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Abstract
We derive a general expression for �ρ (or, equivalently, for the oblique
parameter T) in the SU(2)×U(1) electroweak model with an arbitrary number
of scalar SU(2) doublets, with hypercharge ±1/2, and an arbitrary number of
scalar SU(2) singlets. The experimental bound on �ρ constitutes a strong
constraint on the masses and mixings of the scalar particles in that model.

1. Introduction

In the Standard Model (SM), the parameter

ρ = m2
W

m2
Z cos2 θW

, (1)

where mW and mZ are the masses of the W± and Z0 gauge bosons, respectively, and θW is
the weak mixing angle, gives the relative strength of the neutral-current and charged-current
interactions in four-fermion processes at zero momentum transfer [1]. At tree level ρ is equal
to one, and it remains one even if additional scalar SU(2) doublets, with hypercharge ±1/2, are
added to the SM5. At the one-loop level, the vacuum-polarization effects, which are sensitive
to any field that couples either to the W± or to the Z0, produce the vacuum-polarization tensors
(V = W,Z)

�
µν

V V (q) = gµνAV V (q2) + qµqνBV V (q2), (2)

where qµ is the 4-momentum of the gauge boson. Then, deviations of ρ from unity arise,
which are determined by the self-energy difference [1, 2]

AWW(0)

m2
W

− AZZ(0)

m2
Z

. (3)

5 Other scalar SU(2) × U(1) representations are also allowed, as long as they have vanishing vacuum expectation
values.
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The precise measurement [3], at LEP, of the W± and Z0 self-energies is in striking agreement
with the SM predictions [4] and provides a strong constraint on extended electroweak models.
For instance, one can constrain the two-Higgs-doublet model (2HDM) in this way [5, 6].

In this paper we are interested in the contributions to the ρ parameter generated by an
extension of the SM. Therefore, we define a �ρ which refers to the non-SM part of the
quantity (3):

�ρ =
[
AWW(0)

m2
W

− AZZ(0)

m2
Z

]
SM extension

−
[
AWW(0)

m2
W

− AZZ(0)

m2
Z

]
SM

. (4)

The SM contributions to the quantity (3) are known up to the leading terms at the three-loop
level [7]. However, the consistent SM subtraction in equation (4) only requires the one-loop
SM result. In the same vein, we are allowed to make the replacement m2

Z = m2
W

/
c2
W in

equation (4), writing instead

�ρ =
[
AWW(0) − c2

WAZZ(0)

m2
W

]
SM extension

−
[
AWW(0) − c2

WAZZ(0)

m2
W

]
SM

. (5)

Here and in the following, we use the abbreviations cW = cos θW , sW = sin θW .
At one loop, the contributions of new physics to the self-energies constitute intrinsically

divergent Feynman diagrams, but the divergent parts cancel out among different diagrams,
between AWW(0) and c2

WAZZ(0), and also, eventually, through the subtraction of the SM
contributions laid out in equation (5). If the new-physics model is renormalizable, then �ρ

is finite. The cancellations finally leave either a quadratic or a logarithmic dependence of �ρ

on the masses of the new-physics particles. The pronounced effects of large masses are what
renders the parameter �ρ so interesting for probing physics beyond the Standard Model.

The functions AV V (q2) contain more information about new physics than that just
provided by �ρ. In fact, for new physics much above the electroweak scale, a detailed analysis
of the so-called oblique corrections leads to the identification of three relevant observables,
which were called S, T and U in [8] and ε1, ε2 and ε3 in [9]6. While these two sets of
observables differ in their precise definitions, the quantity of interest in this paper is simply

�ρ = αT = ε1, (6)

where α = e2/(4π) = g2s2
W

/
(4π) is the fine-structure constant.

It is not straightforward to obtain a bound on �ρ from electroweak precision data. One
possibility is to add the oblique parameters to the SM parameter set and perform fits to the
data. However, since the SM Higgs-boson loops themselves resemble oblique effects, one
cannot determine the SM Higgs-boson mass mh simultaneously with S and T [4]. To get a
feeling for the order of magnitude allowed for �ρ, we quote the number

T = −0.03 ± 0.09(+0.09), (7)

which was obtained in [4] by fixing U = 0. For the mean value of T, the Higgs-boson mass
mh = 117 GeV was assumed; the mean value in parentheses is for mh = 300 GeV. Equation (7)
translates into �ρ = −0.0002 ± 0.0007(+0.0007).

There is a vast literature on the 2HDM: see [11] for a review, [12] for the renormalization
of the model, [13, 14] for the possibility of having a light pseudoscalar compatible with all
experimental constraints, and [15, 16], and the references therein for other various recent
works. However, just as the 2HDM may differ significantly from the SM, a general multi-
Higgs-doublet model may be quite different from its minimal version with only two Higgs

6 For new physics at a mass scale comparable to the electroweak scale three more such ‘oblique parameters’ have
been identified in [10].
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doublets [17]. Three or more Higgs doublets frequently appear in models with family
symmetries through which one wants to explain various features of the fermion masses and
mixings; for some examples in the lepton sector see the reviews in [18].

In this paper, we present a calculation of �ρ in an extension of the SM with an arbitrary
number of Higgs doublets and also, in addition, arbitrary numbers of neutral and charged
scalar SU(2) singlets. Our results can be used to check the compatibility of the scalar
sector of multi-Higgs models with the constraints resulting from the electroweak precision
experiments.

Recently, there has been some interest in ‘dark’ scalars [19, 20]. These are scalars
that have no Yukawa couplings, and are thus decoupled from ordinary matter. Furthermore,
they have no vacuum expectation values (VEVs) and therefore display truncated couplings
to the gauge bosons. However, they would have quadrilinear vector–vector–scalar–scalar and
trilinear vector–scalar–scalar (but no vector–vector–scalar) couplings, and would thus also
contribute to, and be constrained by, �ρ.

The plan of the paper is as follows. In section 2 we present a description of our extension
of the SM and the final result of the calculation of �ρ; this section is self-consistent and
the result can be used without the need to consult the rest of the paper. The details of the
calculation are laid out in section 3. The application of our �ρ formula to the general 2HDM
is given in section 4. The summary of our study is found in section 5.

2. The model and the result for ∆ρ

2.1. The model

We consider an SU(2)×U(1) electroweak model in which the scalar sector includes nd SU(2)

doublets with hypercharge 1/2 7,

φk =
(

ϕ+
k

ϕ0
k

)
, k = 1, 2, . . . , nd . (8)

Moreover, we allow the model to include an arbitrary number and variety of SU(2)-singlet
scalars; in particular, nc complex SU(2) singlets with hypercharge 1,

χ+
j , j = 1, 2, . . . , nc (9)

and nn real SU(2) singlets with hypercharge 0,

χ0
l , l = 1, 2, . . . , nn. (10)

In general, our model may include other scalar fields, singlet under the gauge SU(2), with
different electric charges.

The neutral fields are allowed to have vacuum expectation values (VEVs). Thus,

〈0|ϕ0
k |0〉 = vk√

2
, (11)

〈0|χ0
l |0〉 = ul, (12)

the vk being, in general, complex. (The ul are real since the χ0
l are real fields.) We define as

usual v = (∑nd

k=1 |vk|2
)1/2 � 246 GeV. Then, the masses of the W± and Z0 gauge bosons

7 Equivalently, we may consider the model to contain SU(2) doublets with hypercharge −1/2, since

φ̃k ≡ iτ2φ
∗
k =

(
ϕ0

k

∗

−ϕ−
k

)
is also a doublet of SU(2).
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are, at tree level, mW = gv/2 and mZ = mW/cW , respectively8. We expand the neutral fields
around their VEVs,

ϕ0
k = 1√

2

(
vk + ϕ0

k
′) , (13)

χ0
l = ul + χ0

l
′. (14)

Altogether, there are n = nd + nc complex scalar fields with electric charge 1 and
m = 2nd + nn real scalar fields with electric charge 0. The mass matrices of all these scalar
fields will in general lead to their mixing. The physical (mass-eigenstate) charged and neutral
scalar fields will be called S+

a (a = 1, 2, . . . , n) and S0
b (b = 1, 2, . . . , m), respectively. Note

that the fields S0
b are real. We use ma to denote the mass of S±

a and µb to denote the mass of
S0

b . We have

ϕ+
k =

n∑
a=1

UkaS
+
a , (15)

χ+
j =

n∑
a=1

TjaS
+
a , (16)

ϕ0
k
′ =

m∑
b=1

VkbS
0
b , (17)

χ0
l

′ =
m∑

b=1

RlbS
0
b , (18)

the matrices U, T , V and R having dimensions nd ×n, nc ×n, nd ×m and nn ×m, respectively.
The matrix R is real, the other three are complex. The matrix

Ũ ≡
(

U

T

)
(19)

is n×n unitary; it is the matrix which diagonalizes the (Hermitian) mass matrix of the charged
scalars. The real matrix

Ṽ ≡
⎛
⎝Re V

Im V

R

⎞
⎠ (20)

is m × m orthogonal; it diagonalizes the (symmetric) mass matrix of the real components of
the neutral scalar fields9.

There are, in the spontaneously broken SU(2)×U(1) theory, three unphysical Goldstone
bosons, G± and G0. For definiteness we assign to them the indices a = 1 and b = 1,
respectively:

S±
1 = G±, (21)

S0
1 = G0. (22)

Thus, only the S±
a with a � 2 are physical and, similarly, only the S0

b with b � 2 correspond to
true particles. In the general ’t Hooft gauge that we shall use in our computation, the masses
of G± and G0 are arbitrary and unphysical, and they cannot appear in the final result for �ρ.
8 Since the neutral singlet fields carry no hypercharge, their VEVs ul do not contribute to the masses of the gauge
bosons.
9 Our treatment of the mixing of scalars is inspired by [21].
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2.2. The result

As we shall demonstrate in the next section, the value of �ρ in the model outlined above is

�ρ = g2

64π2m2
W

{
n∑

a=2

m∑
b=2

|(U †V )ab|2F
(
m2

a, µ
2
b

)
(23a)

−
m−1∑
b=2

m∑
b′=b+1

[Im(V †V )bb′ ]2F
(
µ2

b, µ
2
b′
)

(23b)

− 2
n−1∑
a=2

n∑
a′=a+1

|(U †U)aa′ |2F (
m2

a,m
2
a′
)

(23c)

+ 3
m∑

b=2

[Im(V †V )1b]2 [
F

(
m2

Z, µ2
b

) − F
(
m2

W,µ2
b

)]
(23d)

− 3
[
F

(
m2

Z,m2
h

) − F
(
m2

W,m2
h

)] }
, (23e)

where ma,ma′ denote the masses of the charged scalars and µb,µb′ denote the masses of the
neutral scalars. The term (23b) contains a sum over all pairs of different physical neutral scalar
particles S0

b and S0
b′ ; similarly, the term (23c) contains a sum over all pairs of different charged

scalars, excluding the Goldstone bosons G±, i.e. 2 � a < a′ � n. The term (23e) consists of
the subtraction, from the rest of �ρ, of the SM result—mh is the mass of the sole SM physical
neutral scalar, the so-called Higgs particle.

In equation (23), the function F of two non-negative arguments x and y is

F(x, y) ≡
⎧⎨
⎩

x + y

2
− xy

x − y
ln

x

y
⇐ x 	= y,

0 ⇐ x = y.

(24)

This is a non-negative function, symmetrical under the interchange of its two arguments,
and vanishing if and only if these two arguments are equal. This function has the important
property that it grows linearly with max(x, y), i.e. quadratically with the heaviest-scalar mass,
when that mass becomes very large. Unless there are cancellations, this leads to a quadratic
divergence of �ρ for very heavy scalars (Higgs bosons).

If there are in the model any SU(2)-singlet scalars with electric charge other than 0 or ±1,
then the existence of these scalars does not contribute to �ρ; they do not modify equation (23),
at one-loop level, in any way.

A simplification occurs when in the model there are no SU(2)-singlet charged scalars χ+
j .

In that case, there is no matrix T, hence the matrix U is unitary by itself, and the term (23c)
vanishes.

When in the model there are no SU(2)-singlet neutral scalars χ0
l , there is no matrix R,

hence Re(V †V )bb′ = (
Re V T Re V + Im V T Im V

)
bb′ = δbb′ . Then, in the terms (23b) and

(23d) one may write |(V †V )bb′ |2 instead of [Im(V †V )bb′ ]2.
Thus, in an nd -Higgs-doublet model without any scalar singlets, one has simply

�ρ = g2

64π2m2
W

{
nd∑

a=2

2nd∑
b=2

|(U †V )ab|2F
(
m2

a, µ
2
b

)

−
2nd−1∑
b=2

2nd∑
b′=b+1

|(V †V )bb′ |2F (
µ2

b, µ
2
b′
)

5
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+ 3
2nd∑
b=2

|(V †V )1b|2
[
F

(
m2

Z, µ2
b

) − F
(
m2

W,µ2
b

)]

− 3
[
F

(
m2

Z,m2
h

) − F
(
m2

W,m2
h

)] }
. (25)

Our general results have been checked to be consistent with specific results for �ρ in a few
models. These include the results for both the CP conserving version [5, 13] and the CP non-
conserving version [16] of the 2HDM10. It has also been checked against a model containing
one doublet and one scalar singlet [22].

3. Derivation of the result

This section contains the derivation of equation (23). It may be skipped by those who are not
interested in the details of that derivation.

3.1. The Lagrangian

We use the conventions of [23]. The covariant derivative of the doublets is

Dµφk =

⎛
⎜⎜⎝

∂µϕ+
k − i

g√
2
W +

µϕ0
k + i

g
(
s2
W − c2

W

)
2cW

Zµϕ+
k + ieAµϕ+

k

∂µϕ0
k − i

g√
2
W−

µ ϕ+
k + i

g

2cW

Zµϕ0
k

⎞
⎟⎟⎠ (26)

and the covariant derivative of the charged singlets is

Dµχ+
j = ∂µχ+

j + i
gs2

W

cW

Zµχ+
j + ieAµχ+

j . (27)

The covariant derivative of the neutral singlets is, of course, just identical to their ordinary
derivative. We use the unitarity of Ũ in equation (19), in particular

(T †T )a′a = δa′a − (U †U)a′a. (28)

We also use the orthogonality of Ṽ in equation (20) to arrive at the gauge-kinetic Lagrangian

nd∑
k=1

(Dµφk)
†(Dµφk) +

nc∑
j=1

(Dµχ−
j )

(
Dµχ+

j

)
+

1

2

nn∑
l=1

(
∂µχ0

l

) (
∂µχ0

l

)

=
n∑

a=1

(
∂µS−

a

) (
∂µS+

a

)
+

1

2

m∑
b=1

(
∂µS0

b

) (
∂µS0

b

)
(29a)

+ m2
WWµ−W +

µ + m2
Z

ZµZµ

2
(29b)

+ imW

n∑
a=1

[
W−

µ (ω†U)a∂
µS+

a − W +
µ(U †ω)a∂

µS−
a

]
(29c)

+ mZZµ

m∑
b=1

Im(ω†V )b∂
µS0

b (29d)

10 There is some discrepancy between our result and that presented in section 4 of [11].
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− (
emWAµ + gs2

WmZZµ
) n∑

a=1

[
(ω†U)aW

−
µ S+

a + (U †ω)aW
+
µS−

a

]
(29e)

+ ieAµ

n∑
a=1

(
S+

a ∂µS−
a − S−

a ∂µS+
a

)
(29f )

+ i
g

2cW

Zµ

n∑
a,a′=1

[
2s2

Wδaa′ − (U †U)a′a
] (

S+
a ∂µS−

a′ − S−
a′ ∂

µS+
a

)
(29g)

+
g

2cW

Zµ

m−1∑
b=1

m∑
b′=b+1

Im(V †V )bb′
(
S0

b∂
µS0

b′ − S0
b′∂

µS0
b

)
(29h)

+ i
g

2

n∑
a=1

m∑
b=1

[
(U †V )abW

+
µ

(
S−

a ∂µS0
b − S0

b∂
µS−

a

)
+ (V †U)baW

−
µ

(
S0

b∂
µS+

a − S+
a ∂µS0

b

)]
(29i)

+ g

(
mWW +

µWµ− +
mZ

cW

ZµZµ

2

) m∑
b=1

S0
b Re(ω†V )b (29j )

−
(

eg

2
Aµ +

g2s2
W

2cW

Zµ

) n∑
a=1

m∑
b=1

S0
b

[
(U †V )abW

+
µS−

a + (V †U)baW
−
µ S+

a

]
(29k)

+

(
g2

4
Wµ−W +

µ +
g2

4c2
W

ZµZµ

2

) m∑
b,b′=1

(V †V )b′bS
0
b′S

0
b (29l)

+
g2

2
Wµ−W +

µ

n∑
a,a′=1

(U †U)a′aS
−
a′ S

+
a (29m)

+ 2e2 AµAµ

2

n∑
a=1

S−
a S+

a (29n)

+
eg

cW

AµZµ

n∑
a,a′=1

[
2s2

Wδaa′ − (U †U)a′a
]
S−

a′ S
+
a (29o)

+
g2

2c2
W

ZµZµ

2

n∑
a,a′=1

[
4s4

Wδaa′ +
(
1 − 4s2

W

)
(U †U)a′a

]
S−

a′ S
+
a . (29p)

In lines (29c)–(29e) and (29j ) we have used an nd vector ω defined by ωk ≡ vk/v. By
identifying lines (29c) and (29d) with the usual terms [23] mixing the W± and Z0 gauge
bosons with the G± and G0 Goldstone bosons, respectively,

imW

(
W−

µ ∂µG+ − W +
µ∂µG−)

+ mZZµ∂µG0,

we conclude that the components of the Goldstone bosons are given by [21]

Uk1 = vk

v
, hence Tj1 = 0, (30)

Vk1 = i
vk

v
, hence Rl1 = 0. (31)

7
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(a) (b) (c)

Figure 1. Three types of Feynman diagrams occurring in the calculation of the vacuum
polarizations.

Therefore, we may rewrite line (29e) as

− (
emWAµ + gs2

WmZZµ
) (

W−
µ G+ + W +

µG−)
(32)

and line (29j ) as

−g

(
mWW +

µWµ− +
mZ

cW

ZµZµ

2

) m∑
b=2

S0
b Im(V †V )1b. (33)

The sum starts at b = 2 because Im(V †V )11 = 0.
If there are in the theory any SU(2)-singlet scalars S±Q with electric charges ±Q other

than 0 or ±1, then those scalars do not mix with components of the doublets. Their covariant
derivative is

DµS+Q = ∂µS+Q + i
gs2

WQ

cW

ZµS+Q + ieQAµS+Q. (34)

This yields, in particular, the following two interaction terms in the Lagrangian:

L = · · · + i
gs2

WQ

cW

Zµ

(
S+Q∂µS−Q − S−Q∂µS+Q

)
(35a)

+

(
gs2

WQ

cW

)2

ZµZµS−QS+Q. (35b)

3.2. The Feynman diagrams

In our model, in the computation of the vacuum polarizations of the gauge bosons W± and Z0

there are four types of Feynman diagrams involving scalar fields:

Type (a) diagrams: a scalar branches off from the gauge-boson line and loops back to the
same point in that gauge-boson line—see figure 1(a). When the scalar is neutral, the relevant
interaction terms in the Lagrangian are those in line (29l), for b′ = b; but then the contribution
to �ρ vanishes, since one obtains �

µν

WW = c2
W�

µν

ZZ . When the scalar is charged, the relevant
terms in the Lagrangian are those in line (29m) for �

µν

WW and line (29p) for �
µν

ZZ , in both cases
for a′ = a.

Type (b) diagrams: the gauge-boson line splits into two scalar lines which later reunite to form
a new gauge-boson line—see figure 1(b). The relevant terms in the Lagrangian are those in
line (29i) for �

µν

WW , and those in lines (29g) and (29h) for �
µν

ZZ .

Type (c) diagrams: a neutral scalar branches off from the gauge-boson line and loops to a
later point in that gauge-boson line—see figure 1(c). The interaction terms in the Lagrangian
responsible for these Feynman diagrams are those in expression (33).

8
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Figure 2. Tadpole diagrams which do not contribute to �ρ.

Type (d) diagrams: a neutral scalar branches off, with zero momentum, from the gauge-boson
line, and produces a loop of some stuff—see figure 2. These ‘tadpole’ Feynman diagrams
originate from the interaction terms in expression (33). They yield a vanishing contribution to
�ρ since one obtains �

µν

WW = c2
W�

µν

ZZ . Hence we may omit the tadpole diagrams altogether.

3.3. Computation of the loop diagrams

We use dimensional regularization in the computation of the Feynman diagrams. The
dimension of space-time is d. An unphysical mass µ is used to keep the dimension of
each integral unchanged when d varies. We define the divergent quantity

div ≡ 2

4 − d
− γ + 1 + ln (4πµ2),

where γ is Euler’s constant. In the computation of type (a) Feynman diagrams the relevant
momentum integral is

µ4−d

∫
ddk

(2π)d

gµν

k2 − A + iε
= igµν

16π2
A(div − ln A), (36)

where A is the mass squared of the scalar particle in the loop. In order to compute the type
(b) and type (c) Feynman diagrams we need first to introduce a Feynman parameter x, which
is later integrated over from x = 0 to x = 1. For type (b) diagrams we have

µ4−d

∫
ddk

(2π)d

∫ 1

0
dx

4kµkν

[k2 − Ax − B(1 − x) + iε]2
= igµν

16π2
[A(div − ln A)

+ B(div − ln B) + F(A,B)], (37)

where A and B are the masses squared of the scalars in the loop, and the 4-momentum qµ of
the external gauge-boson line is taken to obey q2 = 0. Note the presence of terms of the form
A(div − ln A) in both diagrams of types (a) and (b); we shall soon see that those terms cancel
out in the computation of �ρ, leaving only the F functions from the type (b) diagrams. For
type (c) diagrams the relevant integral is

µ4−d

∫
ddk

(2π)d

∫ 1

0
dx

gµν

[k2 − Ax − B(1 − x) + iε]2

= igµν

16π2

1

A

[
A(div − ln A) − A + B

2
+ F(A,B)

]
. (38)

This integral is symmetric under the interchange of A and B; equation (38) presents a seemingly
asymmetric form, but it is in fact symmetric. The reason for expressing the integral in this
way is that, due to cancellations, only the terms F(A,B) survive in the end.

9
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3.4. The contributions to �ρ from diagrams of types (a) and (b)

Using (29m) and (36), we see that the contribution to AWW(q2) of type (a) Feynman diagrams
with charged scalars in the loop is

A
(a)
WW (q2) = − g2

32π2

n∑
a=1

(U †U)aam
2
a

(
div − ln m2

a

)
. (39)

In the same way, using (29p),

A
(a)
ZZ(q2) = − g2

32π2c2
W

n∑
a=1

[
4s4

W +
(
1 − 4s2

W

)
(U †U)aa

]
m2

a

(
div − ln m2

a

)
. (40)

Proceeding to the type (b) Feynman diagrams, from (29i) and (37) we find that

A
(b)
WW (0) = g2

64π2

n∑
a=1

m∑
b=1

(U †V )ab(V
†U)ba

[
m2

a

(
div − ln m2

a

)
+ µ2

b

(
div − ln µ2

b

)
+ F

(
m2

a, µ
2
b

)]
= g2

64π2

[
2

n∑
a=1

(U †U)aam
2
a

(
div − ln m2

a

)
(41a)

+
m∑

b=1

(V †V )bbµ
2
b

(
div − ln µ2

b

)
(41b)

+
n∑

a=1

m∑
b=1

∣∣(U †V )ab

∣∣2
F

(
m2

a, µ
2
b

)]
. (41c)

We have used
n∑

a=1

(U †V )ab(V
†U)ba = (V †V )bb, (42)

which follows from the unitarity of Ũ , i.e. from [21]

UU † = 1nd×nd
. (43)

We have also used
m∑

b=1

(U †V )ab(V
†U)ba = 2(U †U)aa, (44)

which follows from the orthogonality of Ṽ , i.e. from [21]

Re V Re V T = Im V Im V T = 1nd×nd
,

Re V Im V T = Im V Re V T = 0nd×nd
.

(45)

Considering now the self-energy of the Z0 boson, we find

A
(b)
ZZ(0) = g2

64π2c2
W

{
n∑

a,a′=1

[
2s2

Wδaa′ − (U †U)a′a
] [

2s2
Wδaa′ − (U †U)aa′

]
× [

m2
a

(
div − ln m2

a

)
+ m2

a′
(
div − ln m2

a′
)

+ F
(
m2

a,m
2
a′
)]

10
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+
m−1∑
b=1

m∑
b′=b+1

[Im(V †V )bb′ ]2

× [
µ2

b

(
div − ln µ2

b

)
+ µ2

b′
(
div − ln µ2

b′
)

+ F
(
µ2

b, µ
2
b′
)] }

= g2

64π2c2
W

{
2

n−1∑
a=1

n∑
a′=a+1

|(U †U)aa′ |2F (
m2

a,m
2
a′
)

(46a)

+ 2
n∑

a=1

[
4s4

W +
(
1 − 4s2

W

)
(U †U)aa

]
m2

a

(
div − ln m2

a

)
(46b)

+
m−1∑
b=1

m∑
b′=b+1

[Im(V †V )bb′ ]2F
(
µ2

b, µ
2
b′
)

(46c)

+
m∑

b=1

(V †V )bbµ
2
b

(
div − ln µ2

b

)}
. (46d)

We have used
m∑

b′=1

[Im(V †V )bb′ ]2 = (V †V )bb, (47)

which follows from equations (45).
Putting everything together, we see that

the A
(a)
WW (q2) of equation (39) cancels out the line (41a) of A

(b)
WW (0);

the A
(a)
ZZ(q2) of equation (40) cancels out the line (46b) of A

(b)
ZZ(0);

the line (41b) of A
(b)
WW (0) cancels out the line (46d) of A

(b)
ZZ(0) in the subtraction

AWW − c2
WAZZ .

In this way we finally obtain

A
(a+b)
WW (0) − c2

WA
(a+b)
ZZ (0) = g2

64π2

{
n∑

a=1

m∑
b=1

|(U †V )ab|2F
(
m2

a, µ
2
b

)
(48a)

− 2
n−1∑
a=1

n∑
a′=a+1

|(U †U)aa′ |2F (
m2

a,m
2
a′
)

(48b)

−
m−1∑
b=1

m∑
b′=b+1

[Im(V †V )bb′ ]2F
(
µ2

b, µ
2
b′
)}

. (48c)

The positive term (48a) originates from A
(b)
WW while the negative terms (48b) and (48c) come

from A
(b)
ZZ .

If there are in the electroweak theory any scalar SU(2) singlets with electric charges
other than 0 or ±1, then the relevant terms in the Lagrangian are those in equation (35). The
term (35b) generates a type (a) Feynman diagram which exactly cancels the type (b) Feynman
diagram generated by the term (35a)11. Thus, scalar SU(2) singlets with electric charge
different from 0 and ±1 do not affect �ρ at all.

11 This cancellation is analogous to that between equation (40) and line (46b).

11
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The sums in equation (48) include contributions from the Goldstone bosons G± = S±
1 and

G0 = S0
1 . These Goldstone bosons have unphysical masses m1 and µ1, respectively, which

are arbitrary in a ’t Hooft gauge. The terms which depend on those masses are, explicitly,

|(U †V )11|2F
(
m2

1, µ
2
1

)
(49a)

+
m∑

b=2

|(U †V )1b|2F
(
m2

1, µ
2
b

)
(49b)

+
n∑

a=2

|(U †V )a1|2F
(
m2

a, µ
2
1

)
(49c)

− 2
n∑

a=2

|(U †U)1a|2F
(
m2

1,m
2
a

)
(49d)

−
m∑

b=2

[Im(V †V )1b]2F
(
µ2

1, µ
2
b

)
. (49e)

One may eliminate some of these terms by using equations (30) and (31). Indeed, (U †U)1a =
−(T †T )1a = 0 when a 	= 1, because Tj1 = 0 for any j ; also, (U †V )a1 = i(U †U)a1 = 0 for
a 	= 1. Therefore, the terms (49c) and (49d) vanish. In the term (49a), (U †V )11 = i. In the
term (49b) one may write

(U †V )1b = i(V †V )1b = −Im(V †V )1b ⇐ b 	= 1, (50)

since Re(V †V )1b = (
Re V T Re V + Im V T Im V

)
1b

= − (
RT R

)
1b

= 0. In this way, the terms
(49) are reduced to

F
(
m2

1, µ
2
1

)
+

m∑
b=2

[Im(V †V )1b]2
[
F

(
m2

1, µ
2
b

) − F
(
µ2

1, µ
2
b

)]
. (51)

The term F
(
m2

1, µ
2
1

)
is independent of the number of scalar doublets and singlets, hence it is

eliminated when one subtracts the SM result from the multi-Higgs-doublet model one. The
other terms in expression (51) are cancelled out by the diagrams of type (c), as we shall see
next.

3.5. The contributions to �ρ from the diagrams of type (c)

To compensate for the unphysical masses of the Goldstone bosons, the propagators of gauge
bosons W± and Z0 with 4-momentum kµ are, in a ’t Hooft gauge,

−kµkν

m2
W

i

k2 − m2
1

+

(
−gµν +

kµkν

m2
W

)
i

k2 − m2
W

, (52)

−kµkν

m2
Z

i

k2 − µ2
1

+

(
−gµν +

kµkν

m2
Z

)
i

k2 − m2
Z

, (53)

respectively, i.e. they contain a piece with a pole on the unphysical masses squared m2
1 and

µ2
1, respectively.

12
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Using these propagators to compute the type (c) Feynman diagrams, one obtains

A
(c)
WW (0) = g2

64π2

m∑
b=2

[Im(V †V )1b]2
[−m2

1

(
div − ln m2

1

) − 3m2
W

(
div − ln m2

W

)
+ 2

(
m2

W + µ2
b

) − F
(
m2

1, µ
2
b

) − 3F
(
m2

W,µ2
b

)]
, (54)

A
(c)
ZZ(0) = g2

64π2c2
W

m∑
b=2

[Im(V †V )1b]2
[−µ2

1

(
div − ln µ2

1

) − 3m2
Z

(
div − ln m2

Z

)
+ 2

(
m2

Z + µ2
b

) − F
(
µ2

1, µ
2
b

) − 3F
(
m2

Z, µ2
b

)]
. (55)

The factors 3 originate in a partial cancellation between the contributions from the pieces
−gµν and kµkν/m2

V in the propagator of the gauge boson V , the former contribution being
four times larger than, and with opposite sign relative to, the latter one, cf equations (37) and
(38). Performing the subtraction relevant for �ρ, one obtains

A
(c)
WW (0) − c2

WA
(c)
ZZ(0) = g2

64π2

m∑
b=2

[Im(V †V )1b]2

× [−m2
1

(
div − ln m2

1

)
+ µ2

1

(
div − ln µ2

1

)
(56a)

− 3m2
W

(
div − ln m2

W

)
+ 3m2

Z

(
div − ln m2

Z

)
(56b)

+ 2
(
m2

W − m2
Z

)
(56c)

− F
(
m2

1, µ
2
b

)
+ F

(
µ2

1, µ
2
b

)
(56d)

− 3F
(
m2

W,µ2
b

)
+ 3F

(
m2

Z, µ2
b

)]
. (56e)

The terms (56a)–(56c) are independent of the number of scalar doublets. They disappear
when one subtracts the Standard-Model result from the multi-Higgs-doublet model one, since

m∑
b=2

[Im(V †V )1b]2 = (V †V )11 = 1. (57)

The terms (56d), which involve the masses of the Goldstone bosons, cancel out the terms in
(51) except the first one, which is cancelled by the subtraction of the SM result.

We have thus finished the derivation of equation (23) for �ρ.

4. The 2HDM and the Zee model

In this section we give, as examples of the application of our general formulae, the expressions
for �ρ in the 2HDM and also in the model of Zee [24] for the radiative generation of neutrino
masses, which has one singly-charged SU(2) singlet together with the two doublets.

In the study of the 2HDM it is convenient to use the so-called ‘Higgs basis’, in which
only the first Higgs doublet has a vacuum expectation value. In that basis,

φ1 =
(

G+

(v + H + iG0)/
√

2

)
, φ2 =

(
S+

2

(R + iI ) /
√

2

)
. (58)

Here, G+ ≡ S+
1 and G0 ≡ S0

1 are the Goldstone bosons, while S+
2 is the physical charged

scalar, which has mass m2. Thus, the matrix U, which connects the charged components of

13
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φ1 and φ2 to the eigenstates of mass, is in the Higgs basis of the 2HDM equal to the unit
matrix. On the other hand, H,R and I, which are real fields, must be rotated through a 3 × 3
orthogonal matrix O to obtain the three physical neutral fields S0

2,3,4:⎛
⎝H

R

I

⎞
⎠ = O

⎛
⎜⎝

S0
2

S0
3

S0
4

⎞
⎟⎠ . (59)

Without lack of generality we choose det O = +1. Thus, the 2 × 4 matrix V , defined through

(
H + iG0

R + iI

)
= V

⎛
⎜⎜⎝

G0

S0
2

S0
3

S0
4

⎞
⎟⎟⎠ , (60)

is

V =
(

i O11 O12 O13

0 O21 + iO31 O22 + iO32 O23 + iO33

)
. (61)

Therefore,

V †V =

⎛
⎜⎜⎝

1 −iO11 −iO12 −iO13

iO11 1 iO13 −iO12

iO12 −iO13 1 iO11

iO13 iO12 −iO11 1

⎞
⎟⎟⎠ . (62)

The value of �ρ in the 2HDM is therefore, using our formula in equation (25),

�ρ = g2

64π2m2
W

{
4∑

b=2

(
1 − O2

1b−1

)
F

(
m2

2, µ
2
b

)
− O2

13F
(
µ2

2, µ
2
3

) − O2
12F

(
µ2

2, µ
2
4

) − O2
11F

(
µ2

3, µ
2
4

)
+ 3

4∑
b=2

O2
1b−1

[
F

(
m2

Z, µ2
b

) − F
(
m2

W,µ2
b

) − F
(
m2

Z,m2
h

)
+ F

(
m2

W,m2
h

)]}
, (63)

where µ2,3,4 denote the masses of S0
2,3,4, respectively, while mh is the mass of the Higgs boson

of the SM. Equation (63) reproduces, in a somewhat simplified form, the result for �ρ in the
2HDM previously given in [16].

A special case of the 2HDM is the model with one ‘dark’ scalar doublet. This means that
a second doublet is added to the SM, but that doublet has no VEV and it does not mix with the
standard Higgs doublet [19]. We should then identify H with the usual Higgs particle. Thus,
O11 = 1 and µ2 = mh. Equation (63) then simplifies to [20, 25]

�ρ = g2

64π2m2
W

[
4∑

b=3

F
(
m2

2, µ
2
b

) − F
(
µ2

3, µ
2
4

)]
. (64)

This quantity is small if the three masses m2, µ3 and µ4 are close together. Note that in this case
of a ‘dark’ scalar doublet there are no vector–vector–scalar couplings involving the additional
doublet, hence �ρ stems exclusively from the type (a) and type (b) Feynman diagrams.

In the model of Zee there is, besides the two scalar SU(2) doublets

φ1 =
(

G+

(v + H + iG0)/
√

2

)
, φ2 =

(
H +

(R + iI )/
√

2

)
, (65)
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also one scalar SU(2) singlet χ+ with unit electric charge. Therefore there is a 2 × 2 unitary
matrix K such that(

H +

χ+

)
= K

(
S+

2

S+
3

)
, (66)

where S+
2 and S+

3 are the physical charged scalars, which have masses m2 and m3, respectively.
So, now the matrix U of equation (15) is

U =
(

1 0 0
0 K11 K12

)
, (67)

so that

U †U =
⎛
⎝1 0 0

0 |K11|2 K∗
11K12

0 K11K
∗
12 |K12|2

⎞
⎠ . (68)

Equations (61) and (62) retain their validity, and

U †V =

⎛
⎜⎝

i O11 O12 O13

0 K∗
11 (O21 + iO31) K∗

11 (O22 + iO32) K∗
11 (O23 + iO33)

0 K∗
12 (O21 + iO31) K∗

12 (O22 + iO32) K∗
12 (O23 + iO33)

⎞
⎟⎠ . (69)

Therefore, using our general formula (23) for �ρ, we see that, in the model of Zee,

�ρ = g2

64π2m2
W

{
4∑

b=2

(
1 − O2

1b−1

) 3∑
a=2

|K1a−1|2 F
(
m2

a, µ
2
b

)
− 2 |K11K12|2 F

(
m2

2,m
2
3

)
− O2

13F
(
µ2

2, µ
2
3

) − O2
12F

(
µ2

2, µ
2
4

) − O2
11F

(
µ2

3, µ
2
4

)
+ 3

4∑
b=2

O2
1b−1

[
F

(
m2

Z, µ2
b

) − F
(
m2

W,µ2
b

) − F
(
m2

Z,m2
h

)
+ F

(
m2

W,m2
h

)]}
. (70)

5. Summary

In this paper we have derived the formula for the parameter �ρ, as defined in equation (4),
in an extension of the Standard Model characterized by an arbitrary number of scalar SU(2)

doublets (with hypercharge ±1/2) and singlets (with arbitrary hypercharges). Our formalism
is completely general, using only the masses of the scalars and their mixing matrices, which
ensures that our formulae are always applicable. The computation has been carried out in a
general Rξ gauge, thereby demonstrating that the final result is independent of the masses of
the unphysical scalars. We have also explicitly demonstrated that all infinities cancel out in
the final result for �ρ. In order to ease the consultation of this paper, the formulae for �ρ

given in section 2 have been completely separated from their derivation presented in section 3.
Our results can be applied either to check the viability of a model or to constrain its parameter
space, by comparing the �ρ, calculated in that model, with numerical bounds on �ρ obtained
from a fit to precision data—for instance, the bound (7) found in [4]. As an illustration of our
general formulae, in section 4 we have worked out the specific cases of the two-Higgs-doublet
model, with and without one extra charged scalar singlet.
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