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Production and decays of supersymmetric Higgs bosons in spontaneously broken R parity
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We study the mass spectra, production, and decay properties of the lightest supersymmetric CP-even
and CP-odd Higgs bosons in models with spontaneously broken R parity. We compare the resulting mass
spectra with expectations of the minimal supersymmetric standard model (MSSM), stressing that the
model obeys the upper bound on the lightest CP-even Higgs boson mass. We discuss how the presence of
the additional scalar singlet states affects the Higgs production cross sections, both for the Bjorken process
and the ‘‘associated production.’’ The main phenomenological novelty with respect to the MSSM comes
from the fact that the spontaneous breaking of lepton number leads to the existence of the majoron,
denoted J, which opens new decay channels for supersymmetric Higgs bosons. We find that the invisible
decays of CP-even Higgses can be dominant, while those of the CP-odd bosons may also be sizable.
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I. INTRODUCTION

Unveiling the mechanism of symmetry breaking and
mass generation constitutes one of the main goals in the
agenda of upcoming accelerators, like CERN’s Large
Hadron Collider (LHC) and the International Linear
Collider (ILC). Precision electroweak data currently hint
that the mechanism responsible for electroweak symmetry
breaking [1] involves a weakly coupled Higgs sector, as
predicted by supersymmetry. Supersymmetry also stabil-
izes the Higgs boson mass against quadratic divergences,
thus accounting for the hierarchy between the electroweak
and the Planck scales in a technically natural way. A very
exciting possibility is that the experimentally observed [2–
4] neutrino masses and mixings [5] have a supersymmetric
origin [6]. The key requirement for this to be possible is
that R parity, defined as Rp � ��1�3B�L�2S (with S, B, and
L denoting spin, baryon, and lepton numbers, respectively)
be violated. The simplest way to do this is through a
bilinear term in the superpotential.

The resulting model is interesting in two ways. First, it
provides the most economical description of R-parity vio-
lation as a ‘‘perturbation’’ to the minimal supersymmetric
standard model (MSSM): it may be taken as the reference
R-parity violation model, which we may call RMSSM [7].
The model offers a minimal low-scale mechanism to gen-
erate neutrino masses, that successfully accounts for the
observed pattern of neutrino masses and mixing [8,9].1 In
contrast to the seesaw mechanism, it makes well defined
predictions that will be tested at upcoming colliders LHC/
ILC, namely, the decay branching ratios of the lightest
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supersymmetric particle are related to the neutrino mixing
angles measured in neutrino experiments [12].

On the other hand, the model also provides the simplest
effective description of theories where the breaking of R
parity occurs spontaneously, like that of the electroweak
gauge symmetry itself, due to the existence of nonzero
singlet sneutrino vacuum expectation values (vevs) [13–
16]. A general feature of models where neutrino masses
arise from low-scale spontaneous violation of ungauged
lepton number is that the lightest CP-even supersymmetric
Higgs boson will have an important decay channel into the
singlet Goldstone boson (called majoron) associated to
lepton number violation [17]:

h! JJ: (1)

Thus the Higgs boson may decay mainly to an invisible
mode characterized by missing energy, instead of the stan-
dard model channels. This general possibility can also be
realized in spontaneously broken R-parity supersymmetry
[18].

We have recently reanalyzed this suggestion in view of
the data on neutrino oscillations that indicate nonzero
neutrino masses [19]. We found that this proposal remains
valid, despite the smallness of neutrino masses required to
fit current neutrino oscillation data [5]. In Ref. [19] we
have shown explicitly that the invisible decays of the light-
est CP-even Higgs boson can be dominant, unsuppressed
by the small neutrino masses, for the same parameter
values for which Higgs production in e�e� annihilation
is comparable in cross section to that characterizing the
standard case. A necessary ingredient in this case is the
existence of an SU�2� � U�1� singlet superfield � coupling
to the electroweak doublet Higgses, which may provide a
solution to the so-called �-problem.

In this follow-up paper, we extend the analysis and study
in detail the possibility that the lightest CP-even Higgs
-1 © 2006 The American Physical Society
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boson is produced also in association with a CP-odd boson
in electron-positron collisions. The first aspect to consider
is the theoretically expected mass spectra of CP-even and
CP-odd scalar bosons. An important feature of any super-
symmetric model is the existence of an upper bound on the
mass of the lightest CP-even scalar boson. We verify
explicitly that this feature emerges in the present model.
We also explain how the supersymmetric Higgs boson
mass upper limit should be understood in terms of the
spontaneously broken R-parity (SBRP) model fields.

Then we turn to the Higgs production cross sections.
Although individual Higgs boson production cross sec-
tions, via the familiar Bjorken process or the associated
mode, are potentially suppressed with respect to those of
the MSSM, given enough center-of-mass energy and lumi-
nosity, all Higgses can be potentially explored due to
unitarity. We carefully analyze the decay properties of
the first and second lightest Higgs bosons. The case of
the lightest CP-even Higgs boson was already considered
in Ref. [19]. We revisit this case, and confirm that the
invisible decay mode for either the first or the second
lightest CP-even Higgs boson can easily dominate, in
contrast to that of the lightest CP-odd which may arise at
the subleading level up to the 20% level at most.

II. THE MODEL

For completeness we recall here the main ingredients of
the model. In addition to the minimal supersymmetric
055007
standard model superfields it contains SU�2� � U�1� sin-
glet superfields ��̂ci ; Ŝi; �̂� carrying lepton number as-
signed as ��1; 1; 0�. With this choice the most general
superpotential terms conserving lepton number are given
as [18]
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dĤ

b
u � �h0Ĥ
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The first three terms together with the �̂ term define the
R-parity conserving MSSM, the terms in the last row
involve only couplings among the SU�2� � U�1� singlet
superfields ��̂ci ; Ŝi; �̂�. The remaining terms couple the
singlets to the MSSM fields. We stress the importance of
the Dirac-Yukawa term which connects the right-handed
neutrino superfields to the lepton doublet superfields, thus
fixing lepton number.

Like all other Yukawa couplings in general h� is an
arbitrary nonsymmetric complex matrix in generation
space. However, for technical simplicity we will consider
only the case with just one pair of lepton-number-carrying
SU�2� � U�1� singlet superfields, �̂c and Ŝ, in order to
avoid inessential complication. This in turn implies, hij !
h and hij� ! hi�.

The scalar potential along neutral directions is given by
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; (3)
where z� denotes any neutral scalar field in the theory. For
simplicity, we assume CP conservation in the scalar sector,
taking all couplings real.

Electroweak symmetry breaking is driven by the iso-
doublet vevs hHui � vu=

���
2
p

and hHdi � vd=
���
2
p

, with the
combination v2 � v2

u � v2
d �

P
iv

2
Li fixed by the W mass,

while the ratio of isodoublet vevs yields tan� � vu
vd

. Here,

vLi=
���
2
p

are the vevs of the left-scalar neutrinos. They
vanish in the limit where hi� ! 0. In this limit R parity
is restored and neutrinos become massless, as in the
MSSM, and, apart from �, the extra singlets become
phenomenologically irrelevant, one reaches the NMSSM
limit [20,21].
The spontaneous breaking of R parity is driven by non-
zero vevs for the right-scalar neutrinos. The scale charac-
terizing R-parity breaking is set by the isosinglet vevs
h�̂ci � vR=

���
2
p

and h~Si � vS=
���
2
p

. Finally, h�i � v�=
���
2
p

gives a contribution to the � term.
With the above choices and definitions we can obtain the

neutral scalar boson mass matrices as described in
Ref. [14]. This results in 8� 8 mass matrices for the real
and imaginary parts of the neutral scalars. Their
complete definition can be found in [19]. The spontaneous
breaking of SU�2� � U�1� and lepton number leads to
two Goldstone bosons, namely G0 , the one ‘‘eaten’’
by the Z0, as well as J, the majoron. In the basis
-2
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P00 � �H0I
d ; H

0I
u ; ~�1I; ~�2I; ~�3I;�I; ~SI; ~�cI� these fields are given as

G0 � �N0vd;�N0vu; N0vL1; N0vL2; N0vL3; 0; 0; 0� J � N4��N1vd; N1vu; N2vL1; N2vL2; N2vL3; 0; N3vS;�N3vR�;

(4)
where the normalization constants Ni are given as

N0 �
1�����������������������������������������������������������
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2
3�v

2
R � v

2
S�

q
(5)

and can easily be checked to be orthogonal, i.e. they satisfy
G0 � J � 0.

The neutrino masses and mixings arising from this
model [19] have been shown to reproduce the current
data on neutrino oscillations that indicate nonzero neutrino
masses [5]. Since neutrino masses are so much smaller than
all other fermion mass terms in the model, once can find
the effective neutrino mass matrix in a seesaw-type ap-
proximation. After some algebraic manipulation, the ef-
fective neutrino mass matrix can be cast into a very simple
form:

�meff
�� �ij � a�i�j � b��i�j � �j�i� � c�i�j; (6)

where one can define the effective bilinear R-parity violat-
ing parameters �i and �i as

�i � hi�
vR���

2
p (7)

and

�i � �ivd ��vLi: (8)

Here the parameter � is

� � �̂� h0
v����

2
p ; (9)

while the coefficients appearing in Eq. (6) are given in
Ref. [19]. Equation (6) resembles closely the structure
found for the explicit bilinear model at the one-loop level.
However, the coefficients are different (see [19]).

Neutrino physics puts a number of constraints on the
parameters �i and �i. For the current paper, however, exact
details are unimportant, the most essential constraint for
the following discussion is that hi� 	 1 is required. (See
the later discussion of left-sneutrino mixing. In the limit
hi� � 0 left-sneutrinos do not mix at all with Higgses and
singlets).

The requirement that vLi 	 v can be used to find a
simple approximation formula for the majoron, given by
055007
J ’
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V
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;�
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�
; (10)

where V2 � v2
S � v

2
R. Thus, the majoron is essentially

made up of the ~�c and ~S fields. This will be important
later, when we discuss the decays of the Higgs bosons.

III. HIGGS SPECTRUM

Let us first briefly discuss the spectrum of the scalar and
pseudoscalar sectors in the model. For detailed definitions
we refer the reader to Ref. [19]. Since these mass matrices
are too complicated for analytic diagonalization, we will
solve the exact eigensystems numerically. However, before
doing that, we discuss certain limits, where some simplify-
ing approximations are made. This allows us to gain some
insight into the nature of the spectra.

In the SBRP model there are 8 neutral CP-even states
S0
i . In the neutral CP-odd sector there are six massive states
P0
i (i � 1; . . . ; 6), in addition to the majoron J, with mJ �

0, and the Goldstone G0. We introduce the convention, to
be discussed below:

�S0�T � �Sh0 ; SH0 ; SJ; SJ? ; S�; S~�i�

�P0�T � �PA0 ; PJ? ; P�; P~�i ; J; G
0�:

(11)

Note that the ordering of these states is not by increasing
mass, as we have defined P0

i (i � 1; . . . ; 6) as the massive
states.

First we note that all entries in the submatrices which
mix the left-sneutrinos to the doublet Higgses and the
singlet states are proportional to hi�. In the region of
parameters where the model accounts for the observed
neutrino masses, we must have that �i � hi�vR=

���
2
p

is
necessarily a small number and therefore hi� 	 1. Thus,
left-sneutrinos mix very little with the other (pseudo)sca-
lars, unless entries in the sneutrino sector are, by chance,
highly degenerate with the ones in the other sectors. The
real (imaginary) parts of these nearly sneutrino states are
denoted by S~�i (P~�i) in the definition given above. Barring
fine-tuned situations, we conclude that mixing between
Higgses and left-sneutrinos will, in general, be small.

Consider now the pseudoscalar sector,

MP2
�

MP2

HH MP2

H ~L
MP2

HS

MP2T
H ~L

MP2

~L ~L
MP2

~LS

MP2T
HS MP2T

~LS
MP2

SS

2
664

3
775 (12)

where MP2

HH is a symmetric 2� 2 matrix, MP2

~L ~L
and MP2

SS

are symmetric 3� 3 matrices, while MP2

H ~L
and MP2

HS are
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2� 3 matrices and finally MP2

~LS
is (a nonsymmetric) 3� 3

matrix. In this notation ~L denotes the sneutrinos and S the
singlet fields.

Neglecting terms proportional to hi�, MP2

HH can be writ-
ten as

MP2

HH �
� vu

vd
�

� � vd
vu

" #
; (13)
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2
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2
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Note the presence of h0-dependent terms in Eq. (14). If
there were no mixing between the doublet and singlet
Higgses, Eq. (13) would yield the eigenvalues,

m2
1;2 �

�
0;�

�
vu
vd
�
vd
vu

��
; (15)

with the massless state identified as the Goldstone boson,
G0, and the other state as the pseudoscalar Higgs A0 of the
MSSM, with

m2
A0 �

2�

sin2�
: (16)

The state most closely resembling the MSSM A0, i.e. the
state remaining in the spectrum when singlets are de-
coupled, is called PA0 in Eq. (11). The submatrix MP2

SS,
on the other hand, in the limit hi� � 0, can be written as
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2We correct a misprint in Ref. [19].
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Equation (17) has one zero eigenvalue, approximately
identified with the majoron, J, and two nonzero eigenval-
ues. If MP2

SS12
;MP2

SS13
	 MP2

SS11
� � then the eigenvalues of

Eq. (17) are approximately given by
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where the dots stand for higher order terms. The eigenvalue
proportional to � is mainly a combination of ~SI; ~�cI fields
and we call it PJ? in Eq. (11) above, because in the limit
where mP�

! 1 and vLi ! 0 this massive state is or-
thogonal to the majoron. As we will discuss below, it is
this state which preferably decays invisibly. The third
eigenvalue in Eq. (22) is an approximation to the state
called P� above. Because of mixing between doublet
and singlet states, both Eqs. (15) and (22) are only very
crude estimates.

Consider the scalar sector of the model

MS2
�

MS2

HH MS2

H ~L
MS2

HS

MS2T
H ~L

MS2

~L ~L
MS2

~LS

MS2T
HS MS2T

~LS
MS2

SS

2
664

3
775; (23)

where the blocks have the same structure as before. MS2

HH

contains two eigenvalues which, in the limit of zero mix-
ing, would be identified with the MSSM states h0 and H0.3

These states are the ones called Sh0 and SH0 in Eq. (11)
above.

The submatrix MS2

SS contains, in general, three nonzero
eigenvalues. One can find an approximate analytic expres-
sion for them in the limit that the state S� is much heavier
than the remaining two eigenstates (called SJ and SJ?).
Again in the limit of small mixing, the eigenvalues of the
latter are approximately given by
3As in the MSSM, there is an upper limit for the mass of the
Sh0 ; see the discussion below.
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m2
1;2 �

�
2h2 v2

Rv
2
S

�v2
R � v

2
S�
� � � � ;��

�
vR
vS
�
vS
vR

�

� 2h2 v2
Rv

2
S

�v2
R � v

2
S�
� � � �

�
: (24)

The first (second) of the eigenvalues in Eq. (24) is approxi-
mately the state SJ (SJ?).

Figure 1, to the left, shows an example of the four
lowest-lying eigenvalues in the CP-even sector, as a func-
tion of � for a random but fixed choice of the remaining
parameters. One of the states, SJ? , which is mainly singlet,
is proportional to �, as indicated by Eq. (24). There is
another singlet state, corresponding to SJ of Eq. (24), and
two mainly doublet states, identified with Sh0 and SH0 . We
note in passing that mSH0

is proportional to �, as in the
MSSM. Mixing between singlet and doublet states will be
important always if the eigenvalues are comparable, as for
the example shown in the figure. Thus, all the discussion
above should be taken as qualitative only.

The right panel in Fig. 1 shows an example of the two
lightest massive CP-odd eigenvalues as a function of � for
a fixed but random set of other parameters. That one
eigenvalue is proportional to � is obvious from Eq. (22).
We note that � and � are the main parameters which will
determine associated production and influence the branch-
ing ratio into invisible states, as we will discuss in the
following sections. The model clearly exhibits decoupling,
just as the MSSM. In the limit where � goes to infinity, the
masses of both states PA0 and SH0 go to infinity, just as
happens in the MSSM whenmA0 goes to infinity. The states
SJ? and PJ? are decoupled in the limit as � goes to infinity.
If, in addition, we require h	 1 also SJ decouples and the
SM Higgs phenomenology is recovered, as in the MSSM.
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√
⎯
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FIG. 1 (color online). Typical CP-even (left) and CP-odd (right)
there are four light CP-even states and two light massive CP-odd sta
MSSM there is always one light doublet state, coinciding with h0 in
depending on the parameters � and � (see text).
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IV. HIGGS BOSON PRODUCTION

Supersymmetric Higgs bosons can be produced at an
e�e� collider through their couplings to Z0, via the so-
called Bjorken process (e�e� ! Z0S0

i ), or via the associ-
ated production mechanism (e�e� ! S0

i P
0
j ). In our SBRP

model there are 8 neutral CP-even states S0
i and 6 massive

neutral CP-odd Higgs bosons P0
i , in addition to the ma-

joron J and the Goldstone G0 [see Eq. (11)].
One must diagonalize the (pseudo)scalar boson mass

matrices in order to find the couplings of the scalars to
the Z0. After doing that we obtain the Lagrangian terms

L 

X8

i�1

�
���
2
p
GF�

1=2M2
ZZ

0
�Z

0��Bi
S0
i

�
X8

i;j�1

�
���
2
p
GF�

1=2MZ�Aij
�Z0�S0

i @
$
�P0

j � (25)

with each �Bi
given as a weighted combination of the five

SU�2� � U�1� doublet scalars,

�Bi
�
vd
v
RS

0

i1 �
vu
v
RS

0

i2 �
X3

j�1

vLj
v
RS

0

ij�2; (26)

and the �Aij
given by

�Aij
� RS

0

i1R
P0

j1 � R
S0

i2R
P0

j2 �
X3

k�1

RS
0

ik�2R
P0

jk�2; (27)

where the subscripts B and A refer, respectively, to the
Bjorken process or associated production mechanisms.
From these Lagrangian terms we can easily derive the
production cross sections. These are simple generalizations
of the MSSM results [22,23] and for completeness we give
them in Appendix A.
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Higgs masses as a function of the parameter �. In this example
tes (plus two massless states, G0 and J, not shown). Just as in the
the limit of zero mixing. Other states can (but need not) be light,
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FIG. 2 (color online). Sum rule in the CP-even sector, for the
case explained in the text. The four states, �Sh0 ; SH0 ; SJ? ; SJ�. For
this example all scalar masses are taken below 200 GeV.
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In the MSSM, there are two sum rules, one concerning
only the CP-even sector

�2
Bh0
� �2

BH0
� 1; (28)

and another relating the Bjorken and the associated pro-
duction mechanisms,

�2
Bh0
� �2

Ah0A0
� 1; (29)

with �Bh0
� sin��� �� and �Ah0A0

� �BH0
� cos���

��, in an obvious notation.
It is very easy, and instructive, to use our expressions for

�A and �B to recover the MSSM result in the limit that we
have only the Hd and Hu doublets. In fact, in this case

vd
v
� RP

0

22 ;
vu
v
� RP

0

21 ; (30)

so we have

�Bh0
� RP

0

22R
S0

11 � R
P0

21R
S0

12; �BH0
� RP

0

22R
S0

21 � R
P0

21R
S0

22;

�Ah0A0
� RP

0

21R
S0

11 � R
P0

22R
S0

12 (31)

and we get for the sum rule of Eq. (29)

�2
Ah0A0

� �2
Bh0
� �RP

0

22R
S0

11 � R
P0

21R
S0

12�
2

� �RP
0

21R
S0

11 � R
P0

22R
S0

12�
2 (32)

� �RS
0

11R
S0

11 � R
S0

12R
S0

12��R
P0

21R
P0

21 � R
P0

22R
P0

22 � (33)

� 1; (34)

where we have used the orthogonality of the rotation
matrices

X2

k�1

RS
0

ik R
S0

jk � �ij;
X2

k�1

RP
0

ik R
P0

jk � �ij; �i; j � 1; 2�:

(35)

For the sum rule of the CP-even sector, Eq. (28), we get

�2
Bh0
� �2

BH0
� cos2��RS

0

11R
S0

11 � R
S0

21R
S0

21�

� sin2��RS
0

12R
S0

12 � R
S0

22R
S0

22� (36)

�2 sin� cos��RS
0

11R
S0

12 � R
S0

21R
S0

22� (37)

� 1; (38)

using the result that in an orthogonal matrix also the
vectors corresponding to the columns are orthonormal,
that is

X2

k�1

RS
0

ki R
S0

kj � �ij; �i; j � 1; 2�: (39)

How does this differ in our case? The difference is that,
in general,
055007
X2

k�1

RS
0;P0

ik RS
0;P0

jk � �ij and
X2

k�1

RS
0;P0

ki RS
0;P0

kj � �ij;

(40)

due to the fact that we now have more than two (pseudo)-
scalars. As it was stated in the last section and will be
discussed in more detail when we consider the decays, to
have a sizable invisible branching ratio we need the
doublets to be close in mass to the singlet states related
to the majoron and orthogonal combinations. This means
that, in the CP-even sector, the first four states are
�Sh0 ; SH0 ; SJ? ; SJ�, while in the CP-odd sector we should
have �PA0

; PJ? ; J; G
0�. If this situation happens then we can

very easily find a generalization of the sum rule of the
CP-even sector, as

�2
BS

h0
� �2

BS
H0
� �2

BSJ?

� �2
BSJ
� 1 (41)

to a good approximation. This is displayed in Fig. 2 where
we plot the sum �2

BS
H0
� �2

BSJ?

� �2
BSJ

against �2
BS

h0
. The

significance of this sum rule should be clear: if the lightest
Higgs boson has a very small coupling to the Z0 and hence
a small production cross section, there should be another
state nearby that has a large production cross section.

The other sum rule, relating the CP-even and CP-odd
sectors, Eq. (29), is more difficult to generalize. In fact the
PA0

state will now mix with the PJ? and the identification
of Eq. (30) will be no longer true. However, qualitatively
the sum rule still holds in the sense that if the parameters
-6
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are such that the production of theCP-odd states is reduced
one always gets a CP-even state produced.

The above discussion has concentrated on Higgs boson
production at an e�e� collider. We now briefly comment
on the differences with regards to Higgs production at the
LHC [24]. It has been suggested to search for an invisibly
decaying Higgs at the LHC in WW boson fusion [25], in
associated production with a Z0 boson [26], or in the t�t
channel [27]. For the production in WW fusion or in
associated production with a Z0 boson, the above discus-
sion applies straightforwardly, since the relevant coupling
in both cases is �Bi [i.e. sin��� �� in the MSSM limit].
For the t�t channel in the MSSM production cross section
the factor cos� has to be replaced by RS

0

i2 for the SBRP
model.
V. HIGGS BOSON DECAYS

In the following we will discuss the decays of light
CP-even and CP-odd supersymmetric Higgs bosons.
Since the phenomenology of Higgs bosons within the
MSSM is well known [28,29], we will concentrate on
nonstandard final states. Of these, the most important are
the majoron Higgs boson decay modes, which are charac-
teristic of the SBRP model, without an MSSM counterpart.
We will limit ourselves to the discussion of light states, i.e.
Higgs bosons with masses below the 2W threshold. As
discussed below, the decays of heavier CP-odd states will
be similar to the situation encountered in the (N)MSSM.

A. CP-even Higgs boson decays

In the MSSM light CP-even Higgs bosons decay dom-
inantly to b �b final states. In our calculation we take into
account all fermion final states, including the leading QCD
0 0.2 0.4 0.6 0.8 1

η
B

1

2

0

0.2

0.4

0.6

0.8

1

η B
2

2

FIG. 3 (color online). In the left panel we show the parameter chara
Higgs boson, �2

B2
, as a function of the corresponding one for the firs

limit on the mass of the second lightest CP-even Higgs as a functio
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radiative corrections from [30]. In the SBRP model
new decay modes appear, such as S0

i ! JJ and, if kine-
matically allowed S0

i ! P0
jJ and S0

i ! P0
jP

0
k. From the

latter usually only S0
i ! JJ has a large branching ratio

(see Appendix B).
In Ref. [19] we have discussed the invisible decays of

the lightest CP-even Higgs boson. We now extend that
discussion so as to include also the next-to-lightest
CP-even state which plays an important role, if the lightest
CP-even state is mainly singlet.

It is well known that, in contrast to the standard model,
in the MSSM (and in the NMSSM) the mass of the lightest
CP-even supersymmetric Higgs boson obeys an upper
bound that follows from the D-term origin of the quartic
terms in the scalar potential, contained in Eq. (3). This
mass acquires a contribution from the top-stop quark ex-
change [31–33], a fact that modifies the numerical value of
this upper bound [31–33]. Many other loops contribute; for
a recent two-loop level calculation see, e.g. Ref. [34]. This
limit is slightly relaxed in the NMSSM as opposed to the
MSSM [35].

How does this bound emerge in the SBRP model? Since
the CP-even sector contains eight scalars, we cannot di-
agonalize the corresponding mass matrices analytically.
Therefore we calculate the upper bound on the Higgs
mass numerically, and including the most important radia-
tive corrections, using formulas from [32]. In the SBRP
model it is possible that the lightest CP-even Higgs is
mainly a singlet. However, if this happens, there must exist
a light, mainly doublet Higgs, to which the NMSSM
bounds apply. This is shown in Fig. 3, where we plot (to
the left) �2

B2
as function of the �2

B1
and (to the right) the

upper limit on the mass of the second lightest Higgs as
function of �2

B2
. As is seen, if the lightest state is mainly
0 0.2 0.4 0.6 0.8 1
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B
2
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singlet, �2
B1
’ 0, therefore �2

B2
’ 1, then there is an upper

bound on the second lightest state mass. Vice versa, the
upper bound applies to the lightest state if it is mainly
doublet.

As shown previously [19], one can have large direct
production cross section for the lightest neutral CP-even
Higgs boson as well as a large branching ratio to the
invisible final majoron states. This is demonstrated in the
left panel of Fig. 4 for a random but fixed choice of
undisplayed parameters. We note that a very similar be-
havior is also found for the second lightest state, as seen
from the right panel of Fig. 4. Thus if the lightest state is
mainly singlet there must be a state nearby which is mainly
doublet and decays invisibly.

In summary, we have seen that in the SBRP model there
is always at least one light state, which is mainly doublet,
and therefore can be produced at future colliders.
Irrespectively of whether this state is the lightest or second
lightest Higgs state, it can decay with very large branching
ratio to an invisible final state.

B. CP-odd Higgs boson decays

Light CP-odd Higgs bosons in the MSSM decay accord-
ing to P0

i ! f �f. The WW channel becomes dominant as
soon as kinematically allowed [28,29], however we will
055007
not include it as we are mainly interested in the possibility
of invisible decays of the lowest-lying pseudoscalar. The
formulas for the CP-even and CP-odd Higgs boson MSSM
decay branching ratios, apart from the larger number of
Higgs bosons, are totally analogous to those of the MSSM
[30], except for the prefactors which are determined by the
diagonalizing matrices of our model. The corresponding
matrix elements replace the familiar sin��� �� and
cos��� �� factors.

In the SBRP we must take into account in addition the
decays P0

i ! JJJ and, if kinematically allowed, also P0
i !

S0
jJ, P0

i ! S0
jP

0
k, P

0
i ! P0

jJJ, P0
i ! P0

jP
0
kJ, and P0

i !

P0
jP

0
kP

0
m. For the lightest Higgs boson we are interested

only in P0
i ! JJJ and P0

i ! S0
jJ. The formulas for the

CP-even and CP-odd Higgs boson non-MSSM decay
widths are collected in Appendix B.

C. P0
i ! S0

jJ

The decay width of the CP-odd Higgs boson to a
CP-even Higgs boson and a majoron is given in
Eq. (B2). Using the approximation Eq. (10) we can find
the coupling g0ij for the vertex S00i P

00
j J of the majoron with

the unrotated neutral scalar S00i and pseudoscalar P00j to
leading order in the small parameter vLv as
g011 �
g2 � g02

4

v2
dv

2
L

Vv2 ; g012 �

�
g2 � g02

4
� h2

0

�
vdvuv

2
L

Vv2 ; g021 � �

�
g2 � g02

4
� h2

0

�
vdvuv

2
L

Vv2 ;

g022 � �
g2 � g02

4

v2
uv

2
L

Vv2 ; g0i1 �
���i�2

V
�i � 3; . . . ; 5�; g0i2 �

��i�2

V

�
Ah� �

vS
vR
M̂R

�
�i � 3; . . . ; 5�;

g061 �
v2
L

v2V

� ���
2
p
h0�vd �

1���
2
p �h0M̂� � Ah0

�vu

�
; g062 �

v2
L

v2V

�
�

���
2
p
h0�vu �

1���
2
p �h0M̂� � Ah0

�vd

�
;

g071 �
�hh0vuvR

2V
; g072 �

�hh0vdvR
2V

; g081 �
hh0vuvS

2V
; g082 �

hh0vdvS
2V

: (42)
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Note that the first four of the above are suppressed by the
smallness of sneutrino vevs, needed to reproduce the ob-
served neutrino oscillation data. The coupling gS0

i P
0
j J

then
appears through mixing, and is given as

gS0
i P

0
j J
� g071R

S0

i7R
P0

j1 � g
0
72R

S0

i7R
P0

j2 � g
0
81R

S0

i8R
P0

j1

� g082R
S0

i8R
P0

j2 : (43)
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√
⎯
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0.01
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B
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10

FIG. 5 (color online). Production cross section (red/solid
curve) and invisible final states decay branching ratio (green/
dashed curve) for the lightest CP-odd Higgs boson.
D. P0
i ! JJJ

The decay width of the CP-odd Higgs boson to three
majorons is given in Eq. (B5). Using again the approximate
equation giving the profile of the majoron, Eq. (10), the
coupling g0i for the vertex P00i JJJ of the majorons with the
unrotated neutral pseudoscalar P00i , is given as

g01 � �
3v2

L

v2V3 h0hvuvRvS; g02 �
3v2

L

v2V3 h0hvdvRvS;

g03 � g
0
4 � g

0
5 �O

�
v3
L

v3

�
; g06 �O

�
v3
L�

v3V

�
;

g07 �
�3h2vSv

2
R

V3 ; g08 �
3h2v2

SvR
V3 :

(44)

Again, the first six of the above vanish in the limit vL ! 0.
Therefore the coupling gP0

i JJJ
for the vertex of the major-

ons with the neutral pseudoscalar P0
i mass eigenstate is

gP0
i JJJ
� g07R

P0

i7 � g
0
8R

P0

i8 : (45)
E. Numerical results

We can see from Eq. (42) that if the CP-odd mass
eigenstate is mainly a Higgs doublet (i.e., its main compo-
nents are P001 � H0I

d ; P
00
2 � H0I

u so that its production is not
reduced) then its decays to S0

jJ and JJJ are suppressed as
the corresponding couplings are very small, suppressed by
two powers in vL

v . To find sizable branching ratios for the
decays of the lightest massive pseudoscalar P0

1, mixing
between doublet and singlet states is therefore required.

As discussed in Sec. III, in order to have sizable mixing
between doublet and singlet CP-odd Higgs bosons, we
must require that at least one of the singlet states is light,
i.e. the parameter � should be very roughly of order ��
�. Figure 5 shows an example. Here, we plot �2

A21
and

BR�P0
1 ! inv� as a function of

����
�
p

for one fixed, but
arbitrary set of other model parameters. For small values
of

����
�
p

the lightest massive CP-odd state is mainly singlet,
therefore BR�P0

1 ! inv� is close to 1. However, the pro-
duction parameter �2

A21
is small. Increasing

����
�
p

increases
the mass of the lightest CP-odd state. From a certain point
onwards, it is the doublet state which is lightest, compare to
Fig. 1. This state can have a sizable production, but the
branching ratio to invisible final states typically is small.
Only in the intermediate region of sizable mixing between
055007
doublet and singlet states, i.e. in the region of
����
�
p
�

100–115 GeV of Fig. 5, one can have both, sizable pro-
duction and sizable invisible decay.

In summary, the CP-odd Higgs bosons in the SBRP
model usually behave very similar to the situation dis-
cussed in the (N)MSSM. However, sizable branching ratios
to invisible final states are possible when there are light
CP-odd Higgs bosons from both, the doublet and the
singlet sectors.

VI. DISCUSSION

We have carefully analyzed the mass spectra, produc-
tion, and decay properties of the lightest supersymmetric
CP-even and CP-odd Higgs bosons in models with spon-
taneously broken R parity. We have compared the resulting
mass spectra with what is predicted in the minimal super-
symmetric standard model, stressing the validity of the
upper bound on the lightest CP-even Higgs boson mass.
We have seen how the presence of the additional scalar
singlet states affects the Higgs production cross sections,
both in the Bjorken and associated modes.

The main difference with respect to the MSSM case
comes from the fact that the spontaneous breaking of
lepton number necessarily implies the existence of the
majoron, and this opens new decay channels for super-
symmetric Higgs bosons into ‘‘invisible’’ final states. We
have found that the invisible decays of CP-even Higgses
can be dominant, despite the small values of the neutrino
masses indicated by neutrino oscillation data. In contrast,
although the decays of the CP-odd bosons into invisible
final states can also be sizable, this situation is not generic.

Therefore the existence of invisibly decaying Higgs
bosons should be taken seriously in the planning of future
accelerators, like the LHC and the ILC. These decays may
signal the weak-scale violation of lepton number in a wide
class of theories. Within the supersymmetric context they
-9
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are a characteristic feature of the SBRP models. These can
account for the observed pattern of neutrino masses and
mixings in a way which allows the neutrino mixing angles
to be cross-checked at high energy accelerators like LHC/
ILC. For example, in our model there is a b �b plus missing
momentum signal associated to the invisible decay of the
lightest CP-even Higgs boson produced in association with
a pseudoscalar. Although this is a standard topology, also
present in the standard model and the MSSM, its kinemati-
cal properties in our model differ, as the JJ add up to the
CP-even Higgs boson mass and b �b to the CP-odd Higgs
boson mass. Further studies to elucidate the impact of these
decay modes for future colliders should be conducted.
While for the LHC we may encounter difficulties associ-
ated to missing energy measurements and/or b-tagging,
these potential limitations do not affect in the same way
the ILC.

Last, but not least, as already explained, we have re-
stricted our analysis to Higgs bosons below the WW
threshold. Extension to relax this restriction is totally
straightforward, though somewhat less interesting.
Because of the validity of the supersymmetric Higgs boson
mass upper limit we must have one light CP-even Higgs
boson which, as we have shown, is likely to have an
important decay into invisible final states.
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APPENDIX A: PRODUCTION CROSS SECTIONS

In this section we give the formulas for the production
cross section of both channels at an e�e� machine.

A. Bjorken process

The cross section for the Bjorken process is [22]

	�e�e� ! Z0S0
i � � �2

Bi

G2
FM

4
Z

96
s
�v2

e � a2
e�

� �
�2 � 12M2

Z=s

�1�M2
Z=s�

2 � ��ZMZ=s�
2 ;

(A1)

where
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ve � �1� 4 sin�2
W; ae � �1;

� �
��s;M2

Z;M
2
S0
i
�

s
;

(A2)

� is the 2-body phase space function,

��a; b; c� �
�����������������������������������������
�a� b� c�2 � 4ab

q
(A3)

and the �Bi
are given in Eq. (26).

B. Associated production

The cross section for the associated production is [23]

	�e�e� ! S0
i P

0
j � � �2

Aij

G2
FM

4
Z

96
s
�v2
e � a

2
e�

�
�3

�1�M2
Z=s�

2 � ��ZMZ=s�
2 (A4)

with

� �
��s;M2

P0
j
; M2

S0
i
�

s
(A5)

and the �Aij
are given in Eq. (27).
APPENDIX B: NON-MSSM DECAYS

The most characteristic decays of this model which do
not exist in the (N)MSSM are those involving a majoron. In
the following we collect the formulas for these decays. The
most important ones are

��S0
i ! JJ� �

g2
S0
i JJ

32
mS0
i

; (B1)

��P0
i ! S0

jJ� �
g2
S0
jP

0
i J

16
m3
P0
i

�m2
P0
i
�m2

S0
j
�: (B2)

For completeness we consider also

��S0
i ! P0

jJ� �
g2
S0
i P

0
j J

16
m3
S0
i

�m2
S0
i
�m2

P0
j
�; (B3)

��P0
i ! S0

jP
0
k� �

g2
S0
jP

0
i P

0
k

16
m3
P0
i

��m2
P0
i
; m2

S0
j
; m2

P0
k
�; (B4)

��P0
i ! JJJ� �

mP0
i
g2
P0
i JJJ

3072
3 ; (B5)

��P0
i ! P0

jJJ� �
g2
P0
i P

0
j JJ

1024
3m3
P0
i

�m4
P0
i
�m4

P0
j
�; (B6)
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��P0
i ! P0

jP
0
kJ� �

g2
P0
i P

0
jP

0
kJ

512
3m3
P0
i

��m2
P0
i
; m2

P0
j
; m2

P0
k
�

�

� 1
2 ; j � k

1; j � k

�
�
m2
P0
i
�m2

P0
i
� 2mP0

j
mP0

k
� � 2mP0

j
mP0

k
�mP0

j
�mP0

k
�2 � �mP0

j
�mP0

k
�4

m2
P0
i
� �mP0

j
�mP0

k
�2

: (B7)
The decays P0
i ! P0

jP
0
kP

0
l are possible, but closed kinematically for the light states of interest, therefore we do not give

here the explicit formulas for the widths.
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