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We study the supersymmetric version of the type-II seesaw mechanism assuming minimal supergravity

boundary conditions. We calculate branching ratios for lepton flavor violating (LFV) scalar tau decays,

potentially observable at the LHC, as well as LFV decays at low energy, such as li ! lj þ �, and compare

their sensitivity to the unknown seesaw parameters. In the minimal case of only one triplet coupling to the

standard model lepton doublets, ratios of LFV branching ratios can be related unambiguously to neutrino

oscillation parameters. We also discuss how measurements of soft SUSY breaking parameters at the LHC

can be used to indirectly extract information of the seesaw scale.
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I. INTRODUCTION

Neutrinos have mass and nontrivial mixing angles, as
neutrino oscillation experiments have shown [1–5]. If neu-
trinos are Majorana particles, their mass at low energy is
described by a unique dimension-5 operator [6]

m� ¼ f

�
ðHLÞðHLÞ: (1)

Using only renormalizable interactions, there are only
three tree-level realizations of this operator [7]. The first
one is the exchange of a heavy fermionic singlet. This is the
celebrated seesaw mechanism [8–10], which we will call
seesaw type-I. The second possibility is the exchange of a
scalar triplet [11,12]. This is commonly known as seesaw
type-II. And lastly, one could also add one (or more) fer-
mionic triplets to the field content of the SM [13]. This is
called seesaw type-III in [7], although this nomenclature is
not universally accepted.1

The dimension-5 operator of Eq. (1) could also be gen-
erated at loop level. As the classical examples for loop
generated neutrino masses we only mention the Zee model
[17] (1-loop) and the Babu-Zee model [18] (2-loop), al-
though many more models exist in the literature. A list
of generic 1-loop realizations of Eq. (1) can also be found
in [7].

At ‘‘low’’ energies one can neither decide whether tree-
level or loop physics generates Eq. (1), nor can any mea-
surements of neutrino angles, phases or masses distinguish
between the different tree-level realizations of the seesaw
discussed above. Observables outside the neutrino sector
are needed to ultimately learn about the origin of Eq. (1).
For loop generated neutrino masses, f in Eq. (1) can be a
very small number and the scale � at which new physics
appears can be quite low, probably accessible at future
accelerators such as the LHC or an international linear
collider. The ‘‘classical’’ tree-level realizations of the see-
saw, unfortunately, cannot be put to the test in such a direct
way. This can be straightforwardly understood by inverting

Eq. (1), which results in �� fð0:05 eV
m�

Þ1015 GeV.

Indirect inside into the high-energy world might be
possible in supersymmetric versions of the seesaw. In the
renormalization group equations for the soft SUSY break-
ing slepton mass parameters terms proportional to the
neutrino Yukawa couplings appear. If the scale where the
right-handed neutrinos and/or the triplet decouples is be-
low the scale at which SUSY breaks, lepton flavor violat-
ing (LFV) entries in the Yukawa matrices then induce LFV
off-diagonals in the slepton mass matrices. This effect
potentially leads to large values for lepton flavor violating
lepton decays, such as � ! eþ �, even if the soft masses
are completely flavor blind at high scale, as was first
pointed out for the case of seesaw type-I in [19]. It may
not be surprising then that with the increasingly convincing
experimental evidence for nonzero neutrino masses, a
number of articles have studied the prospects for observing
LFV processes, both at low energies and at future colliders,
within the supersymmetric seesaw [20–33].
Despite the fact that a minimal seesaw type-II has fewer

free parameters than the seesaw type-I, type-I seesaw has
received considerably more attention in the literature.
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1Barr and Dorsner [14], for example, add additional singlets to

the seesaw type-I. This version of the seesaw—which the authors
call type-III—might be named ‘‘double seesaw, variant-II’’ to
distinguish it from the original double seesaw [15], see also the
related work in [16].
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Probably one of the reasons for this preference is gauge
coupling unification. As is well known [34,35], the SM
gauge couplings unify within the minimal supersymmet-
ric standard model (MSSM) at a scale around MG ’ 2�
1016 GeV, if the SUSY particles have masses around the
electroweak scale. Adding gauge singlets does not destroy
this nice feature of the MSSM. However, a scalar triplet
with mass below the grand unified theory (GUT) scale
changes the running of g1 and g2 in an unwanted way and
gauge coupling unification is lost [36]. A simple way to
cure this defect of the seesaw-II consists in adding only
complete SUð5Þ multiplets (or GUT multiplets which can
be decomposed into complete SUð5Þ multiplets) to the
standard model particle content. In this way the scale
where couplings unify remains the same (at one-loop
level), only the value of the GUT coupling changes [37].

In this paper we calculate lepton flavor violating branch-
ing ratios of the scalar tau as well as LFV lepton decays
at low energies, such as li ! lj þ � and li ! 3lj. For
definiteness, we assume minimal supergravity (mSugra)
boundary conditions and fit the observed neutrino masses
by a seesaw mechanism of type-II. We will discuss two
different realizations. The first one is based on adding one
pair of triplets to the MSSM, from which only one couples
to the standard model leptons. This is the simplest super-
symmetric version of the type-II seesaw. The second model

we consider consists of adding a pair of 15 and 15 multi-
plets to the MSSM particle content [36]. This second op-
tion allows one to maintain gauge coupling unification also
for M15 � MG.

We compare the sensitivities of low-energy and accel-
erator measurements and study their dependence on the
unknown seesaw and SUSY parameters. Absolute values
of LFV stau decays and LFV lepton decays depend very
differently on the unknown SUSY parameters. For a light
SUSY spectrum, say slepton masses below 200 GeV, the
current upper bound on Brð� ! eþ �Þ limits seriously
the possibility to observe LFV scalar tau decays. However,
for heavier sparticles low-energy data very rapidly looses
constraining power and large LFVat the LHC is allowed by
current data.

While absolute values of LFV observables depend
very strongly on the soft SUSY breaking parameters, we
discuss how ratios of LFV branching ratios can be used
to eliminate most of the dependence on the unknown
SUSY spectrum. Ratios such as, for example,Brð~�2 ! eþ
�0
1Þ=Brð~�2 ! �þ �0

1Þ are constants for fixed neutrino pa-

rameters over large parts of the supersymmetric parameter
space. Measurements of such ratios would allow one to
extract valuable information about the seesaw parameters:
In the minimal type-II seesaw case these ratios can be
calculated as a function of measurable low-energy neutrino

data. For the more involved case of the 15þ 15 model this
simple connection is lost in general, but relations to neu-
trino data can be (re)established in some simple, extreme

cases for the Yukawa matrix Y15. We, therefore, study such
ratios in some detail, first analytically then numerically.
The presence of new nonsinglet states below the GUT

scale does not only affect the running of gauge couplings
but also the evolution of the soft SUSY breaking parame-
ters. Measurements of soft SUSYmasses at the LHC and at
a possible ILC therefore contain indirect information about
the physics at higher energy scales [28,38]. From the dif-
ferent soft scalar and gaugino masses one can define cer-
tain ‘‘invariants,’’ i.e. parameter combinations which are
nearly constant over large ranges of the mSugra parame-
ter space [39], at least in leading order approximation. If
the measured values of all the invariants depart from the
mSugra expectation in a consistent way, one could gain
some indirect estimate of the mass scale of the new parti-
cles, the scale of the seesaw type-II. We discuss first some
leading-order analytical approximation, before showing
by numerical calculation the limitations of the simplified
analytical approach. While the different invariants indeed
contain useful information about the high-energy physics,
reliable quantitative conclusions about the mass scale of
the 15 require highly precise measurements of soft masses
as well as a full numerical 2-loop analysis.
The rest of this paper is organized as follows. In the next

section we will recall the basic features of the super-
symmetric seesaw type-II and discuss a SUð5Þ motivated

variant, which adds a pair of 15 and 15. Section III then
discusses analytical solutions for the renormalization
group equations (RGEs) and presents estimates for slepton
mixing angles and the corresponding LFV observables. In
Sec. IV we present our numerical results for LFV decays at
low energies and accelerators. This numerical study dem-
onstrates the reliability of our analytical approximations
for the LFVobservables. We then discuss soft masses and
the seesaw type-II scale, demonstrating by a numerically
exact calculation that for soft masses the leading order
approximations are not accurate enough to draw quantita-
tive conclusions. We then summarize in Sec. V.

II. SETUP: MSUGRAWITH SEESAW TYPE-II

In this section, to set up the notation, we briefly recall the
main features of the seesaw type-II and mSugra. We then
outline a simple SUð5Þmotivated model based on the work
of [36].

A. Supersymmetric seesaw with triplet(s)

In supersymmetry at least two SUð2Þ triplet states T1;2

with opposite hypercharge are needed to cancel anomalies.
Thus, the minimal SUSY potential including triplets can be
written as

W ¼WMSSM þ 1ffiffiffi
2

p ðYij
T LiT1Lj þ �1H1T1H1 þ �2H2T2H2Þ

þMTT1T2: (2)
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Here T1 (T2) are supermultiplets with hypercharge Y ¼ 1
(Y ¼ �1) and H1;2 are the standard Higgs doublets with

Y ¼ �1=2. The matrix YT is complex symmetric, �1;2 are

arbitrary constants, and MT gives mass to the triplets,
supposedly at a very high scale. Note that only T1 couples
to the SM leptons, thus in the minimal (supersymmetric)
model with two triplets the only source of lepton flavor
violation resides in the matrix YT .

Integrating out the heavy triplets at their mass scale the
dimension-5 operator of Eq. (1) is generated and after
electroweak symmetry breaking the resulting neutrino
mass matrix can be written as

m� ¼ v2
2

2

�2

MT

YT; (3)

where v2 is the vacuum expectation value of the Higgs
doubletH2 and we use the convention hHii ¼ viffiffi

2
p . Note that

Eq. (3) depends on the energy scale.m� is measured at low
energies, whereas for the calculation of m� we need to
know �2, YT , andMT as input parameters at the high scale.
One can use an iterative procedure to find the high scale
parameters from the low-energy measured quantities, as
explained in Sec. IV. In the basis where the charged lepton
masses are diagonal, Eq. (3) is diagonalized by

m̂ � ¼ UT �m� �U; (4)

where the neutrino mixing matrixU is, in standard notation
[40], given by

U ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13
s12s23 � c12c23s13e

i� �c12s23 � s12c23s13e
i� c23c13

0
B@

1
CA ei�1=2 0 0

0 ei�2=2 0
0 0 1

0
B@

1
CA: (5)

Here sij � sin	ij (cij ¼ cos	ij). For Majorana neutrinos,
U contains three phases: � is the (Dirac-) CP violating
phase, which appears in neutrino oscillations, and �1;2 are
Majorana phases, which can only be observed in lepton
number violating processes. Neutrino oscillation experi-
ments can be fitted with either a normal hierarchical spec-
trum (NH), or with inverted hierarchy (IH). If one does not
insist in ordering the neutrino mass eigenstates m�i

, i ¼ 1,
2, 3 with respect to increasing mass, the matrix U can
describe both possibilities without reordering of angles. In
this convention, which we will use in the following, m�1

’
0 (m�3

’ 0) corresponds to normal (inverse) hierarchy and
s12, s13, and s23 are the solar (s�), reactor (sR), and atmos-
peric angle (sAtm) for both type of spectra.

Note that

Ŷ T ¼ UT � YT �U; (6)

i.e. YT is diagonalized by the same matrix as m�. If all
neutrino eigenvalues, angles, and phases were known, YT

would be fixed up to an overall constant which can be
easily estimated to be

MT

�2

’ 1015 GeV

�
0:05 eV

m�

�
: (7)

At this points it might be worth recalling the main differ-
ences between seesaw type-II and seesaw type-I. In seesaw
type-I there is one nonzero mass eigenstate for the light
neutrinos for each right-handed neutrino added to the
model. In contrast, seesaw-II can produce three nonzero
neutrino masses with only one triplet. Thus the minimal
model for seesaw type-II with only one triplet coupling to
L has less parameters than seesaw type-I. We can count the
new parameters in Eq. (2): YT being complex symmetric

has 9 parameters. Additionally we have �1;2 and MT . All

three could in principle be complex. However, field redef-
initions on T1 and T2 can be applied to remove two of the
three phases, thus there is a total of 13 parameters. Note,
however, that only 11 of them are related to neutrino
physics. Since we have the freedom to write down Eq. (2)
in the basis, where the charged lepton mass matrix is
diagonal, we only have to add three charged lepton masses
to the counting of free parameters.2 This number should be
compared to the 21 free parameters in seesaw type-I for
three right-handed neutrinos [41]. At low energies a maxi-
mum of 12 parameters can be fixed by measuring lepton
properties: 3 neutrino and 3 charged lepton masses, 3 an-
gles and 3 phases. Thus from neutrino data neither seesaw
type-II nor seesaw type-I can be completely reconstructed.
However, especially important in the following is the fact,
see Eq. (6), that low-energy neutrino angles are directly
related to the high-energy Yukawa matrix in seesaw-II,
whereas no such simple connection exists in the seesaw
type-I, see also the discussion in [22].

B. SUð5Þ inspired model with 15þ 15

In this section we outline the basics of a SUð5Þ inspired
model, which adds a pair of 15 and 15 to the MSSM
particle spectrum [36]. Our numerical calculations will
all be based on this variant, since it allows one to maintain
gauge coupling unification for MT � MG, as discussed in
the introduction.

2In the nonsupersymmetric version of seesaw-II �2

MT
! �

M2
T

,
with � having dimension of mass, but the number of parameters
related with neutrino physics does not change.
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Under SUð3Þ � SULð2Þ �Uð1ÞY the 15 decomposes as

15 ¼ Sþ T þ Z S�
�
6; 1;� 2

3

�
;

T � ð1; 3; 1Þ; Z�
�
3; 2;

1

6

�
:

(8)

T has the same quantum numbers as the triplet T1 dis-
cussed above. The SUð5Þ invariant superpotential reads as

W ¼ 1ffiffiffi
2

p Y15
�5 � 15 � �5þ 1ffiffiffi

2
p �1

�5H � 15 � �5H

þ 1ffiffiffi
2

p �25H � 15 � 5H þY510 � �5 � �5H þY1010 � 10 � 5H
þM1515 � 15þM5

�5H � 5H (9)

Here, �5 ¼ ðdc; LÞ, 10 ¼ ðuc; ec; QÞ, 5H ¼ ðt; H2Þ, and
�5H ¼ ð�t; H1Þ. Below the GUT scale in the SUð5Þ-broken
phase the potential contains the terms

1ffiffiffi
2

p ðYTLT1Lþ YSd
cSdcÞ þ YZd

cZLþ Ydd
cQH1

þ Yuu
cQH2 þ Yee

cLH1 þ 1ffiffiffi
2

p ð�1H1T1H1

þ �2H2T2H2Þ þMTT1T2 þMZZ1Z2 þMSS1S2

þ�H1H2 (10)

The first term in Eq. (10) is responsible for the generation
of the neutrino masses in the same way as discussed for the
triplet-only case in the previous subsection. Yd, Yu, and Ye

generate quark and charged lepton masses in the usual
manner. However, in addition there are the matrices YS

and YZ, which, in principle, are not determined by any low-
energy data. In the calculation of LFV observables in
supersymmetry, both matrices, YT and YZ, contribute. For
the case of a complete 15, apart from threshold corrections,
YT ¼ YS ¼ YZ. One can recover the results for the simplest
triplet-only model, as far as lepton flavor violation is con-
cerned, by putting YS ¼ YZ ¼ 0.

As long as MZ �MS �MT �M15 gauge coupling uni-
fication will be maintained. The equality need not be exact
for successful unification. In our numerical studies we have
taken into account the different running of these mass pa-
rameters but we decouple them all at the scale MTðMTÞ
because the differences are small.

III. ANALYTICAL RESULTS

A. Approximate solutions for the RGEs

In mSugra one has in total 5 parameters at the GUT scale
[42]. These are usually chosen to be M0, the common
scalar mass, M1=2, the gaugino mass parameter, A0, the

common trilinear parameter, tan
 ¼ v2

v1
, and the sign of�.

For the full set of RGEs for the 15þ 15 see [36]. In the
numerical calculation, presented in the next section, we

solve the exact RGEs. However, the following approxi-
mative solutions are very helpful in gaining a qualitative
understanding.
The gauge couplings are given as

�1ðmZÞ ¼ 5�emðmZÞ
3cos2	W

; �2ðmZÞ ¼ �emðmZÞ
sin2	W

;

�iðmSUSYÞ ¼ �iðmZÞ
1� �iðmZÞ

4� bSMi log
m2

SUSY

m2
Z

;

�iðMTÞ ¼ �iðmSUSYÞ
1� �iðmSUSYÞ

4� bi log
M2

T

m2
SUSY

;

�iðMGÞ ¼ �iðMTÞ
1� �iðMT Þ

4� ðbi þ�biÞ logM
2
G

M2
T

:

(11)

bSM ¼ ðb1; b2; b3ÞSM ¼ ð4110 ;� 19
6 ;�7Þ for SM and b ¼

ðb1; b2; b3ÞMSSM ¼ ð335 ; 1;�3Þ for MSSM. MT denotes the

mass of the triplet (15-plet). For the case of the complete
15-plet one finds �bi ¼ 7, whereas for the case with
triplets-only one finds �b1 ¼ 18=5, �b2 ¼ 4, and �b3 ¼
0. Using the equality �1ðMGÞ ¼ �2ðMGÞ determines the
GUT scale MG via

log
M2

G

M2
T

¼ 1

�1ðmSUSYÞ�2ðmSUSYÞðb1 þ �b1 � b2 � �b2Þ
�
�
4�ð�2ðmSUSYÞ � �1ðmSUSYÞÞ

þ �1ðmSUSYÞ�2ðmSUSYÞðb2 � b1Þ log M2
T

m2
SUSY

�

(12)

Note, that in the case of the complete 15-plet MG is in-
dependent of MT . For the gaugino masses one finds

MiðmSUSYÞ ¼ �iðmSUSYÞ
�ðMGÞ M1=2: (13)

Equation (13) implies that the ratio M2=M1, which is
measured at low energies, has the usual mSugra value,
but the relationship to M1=2 is changed. Neglecting the

Yukawa couplings Y15, see below, for the soft mass pa-
rameters of the first two generations one obtains

m2
~f
¼ M2

0 þ
X3
i¼1

c
~f
i

��
�iðMTÞ
�ðMGÞ

�
2
fi þ f0i

�
M2

1=2; (14)

fi ¼ 1

bi

�
1�

�
1þ �iðMTÞ

4�
bi log

M2
T

m2
Z

��2
�
;

f0i ¼
1

bi þ�bi

�
1�

�
1þ �ðMGÞ

4�
ðbi þ �biÞ logM

2
G

M2
T

��2
�
:

(15)

The various coefficients c
~f
i are given in Table I.
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Individual SUSY masses depend strongly on the initial
values for M0 and M1=2. However, one can form different

combinations, such as

ðm2
~L
�m2

~E
Þ=M2

1 ¼
�

�ðMGÞ
�1ðmSUSYÞ

�
2
�
3

2

��
�2ðmTÞ
�ðmGÞ

�
2
f2 þ f02

�

� 9

10

��
�1ðmTÞ
�ðmGÞ

�
2
f1 þ f01

��
;

which, to first approximation, are constants over large
regions of mSugra space. We will call such combinations
invariants.

Figure 1 shows four different invariants as a function of
M15 ¼ MT , calculated using Eqs. (13) and (14). ForMT ¼
MG one reaches the mSugra limit. For lower values of MT

one obtains a logarithmic dependence on the value of MT .
If all the different invariants depart from their mSugra
values in a consistent way, measurements of these parame-
ter combinations can be used to obtain indirect information
about the seesaw scale. In practice the invariants do depend
on the SUSY spectrum and thus indirectly still depend to
some degree on the initial values of M0 and M1=2. We will

discuss this point in more detail in the numerical section.
For the off-diagonal elements of the slepton mass ma-

trix, we will discuss only the left sector, since right slepton
mass parameters do not run to first-order approxima-

tion [36]. In our numerical calculation we do solve the
RGEs exactly and confirm this expectation. Off-diagonal
elements are induced in m2

~L
due to the nontrivial flavor

structure of the matrices YT and YZ. YT and YZ appear
symmetrically in the RGEs [36]. Since only YT can be fixed
from low-energy data, for a general YZ the off-diagonal
entries of m2

~L
do not follow any correlation with low-

energy physics. For this reason in the following we will
consider two extreme cases: (a) YZ ¼ YT , we will call this
the 15-plet case; and (b) YZ ¼ 0, we will refer to this as the
triplet case.
For m2

~L
one finds the following approximation in the

case of the 15-plet:

�m2
~L;ij

¼ � 1

16�2
ðYy

TYTÞij
Z logðM2

G
=M2

T Þ

0

�
18M2

0 þ
�
34

5
f01ðtÞ þ 30f02ðtÞ þ 16f03ðtÞ

�
M2

1=2 þ 3

�
A0 � 9

68
M0

1ðtÞ �
7

8
M0

2ðtÞ
�
2

þ 3

�
A0 � 7

204
M0

1ðtÞ �
3

8
M0

2ðtÞ �
4

3
M0

3ðtÞ
�
2
�
dt; (16)

M0
iðtÞ ¼ M1=2

�
1� 1

1þ 1
4� ðbi þ �biÞ�ðMGÞt

�
: (17)

In case of the triplet one finds

�m2
~L;ij

¼ � 1

16�2
ðYy

TYTÞij
Z logM2

G=M
2
T

0

�
9M2

0 þ
�
27

5
f01ðtÞ

þ 21f02ðtÞ
�
M2

1=2 þ 3

�
A0 � 9

68
M0

1ðtÞ

� 7

8
M0

2ðtÞ
�
2
�
dt: (18)

The integration over t can be done analytically leading to
corrections to the formulas for ð�m2

~L
Þij.

We have found that the approximation formulas shown
above work less well than the corresponding formulas for
the seesaw type-I case and only give a rough order of
magnitude estimate. The reason for this difference is that
in seesaw type-I the Y� hardly run, unless left neutrinos
are very degenerate, as either the Yukawas themselves
are small or in the case of large Yukwas the contribution
from gauge and (top) Yukawa couplings nearly cancel each
other. Such a cancellation does not take place in case of
YT , thus leading to a significantly stronger dependence of
YT on the renormalization scale and consequently larger

TABLE I. Coefficients c
~f
i for Eq. (14).

~f ~E ~L ~D ~U ~Q

c
~f
1

6
5

3
10

2
15

8
15

1
30

c
~f
2 0 3

2 0 0 3
2

c
~f
3 0 0 8

3
8
3

8
3

FIG. 1 (color online). Four different invariant combinations
of soft masses (left) versus the mass of the 15-plet, M15 ¼
MT . The plot assumes that the Yukawa couplings Y15 are neg-
ligibly small. The calculation is at 1-loop order in the leading-log
approximation.
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differences between the numerical solutions and Eqs. (16)
and (18).

However, we have found that it is possible to improve
the accuracy of the approximation formulas using the re-
sults of the next subsection, see Eq. (25). The idea here is to
replace the running Yukawa coupling YT by the measured
low-energy neutrino masses and angles times the unknown
coupling �2. In case �2 is sufficiently small, this parameter
does run very little and Eqs. (16) and (18) agree already
very well with the numerical results. For large values of �2,
we can find approximate solutions for the RGE for this
parameter, following the procedure outlined in [28].

We define

X � �2
2

4�
; Yt � y2t

4�
: (19)

The solution for the RGE for �2 is then given in terms of

XðtÞ by (t ¼ log
M2

G

Q2 )

XðtÞ ¼ XðMGÞuXðtÞ
1þ 7

2�XðMGÞ
R
t
0 uXðt0Þdt0

;

uXðt0Þ ¼
ð1þ 6

2�YtðMGÞt0Þ1=ð6=2�Þ
EXðt0Þ ;

EXðt0Þ ¼
�
1þ b1 þ�b1

2�
�1ðMGÞt0

�ð1=2�Þð9=5Þ=ðb1þ�b1Þ

�
�
1þ b2 þ�b2

2�
�2ðMGÞt0

�ð1=2�Þ7=ðb2þ�b2Þ
: (20)

We have found that, assuming an approximately constant
Yt, the above equations become easy to solve and describe
the running of �2 to a rather good approximation. Equa-
tions (20) and (25), together with Eqs. (16) and (18) then
allow one to estimate LFVentries in m2

~L
up to an accuracy

of typically a few percent.

B. Analytical results for flavor violating processes

Here we concentrate exclusively on the left-slepton sec-
tor. Taking into account the discussion given above, this is
expected to be a reasonable first approximation. The left-
slepton mass matrix is diagonalized by a matrix R

~l, which
in general can be written as a product of three Euler
rotations. However, if the mixing between the different
flavor eigenstates is sufficiently small, the three different
angles can be estimated by the following simple formula:

	ij ’
ð�m2

~L
Þij

ð�m2
~L
Þii � ð�m2

~L
Þjj

: (21)

LFV decays are directly proportional to the squares of
these mixing angles as long as all angles are small. Tak-
ing the ratio of two decays, for example,

Brð~�2 ! eþ �0
1Þ

Brð~�2 ! �þ �0
1Þ

’
�
	~e ~�

	 ~� ~�

�
2 ’

�ð�m2
~L
Þ13

ð�m2
~L
Þ23

�
2
; (22)

one expects that (a) all the unknown SUSY mass pa-
rameters and (b) the denominators of Eq. (21) cancel
approximately. To calculate estimates for different ratios
of branching ratios we define

rijkl �
jð�m2

~L
Þijj

jð�m2
~L
Þklj

; (23)

where the observable quantities are ðrijklÞ2. Of course, only
two of the three possible combinations that can be formed
are independent.

We next derive some analytical formulas for ðrijklÞ2 in

terms of observable neutrino parameters. The neutrino
Yukawa coupling YT can be written in terms of observable
parameters

YT ¼ 2MT

v2
2�2

m� ¼ 2MT

v2
2�2

U	 � diagðm1; m2; m3Þ �Uy: (24)

The running of the soft SUSY breaking slepton mass
matrix ðm2

~L
Þij is proportional to the parameter combina-

tion ðYy
TYTÞij.3 This combination can again be expressed in

terms of low-energy neutrino observables times an un-
known scale:

ðYy
TYTÞij ¼

�
2MT

v2
2�2

�
2ðU � diagðm2

1; m
2
2; m

2
3Þ � UyÞij

� ~m�2
X
k

UikU
	
jkm

2
k: (25)

The different off-diagonal entries are explicitly given as

ðYy
TYTÞ12 ¼ ~m�2½U11U

	
21m

2
1 þU12U

	
22m

2
2 þU13U

	
23m

2
3
;

ðYy
TYTÞ13 ¼ ~m�2½U11U

	
31m

2
1 þU12U

	
32m

2
2 þU13U

	
33m

2
3
;

ðYy
TYTÞ23 ¼ ~m�2½U21U

	
31m

2
1 þU22U

	
32m

2
2 þU23U

	
33m

2
3
:
(26)

Inserting the convention for the matrix U from Eq. (5)
results in

3For the triplet-only case. For the 15 case we assume YZ ¼ YT
at MG, see the previous subsection.
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ðYy
TYTÞ12 / c12s12c13c23ðm2

2 �m2
1Þ � c13s13s23e

�i�fðm2
3 �m2

2Þ þ c212ðm2
2 �m2

1Þg;
ðYy

TYTÞ13 / c12s12c13s23ðm2
1 �m2

2Þ � c13s13c23e
�i�fðm2

3 �m2
2Þ þ c212ðm2

2 �m2
1Þg;

ðYy
TYTÞ23 / s23c23ððs212 � c212Þðm2

2 �m2
1Þ þ c213fðm2

3 �m2
2Þ þ c212ðm2

2 �m2
1ÞgÞ � s12c12s13ðc223e�i� � s223e

i�Þðm2
2 �m2

1Þ:
(27)

Note, that the off-diagonals can be expressed as a function
of mass squared differences only, i.e. there is no depen-
dence on the overall neutrino mass scale. However, again
note that Eq. (27) depends on the energy scale, see the
discussion below Eq. (3) and in Sec. IV. Also it is worth
mentioning that with the convention of U from Eq. (5) the
Majorana phases cancel in Eq. (27).

As a starting approximation for the following discus-
sion, let us assume that the lepton mixing matrix has exact
tribimaximal (TBM) form [43]

U ¼ UTBM ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p
1ffiffi
6

p � 1ffiffi
3

p 1ffiffi
2

p

0
BBB@

1
CCCA: (28)

As is well known, Eq. (28) is an excellent first-order
approximation to the measured neutrino mixing angles
[44]. For these values Eq. (27) simplifies to

jðYy
TYTÞ12j / 1

3�m
2�; jðYy

TYTÞ13j / 1
3�m

2�;

jðYy
TYTÞ23j / 1

2�m
2
Atm:

(29)

The ratios ðr1213Þ ¼ 1 and ðr1223Þ ¼ ðr1323Þ ¼ 2
3

�m2�
�m2

Atm

result.

For the general mixing matrix one can derive ðrijklÞ2 using
Eq. (27). For the currently allowed ranges of the neutrino
parameters, the most important unknown turns out to be

s13, as Fig. 2 demonstrates. In this figure ðrijklÞ2 are shown as
a function of s213 for tan

2	A ¼ 1 and tan2	� ¼ 1=2, as well
as for the �m2 fixed at their best fit point values [44].
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FIG. 2 (color online). Square ratios ðr1213Þ2 (light blue, solid line), ðr1223Þ2 (blue, dashed line) and ðr1323Þ2 (red, dotted line) versus s213 for
NH (upper panels), IH (lower panels) for � ¼ 0 (left panels) and � ¼ � (right panels). The other light neutrino parameters have been
fixed to their best fit point values. Note, that for tan2	A ¼ 1, ðr1223Þ2 and ðr1323Þ2 are symmetric under the exchange of � ¼ 0 $ � ¼ �.
Also the simultaneous exchange of NH $ IH and ð� ¼ 0Þ $ ð� ¼ �Þ leads to the same values for the different rijkl, in case of

tan2	A ¼ 1.
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Currently s213 � 0:05 at 3� C.L. rijkl strongly depend on the
value of s13 and there exists a special value of s13, for
which either ðr1223Þ or ðr1323Þ even vanish, due to a cancellation
between the different terms in Eq. (27). Note, however, that
ðr1223Þ and ðr1323Þ cannot vanish simultaneously. Note also,

that for tan2	A ¼ 1, ðr1223Þ2 and ðr1323Þ2 are symmetric under

the exchange of � ¼ 0 $ � ¼ �. Also, for nonzero values
of s13 the results depend on the assumed hierarchy of the
left neutrinos and the simultaneous exchange of the cases
(normal hierarchy) NH $ IH (inverse hierarchy) and ð� ¼
0Þ $ ð� ¼ �Þ leads to the same values for the different rijkl
in case of tan2	A ¼ 1.

Table II shows the currently allowed ranges for the ðrijklÞ2
for s13 ¼ 0 and smax

13 for different assumptions about the

remaining neutrino parameters for the different cases of
NH and IH. These values serve to indicate the allowed
variations for rijkl due to other parameters than s13. As stated
above, the allowed variation on s13 is most important for
the ‘‘uncertainties’’ in ðrijklÞ2. However, also the current

error bar on tan2	A leads to a sizeable variation on rijkl.
Since �m2

Atm and �m2� are now known to much better
precision than the neutrino angles, their variation is much

less important for the ðrijklÞ2, as Table II demonstrates.

Finally, recall that all results presented in this subsection
are based on the assumption that one of the extreme cases,
YZ ¼ YT or YZ ¼ 0, is realized. The former corresponds to
the SUð5Þ inspired model with a complete 15 of Sec. II B,
whereas the latter corresponds to the simplest triplet-only
model discussed in Sec. II A. However, we stress that
departures in the ratios of LFV branching ratios from the
values calculated in this subsection should not be inter-
preted as ‘‘ruling out’’ the seesaw type-II. Rather they

should be interpreted in the sense that one has to go beyond
minimal scenarios.

IV. NUMERICAL RESULTS

In this section we present our numerical calculations. All
results presented below have been obtained with the lepton
flavor violating version of the program package SPheno
[45]. Calculations are done for the 15-plet case, using the
assumption YZ ¼ YT at MG, as discussed above. Unless
mentioned otherwise, we fit neutrino mass squared differ-
ences to their best fit values [44] and the angles to TBM
values. Our numerical procedure is as follows. Inverting
the seesaw equation, see Eq. (3), one can get a first guess of
the Yukawa couplings for any fixed values of the light
neutrino masses (and angles) as a function of the corre-
sponding triplet mass for any fixed value of �2. This first
guess will not give the correct Yukawa couplings, since the
neutrino masses and mixing angles are measured at low
energy, whereas for the calculation of m� we need to insert
the parameters at the high-energy scale. However, we can
use this first guess to run numerically the RGEs to obtain
the exact neutrino masses and angles (at low energies) for
these input parameters. The difference between the results
obtained numerically and the input numbers can then be
minimized in a simple iterative procedure until conver-
gence is achieved. As long as neutrino Yukawas are not
too close to 1 we reach convergence in a few steps. How-
ever, in seesaw type-II the Yukawas run stronger than in
seesaw type-I, thus our initial guess can deviate sizeably
from the exact Yukawas. Since neutrino data requires at
least one neutrino mass to be larger than about 0.05 eV, we
do not find any solutions for MT * �2 � 1015 GeV.

TABLE II. The parameters rijkl are given for several values of the neutrino mixing angles. smax
13 is the experimentally allowed

maximum value: ðsmax
13 Þ2 ¼ 0:050 at ð3�Þ C.L. NH and IH are normal and inverted hierarchy of neutrino masses, respectively. The

intervals correspond to a ð3�Þ experimental allowed range of neutrino oscillation parameters: s212 ¼ 0:26–0:40, s223 ¼ 0:34–0:67,
�m2� ¼ ð7:1–8:3Þ � 10�5 eV2, and �m2

Atm ¼ ð2:0–2:8Þ � 10�3 eV2. In the top two rows only the mass squared splittings are varied,

while for the lower set angles also are allowed to vary.

NH IH

� ¼ 0 � ¼ � � ¼ 0 � ¼ �

s12 ¼ 1=
ffiffiffi
3

p ðr1213Þ2 1 1

s23 ¼ 1=
ffiffiffi
2

p ðr1223Þ2 ½2:8; 7:4
 � 10�4 ½2:8; 7:2
 � 10�4

s13 ¼ 0 ðr1323Þ2 ½2:8; 7:4
 � 10�4 ½2:8; 7:2
 � 10�4

s12 ¼ 1=
ffiffiffi
3

p ðr1213Þ2 [1.2,1.4] [0.71,0.81] [0.71,0.81] [1.2,1.4]

s23 ¼ 1=
ffiffiffi
2

p ðr1223Þ2 [0.12,0.13] [0.091,0.096] [0.085,0.093] [0.11,0.12]

s13 ¼ smax
13 ðr1323Þ2 [0.091,0.096] [0.12,0.13] [0.11,0.12] [0.085,0.093]

s12 � 1=
ffiffiffi
3

p ðr1213Þ2 [0.49,1.94] [0.49,1.94]

s23 � 1=
ffiffiffi
2

p ðr1223Þ2 ½1:8; 12
 � 10�4 ½1:8; 12
 � 10�4

s13 ¼ 0 ðr1323Þ2 ½1:8; 12
 � 10�4 ½1:8; 12
 � 10�4

s12 � 1=
ffiffiffi
3

p ðr1213Þ2 [0.63,3.0] [0.35,1.7] [0.35,1.7] [0.63,3.0]

s23 � 1=
ffiffiffi
2

p ðr1223Þ2 [0.094,0.18] [0.062,0.15] [0.060,0.15] [0.089,0.18]

s13 ¼ smax
13 ðr1323Þ2 [0.061,0.15] [0.093,0.18] [0.088,0.17] [0.058,0.14]
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We have implemented the effects of the additional trip-
lets (15-plets) including the two-loop contributions to the
RGEs for gauge couplings and gaugino masses, one-loop
contributions to the remaining MSSM parameters, and
one-loop RGEs for the new parameters in SPheno. For
consistency we have also included 1-loop threshold cor-
rections for gauge couplings and gaugino mass parameters
at the scale corresponding to the mass of the triplet. The
MSSM part is implemented at the 2-loop level and, thus, in
principle one should also include the effect of the 15-plets
consistently for all parameters at this level. However, the
correct fit of the neutrino data require that either the trip-
let (15-plet) Yukawa couplings are small and/or that MT

is close to MG implying that the ratio MT=MG is signifi-
cantly smaller than MG=mZ and thus one expects only
small effects.

A. Numerical results for LFV

The analytical results presented in the previous section
allow one to estimate ratios of branching ratios for LFV
decays. For absolute values of the branching ratios, as well
as for cross-checking the reliability of the analytical esti-

mates, one has to resort to a numerical calculation. Below
we show results only for a few ‘‘standard’’ mSugra points,
namely, for SPS3 [46] and SPS1a’ [47]. However, we have
checked with a number of other points that our results for
ratios of branching ratios are generally valid.
Figure 3 shows examples of LFV decays for the mSugra

point SPS3 as a function of MT ¼ M15 for two different
values of �2. The upper plots show Brðli ! lj þ �Þ, while
the lower ones show Brð~�2 ! e;�þ �0

1Þ. We have also

calculated Brðli ! 3ljÞ, but these are not shown in the

plots, because they follow very well the approximate rela-
tion [24,48]

Brðli ! 3ljÞ
Brðli ! lj þ �Þ ’ �

3�

�
log

�m2
li

m2
lj

�
� 11

4

�
: (30)

All LFV branching ratios show a very strong dependence
on the value of MT and due to the stronger running of
parameters in the seesaw type-II case, compared to the
seesaw type-I, the dependence on the seesaw scale is
stronger than in seesaw-I [49]. See also the discussion in
Sec. III.
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FIG. 3 (color online). Lepton flavor violating branching ratios versusMT ¼ M15 for the standard mSugra point SPS3 for two values
of �2. To the left �2 ¼ 0:05, to the right �2 ¼ 0:5. The plots show Brðli ! lj þ �Þ (top) and Brð~�2 ! e;�þ �0

1Þ (bottom). Ratios of

the different branching ratios follow closely the analytical expectations. The regions excluded by the current upper limit on Brð� !
eþ �Þ is shown also in the lower plot.
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For the calculation shown in Fig. 3, we have fitted the
neutrino angles to exact tribimaximal values. One sees that,
as long as the different LFV branching ratios are small,
ratios of branching ratios are constants, which follow very
well the analytical expectations. Currently the most im-
portant phenomenological constraints come from the upper
limit on Brð� ! eþ �Þ, Brð� ! eþ �Þ � 1:2 � 10�11

[40]. Note that the ‘‘dip’’ in Brð� ! eþ �Þ is due to a
level-crossing of selectron and smuon mass eigenstates.4

For SPS3 one finds that this limit rules out Brð~�2 ! �þ
�0
1Þ larger than a few percent, the exact number depending

on the unknown parameter �2. Figure 3 to the left (right)
shows results for �2 ¼ 0:05 (�2 ¼ 0:5). Recall that neu-
trino physics fixes only MT=�2. However, note also that
the upper limit on Brð~�2 ! �þ �0

1Þ depends only weakly

on �2.
It is well known that absolute values of LFV branching

ratios depend very strongly on the SUSY spectrum, for
example Brð� ! eþ �Þ / 1=m8

SUSY [21]. Since both left-

sleptons as well as (lightest) neutralino and chargino are
approximately a factor of 2 heavier for SPS3 than for
SPS1a’, one expects that Brð� ! eþ �Þ gives a strong
constraint on the observability of LFV at the LHC for
SPS1a’. This is confirmed numerically, as shown in
Fig. 4, which shows Brðli ! lj þ �Þ and Brð~�2 ! e;�þ
�0
1Þ as a function of MT ¼ M15 for the example of �2 ¼

0:5. Given the current limit on Brð� ! eþ �Þ one expects
Brð~�2 ! �þ �0

1Þ & ðfewÞ10�4. Note that again we have

fitted neutrino angles to tribimaximal values in this calcu-

lation and that ratios of LVF branching ratios follow
closely the analytical expressions.

B. Sparticles masses and seesaw scale

As discussed in the analytic section, the running of soft
parameters allows, in principle, an indirect determination
of the seesaw scale. In this section we discuss numerical
results for the running of the invariants defined above.
Although below we show plots only for the combina-
tion ðm2

~L
�m2

~E
Þ=M2

1 we have checked numerically that

all invariants shown in Fig. 1 behave qualitatively in the
same way.
Figure 5 shows ðm2

~L
�m2

~E
Þ=M2

1 as a function of MT ¼
M15 for SPS1a’ and SPS3 comparing different calcula-
tions. This plot assumes that the Yukawas of the 15-plet
are negligibly small, i.e. neutrino mass are not correctly
fitted in this calculation. The black line is the analytical
calculation based on 1-loop RGEs and the leading-log
approximation with an assumedmSUSY ¼ 1 TeV. The dot-
ted lines are the numerically exact results for this invariant
using 1-loop RGEs, while the full lines are the exact results
using 2-loop RGEs. Obviously the ‘‘invariant’’ does de-
pend to a certain degree on the mSugra point, as already
pointed out in Sec. III. However, we also find a consider-
able upward shift of ðm2

~L
�m2

~E
Þ=M2

1, when going from the

1-loop to the 2-loop calculation. Since the dependence of
ðm2

~L
�m2

~E
Þ=M2

1 on the value of MT is only logarithmic,

even such a moderate change in the invariant is important,
if one wants to extract an indirect estimate on MT from
such a measurement. Note that for the point SPS1a’ the
calculation stops at M15 � 1011:6 GeV, the lowest value
of M15 for which correct electroweak symmetry break-
ing occurs.
We have checked by an exact numerical calculation that

the other invariants shown in Sec. III suffer from similar
changes when going from 1-loop order to 2-loop. In other
words, if one wants to learn about the seesaw scale from

FIG. 4 (color online). As Fig. 3, but for the mSugra standard point SPS1a’ and for �2 ¼ 0:5. For a slepton spectrum as light as
expected for SPS1a’ Brð� ! eþ �Þ rules out the possibility to observe large lepton flavor violating slepton decays at the LHC.

4In mSugra the left-selectron is usually slightly lighter than the
left-smuon. In the mSugra plus seesaw case, for both type-I and
type-II seesaw, the additional Yukawas change the running of the
slepton masses. For large Yukawas (i.e. large MT) fitting current
neutrino data requires couplings such that the smuon mass runs
faster to smaller values than the selectron mass. However, the
splitting between seletron and smuon mass eigenstates is ex-
pected to be too small to be measurable in most parts of the
parameter space, see the discussion in the next subsection.
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measurements of the soft masses, a careful analysis at
2-loop order will be necessary. Also note that, due to the
logarithmic dependence on MT , highly precise measure-
ments will be necessary, especially if MT is large, say
MT � 1012–13 GeV.

Figure 6 shows ðm2
~L
�m2

~E
Þ=M2

1 calculated with Yukawa

couplings fitted to neutrino data, for an arbitrary choice of
�2 ¼ 0:5. The calculation uses 2-loop RGEs and results are
shown again for the mSugra standard points SPS1a’ and
SPS3. For MT low, say MT � 1013 GeV or so in this ex-
ample, Yukawa couplings which explain current neutrino
data are too small to induce any significant effect in the
determination of ðm2

~L
�m2

~E
Þ=M2

1.

However, for larger values of MT sizeable differences
between Figs. 5 and 6 show up. First of all, for negligibly
small Yukawas the calculation can varyMT freely up to the
GUT scale. If instead we insist to fit neutrino masses, such

large values forMT are not allowed. The downward turn in
ðm2

~L
�m2

~E
Þ=M2

1 is due to Yukawas, which if larger than

Oð0:1Þ contribute sizeably in the running of the soft pa-
rameters. In the example shown in this figure �2 ¼ 0:5 has
been chosen. For smaller values of �2 again for fixed
values of the Yukawa couplings to fit neutrino masses, a
lower MT is required. Correspondingly, for smaller �2 the
effect of the Yukawas is seen for smaller values of MT .
It is also found that slepton mass parameters of the first

and second generation run differently for large values of
MT , see Fig. 6. This difference can be traced to the fact that
we have fitted neutrino angles to take exact TBM values. In
this limit, m2

~L1
/ �m2�, while m2

~L2
/ �m2

Atm. Thus, at the

largest values ofMT sizeable mass differences between 1st
and 2nd generation sleptons show up. This difference is
expected to be smaller for nonzero values of s13. Note,
however, that for the example points shown in Fig. 6, there
is the upper limit onMT fromBrð� ! eþ �Þ, discussed in
the last subsection. For SPS1a’ MT & 1:5 � 1013 GeV, for
SPS3 MT & 6 � 1013 GeV. This limits the range of MT

where differences between 1st and 2nd generation slepton
masses might be observable. We mention that a recent
paper [50] claims that mass differences between smuons
and selectrons can be measured very accurately, even at the
LHC. Depending on the mSugra point ðm2

~� �m2
~eÞ=ðm2

~� þ
m2

~eÞ as small as Oð10�4Þ might be measurable [50] pro-
vided the leptons have sufficient energy to pass the experi-
mental cuts.
All observables discussed so far are sensitive only to a

combination of MT and �2. If, however, both LFV decays
as well as ðm2

~L
�m2

~E
Þ=M2

1 could be measured in the future,

one could disentangle the two parameters, in principle, by
combining both measurements. This is demonstrated in
Fig. 7, which shows LFV decays, Brð� ! eþ �Þ and
Brð~�2 ! e;�þ �0

1Þ versus ðm2
~L
�m2

~E
Þ=M2

1, for two differ-

ent values of �2. Note again that the dip in Brð� ! eþ �Þ
is due to a level-crossing of selectron and smuon mass

FIG. 5 (color online). Invariant ðm2
~L
�m2

~E
Þ=M2

1, calculated
with negligibly small Yukawa couplings for two mSugra stan-
dard points. The figure shows a comparison of different cal-
culations. The curve labeled ‘‘Analytic’’ uses the formulas
presented in the previous section. 1-loop and 2-loop stand for
exactly solved numerical calculations using 1-loop and 2-loop
RGEs. Note the significant shift when going from 1-loop order to
2-loop order.

FIG. 6 (color online). Invariant ðm2
~L
�m2

~E
Þ=M2

1 calculated
with Yukawa couplings fitted to neutrino data, for an arbitrary
choice of �2 ¼ 0:5. The calculation uses 2-loop RGEs. Results
are shown for SPS1a’ and SPS3. Neutrino angles are assumed to
have exact TBM values.

FIG. 7 (color online). Branching ratios for LFV decays versus
ðm2

~L
�m2

~E
Þ=M2

1 for SPS3 for two different values of �2. Mea-

suring both types of observables allow in principle to disentangle
�2 and MT .
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eigenstates. However, again we warn that a full 2-loop
calculation is needed, before any quantitative conclusions
could be drawn from such a measurement.

V. CONCLUSIONS

We have studied phenomenological implications of
the supersymmetric version of the type-II seesaw within
mSugra. We have calculated lepton flavor violating ob-
servables, such as Brðli ! lj þ �Þ and LFV scalar tau
decays. We have found branching ratios for LFV violating
stau decays are large enough to be detectable at the LHC in
principle. We have pointed out that in the simplest case
of only one triplet coupling to the SM leptons, ratios of
LFV branching ratios can be calculated from low-energy
neutrino data only. However, for the case of a complete
15 multiplet the situation is not as straightforward. In the
SUð5Þ inspired model the Yukawa couplings YT and YZ are
related to the Y15 and the conclusions remain unchanged.
However, allowing YT and YZ to be free parameters, the
relation with neutrino physics is lost. Thus, seesaw type-II
cannot be ruled out by any LFV measurements in general.
Instead measuring ratios of LFV branching ratios can be
understood as a consistency check for the minimal seesaw
type-II models.

We have also calculated the soft masses as a function
of the seesaw parameters. As discussed in some detail,
there are certain combinations of soft masses, which are
approximately constants over large regions of mSugra
space. These invariants contain indirect information about
the seesaw scale. Measuring SUSY masses as precisely as
possible will therefore allow one to constrain the scale of
seesaw type-II indirectly. However, theoretically there are
many possibilities, why any single of the invariants we
discussed could depart from the simplest mSugra expecta-
tions. Only a consistent departure of several invariants,
together with measurements of LFV processes, could
therefore be taken as a hint for seesaw type-II.
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APPENDIX A: CONTRIBUTIONS
TO THE � FUNCTIONS

Using general formulas by [51] we obtain for the RGEs
of the gauge couplings:

dga
dt

¼ 1

16�2
Bð1Þ
a g3a þ

�
1

16�2

�
2
g3aðBð2Þ

abg
2
b þ Cb

a TrðYbY
y
b Þ

þDb
aj�bj2Þ (A1)

with

B1 ¼ b1 þ 3
5ð83nS þ 3nT þ 1

6nZÞ;
B2 ¼ b2 þ 3

5ð83nS þ 3nT þ 1
6nZÞ;

B3 ¼ b3 þ 3
5ð83nS þ 3nT þ 1

6nZÞ;
(A2)

Bð2Þ
ab ¼ bð2Þab þ bð2;SÞab nS þ bð2;TÞab nT þ bð2;ZÞab nZ; (A3)
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5
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5
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5
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0
B@

1
CA;

Db
a ¼
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5
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5

7 7
0 0

0
B@

1
CA;

(A4)

and ðb1; b2; b3Þ ¼ ð33=5; 1;�3Þ,

bð2Þab ¼
199
25

27
5

88
5

9
5 25 24
11
5 9 14

0
B@

1
CA; bð2;SÞab ¼

128
75 0 64

3

0 0 0
8
3 0 145

3

0
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1
CA;
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(A5)

[1] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys.

Rev. Lett. 81, 1562 (1998).
[2] Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett.

89, 011301 (2002).
[3] K. Eguchi et al. (KamLAND), Phys. Rev. Lett. 90, 021802

(2003).
[4] MINOS Collaboration, arXiv:0708.1495.
[5] KamLAND Collaboration, Phys. Rev. Lett. 100, 221803

(2008).

[6] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979); Phys. Rev.
D 22, 1694 (1980).

[7] E. Ma, Phys. Rev. Lett. 81, 1171 (1998).
[8] P. Minkowski, Phys. Lett. 67B, 421 (1977).
[9] T. Yanagida, in KEK Lectures, edited by O. Sawada and

A. Sugamoto, (KEK, Tsukuba, 1979); M Gell-Mann, P

Ramond, and R. Slansky, in Supergravity, edited by
P. van Niewenhuizen and D. Freedman (North Holland,
Amsterdam, 1979).

M. HIRSCH, S. KANEKO, AND W. POROD PHYSICAL REVIEW D 78, 093004 (2008)

093004-12



[10] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44,
912 (1980).

[11] J. Schechter and J.W. F. Valle, Phys. Rev. D 22, 2227
(1980).

[12] T. P. Cheng and L. F. Li, Phys. Rev. D 22, 2860 (1980).
[13] R. Foot, H. Lew, X.G. He, and G. C. Joshi, Z. Phys. C 44,

441 (1989).
[14] S.M. Barr and I. Dorsner, Phys. Lett. B 632, 527 (2006).
[15] R. N. Mohapatra and J.W. F. Valle, Phys. Rev. D 34, 1642

(1986).
[16] E. K. Akhmedov, M. Lindner, E. Schnapka, and J.W. F.

Valle, Phys. Lett. B 368, 270 (1996).
[17] A. Zee, Phys. Lett. 93B, 389 (1980); 95B, 461(E) (1980).
[18] A. Zee, Nucl. Phys. B264, 99 (1986); K. S. Babu, Phys.

Lett. B 203, 132 (1988).
[19] F. Borzumati and A. Masiero, Phys. Rev. Lett. 57, 961

(1986).
[20] J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, and T.

Yanagida, Phys. Lett. B 357, 579 (1995).
[21] J. Hisano, T. Moroi, K. Tobe, and M. Yamaguchi, Phys.

Rev. D 53, 2442 (1996).
[22] J. R. Ellis, J. Hisano, M. Raidal, and Y. Shimizu, Phys.

Rev. D 66, 115013 (2002).
[23] F. Deppisch, H. Pas, A. Redelbach, R. Ruckl, and Y.

Shimizu, Eur. Phys. J. C 28, 365 (2003).
[24] E. Arganda and M. J. Herrero, Phys. Rev. D 73, 055003

(2006).
[25] S. Antusch, E. Arganda, M. J. Herrero, and A.M. Teixeira,

J. High Energy Phys. 11 (2006) 090.
[26] E. Arganda, M. J. Herrero, and A.M. Teixeira, J. High

Energy Phys. 10 (2007) 104.
[27] J. Hisano, M.M. Nojiri, Y. Shimizu, and M. Tanaka, Phys.

Rev. D 60, 055008 (1999).
[28] G. A. Blair, W. Porod, and P.M. Zerwas, Eur. Phys. J. C

27, 263 (2003).
[29] A. Freitas, W. Porod, and P.M. Zerwas, Phys. Rev. D 72,

115002 (2005).
[30] S. T. Petcov, S. Profumo, Y. Takanishi, and C. E. Yaguna,

Nucl. Phys. B676, 453 (2004).
[31] S. Pascoli, S. T. Petcov, and C. E. Yaguna, Phys. Lett. B

564, 241 (2003).

[32] S. T. Petcov, T. Shindou, and Y. Takanishi, Nucl. Phys.
B738, 219 (2006).

[33] S. T. Petcov and T. Shindou, Phys. Rev. D 74, 073006
(2006).

[34] U. Amaldi, W. de Boer, P. H. Frampton, H. Furstenau, and
J. T. Liu, Phys. Lett. B 281, 374 (1992).

[35] J. R. Ellis, S. Kelley, and D.V. Nanopoulos, Nucl. Phys.
B373, 55 (1992).

[36] A. Rossi, Phys. Rev. D 66, 075003 (2002).
[37] P. Langacker, Phys. Rep. 72, 185 (1981).
[38] F. Deppisch, A. Freitas, W. Porod, and P.M. Zerwas,

arXiv:0712.0361.
[39] M. R. Buckley and H. Murayama, Phys. Rev. Lett. 97,

231801 (2006).
[40] W.-M. Yao et al., J. Phys. G 33, 1 (2006).
[41] A. Santamaria, Phys. Lett. B 305, 90 (1993).
[42] For reviews on mSugra, see for example: H. E. Haber and

G. L. Kane, Phys. Rep. 117, 75 (1985); S. P. Martin, arXiv:
hep-ph/9709356.

[43] P. F. Harrison, D.H. Perkins, and W.G. Scott, Phys. Lett.
B 530, 167 (2002).

[44] M. Maltoni, T. Schwetz, M.A. Tortola, and J.W. F. Valle,
New J. Phys. 6, 122 (2004); online version 6 in arXiv:
hep-ph/0405172 contains updated fits with data included
up to Sept. 2007.

[45] W. Porod, Comput. Phys. Commun. 153, 275 (2003);
the SPheno code can be downloaded at http://theorie.
physik.uni-wuerzburg.de/porod/SPheno.html.

[46] B. C. Allanach et al., Eur. Phys. J. C 25, 113 (2002);
Proceedings of APS/DPF/DPB Summer Study on the Fu-
ture of Particle Physics (Snowmass 2001), Snowmass, Col-
orado, 2001, eConf C010630, P125 (2001).

[47] J. A. Aguilar-Saavedra et al., Eur. Phys. J. C 46, 43 (2006).
[48] J. Hisano and D. Nomura, Phys. Rev. D 59, 116005

(1999).
[49] M. Hirsch, W. Porod, J. C. Romao, J.W. F. Valle, and A.V.

del Moral, Phys. Rev. D 78, 013006 (2008).
[50] B. C. Allanach, J. P. Conlon, and C.G. Lester, Phys. Rev.

D 77, 076006 (2008).
[51] S. P. Martin and M. T. Vaughn, Phys. Rev. D 50, 2282

(1994); 78, 039903(E) (2008).

SUPERSYMMETRIC TYPE-II SEESAW MECHANISM: CERN . . . PHYSICAL REVIEW D 78, 093004 (2008)

093004-13


