding fermions are found to be

m2
1,2 = | f |2 D2

1 + m2
Lc + g2

R

2

[(
D2

2 − D̄2
2

) − (
D2

1 − D̄2
1

)]
− g′ 2

2

[(
D2

1 − D̄2
1

) + (
D2

2 − D̄2
2

)] ± ∣∣A f f D1 + λ∗ S∗ f D̄1
∣∣2

,

m2
3,4 = | f |2 D2

2 + m2
Lc + g2

R

2

[(
D2

1 − D̄2
1

) − (
D2

2 − D̄2
2

)]
− g′ 2

2

[(
D2

1 − D̄2
1

) + (
D2

2 − D̄2
2

)] ± ∣∣A f f D2 + λ∗ S∗ f D̄2
∣∣2

,

m2
F = | f D1|2, m2

F = | f D2|2. (18)

1 2
Fig. 1. Diagrams inducing effective quartic coupling of Eq. (21).

Here the m1−4 correspond to the masses of the four real scalar
states, while mF1,2 are the masses of the two fermionic states.

With these mass eigenvalues, one can compute the effective po-
tential in the Landau gauge in the DR scheme from the expression

V 1-loop
eff = 1

64π2

∑
i

(−1)2s(2s + 1)M4
i

[
Log

(
M2

i

μ2

)
− 3

2

]
. (19)

We expand this potential in the limit where SUSY breaking param-
eters are small compared to the VEVs of the (Δc, Δ̄c) fields. In the
SUSY limit, vanishing of the D-terms require D2

1 = D̄2
1, D2

2 = D̄2
2. So

we use the expansion

D̄2
1 − D2

1 = a1m2
Lc , D̄2

2 − D2
2 = a2m2

Lc , (20)

where m2
Lc denotes the soft SUSY breaking mass of the slepton

doublet. Defining

x = Tr(ΔcΔc)Tr(Δc †
Δc †)

[Tr(Δc †Δc)]2
(21)

we find the leading contribution to V eff to be

V 1-loop
eff = −| f |2m2

Lc Tr(ΔcΔc †)

64π2

×
[
(4 + 2 ln 2) + 2(a1 − a2)g2

R

√
1 − x + 2(a1 + a2)g′ 2

− {
2 + (a2 − a1)g2

R + (a2 + a1)g′ 2}(1 − √
1 − x

)
× ln

( | f |2 Tr(ΔcΔc †)

2μ2

(
1 − √

1 − x
))

+ {(
(a2 − a1)g2

R − (a2 + a1)g′ 2)(1 + √
1 − x

) − 2
√

1 − x
}

× ln

( | f |2 Tr(ΔcΔc †)

2μ2

(
1 + √

1 − x
))

− 2 ln

( | f |2 Tr(ΔcΔc †)

μ2

(
1 + √

1 − x
))]

. (22)

Clearly, these loop contributions vanish in the SUSY limit. The
non-vanishing terms arise because the cancellation between the
first two diagrams of Fig. 1 is no longer exact, once SUSY breaking
is turned on. And diagram (c) has no fermionic counterpart. The
most interesting aspect of the one-loop effective potential is the
appearance of the structure Tr(ΔcΔc)Tr(Δc †Δc †), which was ab-
sent in the tree-level potential. If we make a further expansion in
small x, Eq. (22) will result in the following quartic coupling:
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V quartic = −| f |2m2
Lc Tr(ΔcΔc)Tr(Δc †Δc †)

128π2|v R |2

×
[{

2 − (a1 − a2)g2
R − (a1 + a2)g′ 2}(1 + 2 ln 2)

+ (a1 − a2)g2
R ln

| f v R |2
μ2

− {
2 − (a1 − a2)g2

R + (a1 + a2)g′ 2} ln x

]
+ · · · , (23)

where the · · · indicates higher order terms in x and x-independent
terms. In the desired vacuum we have D2 = D̄2 = 0, so that the
coefficient a2 is zero. Minimization conditions (Eq. (10)) determine
a1 as

(
g2

R + g′ 2)a1m2
Lc 
 1

2

(
M2

1 − M2
2 + g2

R X
)
, (24)

where M2
1,2 are the soft mass squared of the (Δc, Δ̄c) fields. In su-

pergravity type SUSY breaking, one would expect M2
1 � M2

2, as Δc

has the Majorana–Yukawa coupling which would lower its mass
from the universal mass, while Δ̄c does not. Using this we find
that for the charge conserving vacuum to be lower than the charge
breaking vacuum, we would need m2

Lc to be negative. In such a sit-
uation, we can derive upper limits on the stau masses. (We assume
that the third family fermions have the largest Majorana–Yukawa
coupling f .) Note that the positive contributions to the masses of
τ̃R and τ̃L arise from the gaugino masses M1 and M2 [15]:

16π2
dm2

τ̃R

dt
= −24

5
g2

1 M2
1 + · · · ,

16π2
dm2

τ̃L

dt
= −6

5
g2

1 M2
1 − 6g2

2 M2
2 + · · · , (25)

where the · · · denote terms that would decrease the scalar mass in
the evolution from v R to mZ . We have b2 = 6 when (Δ+ Δ̄) fields
are light, and b2 = 2 when they are heavy. The upper limits on the
stau masses are found to be

M2
τ̃R

(mZ ) <
6

5b1
M2

1(mZ )

[
α2

1(v R)

α2
1(mZ )

− 1

]
,

M2
τ̃L

(mZ ) <
3

10b1
M2

1(mZ )

[
α2

1(v R)

α2
1(mZ )

− 1

]

+ 3

2b2
M2

2(mZ )

[
α2

2(v R)

α2
2(mZ )

− 1

]
. (26)

Both these limits are in th acceptable range. For α1(v R) = 0.1, we
find the right-handed stau mass to be bounded by about 1.9M1
(for b1 = 12), with the left-handed stau roughly two times heav-
ier.

5. CKM angles out of radiative corrections

As noted earlier, our model predicts that the CKM angles vanish
at the tree-level due to left–right symmetry. The reason for this is
that the 2 × 2 (Hu, Hd) Higgsino mass matrix is symmetric. When
one pair of light MSSM Higgs superfields is extracted from such a
symmetric matrix, it follows that the up and down quark Yukawa
coupling matrices to these light doublets will be the same. This is
assuming that only one pair of doublets survives below v R . There-
fore once electroweak symmetry breaks, we have Mu = ξ Md and
hence V CKM = 1. Consistency with CKM mixings then requires that
both pairs of Higgs doublets remain light below v R . In that case,
below v R , the bidoublet mass terms μab will receive asymmetric
radiative RGE corrections, in the momentum range v R to μΦ , be-
cause parity is violated in this regime. (We denote the scale of the
heavy doublet mass as μΦ .) To leading order the quark Yukawa
couplings do not induce an asymmetry in μab . However, since the
right-handed neutrinos decouple below v R , the lepton sector in-
duces an asymmetry. Only the charged lepton Yukawa couplings
contribute to the evolution of μab , making the RGE contribution
to μ12 different from that of μ21. As a result, when the Hu, Hd
mass matrix is diagonalized at a scale μΦ below v R , so that only
one pair of Higgs superfields remain light, the resulting light Higgs
doublets couple to up and down quarks with different Yukawa
coupling matrices.

The RGE for the asymmetry between μ12 and μ21 (to leading
order) is

d

dt
(μ12 − μ21) = μ12 + μ21

32π2
Tr

(
Y †

ν Yν − Y †
	Y	

)
, (27)

which can be solved to determine the asymmetry in μi j . We obtain

(μ12 − μ21)/(μ12 + μ21) 
 1/(16π2)Tr(Y †
ν Yν − Y †

	Y	) ln(v R/μΦ),
where μΦ is the mass of the heavy bidoublet. The suppression
factor that appears in the CKM angles is about 0.1 when one of
the leptonic Yukawa coupling entries is of order one. This can lead
to reasonable values for the CKM angles.

6. FCNC, the strong CP and the SUSY CP problems

The presence of a second pair of Higgs doublets coupling to
fermions implies that there will be tree-level flavor changing neu-
tral currents mediated by the Higgs. Experimental constraints will
require that one pair of Higgs doublets be heavy, with mass of the
order of few to 50 TeV [16,17]. This can be seen from the mass
matrices of the quarks,

Mu = Yuκu + Ydκ
′
u,

Md = Yuκ
′
d + Ydκd, (28)

where κi are the VEVs of the neutral components. These equations
can be used to solve for the Yukawa coupling matrices. For ex-
ample, Yd = (κu Mu − κ ′

d Md)/(κuκd − κ ′
uκ

′
d). In a basis where Md

is diagonal, Mu = V̂ T Du V̂ ∗ , where V̂ = P . V . Q , with V being
the CKM matrix in the standard parametrization, and P , Q being
phase matrices. Du is the diagonal up-quark mass matrix. Flavor
changing Higgs couplings can be then readily derived:

LFCNC = κu

κuκd − κ ′
uκ

′
d

Q i Q ∗
j (Du)k Vki V ∗

kj H0 + h.c. (29)

Due to the hermiticity of this matrix, the unknown phase ma-
trix Q disappears from processes such as εK . We find stringent
limit on the mass of H0, mH0 � 30–50 TeV, if there is no can-
cellation between the Higgs exchange and the SUSY squark–gluino
exchange box diagram. If such cancellations are allowed, the limit
on H0 mass is considerably reduced [16]. As noted after Eq. (8),
the model allows for one pair of Higgs doublets to be naturally
heavier than the SUSY breaking scale, thus satisfying the FCNC con-
straint.

Since two pairs of Higgs doublets must survive below v R , there
are calculable FCNC via SUSY diagrams. The most significant ones
are the gluino box diagram for K 0–K̄ 0 mixing. We find that these
constraints are met in the model.

The basic idea behind parity as a solution for the strong CP
problems is that left–right symmetry leads to Hermitian Yukawa
couplings [18]. If the VEVs of bi-doublet Higgs fields are real, this
would lead to a solution to the strong CP problem. The reality of
the VEVs is not guaranteed by parity and always involves addi-
tional assumptions. Supersymmetry provides this extra symmetry
in minimal left–right models without any singlet fields as shown in
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[19]. When there are gauge singlet fields in the theory, this needs
to be reinvestigated. As we noted in the symmetry breaking dis-
cussion, if W ′ = 0, which can be enforced by an R-symmetry, one
can have a scenario where the singlet VEV is real. In such a setup
not only is the strong CP problem solved, but the weak SUSY CP
problem is also solved. The EDMs of the electron and the neutron
will be vanishing due to parity at the scale v R . Renormalization
group evolution does induce small EDMs, but well within experi-
mental limits.

One would expect higher-dimensional operators induced by
gravity to be present in the theory at some level. It will be inter-
esting to see if the solution to the strong CP problem provided by
parity is stable in the presence of such operators. Operators such
as (Q T τ2Φiτ2 Q c)(ΔcΔ̄c/M2

Pl) in the superpotential W will in-
duce non-Hermitian Yukawa couplings. Such couplings are of order
10−14 for v R � 1011 GeV, and thus they do not destroy the solution
to strong CP problem. Terms of the type (ΦT

a τ2Φbτ2)(Δ
cΔ̄c/MPl)

in W will induce complex phases in the μ terms. If v R � 107 GeV,
these phases will be less than 10−9, and will leave the strong CP
solution intact. With a parity even spurion field, which acquires a
non-zero F -component leading to SUSY breaking, the constraints
of parity invariance will be intact in the soft SUSY breaking pa-
rameters (such as gluino mass being real).

7. Conclusion

In conclusion, we have pointed out that the minimal renormal-
izable supersymmetric left–right model is completely consistent
phenomenologically without any need for higher-dimensional op-
erators or spontaneous R-parity violation. The scale of left–right
symmetry can now be higher than TeV. The model can solve the
strong CP problem without fear of large contributions to θ̄ from
non-renormalizable terms (since they are now not needed). The
model also provides a simple solution based on parity symme-
try for the SUSY CP problem. The effective potential of the theory,
which has important contributions from heavy Majorana–Yukawa
couplings, allows for the charge conserving and R-parity con-
serving minimum to be the global minimum. The model predicts
light (sub-TeV) doubly charged Higgs bosons and their superpart-
ners.
Acknowledgements

We wish to thank Zurab Tavartkiladze for discussions. K.S.B.
is supported in part by DOE grants DE-FG02-04ER41306 and DE-
FG02-ER46140. R.N.M. is supported by NSF grant No. PHY-0652363.

References

[1] R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11 (1975) 2558;
G. Senjanovic, R.N. Mohapatra, Phys. Rev. D 12 (1975) 1502.

[2] R.N. Mohapatra, A. Rasin, Phys. Rev. D 54 (1996) 5835.
[3] K.S. Babu, B. Dutta, R.N. Mohapatra, Phys. Rev. D 65 (2002) 016005.
[4] R.N. Mohapatra, Phys. Rev. D 34 (1986) 3457;

A. Font, L.E. Ibanez, F. Quevedo, Phys. Lett. B 228 (1989) 79;
S.P. Martin, Phys. Rev. D 46 (1992) 2769.

[5] R. Kuchimanchi, R.N. Mohapatra, Phys. Rev. D 48 (1993) 4352;
R. Kuchimanchi, R.N. Mohapatra, Phys. Rev. Lett. 75 (1995) 3989.

[6] C.S. Aulakh, A. Melfo, G. Senjanovic, Phys. Rev. D 57 (1998) 4174.
[7] Z. Chacko, R.N. Mohapatra, Phys. Rev. D 58 (1998) 015003.
[8] K.S. Babu, B. Dutta, R.N. Mohapatra, Phys. Rev. Lett. 85 (2000) 5064.
[9] C.S. Aulakh, K. Benakli, G. Senjanovic, Phys. Rev. Lett. 79 (1997) 2188.

[10] K. Huitu, J. Maalampi, A. Pietila, M. Raidal, Nucl. Phys. B 487 (1997) 27.
[11] T. Han, B. Mukhopadhyaya, Z. Si, K. Wang, Phys. Rev. D 76 (2007) 075013;

P. Fileviez Perez, T. Han, G.y. Huang, T. Li, K. Wang, arXiv: 0805.3536 [hep-ph];
D.A. Demir, M. Frank, K. Huitu, S.K. Rai, I. Turan, arXiv: 0805.4202 [hep-ph].

[12] G.R. Dvali, G. Lazarides, Q. Shafi, Phys. Lett. B 424 (1998) 259;
S.F. King, Q. Shafi, Phys. Lett. B 422 (1998) 135;
K.S. Babu, B. Dutta, R.N. Mohapatra, Phys. Rev. D 65 (2002) 016005;
R. Kitano, N. Okada, Prog. Theor. Phys. 106 (2001) 1239;
L.J. Hall, Y. Nomura, A. Pierce, Phys. Lett. B 538 (2002) 359.

[13] J.F. Gunion, C. Loomis, K.T. Pitts, in: Proceedings of 1996 DPF/DPB Summer
Study on New Directions for High-Energy Physics (Snowmass 96), Snowmass,
Colorado, 25 June–12 July 1996, p. LTH096, hep-ph/9610237.

[14] G. Azuelos, K. Benslama, J. Ferland, J. Phys. G 32 (2006) 73;
A.G. Akeroyd, M. Aoki, Phys. Rev. D 72 (2005) 035011;
M. Muhlleitner, M. Spira, Phys. Rev. D 68 (2003) 117701;
M. Kuze, Y. Sirois, Prog. Part. Nucl. Phys. 50 (2003) 1;
J. Maalampi, N. Romanenko, Phys. Lett. B 532 (2002) 202;
M. Lusignoli, S. Petrarca, Phys. Lett. B 226 (1989) 397.

[15] See, e.g., S. Martin, M. Vaughn, Phys. Rev. D 50 (1994) 2282.
[16] Y. Zhang, H. An, X.d. Ji, arXiv: 0710.1454 [hep-ph].
[17] G. Ecker, W. Grimus, Nucl. Phys. B 258 (1985) 328;

M.E. Pospelov, Phys. Rev. D 56 (1997) 259.
[18] M.A.B. Beg, H.S.B. Tsao, Phys. Rev. Lett. 41 (1978) 278;

R.N. Mohapatra, G. Senjanovic, Phys. Lett. B 79 (1978) 283.
[19] R.N. Mohapatra, A. Rasin, Phys. Rev. Lett. 76 (1996) 3490;

R. Kuchimanchi, Phys. Rev. Lett. 76 (1996) 3486.


	Minimal supersymmetric left-right model with automatic R-parity
	Introduction
	The basic structure of the model
	Symmetry breaking and the mass of the doubly charged Higgs boson
	Effective potential and the global minimum of the theory
	CKM angles out of radiative corrections
	FCNC, the strong CP and the SUSY CP problems
	Conclusion
	Acknowledgements
	References


