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Abstract

The current status of electroweak precision observables in the Minimal Supersymmetric Standard Model (MSSM) is reviewed.
We focus in particular on the W boson mass, MW , the effective leptonic weak mixing angle, sin2�eff , the anomalous magnetic
moment of the muon, (g − 2)�, and the lightest CP-even MSSM Higgs boson mass, mh. We summarize the current experimental
situation and the status of the theoretical evaluations. An estimate of the current theoretical uncertainties from unknown higher-order
corrections and from the experimental errors of the input parameters is given. We discuss future prospects for both the experimental
accuracies and the precision of the theoretical predictions. Confronting the precision data with the theory predictions within the
unconstrained MSSM and within specific SUSY-breaking scenarios, we analyse how well the data are described by the theory. The
mSUGRA scenario with cosmological constraints yields a very good fit to the data, showing a clear preference for a relatively light
mass scale of the SUSY particles. The constraints on the parameter space from the precision data are discussed, and it is shown that
the prospective accuracy at the next generation of colliders will enhance the sensitivity of the precision tests very significantly.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

Theories based on Supersymmetry (SUSY) [1] are widely considered as the theoretically most appealing extension
of the Standard Model (SM) [2]. They are consistent with the approximate unification of the gauge coupling constants
at the GUT scale and provide a way to cancel the quadratic divergences in the Higgs sector, hence stabilizing the huge
hierarchy between the GUT and the Fermi scales. Furthermore, in SUSY theories the breaking of the electroweak
symmetry is naturally induced at the Fermi scale, and the lightest supersymmetric particle can be neutral, weakly
interacting and absolutely stable, providing therefore a natural solution for the dark matter problem.

SUSY predicts the existence of scalar partners f̃L, f̃R to each SM chiral fermion, and spin −1/2 partners to the
gauge bosons and to the scalar Higgs bosons. So far, the direct search for SUSY particles has not been successful. One
can only set lower bounds of O(100) GeV on their masses [3]. The search reach will be extended in various ways in the
ongoing Run II at the upgraded Fermilab Tevatron [4]. The LHC [5,6] and the e+e− International Linear Collider (ILC)
[7–9] have very good prospects for exploring SUSY at the TeV scale, which is favoured from naturalness arguments.
From the interplay of both machines, detailed information on the SUSY spectrum can be expected in this case [10].

In the Minimal Supersymmetric extension of the Standard Model (MSSM), two Higgs doublets are required, resulting
in five physical Higgs bosons [11]. The direct search resulted in lower limits of about 90 GeV for the neutral Higgs
bosons and about 80 GeV for the charged ones [12,13]. The Higgs search at the Tevatron will be able to probe significant
parts of the MSSM parameter space at the 95% CL even with rather moderate luminosity [14]. The LHC will discover
at least one MSSM Higgs boson over most of the MSSM parameter space [5,6,15–17]. The ILC will be able to detect
any Higgs boson that couples to the Z boson in a decay-mode independent way. The properties of all Higgs bosons
which are within the kinematic reach of the ILC will be determined with high precision [7–9].

Contrary to the SM case, where the mass of the Higgs boson is a free parameter, within the MSSM the quartic
couplings of the Higgs potential are fixed in terms of the gauge couplings as a consequence of SUSY [11]. Thus, at
the tree level, the Higgs sector is determined by just two independent parameters besides the SM electroweak gauge
couplings g1 and g2, conventionally chosen as tan � ≡ v2/v1, the ratio of the vacuum expectation values of the two
Higgs doublets, and MA, the mass of the CP-odd A boson. As a consequence, the mass of the lightest CP-even MSSM
Higgs boson can be predicted in terms of the other model parameters.

Besides the direct detection of SUSY particles and Higgs bosons, SUSY can also be probed via the virtual effects of
the additional particles to precision observables. This requires a very high precision of the experimental results as well
as of the theoretical predictions. The wealth of high-precision measurements carried out at LEP, SLC and the Tevatron
[18] as well as the “Muon g − 2 Experiment” (E821) [19] and further low-energy experiments provide a powerful
tool for testing the electroweak theory and probing indirect effects of SUSY particles. The most relevant electroweak
precision observables (EWPO) in this context are the W boson mass, MW , the effective leptonic weak mixing angle,
sin2�eff , the anomalous magnetic moment of the muon, a� ≡ (g −2)�/2, and the mass of the lightest CP-even MSSM
Higgs boson, mh. While the current exclusion bounds on mh already allow to constrain the MSSM parameter space, the
prospective accuracy for the measurement of the mass of a light Higgs boson at the LHC of about 200 MeV [5,6] or at
the ILC of even 50 MeV [7–9] could promote mh to a precision observable. Owing to the sensitive dependence of mh
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Table 1.1
Superfields and particle content of the MSSM

Superfield (SU(3), SU(2), U(1)) 2HDM particle Spin SUSY partner Spin

Q̂ (3, 2, 1
3 ) (u, d)L

1
2 (ũ, d̃)L 0

Û (3∗, 1, − 4
3 ) ūR

1
2 ũ∗

R
0

D̂ (3∗, 1, 2
3 ) d̄R

1
2 d̃∗

R
0

L̂ (1, 2, −1) (�, e)L
1
2 L̃L = (�̃, ẽ)L 0

Ê (1, 1, 2) ēR
1
2 ẽ∗

R
0

Ĥ1 (1, 2, −1) (H 0
1 , H−

1 )L 0 (H̃ 0
1, H̃−

1 )L
1
2

Ĥ2 (1, 2, 1) (H+
2 , H 0

2 )L 0 (H̃+
2 , H̃ 0

2)L
1
2

Ŵ (1, 3, 0) Wi 1 W̃ i 1
2

B̂ (1, 1, 0) B0 1 B̃0 1
2

Ĝa (8, 1, 0) ga 1 g̃a
1
2

on especially the scalar top sector, the measured value of mh will allow to set stringent constraints on the parameters
in this sector.

Since the experimental data—with few exceptions—are well described by the SM [18], the electroweak precision
tests at present mainly yield constraints on possible extensions of the SM, e.g. lower limits on SUSY particle masses.
Nevertheless, one can use the available data to investigate whether small deviations from the SM predictions could
be caused by quantum effects of the SUSY particles: sleptons, squarks, gluinos, charginos/neutralinos and additional
Higgs bosons, and what regions of the SUSY parameter space might be favoured.

1.2. The structure of the MSSM

The MSSM constitutes the minimal supersymmetric extension of the SM. The number of SUSY generators is N =1,
the smallest possible value. In order to keep anomaly cancellation, contrary to the SM a second Higgs doublet is needed
[20]. One Higgs doublet, H1, gives mass to the d-type fermions (with weak isospin −1/2), the other doublet, H2,
gives mass to the u-type fermions (with weak isospin +1/2). All SM multiplets, including the two Higgs doublets
(2HDM), are extended to supersymmetric multiplets, resulting in scalar partners for quarks and leptons (“squarks”
and “sleptons”) and fermionic partners for the SM gauge boson and the Higgs bosons (“gauginos” and “gluinos”). In
Table 1.1, the spectrum of the MSSM fields is summarized (family indices are suppressed). As a consequence of the
strong experimental evidence for neutrino oscillations (see Ref. [3] and references therein), the SM should be extended
by right-handed neutrinos. Within the MSSM this implies the inclusion of the superpartners of the right-handed
neutrinos, which can be easily added to the MSSM spectrum. Since the impact of these extra states on EWPO is in
general expected to be small, we limit our discussion in this report to only left-handed neutrinos and their superpartners.

The mass eigenstates of the gauginos are linear combinations of these fields, denoted as “neutralinos” and “charginos”.
Also the left- and right-handed squarks (and sleptons) can mix, yielding the mass eigenstates (denoted by the indices
1, 2 instead of L, R). All physical particles of the MSSM are given in Table 1.2. In this report we do not consider the
effects of complex phases, i.e. we treat all MSSM parameters as real.

1.2.1. The Higgs sector of the MSSM
The two Higgs doublets form the Higgs potential [11]

V = (m2
1 + |�|2)|H1|2 + (m2

2 + |�|2)|H2|2 − m2
12(εabH

a
1H

b
2 + h.c.) + 1

8 (g2
1 + g2

2)[|H1|2

− |H2|2]2 + 1
2g2

2 |H†
1H2|2, (1.1)
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Table 1.2
Particle content of the MSSM

2HDM particle Spin SUSY particle Spin

Quarks: q 1
2 Squarks: q̃1, q̃2 0

Leptons: l 1
2 Sleptons: l̃1, l̃2 0

Gluons: ga 1 Gluinos: g̃a
1
2

Gauge bosons: W±, Z0, � 1 Neutralinos: �̃0
1, �̃0

2, �̃0
3, �̃0

4
1
2

Higgs bosons: h0, H 0, A0, H± 0 Charginos: �̃±
1 , �̃±

2
1
2

which contains the soft SUSY breaking parameters m1, m2, m12 and the Higgsino mass parameter �; g2, g1 are the
SU(2) and U(1) gauge couplings, and ε12 = −1.

The doublet fields H1 and H2 are decomposed in the following way:

H1 =
(
H0

1

H−
1

)
=
(

v1 + 1√
2
(�0

1 − i�0
1)

−�−
1

)
,

H2 =
(
H+

2

H0
2

)
=
(

�+
2

v2 + 1√
2
(�0

2 + i�0
2)

)
. (1.2)

The potential (1.1) can be described with the help of two independent parameters (besides g1 and g2): tan � ≡ v2/v1
and M2

A = −m2
12(tan � + cot �), where MA is the mass of the CP-odd A boson.

The diagonalization of the bilinear part of the Higgs potential, i.e. the Higgs mass matrices, is performed via the
orthogonal transformations(

H 0

h0

)
=
( cos 	 sin 	

− sin 	 cos 	

)(�0
1

�0
2

)
, (1.3)

(
G0

A0

)
=
( cos � sin �

− sin � cos �

)(�0
1

�0
2

)
, (1.4)

(
G±

H±

)
=
( cos � sin �

− sin � cos �

)(�±
1

�±
2

)
. (1.5)

The mixing angle 	 is determined through

tan 2	 = tan 2�
M2

A + M2
Z

M2
A − M2

Z

, −


2
< 	 < 0. (1.6)

One gets the following Higgs spectrum:

two neutral bosons, CP = +1: h0, H 0,

one neutral boson, CP = −1: A0,

two charged bosons: H+, H−

three unphysical Goldstone bosons: G0, G+, G−. (1.7)

The masses of the gauge bosons are given in analogy to the SM:

M2
W = 1

2g2
2(v2

1 + v2
2), M2

Z = 1
2 (g2

1 + g2
2)(v2

1 + v2
2), M� = 0. (1.8)
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At tree level, the mass matrix of the neutral CP-even Higgs bosons is given in the �1–�2-basis in terms of MZ , MA,
and tan � by

M
2,tree
Higgs =

(
m2

�1
m2

�1�2

m2
�1�2

m2
�2

)

=
(

M2
A sin2� + M2

Z cos2� −(M2
A + M2

Z) sin � cos �

−(M2
A + M2

Z) sin � cos � M2
A cos2� + M2

Z sin2�

)
, (1.9)

which by diagonalization according to Eq. (1.3) yields the tree-level Higgs boson masses

M
2,tree
Higgs

	−→
(

m2
H,tree 0

0 m2
h,tree

)
. (1.10)

The mixing angle 	 satisfies Eq. (1.6)

tan 2	 = tan 2�
M2

A + M2
Z

M2
A − M2

Z

, −


2
< 	 < 0. (1.11)

Since we treat all MSSM parameters as real, there is no mixing between CP-even and CP-odd Higgs bosons.
The tree-level results for the neutral CP-even Higgs-boson masses of the MSSM read

m2
H,h = 1

2

[
M2

A + M2
Z ±

√
(M2

A + M2
Z)2 − 4M2

ZM2
A cos22�

]
. (1.12)

This implies an upper bound of mh,tree �MZ for the light CP-even Higgs-boson mass of the MSSM. For a discussion
of large higher-order corrections to this bound, see Section 2.7. The direct prediction of an upper bound for the mass
of the light CP-even Higgs-boson mass is one of the most striking phenomenological predictions of the MSSM. The
existence of such a bound, which does not occur in the case of the SM Higgs boson, can be related to the fact that the
quartic term in the Higgs potential of the MSSM is given in terms of the gauge couplings, while the quartic coupling
is a free parameter in the SM.

1.2.2. The scalar quark sector of the MSSM
The squark mass term of the MSSM Lagrangian is given by

Lm
f̃

= −1

2

(
f̃

†
L, f̃

†
R

)
Z
(

f̃L

f̃R

)
, (1.13)

where

Z =
⎛⎝M2

Q̃
+ M2

Z cos 2�(I
f

3 − Qf s2
W) + m2

f mf (Af − �{cot �; tan �})
mf (Af − �{cot �; tan �}) M2

Q̃′ + M2
Z cos 2�Qf s2

W + m2
f

⎞⎠ , (1.14)

and {cot �; tan �} corresponds to {u; d}-type squarks. The soft SUSY breaking term M
Q̃′ is given by

M
Q̃′ =

{
M

Ũ
for right-handed u-type squarks,

M
D̃

for right-handed d-type squarks.
(1.15)

In order to diagonalize the mass matrix and to determine the physical mass eigenstates, the following rotation has to
be performed:(

f̃1

f̃2

)
=
(

cos �
f̃

sin �
f̃

− sin �
f̃

cos �
f̃

)(
f̃L

f̃R

)
. (1.16)
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The mixing angle �
f̃

is given for tan � > 1 by

cos �
f̃

=

√√√√√ (m2
f̃R

− m2
f̃1

)2

m2
f (Af − �{cot �; tan �})2 + (m2

f̃R
− m2

f̃1
)2

, (1.17)

sin �
f̃

= ∓ sgn[Af − �{cot �; tan �}]

×
√√√√ m2

f (Af − �{cot �; tan �})2

m2
f (Af − �{cot �; tan �})2 + (m2

f̃R
− m2

f̃1
)2

. (1.18)

The negative sign in (1.18) corresponds to u-type squarks, the positive sign to d-type ones. m2
f̃R

≡ M2
Q̃′ + M2

Z cos 2�

Qf s2
W + m2

f denotes the lower right entry in the squark mass matrix (1.14). The masses are given by the eigenvalues
of the mass matrix:

m2
f̃1,2

= 1

2

[
M2

Q̃
+ M2

Q̃′
]

+ 1
2M2

Z cos 2�I
f

3 + m2
f

×

⎧⎪⎪⎨⎪⎪⎩
± cf

2

√[
M2

Q̃
− M2

Q̃′ + M2
Z cos 2�(I

f

3 − 2Qf s2
W)
]2 + 4m2

f (Au − � cot �)2

± cf

2

√[
M2

Q̃
− M2

Q̃′ + M2
Z cos 2�(I

f

3 − 2Qf s2
W)
]2 + 4m2

f (Ad − � tan �)2,

(1.19)

cf = sgn
[
M2

Q̃
− M2

Q̃′ + M2
Z cos 2�(I

f

3 − 2Qf s2
W)
]

for u-type and d-type squarks, respectively. Since the non-diagonal entry of the mass matrix Eq. (1.14) is proportional
to the fermion mass, mixing becomes particularly important for f̃ = t̃ , in the case of tan �?1 also for f̃ = b̃.

For later purposes, it is convenient to express the squark mass matrix in terms of the physical masses m
f̃1

, m
f̃2

and
the mixing angle �

f̃
:

Z =
⎛⎝ cos2�

f̃
m2

f̃1
+ sin2�

f̃
m2

f̃2
sin �

f̃
cos �

f̃
(m2

f̃1
− m2

f̃2
)

sin �
f̃

cos �
f̃
(m2

f̃1
− m2

f̃2
) sin2�

f̃
m2

f̃1
+ cos2�

f̃
m2

f̃2

⎞⎠ . (1.20)

Af can be written as follows:

Af =
sin �

f̃
cos �

f̃
(m2

f̃1
− m2

f̃2
)

mf

+ �{cot �; tan �}. (1.21)

1.2.3. Charginos
The charginos �̃+

i (i = 1, 2) are four-component Dirac fermions. The mass eigenstates are obtained from the winos
W̃± and the charged higgsinos H̃−

1 , H̃+
2 :

W̃+ =
(−i�+

i�̄
−
)

, W̃− =
(−i�−

i�̄
+
)

, H̃+
2 =

(
�+

H2

�̄
−
H1

)
, H̃−

1 =
(

�−
H1

�̄
+
H2

)
. (1.22)

The chargino masses are defined as mass eigenvalues of the diagonalized mass matrix,

L�̃+,mass = −1

2
(�+, �−)

( 0 XT

X 0

)(�+

�−

)
+ h.c., (1.23)
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or given in terms of two-component fields

�+ = (−i�+, �+
H2

),

�− = (−i�−, �−
H1

), (1.24)

where X is given by

X =
(

M2
√

2 MW sin �
√

2 MW cos � �

)
. (1.25)

In the mass matrix, M2 is the soft SUSY-breaking parameter for the Majorana mass term. � is the Higgsino mass
parameter from the Higgs potential Eq. (1.1).

The physical (two-component) mass eigenstates are obtained via unitary (2 × 2) matrices U and V:

�+
i = Vij �+

j ,

�−
i = Uij �−

j , i, j = 1, 2. (1.26)

This results in a four-component Dirac spinor

�̃+
i =

(
�+
i

�̄−
i

)
, i = 1, 2, (1.27)

where U and V are given by

U = O−, V =
{O+ det X > 0,


3 O+ det X < 0,
(1.28)

with

O± =
( cos �± sin �±

− sin �± cos �±

)
. (1.29)

cos �± and sin �± are given by (ε = sgn[det X])

tan �+ =
√

2 MW

(
sin �m�̃+

1
+ ε cos �m�̃+

2

)
(M2m�̃+

1
+ ε�m�̃+

2
)

,

tan �− =
−�m�̃+

1
− εM2m�̃+

2√
2MW

(
sin �m�̃+

1
+ ε cos �m�̃+

2

) . (1.30)

(If �+ < 0, it has to be replaced by �+ + 
.) m�̃+
1

and m�̃+
2

are the eigenvalues of the diagonalized matrix

M2
diag,�̃+ = VX†XV−1 = U∗XX†(U∗)−1,

Mdiag,�̃+ = U∗XV−1 =
(

m�̃+
1

0

0 m�̃+
2

)
. (1.31)

They are given by

m2
�̃+

1,2
= 1

2

{
M2

2 + �2 + 2M2
W ∓ [(M2

2 − �2)2 + 4M4
W cos22� + 4M2

W(M2
2 + �2 + 2�M2 sin 2�)]1/2

}
. (1.32)
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1.2.4. Neutralinos
Neutralinos �̃0

i (i = 1, 2, 3, 4) are four-component Majorana fermions. They are the mass eigenstates of the photino,
�̃, the zino, Z̃, and the neutral higgsinos, H̃ 0

1 and H̃ 0
2, with

�̃ =
(−i��

i�̄�

)
, Z̃ =

(−i�Z

i�̄Z

)
, H̃ 0

1 =
(

�0
H1

�̄
0
H1

)
, H̃ 0

2 =
(

�0
H2

�̄
0
H2

)
. (1.33)

Analogously to the SM, the photino and zino are mixed states from the bino, B̃, and the wino, W̃ ,

B̃ =
(−i�′

i�̄
′
)

, W̃ 3 =
(−i�3

i�̄
3

)
, (1.34)

with

�̃ = W̃ 3sW + B̃cW ,

Z̃ = W̃ 3cW − B̃sW . (1.35)

The mass term in the Lagrange density is given by

L�̃0,mass = − 1
2 (�0)TY�0 + h.c., (1.36)

with the two-component fermion fields

(�0)T = (−i�′, −i�3, �0
H1

, �0
H2

). (1.37)

The mass matrix Y is given by

Y =

⎛⎜⎜⎜⎜⎝
M1 0 −MZsW cos � MZsW sin �

0 M2 MZcW cos � −MZcW sin �

−MZsW cos � MZcW cos � 0 −�

MZsW sin � −MZcW sin � −� 0

⎞⎟⎟⎟⎟⎠ . (1.38)

The physical neutralino mass eigenstates are obtained with the unitary transformation matrix N:

�0
i = Nij�

0
j , i, j = 1, . . . , 4, (1.39)

resulting in the four-component spinor (representing the mass eigenstate)

�̃0
i =

(
�0
i

�̄0
i

)
, i = 1, . . . , 4. (1.40)

The diagonal mass matrix is then given by

Mdiag,�̃0 = N∗Y N−1. (1.41)

1.2.5. Gluinos
The gluino, g̃, is the spin 1/2 superpartner (Majorana fermion) of the gluon. According to the eight generators of

SU(3)C (colour octet), there are eight gluinos, all having the same Majorana mass

mg̃ = M3. (1.42)

In SUSY GUTs M1, M2 and M3 are not independent, but connected via

mg̃ = M3 = g2
3

g2
2

M2 = 	s

	em
s2
WM2, M1 = 5

3

s2
W

c2
W

M2. (1.43)
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1.2.6. Non-minimal flavour violation
The most general flavour structure of the soft SUSY-breaking sector with flavour non-diagonal terms would induce

large flavour-changing neutral currents, contradicting the experimental results [3]. Attempts to avoid this kind of
problem include flavour-diagonal SUSY breaking scenarios, like minimal Supergravity (with universality assumptions)
or gauge-mediated SUSY breaking, see the next subsection. In these scenarios, the sfermion-mass matrices are flavour
diagonal in the same basis as the quark matrices at the SUSY-breaking scale. However, a certain amount of flavour
mixing is generated due to the renormalization-group evolution from the SUSY-breaking scale down to the electroweak
scale. Estimates of this radiatively induced off-diagonal squark-mass terms indicate that the largest entries are those
connected to the SUSY partners of the left-handed quarks [21,22], generically denoted as �LL. Those off-diagonal
soft SUSY-breaking terms scale with the square of diagonal soft SUSY-breaking masses MSUSY, whereas the �LR and
�RL terms scale linearly, and �RR with zero power of MSUSY. Therefore, usually the hierarchy �LL?�LR,RL?�RR

is realized. It was also shown in Refs. [21,22] that mixing between the third- and second-generation squarks can be
numerically significant due to the involved third-generation Yukawa couplings. On the other hand, there are strong
experimental bounds on squark mixing involving the first generation, coming from data on K0–K̄0 and D0–D̄0

mixing [23,24].
Considering the scalar quark sector with non-minimal flavour violation (NMFV) for the second and third generations,

the squark mass matrices in the basis of (c̃L, t̃L, c̃R, t̃R) and (s̃L, b̃L, s̃R, b̃R) are given by

M2
ũ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

M2
L̃c

�t
LL mcXc �t

LR

�t
LL M2

L̃t
�t

RL mtXt

mcXc �t
RL M2

R̃c
�t

RR

�t
LR mtXt �t

RR M2
R̃t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (1.44)

M2
d̃

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

M2
L̃s

�b
LL MSXs �b

LR

�b
LL M2

L̃b
�b

RL mbXb

MSXs �b
RL M2

R̃s
�b

RR

�b
LR mbXb �b

RR M2
R̃b

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (1.45)

with

M2
L̃q

= M2
Q̃q

+ m2
q + cos 2�M2

Z(T
q

3 − Qqs2
W),

M2
R̃q

= M2
Ũq

+ m2
q + cos 2�M2

ZQqs2
W (q = t, c),

M2
R̃q

= M2
D̃q

+ m2
q + cos 2�M2

ZQqs2
W (q = b, s),

Xq = Aq − �(tan �)−2T
q
3 , (1.46)

where mq , Qq and T
q

3 are the mass, electric charge and weak isospin of the quark q. M
Q̃q

, M
Ũq

, M
D̃q

are the soft

SUSY-breaking parameters. The SU(2) structure of the model requires M
Q̃q

to be equal for t̃ and b̃ as well as for c̃

and s̃.
In order to diagonalize the two 4 × 4 squark mass matrices, two 4 × 4 rotation matrices, Rũ and R

d̃
, are needed,

ũ	 = R
	,j

ũ

⎛⎜⎜⎜⎜⎝
c̃L

t̃L

c̃R

t̃R

⎞⎟⎟⎟⎟⎠
j

, d̃	 = R
	,j

d̃

⎛⎜⎜⎜⎜⎝
s̃L

b̃L

s̃R

b̃R

⎞⎟⎟⎟⎟⎠
j

, (1.47)
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yielding the diagonal mass-squared matrices as follows:

diag{m2
ũ1

, m2
ũ2

, m2
ũ3

, m2
ũ4

}	,� = R
	,i
ũ

(M2
ũ )i,j (R

�,j

ũ
)†, (1.48)

diag{m2
d̃1

, m2
d̃2

, m2
d̃3

, m2
d̃4

}	,� = R
	,i

d̃
(M2

d̃
)i,j (R

�,j

d̃
)†. (1.49)

For the numerical analysis we use

�t
LL = �M

L̃t
M

L̃c
, �t

LR = �t
RL = �t

RR = 0,

�b
LL = �M

L̃b
M

L̃s
, �b

LR = �b
RL = �b

RR = 0. (1.50)

Feynman rules that involve two scalar quarks can be obtained from the rules given in the f̃L, f̃R basis by applying
the corresponding rotation matrix (q̃ = ũ, d̃),

V (Xq̃	q̃
′
�) = R

	,i
q̃

R
�,j

q̃ ′ V (Xq̃i q̃
′
j ). (1.51)

Thereby V (Xq̃i q̃
′
j ) denotes a generic vertex in the f̃L, f̃R basis, and V (Xq̃	q̃

′
�) is the vertex in the NMFV mass–

eigenstate basis. The Feynman rules for the vertices needed for our applications, i.e. the interaction of one and two
Higgs or gauge bosons with two squarks, can be found in Ref. [25].

1.2.7. Unconstrained MSSM versus specific models for soft SUSY breaking
In the unconstrained MSSM no specific assumptions are made about the underlying SUSY-breaking mechanism, and

a parameterization of all possible soft SUSY-breaking terms that do not alter the relation between the dimensionless
couplings is used (which ensures that the absence of quadratic divergences is maintained). This parameterization has
the advantage of being very general, but the disadvantage of introducing more than 100 new parameters in addition to
the SM. While in principle these parameters (masses, mixing angles, complex phases) could be chosen independently
of each other, experimental constraints from flavour-changing neutral currents, electric dipole moments, etc. seem to
favour a certain degree of universality among the soft SUSY-breaking parameters.

Within a specific SUSY-breaking scenario, the soft SUSY-breaking terms can be predicted from a small set of input
parameters. The most prominent scenarios in the literature are minimal Supergravity (mSUGRA) [26,27], minimal
Gauge Mediated SUSY Breaking (mGMSB) [28] and minimal Anomaly Mediated SUSY Breaking (mAMSB) [29–31].
The mSUGRA and mGMSB scenarios have four parameters and a sign, while the mAMSB scenario can be specified
in terms of three parameters and a sign.

Detailed experimental analyses within the multi-dimensional parameter space of the unconstrained MSSM would
clearly be very involved. Therefore one often restricts to certain benchmark scenarios, see e.g. Refs. [32–35], or relies
on the underlying assumptions of a specific SUSY-breaking scenario.

The EWPO can be analysed within the unconstrained MSSM (or extensions of it), which allows to set constraints
on the SUSY parameter space in a rather general way. In our numerical analysis in Chapter 3 we discuss the impact
of EWPO in the context of the unconstrained MSSM, while in Chapter 4 we focus on the mSUGRA, mGMSB and
mAMSB scenarios as special cases.

1.2.8. Experimental bounds on SUSY particles
The non-observation of SUSY particles at the collider experiments carried out so far place lower bounds on the masses

of SUSY particles which are typically of O(100 GeV) [3]. These bounds, however, depend on certain assumptions on
the SUSY parameter space, for instance on the couplings and decay characteristics of the particles or the validity of a
certain SUSY-breaking scenario.

Relaxing some of these assumptions can result in bounds that are much weaker than the ones that are usually quoted.
As an example, collider experiments do not provide any lower bound on the mass of the lightest neutralino if the GUT
relation connecting M1 and M2, see Eq. (1.43), is lifted [36]. It is interesting to investigate in how far the results for
EWPO can narrow down the parameter space where the bounds from direct searches are very weak. Such an analysis
has been carried out, for instance, for a scenario with a light scalar bottom quark of O(5 GeV). In Ref. [37], it has been
shown that a light scalar bottom quark is consistent with the constraints from the EWPO and the LEP Higgs search.
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1.3. Electroweak precision observables

In general there are two possibilities for virtual effects of SUSY particles to be large enough to be detected at present
and (near future) experiments. On the one hand, these are rare processes, where SUSY loop contributions do not
compete with a large SM tree-level contribution. Examples are rare b decays like b → s�, Bs → �+�−, and electric
dipole moments (EDMs). For processes of this kind the SUSY prediction for the rates can be much larger (sometimes
by orders of magnitude) than the SM one.

On the other hand, EWPO, which are known with an accuracy at the per cent level or better, have the potential to
allow a discrimination between quantum effects of the SM and SUSY models. Examples are the W boson mass, MW ,
and the Z-boson observables, like the effective leptonic weak mixing angle, sin2�eff .

This distinction between rare processes and EWPO is of course not a completely rigid one. The anomalous magnetic
moment of the muon, for instance, corresponds both to a rare process according to the above definition and to an EWPO
which has been measured with high accuracy. In view of the prospects for precision measurements of the mass of the
lightest CP-even Higgs boson, mh, at the next generation of colliders, we also treat mh as an EWPO.

In the present report we concentrate our discussion on EWPO, in particular the observables in the W- and Z-boson
sector, the anomalous magnetic moment of the muon, and the mass of the lightest CP-even Higgs boson. We just
briefly comment on rare processes in the following section and occasionally in our numerical discussion. For a more
thorough investigation of the constraints on the SUSY parameter space, we refer to the literature. For reviews of rare
decays see Ref. [38], results for EDMs in the MSSM can be found in Refs. [39,40] and in references therein.

1.3.1. Constraints on the SUSY parameter space from rare processes
The branching ratio BR(b → s�) receives, besides the SM loop contribution involving the W boson and the top

quark, additional contributions from chargino/stop and charged Higgs/stop loops [41]. The SUSY contributions are
particularly large for light charged Higgs bosons and large � or tan �. The currently available SUSY contributions to
BR(b → s�) include the one-loop result and leading higher-order corrections. The comparison of the theory prediction
with the data imposes important constraints on the parameter space both of general two-Higgs-doublet models and
of the MSSM. In the latter case it is possible that the two kinds of additional contributions are individually large but
interfere destructively with each other, resulting in only a small deviation of the decay rate from the SM prediction.

Another interesting channel is the decay Bs → �+�−. The SM contribution to this decay is tiny, resulting in a BR
of about 10−9 [42]. Within SUSY, however, diagrams enhanced by tan �3 can contribute. Thus, the decay width can
grow with tan6� and the BR can be much larger than in the SM [43], see Ref. [44] for a recent review. The available
corrections in the MSSM consist of the full one-loop evaluation and the leading two-loop QCD corrections. The current
bound from the Tevatron is BR(Bs → �+�−) < 2.7 × 10−7 at the 90% CL [45]. A substantial improvement in this
bound can be expected in the forthcoming years.

A different way for probing SUSY is via its contribution to EDMs of heavy quarks [46], of the electron and the
neutron (see Refs. [40,47] and references therein), or of deuterium [48]. While SM contributions start only at the three-
loop level, due to its complex phases the MSSM can contribute already at one-loop order. Also, the leading two-loop
corrections for the electron and neutron EDMs are available. Large phases in the first two generations of (s)fermions
can only be accommodated if these generations are assumed to be very heavy [49] or large cancellations occur [50];
see however the discussion in Ref. [39].

1.3.2. Pseudo-observables versus realistic observables
The quantities that can be directly measured in experiments are cross sections, line shape observables, forward–

backward asymmetrieses, etc., deemed “realistic observables” in the language of Ref. [51]. The obtained results
depend on the specific set of experimental cuts that have been applied, and are influenced by detector effects and
other details of the experimental setup. In order to determine quantities like masses, partial widths or couplings
from the primarily measured observables, a deconvolution (unfolding) procedure is applied. This procedure involves
manipulations like unfolding the QED corrections, subtracting photon-exchange and interference terms, subtracting
box-diagram contributions, unfolding higher-order QCD corrections, etc. These secondary quantities are therefore
called “pseudo-observables” in Ref. [51].

The procedure of going from realistic observables to pseudo-observables results in a slight model dependence of the
pseudo-observables. As an example, the experimental value of the Z-boson mass has a slight dependence on the value of
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the Higgs-boson mass in the SM, see Refs. [18,52]. The EWPO on which we focus in this report are pseudo-observables
in the sense outlined above. At the level of electroweak precision physics, it is important to keep in mind that in order
to obtain the numerical values of the EWPO given in the literature the Standard Model has been used in several steps
for calculating the subtraction terms. An obvious model dependence also occurs if, instead of performing an explicit
subtraction of SM terms, parameters like MZ , 	s(MZ), etc. are determined directly from a SM fit, containing the full
set of SM corrections, to the realistic observables.

Using the same numerical values of the EWPO as input for analyses within the MSSM (or other extensions of the
SM) is obviously only justified if new physics contributions to the subtraction terms and the implemented higher-order
corrections are negligible. As an example, the experimental value extracted for 	s(MZ) in the MSSM (for a given
SUSY mass spectrum) would somewhat differ from the SM value of 	s(MZ).

A consistent treatment of the model dependence of the EWPO is necessary in a precision analysis of the MSSM. At
the current level of experimental precision, the shift induced in the EWPO from taking into account the full MSSM
particle content instead of the SM will normally be of minor importance. In some regions of the parameter space, in
particular where some of the SUSY particles are very light, an explicit verification of the above assumption would
however be desirable.

Concerning the determination of the MSSM parameters, additional complications arise compared to the SM case.
In general, the model dependence is relatively small for masses, since the mass of a particle can closely be related to
one particular realistic observable. For couplings (with the exception of the electromagnetic coupling in the Thomson
limit), mixing angles, etc., on the other hand, the model dependence is relatively large. In contrast to the SM, many of
the MSSM parameters are not closely related to one particular observable, e.g. tan �, �, the stop and sbottom mixing
angles, complex phases, etc., resulting in a relatively large model dependence. Therefore, the approach of extracting
pseudo-observables with only a fairly small model dependence seems not to be transferable to the case of the MSSM.
It seems that eventually the MSSM parameters will have to be determined in a global fit of the MSSM to a large set
of observables, taking into account higher-order corrections within the MSSM, see Refs. [53,54] or Ref. [55] for an
attempt of a coordinated effort.

1.3.3. EWPO versus effective parameters
In this report we focus our discussion on the EWPO, i.e. (pseudo-)observables like the W-boson mass, MW , the

effective leptonic weak mixing angle, sin2�eff , the leptonic width of the Z boson, �l , the anomalous magnetic mo-
ment of the muon, a� ≡ (g − 2)�/2, the mass of the lightest CP-even MSSM Higgs boson, mh, etc. In the liter-
ature, virtual effects of SUSY particles are often discussed in terms of effective parameters instead of the EWPO
(see, e.g. Ref. [56] and references therein). We do not follow this approach, and just briefly comment about it in
the following.

Since for the accuracies anticipated at future colliders, see Table 1.4 below, it is particularly important to have a precise
understanding of how effects of new physics can be probed in a sensible way, the virtues and range of applicability of
effective parameters need to be assessed.

A widely used set of parameters are the S, T, U parameters [57]. They are defined such that they describe the
effects of new physics contributions that enter only via vacuum-polarization effects (i.e. self-energy corrections) to the
vector boson propagators of the SM (i.e. the new physics contributions are assumed to have negligible couplings to
SM fermions). The S, T, U parameters can be computed in different models of new physics as certain combinations
of one-loop self-energies. Experimentally, their values are determined by comparing the measured values A

exp
i of a

number of observables with their values predicted by the SM, ASM
i , i.e. Aexp

i = ASM
i + f NP

i (S, T , U). Here ASM
i

contains all known radiative corrections in the SM, while f NP
i (S, T , U) is a (linear) function of the parameters S, T, U

and describes the contributions of new physics. The SM prediction ASM
i is evaluated for a reference value of mt and

MH . For most precision observables the corrections caused by a variation of mt and MH at one-loop order can also be
absorbed into the parameters S, T, and U. A non-zero result for S, T, U determined in this way indicates non-vanishing
contributions of new physics (with respect to the SM reference value).

From their definition, it is obvious that the S, T, U parameters can only be applied for parameterizing effects of physics
beyond the SM. Taking into account the full contributions within the SM cannot be avoided, as these contributions
(containing also vertex and box corrections) cannot consistently be absorbed into the S, T, U parameters (for a more
detailed discussion of this point, see Ref. [58]).
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Table 1.3
Examples of EWPO with their current absolute and relative experimental errors [3,18,62]

Central value Absolute error Relative error

MZ (GeV) 91.1875 ±0.0021 ±0.002%
G� (GeV−2) 1.16637 × 10−5 ±0.00001 × 10−5 ±0.0009%
mt (GeV) 172.7 ±2.9 ±1.7%
MW (GeV) 80.425 ±0.034 ±0.04%
sin2�eff 0.23150 ±0.00016 ±0.07%
�Z (GeV) 2.4952 ±0.0023 ±0.09%

Examples of new physics contributions that can be described in the framework of the S, T, U parameters are
contributions from a fourth generation of heavy fermions or effects from scalar quark loops to the W- and Z-boson
observables. A counter example going beyond the S, T, U framework are SUSY corrections to the anomalous magnetic
moment of the muon. According to their definition, the S, T, U parameters are restricted to leading-order contributions
of new physics. They should therefore be applied only for the description of small deviations from the SM predictions,
for which a restriction to the leading order is permissible. It appears to be questionable, on the other hand, to apply
them to cases of very large deviations from the SM, like extensions of the SM with a very heavy Higgs boson in the
range of several TeV.

Other parameterizations have been suggested (see e.g. Refs. [59,60]) with no reference to the SM contribution and
which are not restricted in the possible kinds of new physics. These parameterizations are defined as certain linear
combinations of different observables. It is however not in all cases obvious that studying the experimental values and
the theory predictions for these parameters is of advantage compared to studying the EWPO themselves. For a recent
discussion of effective parameters, see also Ref. [61].

1.3.4. Current experimental status of EWPO
LEP, SLC, the Tevatron, and low-energy experiments have collected an enormous amount of data on EWPO. Examples

for the current experimental status of EWPO are given in Table 1.3, including their relative experimental precision.
The quantities in the first three lines, MZ , GF , and mt , are usually employed as input parameters for the theoretical
predictions. The observables MW , sin2�eff , �Z , on the other hand, are used for testing the electroweak theory by
comparing the experimental results with the theory predictions. Comparing the typical size of electroweak quantum
effects, which is at the per cent level, with the relative accuracies in Table 1.3, which are at the per milli level, clearly
shows the sensitivity of the electroweak precision data to loop effects.

The experimental accuracy of the precision observables will further be improved at the currently ongoing Run II of
the Tevatron, the LHC and a future ILC, with the possible option of a high-luminosity low-energy run, GigaZ [7–9,63].
The most significant improvements among the EWPO can be expected for MW and sin2�eff . If the Higgs boson will
be detected, a precise measurement of its mass will be important for testing the electroweak theory. Concerning the
input parameters, the experimental error of the top-quark mass is the dominant source of theoretical uncertainty in
electroweak precision tests. This will remain to be the case even with the accuracy on mt reachable at the LHC [64].
Thus, the high-precision measurement of mt at the ILC will be crucial for an increased sensitivity to virtual effects of
new physics [64,65].

The prospective accuracy for MW , sin2�eff , mt and mh (for a value of mh ≈ 120 GeV) at the Tevatron, at the LHC
(combined with the data collected at the Tevatron) and the ILC (with and without GigaZ option) are summarized in
Table 1.4 (see Ref. [66] and references therein).

Another EWPO with a high sensitivity to virtual effects of SUSY particles is the anomalous magnetic moment of
the muon, a� ≡ (g − 2)�/2. The final result of the Brookhaven “Muon g − 2 Experiment” (E821) for a� reads [19]

a
exp
� = (11 659 208 ± 5.8) × 10−10. (1.52)

The interpretation of this measurement within SUSY strongly depends on the corresponding SM evaluation. The SM
prediction depends on the evaluation of the hadronic vacuum polarization and light-by-light contributions. The former
have been evaluated by Refs. [68–71], the latter by Ref. [72], but there is a recent re-evaluation [73], describing
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Table 1.4
Current and anticipated future experimental uncertainties for sin2�eff , MW , mt , and mh (the latter assuming mh ≈ 115 GeV)

Now Tevatron LHC ILC ILC with GigaZ

� sin2�eff (×105) 16 – 14–20 – 1.3
�MW (MeV) 34 20 15 10 7
�mt (GeV) 2.9 2.5 1.5 0.2 0.1
�mh (MeV) – – 200 50 50

Each column represents the combined results of all detectors and channels at a given collider, taking into account correlated systematic uncertainties,
see Ref. [66] for details. Updated Tevatron numbers can be found in Refs. [62,67].

a possible shift of the central value by 5.6 × 10−10. Depending on which hadronic evaluation is chosen, the difference
between experiment and the SM prediction lies between the two values (including the updated QED result from
Ref. [74])

a
exp
� − atheo

� ([69] + [72]) = (31.7 ± 9.5) × 10−10: 3.3
, (1.53)

a
exp
� − atheo

� ([68] + [73]) = (20.2 ± 9.0) × 10−10: 2.1
. (1.54)

These evaluations are all obtained with a �	had determination from e+e− data. Recent analyses concerning � data
indicate that uncertainties due to isospin breaking effects may have been underestimated earlier [70]. Furthermore new
data obtained at KLOE [75], where the radiative return is used to obtain data on �	had, agrees with the older e+e−
data. This, together with a continuing discussion about the uncertainties inherent in the isospin transformation from �
decay, has led to the proposal to leave out the � data in the �	had determination. A recent estimate based on the e+e−
data yields [76]

a
exp
� − atheo

� = (25.2 ± 9.2) × 10−10: 2.7
. (1.55)

We will use the value of Eq. (1.55) for our numerical analysis below.

2. Theoretical evaluation of precision observables

2.1. Regularization and renormalization of supersymmetric theories

2.1.1. Basic strategy
In higher-order perturbation theory the relations between the formal parameters and measurable quantities are

different from the tree-level relations in general. Moreover, the procedure is obscured by the appearance of divergences
in the loop integrations. For a mathematically consistent treatment one has to regularize the theory, e.g. by dimensional
regularization (DREG), where the regularization is performed by analytically continuing the space–time dimension
from 4 to D [77,78]. But then the relations between the physical quantities and the parameters become cut-off-dependent.
Hence, the parameters of the basic Lagrangian, the “bare” parameters, have no physical meaning. On the other hand,
the relations between measurable physical quantities, where the parameters drop out, are finite and independent of the
cut-off. It is therefore in principle possible to perform tests of the theory in terms of such relations by eliminating the
bare parameters.

Alternatively, one may replace the bare parameters by renormalized ones by multiplicative renormalization for each
bare parameter a0,

a0 = Zaa = a + �a, (2.1)

with renormalization constants Za different from 1 by a higher-order term. The renormalized parameters a are finite and
fixed by a set of renormalization conditions. The decomposition (2.1) is to a large extent arbitrary. Only the divergent
parts are determined directly by the structure of the divergences of the loop amplitudes. The finite parts depend on the
choice of the explicit renormalization conditions. These conditions determine the physical meaning of the renormalized
parameters.
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Before predictions can be made from the theory, a set of independent parameters has to be taken from experiment. In
practical calculations the free SM parameters are usually fixed by using 	, G�, MZ , mf , 	s (and possibly entries of the
quark and lepton mass matrices, if the off-diagonal entries are not neglected) as physical input quantities. They have
to be supplemented by the empirically unknown input parameters for the Higgs sector and the SUSY breaking sector.
Differences between various schemes are formally of higher order than the one under consideration. The study of the
scheme dependence of the perturbative results, possibly after improvement by resummation of the leading terms, gives
an indication of the possible size of missing higher-order contributions.

On the theoretical side, a thorough control of the quantization and the renormalization of the MSSM as a super-
symmetric gauge theory, with spontaneously broken gauge symmetry and softly broken supersymmetry, is required.
This is not only a theoretical question for establishing a solid and consistent theoretical framework but also a matter of
practical importance for concrete higher-order calculations, where the quantum contributions to the Green functions
have to fulfil the symmetry properties of the underlying theory. An increasing number of phenomenological applications
has been carried out in the Wess–Zumino gauge where the number of unphysical degrees of freedom is minimal, but
where supersymmetry is no longer manifest.

Moreover, a manifestly supersymmetric and gauge-invariant regularization for divergent loop integrals is missing.
The prescription of DREG preserves the Lorentz and the gauge invariance of the theory, apart from problems related
to the treatment of �5 in dimensions other than 4. In supersymmetric theories, however, a D-dimensional treatment of
vector fields leads to a mismatch between the fermionic and bosonic degrees of freedom, which gives rise to a breaking
of the supersymmetric relations. This led to the development of dimensional reduction (DRED) [79]. In this scheme
only the momenta are treated as D-dimensional, while the fields and the Dirac algebra are kept four-dimensional. It
leads to ambiguities related to the treatment of �5 [80], and therefore cannot be consistently applied at all orders (for a
review, see Ref. [81]). Hence, renormalization and the structure of counterterms have to be adapted by exploiting the
basic symmetries expressed in terms of the supersymmetric BRS transformations [82]. An additional complication in
the conventional approach assuming an invariant regularization scheme, however, arises from the modification of the
symmetry transformations themselves by higher-order terms.

The method of algebraic renormalization, applied in Ref. [83] to the electroweak SM and in Ref. [84] for the MSSM,
avoids the difficulties of the conventional approach. The theory is defined at the classical as well as the quantum level
by the particle content and by the basic symmetries. The essential feature of the algebraic method is the combination
of all symmetries into the BRS transformations leading to the Slavnov–Taylor (ST) identity. In this way, the theory is
defined by symmetry requirements that have to be satisfied after renormalization in all orders of perturbation theory.
In the case of symmetry violation in the course of explicitly calculating vertex functions in a given order, additional
non-invariant counterterms are uniquely determined to restore the symmetry, besides the invariant counterterms needed
for absorbing the divergences and for the normalization of fields and parameters. Examples are given in Refs. [85,86]
for supersymmetric QED and QCD and in Ref. [87] for the SM case. Explicit evaluations at the one-loop level in
supersymmetric models [85,86,88] have shown that DRED yields the correct counter terms.

In the following, we discuss the renormalization of several sectors of the MSSM. We focus on the sectors that are
needed for the one- and two-loop calculations reviewed below and restrict ourselves to the order in perturbation theory
required there. These sectors are the SM gauge bosons, the electric charge, the quark and scalar quark sector, as well
as the MSSM Higgs boson sector.

As mentioned above, many MSSM parameters are not closely related to one particular physical observable, so that
no obvious ‘best choice’ exists for their renormalization. Examples treated below are tan � and the mixing angles in
the scalar quark sector. Various definitions for these parameters already exist in the literature (the situation is similar
to the case of the weak mixing angle of the electroweak theory, where the use of several different definitions in the
literature caused some confusion in the early days of electroweak higher-order corrections). We will briefly comment
on some of them below. In view of the large number of MSSM parameters there is clearly a need to establish some
common standards in the literature in order to allow for a transparent comparison of different results. Requirements
that a renormalization scheme for the whole MSSM should fulfil are in particular a coherent treatment of all sectors,
applicability for both QCD and electroweak corrections, and numerical stability. Furthermore aspects of gauge (in-
)dependence need to be addressed. When formulating renormalization prescriptions for the MSSM, particular care
has to be taken in order to respect the underlying symmetry relations of the theory. While in the SM all masses of
the particles can be fixed by independent renormalization conditions, in a supersymmetric theory various relations
exist between different masses. Therefore, only a subset of the mass parameters of the theory can be renormalized



S. Heinemeyer et al. / Physics Reports 425 (2006) 265 –368 281

independently. The counterterms for the other masses are then determined in terms of the independent counterterms.
For a discussion of these issues, see e.g. Ref. [89].

2.1.2. Gauge boson mass renormalization
We discuss here the renormalization of the gauge-boson masses in the on-shell scheme [90] at the one-loop level.

Writing the W and Z self-energies as

�W,Z
�� (q) =

(
−g�� + q�q�

q2

)
�W,Z(q2) + · · · , (2.2)

where the scalar functions �W,Z(q2) are the transverse parts of the self-energies, and defining �W,Z
�� to correspond to

(−i) times the loop diagrams by convention, we have for the one-loop propagators (V = W, Z)

−ig�


q2 − M2
V

(i�V
�
)

−ig��

q2 − M2
V

= −ig��

q2 − M2
V

(
−�V (q2)

q2 − M2
V

)
, (2.3)

where terms proportional to q�q� (see Eq. (2.2)) have been omitted (they are suppressed if the propagator is attached
to a light external fermion).

Resumming all self-energy terms yields a geometric progression for the dressed propagators:

−ig��

q2 − M2
V

⎡⎣1 +
(

−�V

q2 − M2
V

)
+
(

−�V

q2 − M2
V

)2

+ · · ·
⎤⎦= −ig��

q2 − M2
V + �V (q2)

. (2.4)

The locations of the poles in the propagators are shifted by the self-energies. Consequently, the masses in the Lagrangian
can no longer be interpreted as the physical masses of the W and Z bosons once loop corrections are taken into account.
The mass renormalization relates these “bare masses” to the physical masses MW , MZ by

M0 2
W = M2

W + �M2
W ,

M0 2
Z = W 2

Z + �M2
Z , (2.5)

with counterterms of one-loop order. The propagators corresponding to this prescription are given by

−ig��

q2 − M0 2
V + �V (q2)

= −ig��

q2 − M2
V − �M2

V + �V (q2)
(2.6)

instead of (2.4). The renormalization conditions which ensure that MW,Z are the physical masses fix the mass coun-
terterms to be

�M2
W = Re �W(M2

W),

�M2
Z = Re �Z(M2

Z). (2.7)

These are the on-shell renormalization conditions. In an MS (or DR) renormalization, on the other hand, the countert-
erms �M2

W , �M2
Z are defined such that they essentially only contain the divergent (in the limit D → 4) contribution. The

renormalized mass parameters in this case do not directly correspond to the physical masses. They explicitly depend
on the renormalization scale.

While the Z-boson mass is commonly used as an input parameter, MW is normally traded as an input parameter for
the Fermi constant G�, which is precisely measured in muon decay. The prediction for MW in terms of G�, MZ , 	
and the parameters of the theory that enter via loop corrections can therefore be compared to the experimental value of
MW , constituting a sensitive test of the theory (see below).

Extending the above on-shell definition to higher orders requires to take into account that the pole of the propagator
of an unstable particle is located in the complex plane rather than on the real axis (which is the case for stable particles).
A gauge-invariant mass parameter is obtained if the mass is defined according to the real part of the complex pole. The
expansion around the complex pole leads to a Breit–Wigner shape with a fixed width. The experimental determination
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of the gauge-boson masses, on the other hand, uses a Breit–Wigner parameterization with running width for historical
reasons. This needs to be corrected for by a finite shift in MW and MZ . (For a more detailed discussion, see Ref. [91]
and references therein.)

2.1.3. Charge renormalization
The electroweak charge renormalization is very similar to that in pure QED. In the on-shell scheme, the definition

of e as the classical charge in the Thomson cross-section


Th = e4

6
m2
e

(2.8)

is maintained. Accordingly, the Lagrangian carries the bare charge e0 = e + �e with the charge counterterm �e of
one-loop order. The charge counterterm �e has to absorb the electroweak loop contributions to the ee� vertex in the
Thomson limit. This charge renormalization condition is simplified by the validity of a generalization of the QED Ward
identity, which implies that those corrections related to the external particles cancel each other. Hence, for �e only two
universal contributions are left,

�e

e
= 1

2
��(0) − sW

cW

��Z(0)

M2
Z

, ��(0) ≡ �

�q2
��(q2)

∣∣∣∣
q2=0

. (2.9)

The first contribution is given by the photon vacuum polarization, ��, for real photons, q2 = 0. Besides the charged-
fermion loops, it contains also bosonic loop diagrams from W+W− virtual states and the corresponding ghosts, as well
as from extra charged particles in extensions of the SM. The second term contains the mixing between photon and Z
boson, in general described as a mixing propagator, ��Z , with ��Z normalized according to

��Z = −ig��

q2

(
−��Z(q2)

q2 − M2
Z

)
. (2.10)

All loop contributions to ��Z vanish at q2 = 0, except that the non-Abelian bosonic loops yield ��Z(0) �= 0. They are
the same in the standard model and in supersymmetric extensions. ��Z(0) completely vanishes in the background-field
quantization of the electroweak theory [92].

The fermion-loop contributions to the photon vacuum polarization in (2.9) are analogous to the electron loop in
standard QED and do not depend on the details of the electroweak theory. They give rise to a logarithmic dependence
on the fermion masses. While for the leptonic contributions the known lepton masses can be inserted, perturbative
QCD is not applicable in this regime, and quark masses are no reasonable input parameters.

In order to evaluate the contribution of light fermions, i.e. the leptons and the quark flavours except the top quark,
it is convenient to add and subtract the photon vacuum polarization at p2 = M2

Z and to consider the finite quantity (for
the top quark and other heavy fermions ��(0) can be evaluated directly)

Re �̂�(M2
Z) = Re ��(M2

Z) − ��(0). (2.11)

Splitting it into the contribution of the leptons and the five light quarks yields the quantity

�	 = �	lept + �	had = −Re �̂�
lept(M

2
Z) − Re �̂�

had(M
2
Z), (2.12)

which represents a QED-induced shift in the electromagnetic fine structure constant

	 → 	(1 + �	). (2.13)

The evaluation of the leptonic content of �	 in terms of the known lepton masses yields at three-loop order [93]

�	lept = 314.97687 × 10−4. (2.14)

The five-flavour contribution of the light quarks to the shift in the fine structure constant can be derived from experimental
data with the help of a dispersion relation

�	had = − 	

3

M2

Z Re
∫ ∞

4m2



ds′ R�(s′)
s′(s′ − M2

Z − iε)
, (2.15)
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where

R�(s) = 
(e+e− → �∗ → hadrons)


(e+e− → �∗ → �+�−)

is an experimental input quantity for the low-energy range. Recent compilations yield the values �	=0.02761±0.00036
[94], �	 = 0.02769 ± 0.00035 [95], �	 = 0.02755 ± 0.00023 [69].

2.1.4. Renormalization of the quark and scalar quark sector
The renormalization of the quark sector can differ from the SM case, since the quark masses also appear in the

scalar quark sector. Therefore, the renormalization of the quark and of the scalar quark sector cannot be discussed
separately. Since the scalar top and bottom quarks are most relevant for the evaluation of EWPO, we will focus on their
renormalization here. Concerning the EWPO calculation reviewed below, only a renormalization in O(	s) is necessary.

The top and scalar top sector: The t/t̃ sector contains four independent parameters: the top-quark mass mt , the stop
masses mt̃1

and mt̃2
, and either the squark mixing angle �t̃ or, equivalently, the trilinear coupling At . Accordingly, the

renormalization of this sector is performed by introducing four counterterms that are determined by four independent
renormalization conditions.

In an on-shell scheme, the following renormalization conditions are imposed (the procedure is equivalent to that of
Ref. [96], although there no reference is made to the mixing angle).

(i) On-shell renormalization of the top-quark mass yields the top mass counterterm,

�mt = 1
2mt

[
Re �tL(m2

t ) + Re �tR (m2
t ) + 2 Re �tS (m

2
t )
]

, (2.16)

with the scalar coefficients of the unrenormalized top-quark self-energy, �t (p), in the Lorentz decomposition

�t (p) = /p�−�tL(p2) + /p�+�tR (p2) + mt�tS (p
2). (2.17)

(ii) On-shell renormalization of the stop masses determines the mass counterterms

�m2
t̃1

= Re �t̃11
(m2

t̃1
), �m2

t̃2
= Re �t̃22

(m2
t̃2
), (2.18)

in terms of the diagonal squark self-energies.
(iii) The counterterm for the mixing angle, �t̃ , (entering Eq. (1.20)) can be fixed in the following way:

��t̃ =
Re �t̃12

(m2
t̃1
) + Re �t̃12

(m2
t̃2
)

2(m2
t̃1

− m2
t̃2
)

, (2.19)

involving the non-diagonal squark self-energy. (This is a convenient choice for the treatment ofO(	s) corrections. If
electroweak contributions were included, a manifestly gauge-independent definition would be more appropriate.)

In renormalized vertices with squark and Higgs fields, the counterterm of the trilinear coupling At appears. Having
already specified ��t̃ , the At counterterm cannot be defined independently, but follows from the relation

sin 2�t̃ = 2mt(At − � cot �)

m2
t̃1

− m2
t̃2

, (2.20)

yielding

�At = 1

mt

[
1

2
sin 2�t̃ (�m2

t̃1
− �m2

t̃2
) + cos 2�t̃ (m

2
t̃1

− m2
t̃2
) ��t̃ − 1

2mt

sin 2�t̃ (m
2
t̃1

− m2
t̃2
)�mt

]
. (2.21)

This relation is valid at O(	s) since both � and tan � do not receive one-loop contributions from the strong interaction.
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The bottom and scalar bottom sector: Because of SU(2) invariance, the soft-breaking parameters for the left-handed
up- and down-type squarks are identical, and thus the squark masses of a given generation are not independent. The
stop and sbottom masses are connected via the relation

cos2�
b̃
m2

b̃1
+ sin2�

b̃
m2

b̃2
= cos2�t̃ m2

t̃1
+ sin2�t̃ m2

t̃2
+ m2

b − m2
t − M2

W cos(2�), (2.22)

with the entries of the rotation matrix in Eq. (1.16). Since the stop masses have already been renormalized on-shell, only
one of the sbottom mass counterterms can be determined independently. Following Ref. [97], the b̃2 mass is chosen as
the pole mass yielding the counterterm from an on-shell renormalization condition, i.e.

�m2
b̃2

= Re �
b̃22

(m2
b̃2

), (2.23)

whereas the counterterm for m
b̃1

is determined as a combination of other counterterms, according to

�m2
b̃1

= 1

cos2�
b̃

(
cos2�t̃ �m2

t̃1
+ sin2�t̃ �m2

t̃2
− sin2�

b̃
�m2

b̃2
− sin 2�t̃ (m

2
t̃1

− m2
t̃2
)��t̃

+ sin 2�
b̃
(m2

b̃1
− m2

b̃2
)��

b̃
− 2mt �mt + 2mb �mb

)
. (2.24)

Accordingly, the numerical value of m
b̃1

does not correspond to the pole mass. The pole mass can be obtained from
m

b̃1
via a finite shift of O(	s) (see e.g. Ref. [98]).

There are three more parameters with counterterms to be determined: the b-quark mass mb, the mixing angle �
b̃
,

and the trilinear coupling Ab. They are connected via

sin 2�
b̃

= 2mb(Ab − � tan �)

m2
b̃1

− m2
b̃2

, (2.25)

which reads in terms of counterterms

2 cos 2�
b̃
��

b̃
= sin 2�

b̃

�mb

mb

+ 2mb �Ab

m2
b̃1

− m2
b̃2

− sin 2�
b̃

�m2
b̃1

− �m2
b̃2

m2
b̃1

− m2
b̃2

. (2.26)

Only two of the three counterterms, �mb, ��
b̃
, �Ab can be treated as independent, which offers a variety of choices.

As discussed in Ref. [97] a convenient choice is the “mb DR” scheme, whereas a scheme analogous to the one in
the t/t̃ sector, involving a bottom pole mass, can lead to artificially enhanced higher-order corrections.

Concerning the renormalization of the top and the bottom mass, there are important differences. The top-quark
pole mass can be directly extracted from experiment and, due to its large numerical value as compared to other quark
masses and the fact that the present experimental error is much larger than the QCD scale, it can be used as input for
theory predictions in a well-defined way. For the mass of the bottom quark, on the other hand, problems related to
non-perturbative effects are much more severe. Therefore, the parameter extracted from the comparison of theory and
experiment [3] is not the bottom pole mass. Usually, the value of the bottom mass is given in the MS renormalization
scheme, with the renormalization scale �MS chosen as the bottom-quark mass, i.e. mMS

b (mMS
b ) [3].

Another important difference to the top/stop sector is the replacement of cot � → tan �. As a consequence, very
large effects can occur in this scheme for large values of � and tan � [99].

Potential problems with the bottom pole mass can be avoided by adopting a renormalization scheme with a running
bottom-quark mass. In the context of the MSSM, it seems appropriate to use the DR scheme [79] and to include the

SUSY contributions at O(	s) into the running. We denote this running bottom mass as m
DR,MSSM
b (�DR).

The “mb DR” scheme mentioned above uses a DR renormalization for both mb and Ab. In the DR scheme, the
b-quark mass counterterm can be determined by the expression

�mb = 1
2mb

[
Re �div

bL
(m2

b) + Re �div
bR

(m2
b) + 2 Re �div

bS
(m2

b)
]

, (2.27)
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where �div means replacing the one- and two-point integrals A and B0 in the quark self-energies by their divergent
parts. The counterterm for the trilinear coupling Ab in the DR scheme reads [97]

�Ab = 1

mb

[
− tan �

b̃
Re �div

b̃22
(m2

b̃2
) + 1

2 (Re �div
b̃12

(m2
b̃1

) + Re �div
b̃12

(m2
b̃2

))

+ tan �
b̃

(
cos2�t̃ Re �div

t̃11
(m2

t̃1
) + sin2�t̃ Re �div

t̃22
(m2

t̃2
)

−1

2
sin 2�t̃ (Re �div

t̃12
(m2

t̃1
) + Re �div

t̃12
(m2

t̃2
))

)
− m2

t (Re �div
tL

(m2
t ) + Re �div

tR
(m2

t ) + 2 Re �div
tS

(m2
t ))

]

+ 1

2

(
2 tan �

b̃
mb − 1

2mb

(m2
b̃1

− m2
b̃2

) sin 2�
b̃

)
(Re �div

bL
(m2

b) + Re �div
bR

(m2
b) + 2 Re �div

bS
(m2

b)). (2.28)

The counterterms for the mixing angle, ��
b̃
, and the b̃1 mass, �m2

b̃1
, are dependent quantities and can be determined as

combinations of the independent counterterms, invoking (2.24) and (2.26),

��
b̃

= 1

m2
b̃1

− m2
b̃2

[
mb�Ab + tan �

b̃
�m2

b̃2
+ �mb

(
1

2mb

(m2
b̃1

− m2
b̃2

) sin 2�
b̃

− 2 tan �
b̃
mb

)

− tan �
b̃
(cos2�t̃�m2

t̃1
+ sin2�t̃ �m2

t̃2
− sin 2�t̃ (m

2
t̃1

− m2
t̃2
)��t̃ − 2mt�mt)

]
, (2.29)

�m2
b̃1

= tan2�
b̃
�m2

b̃2
+ 2 tan �

b̃
mb �Ab + 2

(
1

mb

sin2�
b̃
(m2

b̃1
− m2

b̃2
) + (1 − tan2�

b̃
)mb

)
�mb

+ (1 − tan2�
b̃
)(cos2�t̃ �m2

t̃1
+ sin2�t̃ �m2

t̃2
− sin 2�t̃ (m

2
t̃1

− m2
t̃2
)��t̃ − 2mt�mt). (2.30)

The renormalized quantities in this scheme depend on the DR renormalization scale �DR.

In order to determine the value of m
DR,MSSM
b (�DR) from the value mMS

b (�MS) that is extracted from the experimental

data, one has to note that by definition m
DR,MSSM
b contains all MSSM contributions at O(	s), while mMS

b contains only
the O(	s) SM correction, i.e. the gluon-exchange contribution. Furthermore, a finite shift arises from the transition
between the MS and the DR scheme.

The expression for m
DR,MSSM
b (�DR) is most easily derived by formally relating m

DR,MSSM
b to the bottom pole mass

first and then expressing the bottom pole mass in terms of the MS mass (the large non-perturbative contributions

affecting the bottom pole mass drop out in the relation of m
DR,MSSM
b to mMS

b ). Using the equality mOS
b + �mOS

b =
m

DR,MSSM
b + �m

DR,MSSM
b and the expressions for the on-shell counterterm and the DR counterterm, one finds

m
DR,MSSM
b (�DR) = mOS

b + 1
2mb(�

fin
bL

(m2
b) + �fin

bR
(m2

b)) + mb �fin
bS

(m2
b). (2.31)

Here the �fin are the UV-finite parts of the bottom quark self-energy coefficients. They depend on the DR scale �DR

and are evaluated for on-shell momenta, p2 = m2
b. Inserting mOS

b = mMS
b (MZ)bshift, where

bshift ≡
[

1 + 	s




(
4

3
− ln

(mMS
b )2

M2
Z

)]
, (2.32)

one finds the desired expression for mDR
b ,

m
DR,MSSM
b (�DR) = mMS

b (MZ)bshift + 1
2mb

(
�fin

bL
(m2

b) + �fin
bR

(m2
b)
)

+ mb �fin
bS

(m2
b). (2.33)
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2.1.5. MSSM Higgs boson sector renormalization
In order to perform higher-order calculations in the Higgs boson sector, the renormalized Higgs boson self-energies

are needed (see Section 2.7). The parameters appearing in the Higgs potential, see Eq. (1.1), are renormalized as
follows:

M2
Z → M2

Z + �M2
Z, Th → Th + �Th,

M2
W → M2

W + �M2
W, TH → TH + �TH ,

M2
Higgs → M2

Higgs + �M2
Higgs, tan � → tan �(1 + � tan � ),

m2
H± → m2

H± + �m2
H± . (2.34)

The renormalization of MW and MZ has been described in Section 2.1.2. M2
Higgs denotes the tree-level Higgs boson

mass matrix given in Eq. (1.9). Th and TH are the tree-level tadpoles, i.e. the terms linear in h and H in the Higgs
potential.

The field renormalization matrices of both Higgs multiplets can be written symmetrically,(
h

H

)
→
(

1 + 1
2�Zhh

1
2�ZhH

1
2�ZhH 1 + 1

2�ZHH

)(
h

H

)
, (2.35)

and for the charged Higgs boson

H± → H±(1 + �ZH−H+). (2.36)

For the mass counterterm matrices, we use the definitions

�M2
Higgs =

(
�m2

h �m2
hH

�m2
hH �m2

H

)
. (2.37)

The renormalized self-energies, �̂(p2), can now be expressed through the unrenormalized self-energies, �(p2), the
field renormalization constants and the mass counterterms. This reads for the CP-even part,

�̂hh(p
2) = �hh(p

2) + �Zhh(p
2 − m2

h,tree) − �m2
h, (2.38a)

�̂hH (p2) = �hH (p2) + �ZhH (p2 − 1
2 (m2

h,tree + m2
H,tree)) − �m2

hH , (2.38b)

�̂HH (p2) = �HH (p2) + �ZHH (p2 − m2
H,tree) − �m2

H , (2.38c)

and for the charged Higgs boson

�̂H−H+(p2) = �H−H+(p2) + �ZH−H+(p2 − m2
H±) − �m2

H± . (2.39)

Inserting the renormalization transformation into the Higgs mass terms leads to expressions for their counter terms,
which consequently depend on the other counter terms introduced in (2.34).

For the CP-even part of the Higgs sectors, these counter terms are:

�m2
h = �M2

A cos2(	 − �) + �M2
Z sin2(	 + �)

+ e

2MZsWcW

(�TH cos(	 − �)sin2(	 − �) + �Th sin(	 − �)(1 + cos2(	 − �)))

+ � tan � sin � cos �(M2
A sin 2(	 − �) + M2

Z sin 2(	 + �)), (2.40a)

�m2
hH = 1

2
(�M2

A sin 2(	 − �) − �M2
Z sin 2(	 + �)) + e

2MZsWcW

(�TH sin3(	 − �) − �Th cos3(	 − �))

− � tan � sin � cos �(M2
A cos 2(	 − �) + M2

Z cos 2(	 + �)), (2.40b)
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�m2
H = �M2

A sin2(	 − �) + �M2
Z cos2(	 + �)

− e

2MZsWcW

(�TH cos(	 − �)(1 + sin2(	 − �)) + �Th sin(	 − �) cos2(	 − �))

− � tan � sin � cos �(M2
A sin 2(	 − �) + M2

Z sin 2(	 + �)). (2.40c)

For the charged Higgs boson, it reads

�m2
H± = �M2

A + �M2
W . (2.41)

For the field renormalization, it is sufficient to give each Higgs doublet one renormalization constant,

H1 → (1 + 1
2�ZH1)H1, H2 → (1 + 1

2�ZH2)H2. (2.42)

This leads to the following expressions for the various field renormalization constants in Eq. (2.35):

�Zhh = sin2	�ZH1 + cos2	�ZH2 , (2.43a)

�ZhH = sin 	 cos 	(�ZH2 − �ZH1), (2.43b)

�ZHH = cos2	�ZH1 + sin2	�ZH2 , (2.43c)

�ZH−H+ = sin2��ZH1 + cos2��ZH2 . (2.43d)

The counter term for tan � can be expressed in terms of the vacuum expectation values as

� tan � = 1

2
(�ZH2 − �ZH1) + �v2

v2
− �v1

v1
, (2.44)

where the �vi are the renormalization constants of the vi :

v1 → (1 + �ZH1)(v1 + �v1), v2 → (1 + �ZH2)(v2 + �v2). (2.45)

The renormalization conditions are fixed by an appropriate renormalization scheme. For the mass counterterms,
besides the on-shell conditions for MW and MZ (see Eq. (2.7)) also MA can be renormalized on-shell:

�M2
A = Re �AA(M2

A). (2.46)

Since the tadpole coefficients are chosen to vanish in all orders, their counter terms follow from T{h,H } + �T{h,H } = 0:

�Th = −Th, �TH = −TH . (2.47)

For the remaining renormalization constants for � tan �, �ZH1 and �ZH2 , several choices are possible, see e.g. Ref.
[100,101]. A convenient choice is a DR renormalization of � tan �, �ZH1 and �ZH2 ,

� tan � = � tan � DR = − 1

2 cos 2	
[Re �′

hh(m
2
h,tree) − Re �′

HH (m2
H,tree)]div, (2.48a)

�ZH1 = �ZDR
H1

= −[Re �′
HH |	=0]div, (2.48b)

�ZH2 = �ZDR
H2

= −[Re �′
hh|	=0]div. (2.48c)

The DR renormalization for tan � is process-independent. Choosing this prescription for tan � is advantageous, since
there is no obvious relation of this parameter to a specific physical observable which would favour a particular on-shell
definition. Furthermore, the DR renormalization has been shown to yield stable numerical results [100,101]. This
scheme is also gauge-independent at the one-loop level within the class of R� gauges [101]. The DR renormalization
for tan � has also been chosen in the “SPA convention”, see Ref. [55].



288 S. Heinemeyer et al. / Physics Reports 425 (2006) 265 –368

2.2. Sources of large SUSY corrections

2.2.1. Possible sources
Besides the known sources of sizable higher-order corrections in the SM, e.g. contributions enhanced by powers of

mt or logarithms of light fermions, there are additional sources of possibly large corrections within the MSSM:

• Large corrections can arise not only from loops containing the top quark, but also its scalar superpartners. In the
MSSM Higgs sector, Yukawa corrections from the top and scalar top quark sector can be especially large. The
one-loop corrections, for instance to the upper bound on the mass of the lightest CP-even Higgs boson, can reach
the level of 100%. The leading one-loop term from the top and scalar top sector entering the predictions in the Higgs
sector is given by [102]

∼ G� m4
t log

(
mt̃1

mt̃2

m2
t

)
. (2.49)

• While the Higgs sector of the MSSM is CP-conserving at tree level, large CP-violating effects can be induced by
the loop corrections.

• Effects from the b/b̃ sector of the MSSM can also be very important for large values of tan � and �.
• The b Yukawa coupling can receive large SUSY corrections, yielding a shift in the relation between the b quark mass

and the corresponding Yukawa coupling [99],

yb =
√

2

v cos �

mb

1 + �mb

. (2.50)

The quantity �mb contains in particular a contribution involving a gluino in the loop, which gives rise to a correction
proportional to (	s�mg̃ tan �), which can be large. For �mb → −1 the b Yukawa coupling even becomes non-
perturbative. This issue is discussed in Section 2.2.2.

• Besides the scalar quark sector, SUSY theories have further possible sources of large isospin splitting, which can
give large contributions to the � parameter [103,104].

• Soft SUSY-breaking masses can induce splittings in the supersymmetric coupling relations [105,106] (i.e. the equality
of a SM coupling gi with the corresponding supersymmetric coupling hi). If scalar superpartners have masses at a
high scale M, and all the other masses are light with mass m ∼ Mweak, the resulting corrections are given by

hi(m)

gi(m)
− 1 ≈ g2

i (m)

16 
2
�bi log

M

m
, (2.51)

where �bi is the one-loop beta function coefficient contribution from all light particles whose superpartners are
heavy. If M?m, these corrections to the SUSY coupling relation can be sizeable.

• Another type of possibly large corrections in supersymmetric theories are the so-called Sudakov logs (see Ref. [107]
and references therein). They appear in the form of log(q2/M2

SUSY) (where q is the momentum transfer) in the
production cross sections of SUSY particles at e+e− colliders.

• In general, SUSY loop contributions can become large if some of the SUSY particles are relatively light.

2.2.2. Resummation in the b/b̃ sector
The relation between the bottom-quark mass and the Yukawa coupling yb, which in lowest order reads mb=ybv1/

√
2,

receives radiative corrections proportional to ybv2 = yb tan � v1. Thus, large tan �-enhanced contributions can occur,
which need to be properly taken into account. As shown in Refs. [99,108] the leading terms of O(	b(	s tan �)n) can be
resummed by using an appropriate effective bottom Yukawa coupling.

Accordingly, an effective bottom-quark mass is obtained by extracting the UV-finite tan �-enhanced term �mb from
Eq. (2.33) (which enters through �bS

) and writing it as 1/(1 + �mb) into the denominator. In this way, the leading
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powers of (	s tan �)n are correctly resummed [99,108]. This yields

m
DR,MSSM
b (�DR) = mMS

b (MZ)bshift + 1
2mb(�fin

bL
(m2

b) + �fin
bR

(m2
b)) + mb �̃fin

bS
(m2

b)

1 + �mb

, (2.52)

where �̃bS
≡ �bS

+ �mb denotes the non-enhanced remainder of the scalar b-quark self-energy at O(	s), and bshift is
given in Eq. (2.32). The tan �-enhanced scalar part of the b-quark self-energy, �mb, is given at O(	s) by1

�mb = 2

3

	s tan ��mg̃I (m2

b̃1
, m2

b̃2
, m2

g̃), (2.53)

with

I (m2
b̃1

, m2
b̃2

, m2
g̃) = −

m2
b̃1

m2
b̃2

log(m2
b̃2

/m2
b̃1

) + m2
b̃1

m2
g̃

log(m2
b̃1

/m2
g̃
) + m2

g̃
m2

b̃2
log(m2

g̃
/m2

b̃2
)

(m2
b̃1

− m2
g̃
)(m2

g̃
− m2

b̃2
)(m2

b̃2
− m2

b̃1
)

, (2.54)

and �mb > 0 for � > 0.
In the “mb DR” defined above, the effective bottom-quark mass as given in Eq. (2.52) should be used everywhere

instead of the DR bottom quark mass. This also applies to the bottom mass in the sbottom-mass matrix squared,
Eq. (1.14), from which the sbottom mass eigenvalues are determined. The effects of �mb, i.e. the leading effects
of O(	s), can be incorporated into a lowest-order result (e.g. the one-loop results for the renormalized Higgs boson
self-energies, see Section 2.7) by using the effective bottom-quark mass of Eq. (2.52) (or the correspondingly shifted
value in other renormalization schemes).

2.3. Electroweak precision observables in the MSSM

In this section, we briefly introduce the electroweak precision observables that are discussed in this report. A
description of the current status of their theoretical evaluation within the MSSM will be given in the following sections
and the remaining theoretical uncertainties will be discussed.

The current experimental status of the EWPO and prospective improvements of their precision in the future have
been summarized in Section 1.3.4. In order to fully exploit the experimental precision of the EWPO, the theoretical
uncertainties should be reduced significantly below the level of the experimental errors.

Concerning the theoretical predictions, two kinds of uncertainties need to be taken into account: the theoretical
uncertainties from unknown higher-order corrections (“intrinsic” theoretical uncertainties) and the uncertainties induced
by the experimental errors of the input parameters (“parametric” theoretical uncertainties). The parametric uncertainty
induced by the known input parameters (in the SM case in particular mt and �	had) needs to be reduced in order to
increase the sensitivity to the unknown parameters of the model (in the SM case MH ).

The EWPO discussed in the following sections are:

• The W boson mass can be evaluated from

M2
W

(
1 − M2

W

M2
Z

)
= 
	√

2G�
(1 + �r), (2.55)

where 	 is the fine structure constant and G� the Fermi constant. This relation arises from comparing the prediction
for muon decay with the experimentally precisely known Fermi constant. The radiative corrections are summarized
in the quantity �r , derived first for the SM in Ref. [110]. The prediction for MW within the SM or the MSSM is
obtained from evaluating �r in these models and solving Eq. (2.55) in an iterative way. The theory status of the
prediction for MW is reviewed in Section 2.5.

1 There are also corrections of O(	t ) to �mb that can be resummed [108]. These effects usually amount up to 5–10% of the O(	s ) corrections.
Since in this report we only consider O(	b	s ) contributions, these corrections have been omitted. Further corrections from subleading resummation
terms can be found in Ref. [109].
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• Another important group of EWPO are the Z boson observables, among which we mostly concentrate on the
effective leptonic weak mixing angle at the Z boson resonance, sin2�eff . It can be defined through the form factors
at the Z boson pole of the vertex coupling of the Z to leptons (l). If this vertex is written as il̄��(gV − gA�5)lZ�,
then

sin2�eff = 1

4

(
1 − Re

gV

gA

)
. (2.56)

At the tree level this amounts to the sine of the weak mixing angle, sin2�W =1−M2
W/M2

Z , in the on-shell scheme.
Loop corrections enter through the form factors gV and gA. The theoretical evaluation is reviewed in Section 2.6.

• The quantity ��,

�� = �Z(0)

M2
Z

− �W(0)

M2
W

, (2.57)

parameterizes the leading universal corrections to the electroweak precision observables induced by the mass
splitting between fields in an isospin doublet [103]. �Z,W (0) denote the transverse parts of the unrenormalized Z
and W boson self-energies at zero momentum transfer, respectively. The induced shifts in the two above-described
observables are given in leading order by

�MW ≈ MW

2

c2
W

c2
W − s2

W

��, � sin2�eff ≈ − c2
Ws2

W

c2
W − s2

W

��. (2.58)

The theoretical evaluation of �� is discussed in Section 2.4.
• Another very powerful observable for constraining the parameter space of the MSSM is the mass of the lightest
CP-even Higgs boson, mh. If the Higgs boson will be found at the next generation of colliders, its mass will be
measured with high precision. We therefore refer to mh also as an EWPO. While mh is bounded from above at
tree-level by mh �MZ , it receives large radiative corrections. The leading one-loop contribution, arising from the
t/t̃ sector, reads [102]

�m2
h = 3G�√

2
2 sin2�
m4

t log

(
mt̃1

mt̃2

m2
t

)
. (2.59)

The loop corrections, entering via Higgs-boson propagator corrections, can shift mh by 50–100%. The theoretical
status is reviewed in Section 2.7.

• As a further precision observable that we investigate in detail, in this report we consider the anomalous magnetic
moment of the muon, a� ≡ (g − 2)�. It is related to the photon–muon vertex function ���̄A� as follows:

ū(p′)���̄A�(p, −p′, q)u(p) = ū(p′)[��FV (q2) + (p + p′)�FM(q2) + · · ·]u(p),

a� = −2m�FM(0), (2.60)

where FM(q2) = 0 at tree level. Non-zero values are induced via loop corrections. The theoretical evaluation is
discussed in Section 2.8.

2.4. The � parameter

We start our discussion with the quantity ��, see Eq. (2.57), which parameterizes in particular the leading contribu-
tions from loops of scalar quarks and leptons to the W-boson mass and the Z-boson observables.

2.4.1. One-loop results
In the SM the dominant contribution to �� at the one-loop level arises from the t/b doublet due to its large mass

splitting. With both fermion masses non-zero, it reads

��SM
0 = 3G�

8
√

2 
2
F0(m

2
t , m

2
b), (2.61)
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Fig. 2.1. Feynman diagrams for the contribution of scalar quark loops to the gauge boson self-energies at one-loop order.

with

F0(x, y) = x + y − 2xy

x − y
log

x

y
. (2.62)

F0 has the properties F0(m
2
a, m

2
b) = F0(m

2
b, m

2
a), F0(m

2, m2) = 0, F0(m
2, 0) = m2. Therefore for mt?mb, Eq. (2.61)

reduces to the well-known quadratic correction

��SM
0 = 3G�

8
√

2 
2
m2

t . (2.63)

Within the MSSM the dominant SUSY correction at the one-loop level arises from the scalar top and bottom
contribution to Eq. (2.57), see Fig. 2.1.

For mb �= 0 it is given by

��SUSY
0 = 3G�

8
√

2
2

[
− sin2�t̃ cos2�t̃ F0(m

2
t̃1
, m2

t̃2
) − sin2�

b̃
cos2�

b̃
F0(m

2
b̃1

, m2
b̃2

)

+ cos2�t̃ cos2�
b̃
F0(m

2
t̃1
, m2

b̃1
) + cos2�t̃ sin2�

b̃
F0(m

2
t̃1
, m2

b̃2
)

+ sin2�t̃ cos2�
b̃
F0(m

2
t̃2
, m2

b̃1
) + sin2�t̃ sin2�

b̃
F0(m

2
t̃2
, m2

b̃2
)
]

. (2.64)

The sizes of the SUSY one-loop contributions are shown for an exemplary case in Fig. 2.2 as a function of MSUSY.
The parameter MSUSY is defined by setting the soft SUSY-breaking parameters in the diagonal entries of the stop and
sbottom mass matrices equal to each other for simplicity,

MSUSY ≡ M
Q̃

= M
Ũ

= M
D̃

, (2.65)

see Eq. (1.14). We furthermore use the shorthands

Xt ≡ At − �/ tan �, Xb ≡ Ab − � tan �. (2.66)

The other parameters in Fig. 2.2 are tan � = 3 and Xt = 0, 2MSUSY. In this case, ��SUSY
0 can reach values of up to

2 × 10−3. The line for Xt = 2MSUSY starts only at MSUSY ≈ 300 GeV. For lower values of MSUSY one of the scalar
top mass squares is below zero.

2.4.2. Results beyond the one-loop level
SM results: Within the SM, the one-loop O(	) result from the contribution of the t/b doublet has been extended in

several ways. The dominant two-loop corrections arise at O(		s) and are given by [111]

��SM,		s

1 = −��SM
0

2

3

	s



(1 + 
2/3). (2.67)

These corrections screen the one-loop result by approximately 10%. Also the three-loop result at O(		2
s ) is known.

Numerically it reads [112]

��
SM,		2

s

2 = − 3G�

8
√

2
2
m2

t

(	s




)2 × 14.594 . . . . (2.68)
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Fig. 2.2. One–loop contribution of the (t̃ , b̃) doublet to �� as a function of the common squark mass MSUSY for tan � = 3, and Xb = 0 and
Xt = 0 or 2MSUSY.

Furthermore, the leading electroweak two-loop contributions of O(G2
�m4

t ) have been calculated. First, the result in the
approximation MH = 0 had been evaluated [113]:

��
SM,G2

�
1|MH =0 = 3

G2
�

128
4
m4

t × �SM
1|MH =0,

�SM
1|MH =0 = 19 − 2
2. (2.69)

Later, the full O(G2
�m4

t ) result for arbitrary MH became available [114], where �SM
1|MH =0 extends to

�SM
1|MH �=0 = 19 − 2
2 + fct(mt , MH ). (2.70)

The leading two-loop contribution to �� in an asymptotic expansion for large MH of O(G2
�M2

H M2
W) was obtained in

Ref. [115]. It turned out to be numerically small.
Leading electroweak three-loop results of O(G3

�m6
t ) and O(G2

�	sm
4
t ) became available more recently [116,117].

Numerically they read in the case MH = 0:

��
SM,G3

�
2|MH =0 =

(
G�

8
√

2
2
m2

t

)3

× 249.74, (2.71)

��
SM,G2

�	s

2|MH =0 =
(

G�

8
√

2
2
m2

t

)2 (	s




)
× 2.9394. (2.72)

For the case MH �= 0 the result has been obtained in several limits, allowing a smooth interpolation, see Ref. [117] for
details. Most recently, also the leading O(G3

�M4
H M2

W) contribution was obtained [118]. Besides for very large values
of MH it is numerically insignificant.
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Fig. 2.3. Feynman diagrams for the contribution of scalar quark loops to the gauge-boson self-energies at two-loop order.

The SUSY corrections at O(		s): The leading two-loop corrections arising in the MSSM (beyond the SM part) have
been evaluated at O(		s) [98] and O(	2

t , 	t	b, 	2
b) [119,120] (the latter in the limit of large MSUSY). The leading O(		s)

corrections to the scalar quark loops consist of the diagrams shown in Fig. 2.3 (supplemented with the corresponding
diagrams for the subloop renormalization, see Ref. [98]). The diagrams can be divided into three groups: the pure scalar
contribution (diagrams a–c), the gluonic correction (diagrams d–j, where the gluon-loop contribution, diagrams i, j, is
zero) and the gluino exchange correction (diagrams k–n).



294 S. Heinemeyer et al. / Physics Reports 425 (2006) 265 –368

The pure scalar quark diagrams give a vanishing contribution. The gluonic correction can be cast into a compact
formula [98]:

��SUSY
1,gluon = G�

4
√

2 
2

	s




[
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2
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, m2
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, (2.73)

with

F1(x, y) = x + y − 2
xy

x − y
log

x

y

[
2 + x

y
ln

x

y

]
+ (x + y)x2

(x − y)2
log2 x

y
− 2(x − y)Li2

(
1 − x

y

)
, (2.74)

where F1 has the properties F1(m
2
a, m

2
b) = F1(m

2
b, m

2
a), F1(m

2, m2) = 0, F1(m
2, 0) = m2(1 + 
2/3). The gluino

exchange correction results in a lengthy formula, see Ref. [98], and is not given here. It decouples for mg̃ → ∞.
The analytical formula for the O(		s) corrections given in Eq. (2.73) is expressed in terms of the physical squark

masses, i.e. an on-shell renormalization has been carried out for all four squark masses. As discussed in Section 2.1.4,
SU(2) invariance leads to a relation between the stop and sbottom masses, so that not all four masses can be renormalized
independently. This results in a finite mass shift of O(	s) that is given, if expressed in terms of m

b̃1
, as the difference

between the counterterm of Eq. (2.24) and the on-shell counterterm. If the two-loop result is expressed in terms of the
on-shell masses, this mass shift appears in the relation between the physical squark masses and the (unphysical) soft
SUSY-breaking mass parameters in the squark mass matrices, see Eq. (1.14). While this shift is formally of higher
order in the evaluation of the masses that are inserted in the two-loop result, it needs to be taken into account in the
one-loop result. This gives rise to an extra contribution compared to the results discussed in Section 2.4.1, see Ref. [98]
for a more detailed discussion.

The SUSY corrections at O(	2
t ), O(	t	b), O(	2

b): Furthermore, the leading O(	2
t ), O(	t	b), O(	2

b) corrections to ��
have been evaluated in the limit MSUSY → ∞ [119,120]. The mt dependence of �� differs between the pure SM
contribution and the additional SUSY corrections. Within the SM, the corrections are ∼ m2

t for the one-loop and ∼ m4
t

for the two-loop corrections, leading to sizable shifts in the precision observables. The additional SUSY corrections at
the one-loop level (from scalar quark loops), on the other hand, do not contain a prefactor ∼ m2

t . In the electroweak
two-loop corrections, it is no longer possible to separate out the pure SM contribution because of the extended Higgs
sector of the MSSM. The leading electroweak two-loop corrections in the MSSM are therefore of O(G2

�m4
t ) (as in the

SM case) and potentially sizable.
The leading contributions ofO(	2

t ),O(	t	b) andO(	2
b) have been derived by extracting the contributions proportional

to y2
t , ytyb and y2

b , where

yt =
√

2mt

v sin �
, yb =

√
2mb

v cos �
. (2.75)

The coefficients of these terms could then be evaluated in the gauge-less limit, i.e. for MW, MZ → 0 (keeping
cW = MW/MZ fixed).

For the Higgs masses appearing in the two-loop diagrams the following relations have been used, arising from the
gauge-less limit

m2
H± = M2

A, m2
G = 0, m2

G± = 0. (2.76)

Applying the corresponding limit also in the neutral CP-even Higgs sector would yield for the lightest CP-even
Higgs-boson mass m2

h = 0 (and furthermore m2
H = M2

A, sin 	 = − cos �, cos 	 = sin �). Since within the SM the limit
MSM

H → 0 turned out to be only a poor approximation of the result for arbitrary MSM
H , m2

h has been kept non-zero
(which formally is a higher-order effect). Keeping mh as a free parameter is also relevant in view of the fact that
the lightest MSSM Higgs boson receives large higher-order corrections, which shift its upper bound up to 135 GeV
(for MSUSY �1 TeV and mt =175 GeV), see Section 2.7. These corrections can easily be taken into account in this way
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(in the Higgs contributions at one-loop order, however, the tree-level value of mh should be used). Keeping 	 arbitrary
is necessary in order to incorporate non-SM-like couplings of the lightest CP-even Higgs boson to fermions and gauge
bosons.

On the other hand, keeping all Higgs-sector parameters completely arbitrary is not possible, as the underlying
symmetry of the MSSM Lagrangian has to be exploited in order to ensure the UV-finiteness of the two-loop corrections
to ��. Thus, only those symmetry relations have been enforced in the neutralCP-even Higgs sector which are explicitly
needed in order to obtain a complete cancellation of the UV-divergences.

It is convenient to discuss the O(	2
t ∝ G2

�m4
t ) SUSY contributions to �� separately, i.e. the case where yb = 0. The

O(	2
t ) corrections are by far the dominant subset within the SM, i.e. the O(	t	b) and O(	2

b) corrections can safely be
neglected within the SM. The same is true within the MSSM for not too large values of tan �. It is well known [121]
that the SUSY sector of the MSSM decouples if the general soft SUSY-breaking scale goes to infinity (corresponding
to MSUSY → ∞ in the one-loop result given above). The leading contributions of O(G2

�m4
t ) in the case where the

scalar quarks are heavy is therefore obtained in the limit where only the two Higgs doublet sector of the MSSM is
active [119,120], corresponding to the limit MSUSY → ∞.

In Ref. [119] the result has been obtained in the simplified case with tree-level Higgs boson masses. In the limit
MW, MZ → 0 the neutral CP-even Higgs boson masses at the tree-level reduce to

m2
h = 0, m2

H = M2
A. (2.77)

In this limit also the relation between the angles 	 and �, see Eq. (1.6), becomes very simple, 	 = � − 
/2, i.e.
sin 	 = − cos �, cos 	 = sin �. The only remaining scales left are the top quark mass, mt , the CP-odd Higgs boson
mass, MA, and tan � (or sin � = tan �/

√
1 + tan2�). In the limit of large tan � (i.e. (1 − sin2�)>1) the result takes a

particularly simple form. One obtains

��SUSY
1,Higgs,mh=0 = 3

G2
�

128
4
m4

t

[
19

sin2�
− 2
2 + O(1 − sin2�)

]
. (2.78)

Thus, for large tan � the SM limit with MSM
H → 0 (see Eq. (2.69)) is reached.

Keeping tan � arbitrary, but expanding for large values of MA yields

��SUSY
1,Higgs,mh=0 = 3

G2
�

128
4
m4

t

{
19 − 2
2 − 1 − sin2�

sin2�

[(
log2A + 
2

3

)
(8A + 32A2 + 132A3 + 532A4)

+ log(A)
1

30
(560A + 2825A2 + 11 394A3 + 45 072A4)

− 1

1800
(2800A + 66 025A2 + 300 438A3 + 1 265 984A4) + O(A5)

]}
, (2.79)

where A ≡ m2
t /M

2
A. In the limit A → 0 one obtains

��SUSY
1,Higgs,mh=0 = 3

G2
�

128
4
m4

t [19 − 2
2] + O(A), (2.80)

i.e. exactly the SM limit for MSM
H → 0 is reached. This constitutes an important consistency check: in the limit A → 0

the heavy Higgs bosons are decoupled from the theory. Thus only the lightest CP-even Higgs boson should remain,
which has in the O(G2

�m4
t ) approximation (neglecting higher-order corrections) the mass mh = 0, see Eq. (2.77). As

already observed in Ref. [98], the decoupling of the non-SM contributions in the limit where the new scale (i.e. in the
present case MA) is made large is explicitly seen here at the two-loop level.

Now we turn to the full O(	2
t ) corrections. As discussed in Ref. [120], a UV-finite result could only be obtained if

the relations in Eq. (2.76) are taken into account. The masses of the neutral Higgs bosons as well as the mixing angle
could be kept as ‘independent’ parameters, i.e. they can be obtained taking into account higher-order corrections. The
full result without the tree-level relations is rather lengthy and can be found in Ref. [120].
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Fig. 2.4. Feynman diagrams for the squark contributions to the gauge boson self-energies.

Now also the O(	t	b), O(	2
b) SUSY corrections are considered. The structure of the fermion doublet requires

that further symmetry relations are taken into account. Within the Higgs boson sector it is necessary, besides using
Eq. (2.76), also to use the relations for the heavy CP-even Higgs boson mass and the Higgs mixing angle,

m2
H = M2

A, sin 	 = − cos �, cos 	 = sin �. (2.81)

On the other hand, mh can be kept as a free parameter. The couplings of the lightest CP-even Higgs boson to gauge
bosons and SM fermions, however, become SM-like, once the mixing angle relations, Eq. (2.81), are used. Furthermore,
the Yukawa couplings can no longer be treated as free parameters, i.e. Eq. (2.75) has to be employed, which ensures
that the Higgs mechanism governs the Yukawa couplings. Corrections enhanced by tan � thus arise only from the heavy
Higgs bosons, while the contribution from the lightest CP-even Higgs boson resembles the SM one.

2.4.3. Results in the NMFV MSSM
The existing corrections to �� within the NMFV MSSM [25] consist of squark contributions based on the general

4×4 mass matrix for both the t̃/c̃ and the b̃/s̃ sector, see Section 1.2.6. These corrections are visualized by the Feynman
diagrams in Fig. 2.4. They are denoted as ��q̃ .

The squark contribution ��q̃ can be decomposed according to

��q̃ = �Z + �Z + �W + �W , (2.82)

where � and � correspond to different diagram topologies, i.e. to diagrams with trilinear and quartic couplings,
respectively (see Fig. 2.4). The explicit expressions read as follows,

�W = 3g2
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ũ

B00(0, m2
ũ	
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. (2.83)
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Here the indices run from 1 to 2 for Latin letters, and from 1 to 4 for Greek letters. The expressions contain the one-point
integral A0 and the two-point integral B00 in B��(k)=g��B00 +k�k�B11 in the convention of Ref. [122]. The remaining
constants �ũ and �

d̃
are defined as follows,

�
d̃

=

⎛⎜⎜⎜⎜⎜⎝
3 − 2s2

W

3 − 2s2
W

−2s2
W

−2s2
W

⎞⎟⎟⎟⎟⎟⎠ , �ũ =

⎛⎜⎜⎜⎜⎜⎝
−3 + 4s2

W

−3 + 4s2
W

4s2
W

4s2
W

⎞⎟⎟⎟⎟⎟⎠ . (2.84)

The CKM matrix only affects �W . Corrections from the first-generation squarks are negligible due to their very
small mass splitting. Non-minimal flavor mixing of the first generation with the other ones has been set to zero, but
conventional CKM mixing is basically present. Although it is required for a UV finite result, it yields only negligibly
small effects. Therefore, for simplification, we drop the first generation and restore the cancellation of UV divergences
by a unitary 2 × 2 matrix replacing the {23}-submatrix of the CKM matrix,

VCKM =
(

Vcs Vcb

Vts Vtb

)
=
( cos ε sin ε

− sin ε cos ε

)
, (2.85)

with |ε| ≈ 0.04 close to the experimental entries [3] of the conventional CKM matrix.
Since ��q̃ is a finite quantity, and the CKM matrix effects (and therefore, the ε dependence) only appear in �W , it

has been shown [25] that �W (and thus ��) is symmetric under the simultaneous reversal of signs ε → −ε, � → −�
(see Eq. (1.50)), i.e. only the relative sign has a physical consequence, affecting the results for �� significantly. In
physical terms, non-minimal squark mixing can either strengthen or partially compensate the CKM mixing.

2.5. Evaluation of MW

One of the most important quantities for testing the SM or its extensions is the relation between the massive gauge
boson masses, MW and MZ , in terms of the Fermi constant, G�, and the fine structure constant, 	. This relation can be
derived from muon decay, where the Fermi constant enters the muon lifetime, ��, via the expression

�−1
� = G2

�m5
�

192
3
F

(
m2

e

m2
�

)(
1 + 3

5

m2
�

M2
W

)
(1 + �q), (2.86)

with F(x) = 1 − 8x − 12x2 ln x + 8x3 − x4. By convention, this defining equation is supplemented with the QED
corrections within the Fermi Model, �q. Results for �q have been available for a long time at the one-loop [123] and,
more recently, at the two-loop level [124] (the error in the two-loop term is from the hadronic uncertainty),

�q = 1.810
	

4

+ (6.701 ± 0.002)

( 	

4


)2
. (2.87)

Commonly, tree-level W propagator effects giving rise to the (numerically insignificant) term 3m2
�/(5M2

W) in
Eq. (2.86) are also included in the definition of G�, although they are not part of the Fermi Model prediction. With the
second-order term of Eq. (2.87) the defining equation for G� in terms of the experimental muon lifetime, Eq. (2.86),
yields the value of G� given in Table 1.3.

Within a given model, G� can be calculated in terms of the model parameters. The Fermi constant is given by the
expression

G�√
2

= e2
0

8s0 2
W M0 2

W

[
1 + �W(0)

M2
W

+ (V B)

]
. (2.88)

This equation contains the bare parameters with the bare mixing angle. The term (V B) schematically summarizes the
vertex corrections and box diagrams in the decay amplitude. A set of infrared-divergent “QED correction” graphs has
been removed from this class of diagrams. These left-out diagrams, together with the real bremsstrahlung contributions,
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reproduce the QED correction factor of the Fermi model result in Eqs. (2.86), (2.87), and therefore have no influence
on the relation between G� and the model parameters.

Eq. (2.88) contains the bare parameters e0, M
0
W, s0

W . Expanding the bare parameters and keeping only terms of
one-loop order yields the expression

G�√
2

= e2

8s2
WM2

W

[
1 + 2

�e

e
− c2

W

s2
W

(
�M2

Z

M2
Z

− �M2
W

M2
W

)
+ �W(0) − �M2

W

M2
W

+ (V B)

]

≡ e2

8s2
WM2

W

(1 + �r), (2.89)

which is equivalent to Eq. (2.55). The quantity �r is the finite combination of loop diagrams and counterterms in
(2.89). The prediction for MW within the SM or the MSSM is obtained from evaluating �r in these models and solving
Eq. (2.89),

M2
W = M2

Z

{
1

2
+
√

1

4
− 
	√

2GF M2
Z

[1 + �r(MW, MZ, mt , . . .)]
}

. (2.90)

In practice, this can be done by an iterative procedure, since �r itself depends on MW .
The one-loop contributions to �r can be written as

�r = �	 − c2
W

s2
W

�� + (�r)rem, (2.91)

where �	 is the shift in the fine structure constant due to the light fermions of the SM, �	 ∝ log mf (see the discussion
in Section 2.1.3), and �� is the leading contribution to the � parameter from fermion and sfermion loops. The remainder
part, (�r)rem, contains in particular the contributions from the Higgs sector.

In the following we will discuss the status of the theoretical evaluation of MW . After a brief review of the SM
contribution, the additional MSSM corrections are described in more detail.

2.5.1. SM corrections
In the SM, the result for (V B) in Eq. (2.89) is

(V B) = 	


s2
W

(
� − log

M2
W

�2

)
+ 	

4
s2
W

(
6 + 7 − 4s2

W

2s2
W

log c2
W

)
. (2.92)

The singular part of this equation involving the divergence � ≡ 2/(4 − D) − � + log 4
 (see Appendix A) coincides,
up to a factor, with the non-Abelian bosonic contribution to the charge counterterm in Eq. (2.9):

	


s2
W

(
� − log

M2
W

�2

)
= 2

cW sW

��Z(0)

M2
Z

. (2.93)

Extra non-standard vertex and box diagrams do not change the singular part; they contribute another finite term
(V B)non-standard. Together with Eqs. (2.9) and (2.92), we obtain from Eq. (2.89) the following expression:

�r = ��(0) − c2
W

s2
W

(
�M2

Z

M2
Z

− �M2
W

M2
W

)
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��Z(0)
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+ 	

4
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W

(
6 + 7 − 4s2

W

2s2
W

log c2
W

)
+ (V B)non-standard, (2.94)
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Table 2.1
Estimated uncertainties from unknown higher-order corrections to MW in MeV [133]

Two-loop Three-loop Four-loop

O(	2, ferm) O(	2, bos) O(		2
s , ferm) O(G2

�	sm
2
t M2

Z
) O(	3) O(G�	3

s m2
t ) O(G2

�	
2
s m4

t )

compl. [91,129,130] compl. [131] compl. [112,128] 3.0 1.5 1.3 1.4

where in the on-shell renormalization the renormalization constants are given by the on-shell self-energies, as specified
in Eq. (2.7).

Beyond the complete one-loop result [110], resummations of the leading one-loop contributions �	 and �� are
known [125]. They correctly take into account the terms of the form (�	)2, (��)2, (�	��), and (�	�rrem) at the
two-loop level and the leading powers in �	 to all orders.

Higher-order QCD corrections to �r are known at O(		s) [111,126,127] and O(		2
s ) [112,128] since about 10

years. Recently, the full electroweak two-loop result for �r has been completed. It consists of the fermionic contribu-
tion [91,129,130], which involves diagrams with one or two closed fermion loops, and the purely bosonic two-loop
contribution [131].

Beyond two-loop order, besides higher-order contributions to �� (see Section 2.4.2) the results for the pure fermion-
loop corrections (i.e. contributions containing n fermion loops at n-loop order) are known up to four-loop order [132].
They contain in particular the leading contributions in �	 and ��.

Since the full result for MW is rather lengthy and contains numerical integrations of integrals appearing in the
electroweak two-loop contributions, a simple parameterization is given in Ref. [133]. It approximates the full result
for MW to better than 0.5 MeV for 10 GeV�MH �1 TeV if the other parameters are varied within their combined 2

region around their experimental central values.

The expected size of the unknown higher-order corrections, i.e. the estimated theory uncertainties [133] (for
MH � 300 GeV) are summarized in Table 2.1 (see Refs. [66,133,134] for further details).

Currently, these intrinsic uncertainties result in [133]

�M
SM,intr
W (current) = 4 MeV. (2.95)

It seems reasonable that the evaluation of further higher-order corrections will lead to a reduction of this uncertainty
by a factor of two or more on the timescale of 5–10 years. We therefore estimate as future intrinsic uncertainty

�M
SM,intr
W (future) = 2 MeV. (2.96)

The dominant theoretical uncertainty at present is the uncertainty induced by the experimental errors of the input
parameters. The most important uncertainties arise from the experimental error of the top-quark mass and the hadronic
contribution to the shift in the fine structure constant. The current errors for mt [62] and �	had [94] induce the following
parametric uncertainties:

�mcurrent
t = 2.9 GeV ⇒ �M

para,mt

W (current) ≈ 18 MeV, (2.97)

�(�	current
had ) = 36 × 10−5 ⇒ �M

para,�	had
W (current) ≈ 6.5 MeV. (2.98)

At the ILC, the top-quark mass will be measured with an accuracy of about 100 MeV [7–9]. The parametric uncertainties
induced by the future experimental errors of mt and �	had [135] will then be [64]

�mfuture
t = 0.1 GeV ⇒ �M

para,mt

W (future) ≈ 1 MeV, (2.99)

�(�	future
had ) = 5 × 10−5 ⇒ �M

para,�	had
W (future) ≈ 1 MeV. (2.100)
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Fig. 2.5. The t̃/b̃ corrections to �r at the one-loop level, Eq. (2.101), are compared with the approximation, Eq. (2.102). The results are shown as a
function of mq̃ (≡ MSUSY) for tan � = 1.6, Xb = 0 and Xt = 0, 200 GeV.

Thus, the precision measurement of the top-quark mass at the ILC and prospective improvements in the determination
of �	had (see the discussion in Ref. [135]) will reduce the parametric uncertainties to the same level as the prospective
intrinsic uncertainties, Eq. (2.96), allowing a very sensitive test of the electroweak theory.

2.5.2. SUSY corrections
In this subsection, we review the current status of the SUSY corrections to MW . The intrinsic uncertainties from

missing higher-order SUSY corrections will be discussed in Section 3.1.2.
One-loop corrections: The complete one-loop corrections to �rSUSY

2 were evaluated independently by two groups
[136,137]. The main part of the contributions stems from the t̃/b̃ doublet that enters at the one-loop level only via
gauge-boson self-energies. Therefore, only Feynman diagrams as depicted in Fig. 2.1 have to be evaluated, but contrary
to Section 2.4.2 also with non-vanishing external momentum. In general, all scalar-quark contributions (yielding
��Z(0) = 0, according to the comment after Eq. (2.10)) are contained in

�rq̃ = ��(0) − c2
W

s2
W

(
�M2

Z

M2
Z

− �M2
W

M2
W

)
+ �W(0) − �M2

W

M2
W

. (2.101)

In the approximation of neglecting the external momenta in the self-energies, the second term in Eq. (2.101) reduces
to ��, leading to a decomposition as in Eq. (2.91). For loops of scalar quarks the corrections mainly arise from the
contribution to �� (see Eq. (2.64)), so that �rq̃ can be approximated as

�rq̃ ≈ −c2
W

s2
W

�� ≈ −3.5��. (2.102)

The full one-loop result from the t̃/b̃ sector is compared with this approximation in Figs. 2.5 and 2.6. The case of
no-mixing in the b̃ sector is shown in Fig. 2.5 for tan � = 1.6 and Xt = 0, 200 GeV. The full result is reproduced
by the �� approximation within a few per cent. The same applies for large mixing in the b̃ sector, see Fig. 2.6, with
Xb = 2500 GeV, tan � = 40 and Xt = 0, 200 GeV.

2 From here on, we drop the subscript SUSY.
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Fig. 2.6. The t̃/b̃ corrections to �r at the one-loop level, Eq. (2.101), are compared with the approximation, Eq. (2.102). The results are shown as a
function of mq̃ (≡ MSUSY) for tan � = 40, Xb = 2500 GeV and Xt = 0, 200 GeV.

As investigated in detail in Refs. [136,137], the full SUSY one-loop contribution to �r does not exceed O(0.0015)

(explicit formulas for the self-energy contributions are given in Ref. [138], see also Refs. [104,139].) The main contri-
bution is given by the universal corrections, see Eq. (2.94). The corrections beyond the t̃/b̃ sector arise from the other
scalar quarks, entering only in the universal corrections, and the sleptons and gauginos, entering in the universal as
well as in the non-universal contributions [136].

The full one-loop corrections from third- and second-generation squarks in the NMFV MSSM, using Eq. (2.101),
have been derived in Ref. [25].

Corrections beyond one-loop: Since the dominant one-loop corrections are given by the t̃/b̃ contributions, the existing
two-loop calculations have focused on this sector. The only existing two-loop calculation for �r , going beyond the
�� approximation as presented in Section 2.4.2, are the gluon-exchange corrections of O(		s) [140]. This is the only
result in the t̃/b̃ sector beyond one-loop order that can be obtained as an analytical formula due to the presence of
the massless gluon in the two-loop two-point function. The gluino-exchange corrections, on the other hand, have been
shown to decouple for large mg̃ [98], see Section 2.4.2.

The O(		s) gluonic corrections are evaluated from the Feynman diagrams as shown in Fig. 2.3, but taking into
account the momentum dependence. Furthermore, the derivative of the photon self-energy is needed. It is given by
(D = 4 − 2�)

��(0) = − CF
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∑
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⎤⎦ , (2.103)

with
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: f = 2.



302 S. Heinemeyer et al. / Physics Reports 425 (2006) 265 –368

The most complicated parts are the gauge boson self-energies with non-zero external momentum. The general case is
given by

�V1V2(p2) = CF
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, (2.104)

with

Fab = ((ma − m̄b)
2 − p2)((ma + m̄b)

2 − p2)

p2

and

• V1, V2 ∈ {�, Z0}
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with

sa =
{cos �t̃ : a = 1,

sin �t̃ : a = 2,
tb =

{cos �
b̃

: b = 1,

sin �
b̃

: b = 2,

g̃WW = 1

c2
W

,

mi =
{

mt̃i
: f = 1,

m
b̃i

: f = 2,
m̄j =

{
m

b̃j
: f = 1,

mt̃j
: f = 2.

The functions A0, B0 [141], T234′ , T123′4, T1123′4 and T123′45 [127,142] can be found Appendix A.

2.6. Evaluation of Z-boson observables

The measurement of the Z-boson mass from the Z lineshape at LEP has provided us with an additional precise input
parameter besides 	 and G�. Other observable quantities from the Z peak allow us to perform precision tests of the
electroweak theory by comparison with the theoretical predictions given by specific models. At the Z-boson resonance
in e+e− annihilation, two classes of precision observables are available:

(a) inclusive quantities:
• the partial leptonic and hadronic decay width �f ,
• the total decay width �Z ,
• the hadronic peak cross section 
h,
• the ratio of the hadronic to the electronic decay width of the Z boson, Rh,
• the ratio of the partial decay width for Z → cc̄ (bb̄) to the hadronic width, Rc(b).

(b) asymmetries and weak mixing angles:
• the forward–backward asymmetries A

f
FB,

• the left–right asymmetries A
f
LR,

• the � polarization P�,
• the effective weak mixing angle sin2�eff .

All these quantities can be written in a transparent way with the help of effective vector and axial vector couplings,
which comprise the genuine electroweak loop contributions, besides those from the QED virtual-photon corrections,
which are the same in the SM and in supersymmetric extensions.

2.6.1. The effective Zf f̄ couplings
The structure of the resonating Z amplitude allows us to define neutral-current (NC) vertices at the Z peak with

effective coupling constants g
f

V,A, equivalently to the use of �f , �f :

�NC
� = (

√
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Z�f )1/2
[
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W�f )�� − I

f

3 ���5

]
= (

√
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Z)1/2(g
f
V�� − g

f

A���5). (2.105)

The complete expressions for the effective couplings read as follows:
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. (2.106)
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Besides �r , the building blocks are the following finite combinations of two-point functions evaluated at s = M2
Z:
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(
�M2

Z

M2
Z

− �M2
W

M2
W
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��Z(0)

M2
Z
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and the finite form factors FV,A at s = M2
Z from the vertex corrections �(1−loop)

� (including the external-fermion wave
function renormalizations),

�(1−loop)
� = e

2sW cW

(
��F

Zf
V (s) − ���5F

Zf

A (s) + I
f

3 ��(1 − �5)
cW

sW

��Z(0)

M2
Z

)
. (2.108)

For the explicit expressions for the self-energies and the vertex corrections including the MSSM contributions, see
Refs. [138,143–145]. Owing to the imaginary parts of the self-energies and vertices, the form factors and the effective
couplings, respectively, are complex quantities.

Effective mixing angles: We can define effective mixing angles for a given fermion species f according to

sin2�f = 1

4|Qf |

(
1 − Re

g
f
V

g
f

A

)
, (2.109)

from the effective coupling constants in (2.106). They are of particular interest since they determine the on-resonance
asymmetries. A special case is the effective mixing angle for the light leptons (f = �), which is commonly denoted as
the effective mixing angle (assuming lepton universality),

sin2�eff = sin2��, (2.110)

as, e.g., in the analysis of experimental data from LEP and SLC [18].

2.6.2. Z-boson observables
From lineshape measurements, one obtains the parameters MZ, �Z, 
0, or the partial widths. Here MZ will be used

as a precise input parameter, together with 	 and G�; the width and partial widths are specific model predictions.
The total Z width �Z can be calculated as the sum over the partial decay widths

�Z =
∑
f

�f , �f = �(Z → f f̄ ) (2.111)

(other decay channels are not significant). The fermionic partial widths, when expressed in terms of the effective
coupling constants defined in (2.106), read

�f = �0

√√√√1 − 4m2
f

M2
Z

[
|gf

V|2
(

1 + 2m2
f

M2
Z

)
+ |gf

A|2
(

1 − 4m2
f

M2
Z

)]
(1 + �QED) + ��f

QCD

� �0

[
|gf

V|2 + |gf

A|2
(

1 − 6m2
f

M2
Z

)]
(1 + �QED) + ��f

QCD (2.112)

with

�0 = N
f

C

√
2G�M3

Z

12

. (2.113)
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The photonic QED correction, given at one-loop order by

�QED = Q2
f

3	

4

, (2.114)

is small, at most 0.17% for charged leptons.
The factorizable SM (i.e. gluonic) QCD corrections for hadronic final states can be written as follows:

��f

QCD = �0(|gf
V|2 + |gf

A|2KQCD, (2.115)

where [146]

KQCD = 	s



+ 1.41

(	s




)2 − 12.8
(	s




)3 − Q2
f

4

		s


2
(2.116)

for the light quarks with mq � 0, with 	s = 	s(M
2
Z).

For b quarks the QCD corrections are different, owing to finite b mass terms and top-quark-dependent two-loop
diagrams for the axial part:

��b
QCD = �0

(
|gb

V|2 + |gb
A|2
)

KQCD + �0

[
|gb

V|2RV + |gb
A|2RA

]
. (2.117)

The coefficients in the perturbative expansions

RV = cV
1

	s



+ cV

2

(	s




)2 + cV
3

(	s




)3 + · · · ,

RA = cA
1

	s



+ cA

2

(	s




)2 + · · · ,

depending on mb and mt , have been calculated up to third order in 	s , except for the mb-dependent singlet terms, which
are known to be of O(	2

s ) [147,148]. For a review of the QCD corrections to the Z0 width, with the explicit expressions
for RV,A, see Ref. [149].

The partial decay rate into b quarks, in particular the ratio Rb = �b/�had, is observable with special sensitivity
to the top quark mass. Therefore, beyond the pure QCD corrections, the two-loop contributions of the mixed QCD-
electroweak type are also important. The QCD corrections were first derived for the leading term of O(	sG�m2

t ) [150]
and were subsequently completed by the O(	s) correction to the log mt/MW term [151] and the residual terms of
O(		s) [152].

At the same time, the complete two-loop O(		s) corrections to the partial widths for decay into the light quarks have
also been obtained, beyond those that are already contained in the factorized expression (2.115) with the electroweak
one-loop couplings [153]. These “non-factorizable” corrections yield an extra negative contribution of −0.55(3) MeV
to the total hadronic Z0 width.

Besides the standard gluonic QCD corrections, there are supersymmetric QCD corrections involving virtual gluinos
and squarks, which turned out to be very small [154,155], for masses of the SUSY partners in accordance with the
bounds from direct experimental searches.

From the partial widths and the total width (2.111), the following set of combinations can be formed:
the hadronic peak cross section, with the hadronic width �had =∑

q�q ,


h = 12


M2
Z

�e�had

�2
Z

, (2.118)

the ratio of the hadronic to the electronic decay width,

Re = �had

�e

, (2.119)

the ratio of the partial decay width for Z → bb̄ (cc̄) to the total hadronic decay width,

Rb(c) = �b(c)

�had
. (2.120)
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Table 2.2
Estimated uncertainties from unknown higher-order corrections to sin2�eff in [10−5] [158,66]

Two-loop Three-loop Four-loop

O(	2, ferm) O(	2, bos) O(		2
s , ferm) O(G2

�	sm
2
t M2

Z
) O(	3) O(G�	3

s m2
t ) O(G2

�	
2
s m4

t )

compl. [158] 1.2 compl. [112,128] 2.3 2.5 1.1 2.4

The various asymmetries depend on the ratios of the vector to the axial vector coupling and thus on the effective mixing
angles defined in Eq. (2.109), in terms of the combinations

Af = 2(1 − 4|Qf |sin2�f )

1 + (1 − 4|Qf |sin2�f )2
, (2.121)

yielding
the left–right asymmetry and the � polarization,

ALR = Ae, P� = A�, (2.122)

the forward–backward asymmetries,

A
f
FB = 3

4
AeAf . (2.123)

Final-state QCD corrections, in the case of quark pair production, are important for the forward–backward asymmetries,
at the one-loop level given by

A
q
FB → A

q
FB

(
1 − 	s(M

2
Z)




)
, (2.124)

in the absence of cuts. Finite-mass effects have to be considered for b quarks only; they are discussed in Ref. [156].
Two-loop QCD corrections in the massless approximation are also available [157]. The SUSY-QCD corrections again
turn out to be small for realistic values for squark and gluino masses [155].

2.6.3. The effective leptonic mixing angle
Since sin2�eff is a precision observable with high sensitivity for testing the electroweak theory, we discuss in this

section the status of the theoretical predictions for sin2�eff in the SM and the MSSM.
SM corrections: Recently the complete result for the fermionic two-loop corrections has been obtained [158],

improving the prediction compared to the previously known O(G2
�m2

t M
2
Z) term [159]. Contrary to the case of the

W-boson mass, see Section 2.5.1, the purely bosonic two-loop corrections are not yet completely known.
Beyond two-loop order, the same kind of corrections are known as for MW , i.e. QCD corrections of O(		s)

[111,126,127] and O(		2
s ) [112,128], pure fermion-loop corrections up to four-loop order [132], and three-loop cor-

rections entering via �� (see Section 2.4.2).
A simple parameterization of the SM result for sin2�eff containing all relevant higher-order corrections can be found

in Ref. [158]. It reproduces the exact calculation with a maximal deviation of 4.5 × 10−6 for 10 GeV�MH �1 TeV if
the other parameters are varied within their combined 2
 region around their experimental central values.

The estimated theory uncertainties for different parts of the unknown higher-order corrections are summarized in
Table 2.2 (see Refs. [158,66] for further details).

Currently, these intrinsic uncertainties result in [158]

� sin2�SM,intr
eff (current) = 5 × 10−5. (2.125)
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In the future, an improvement down to about

� sin2�SM,intr
eff (future) = 2 × 10−5 (2.126)

seems achievable.
Concerning the parametric uncertainties, the current errors for mt [62] and �	had [94] give rise to

�mcurrent
t = 2.9 GeV ⇒ � sin2�para,mt

eff (current) ≈ 10 × 10−5, (2.127)

�(�	current
had ) = 36 × 10−5 ⇒ � sin2�para,�	had

eff (current) ≈ 13 × 10−5. (2.128)

The parametric uncertainties induced by the future experimental errors of mt and �	had are [64]

�mfuture
t = 0.1 GeV ⇒ � sin2�para,mt

eff (future) ≈ 0.4 × 10−5, (2.129)

�(�	future
had ) = 5 × 10−5 ⇒ � sin2�para,�	had

eff (future) ≈ 1.8 × 10−5. (2.130)

Compared to the GigaZ accuracy (see Table 1.4) on sin2�eff , also the parametric uncertainty induced by the experimental
error of MZ is non-negligible [64]:

�MZ = 2.1 MeV ⇒ � sin2�para,MZ

eff ≈ 1.4 × 10−5. (2.131)

As in the case of MW , the precision measurement of the top-quark mass at the ILC and prospective improvements
in the determination of �	had will reduce the parametric uncertainties to the same level as the prospective intrinsic
uncertainties, Eq. (2.126).

MSSM corrections: As for MW , the largest correction to sin2�eff in the MSSM can be expected from scalar quark
contributions. The shift in sin2�eff is then given by

� sin2�q̃

eff = c2
Ws2

W

c2
W − s2

W

�rq̃ − sW cW �̂�Z(M2
Z), (2.132)

with

�̂�Z(M2
Z) = ��Z(M2

Z)

M2
Z

− cW

sW

(
�M2

Z

M2
Z

− �M2
W

M2
W

)
, (2.133)

and �rq̃ from Eq. (2.101).
In the MSSM the complete one-loop corrections to sin2�eff have been evaluated as described in Section 2.6.2.

Beyond one-loop order the leading term can be included via the � parameter approximation, Eq. (2.58), where �� at
the two-loop level is given in Section 2.4.2. The intrinsic uncertainties from missing higher-order SUSY corrections
will be discussed in Section 3.1.2.

The full one-loop corrections from third- and second-generation squarks in the NMFV MSSM, using Eq. (2.132),
have been derived in Ref. [25].

2.7. The lightest Higgs boson mass as a precision observable

A striking prediction of the MSSM is the existence of at least one light Higgs boson. The search for this particle is
one of the main goals at the present and the next generation of colliders. Direct searches at LEP have already ruled
out a considerable fraction of the MSSM parameter space [12,13]. With the forthcoming data from the Tevatron, the
LHC and the ILC, either a light Higgs boson will be discovered or the MSSM will be ruled out as a viable theory
for physics at the weak scale. Furthermore, if one or more Higgs bosons are discovered, their masses and couplings
will be determined with high accuracy at the ILC. Thus, a precise knowledge of the dependence of the masses and
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mixing angles of the MSSM Higgs sector on the relevant supersymmetric parameters is of utmost importance to reliably
compare the predictions of the MSSM with the (present and future) experimental results.

The Higgs sector of the MSSM has been described in Section 1.2.1 at tree level, leading to the prediction for the
lightest MSSM Higgs boson, mh,tree �MZ , see Eq. (1.12). However, this mass bound, which arises from the gauge
sector of the theory, is subject to large radiative corrections in particular from the Yukawa sector of the theory [102].
Because of the importance of the higher-order corrections, a lot of effort has been devoted to obtain higher-order results
in the MSSM Higgs sector. Results for the complete one-loop contributions are available [160,144]. Corrections beyond
one-loop order have been obtained with different methods. Leading and subleading two-loop corrections have been
obtained in the Effective Potential (EP) approach [161,162], the Renormalization Group (RG) improved EP approach
[163], and with the Feynman-diagrammatic method [164–166]. Detailed comparisons of the different methods have
been performed [167,168]. The higher-order corrections shift the upper bound on mh to mh � 131 GeV [165,169] (for
mt = 172.7 GeV and MSUSY �1 TeV, neglecting uncertainties from unknown higher-order corrections).

In the case that the MSSM parameters possess non-vanishing complex phases (cMSSM), the upper bound on mh

remains the same as for the MSSM with real parameters, but the Higgs-boson couplings can vary significantly compared
to the case with real parameters. Complex phases are possible for the trilinear couplings, Af , f = t, b, �, . . . , for the
Higgsino mass parameter, �, and for the gaugino mass terms, M1, M2, M3 = mg̃ (where one of the latter ones can be
rotated away by a redefinition of the corresponding fields). Recently, the different methods for the evaluation of higher-
order corrections in the MSSM Higgs sector have even been extended to the cMSSM, reaching nearly the precision as
in the real MSSM [170–174]. In the following, however, we will focus on the real case.

2.7.1. Higher-order corrections to mh

The tree-level bound on mh, being obtained from the gauge couplings, receives large corrections from SUSY-breaking
effects in the Yukawa sector of the theory. The leading one-loop correction is proportional to m4

t . The leading logarithmic
one-loop term (for vanishing mixing between the scalar top quarks) reads [102]

�m2
h = 3G�m4

t√
2 
2 sin2�

ln

(
mt̃1

mt̃2

m2
t

)
. (2.134)

Corrections of this kind have drastic effects on the predicted value of mh and many other observables in the MSSM
Higgs sector. The one-loop corrections can shift mh by 50–100%.

In the Feynman diagrammatic (FD) approach, the higher-order corrected Higgs boson masses are derived by finding
the poles of the h, H -propagator matrix. Its inverse is given by

(�Higgs)
−1 = −i

(
p2 − m2

H,tree + �̂HH (p2) �̂hH (p2)

�̂hH (p2) p2 − m2
h,tree + �̂hh(p

2)

)
, (2.135)

where the �̂(p2) denote the renormalized Higgs-boson self-energies (see Eq. (2.38a)), and p is the external momentum.
Determining the poles of the matrix �Higgs in Eq. (2.135) is equivalent to solving the equation

[p2 − m2
h,tree + �̂hh(p

2)][p2 − m2
H,tree + �̂HH (p2)] − [�̂hH (p2)]2 = 0. (2.136)

The status of the available results for the self-energy contributions to Eq. (2.135) can be summarized as follows. For
the one-loop part, the complete result within the MSSM is known [102,160]. The by far dominant one-loop contribution
is the O(	t ) term due to top and stop loops (	t ≡ y2

t /(4
), where yt has been defined in Eq. (2.75)).
The evaluation of two-loop corrections is quite advanced and it has now reached a stage where all the presumably

dominant contributions are known. They include the strong corrections, usually indicated as O(	t	s), and Yukawa
corrections, O(	2

t ), to the dominant one-loop O(	t ) term, as well as the strong corrections to the bottom/sbottom one-
loop O(	b) term (	b ≡ y2

b/(4
)), i.e. the O(	b	s) contribution. The latter can be relevant for large values of tan �.
Presently, the O(	t	s) [161,163–165], O(	2

t ) [161,163,175,176], O(	b	s) [177,97], O(	t	b), O(	2
b) [178] contributions

to the self-energies are known for vanishing external momenta. In the sbottom corrections, the all-order resumma-
tion of the tan �-enhanced terms, O(	b(	s tan �)n), is also performed [99,108] (see Section 2.2.2). The above results
have been implemented into the program FeynHiggs [179,100,180], which evaluates observables in the MSSM Higgs
sector(including also results with complex phases).



S. Heinemeyer et al. / Physics Reports 425 (2006) 265 –368 309

Recently, also the full electroweak two-loop corrections in the approximation of vanishing external momentum [162]
and the leading two-loop momentum-dependent effects [181] have been published. For these corrections no public code
is available yet. In order to apply this result for expressing mh in terms of physical masses, a transition of the parameters
MZ and MA in Refs. [162,181] to their on-shell values will be required at the two-loop level.

Besides the masses of the Higgs bosons, also their couplings are affected by large higher-order corrections. For the
MSSM with real parameters, leading corrections can conveniently be absorbed into the couplings by introducing an
effective mixing angle 	eff . It is obtained from the higher-order corrected Higgs-boson mass matrix in the approximation
where the momentum dependence of the Higgs-boson self-energies is neglected.

The Higgs-boson mass matrix in the �1–�2 basis reads in this case

M2
Higgs =

(
m2

�1
− �̂�1

(0) m2
�1�2

− �̂�1�2
(0)

m2
�1�2

− �̂�1�2
(0) m2

�2
− �̂�2

(0)

)
, (2.137)

where the �̂s(0)(s =�1, �1�2, �2) denote the renormalized Higgs-boson self-energies (in the �1, �2 basis), including
one- and two-loop (and possibly higher-order) corrections. These self-energies (at zero external momentum) have to
be inserted into Eq. (2.137). Diagonalizing this higher-order corrected Higgs-boson mass matrix

M2
Higgs

	eff−→
(

m2
H 0

0 m2
h

)
(2.138)

yields the effective mixing angle 	eff :

	eff = arctan

[ −(M2
A + M2

Z) sin � cos � − �̂�1�2

M2
Z cos2� + M2

A sin2� − �̂�1
− m2

h

]
, −


2
< 	eff <




2
. (2.139)

Replacing in the Higgs-boson couplings, the tree-level mixing angle 	 by the higher-order corrected effective mixing
angle 	eff leads to the inclusion of the leading higher-order corrections that enter via Higgs-boson propagator corrections
[182,183].

2.7.2. Remaining intrinsic and parametric uncertainties
If the MSSM is realized in nature, the light CP-even Higgs-boson mass will be measured with high precision at the

next generation of colliders. The prospective accuracies for a light SM-like Higgs boson that can be obtained in the
experimental determination of mh at the LHC [184] and at the ILC [7–9] are

�m
exp
h ≈ 200 MeV(LHC), (2.140)

�m
exp
h ≈ 50 MeV(ILC). (2.141)

Since mh depends sensitively on the other sectors of the MSSM, in particular on the t̃ sector (see Eq. (2.134)), the light
CP-even Higgs-boson mass will be very important for precision tests of the MSSM.

The remaining theoretical uncertainties in the prediction for mh have been discussed in Refs. [169,64,226,185]. For
recent reviews on the current status of the theoretical prediction, see also Refs. [174,186].

We begin with the discussion of the parametric uncertainties. Since the leading one-loop corrections to mh are
proportional to the fourth power of the top quark mass, the predictions for mh and many other observables in the
MSSM Higgs sector sensitively depend on the numerical value of mt . As a rule of thumb [187], a shift of �mt = 1 GeV
induces a parametric theoretical uncertainty of mh of also about 1 GeV, i.e.

�m
para,mt

h ≈ �mt . (2.142)

The uncertainties induced by the experimental error of mt at the LHC [188] and the ILC [7–9],

�m
exp
t ≈ 1.2 GeV(LHC), (2.143)

�m
exp
t ≈ 0.1 GeV(ILC), (2.144)
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can be compared with the parametric uncertainties induced by the other SM input parameters. Besides mt , the other
SM input parameters whose experimental errors can be relevant for the prediction of mh are MW , 	s , and mb. The
W boson mass enters only in higher orders through the quantum corrections to muon decay (since GF is used for the
parameterization, see Eq. (2.89)).

The present experimental error of �M
exp
W = 34 MeV leads to a parametric theoretical uncertainty of mh below

0.1 GeV. In view of the prospective improvements in the experimental accuracy of MW , the parametric uncertainty
induced by MW will be smaller than the one induced by mt , even for �mt = 0.1 GeV.

The current experimental error of the strong coupling constant, �	s(MZ)= 0.002 [3] induces a parametric theoretical
uncertainty of mh of about 0.3 GeV. Since a future improvement of the error of 	s(MZ) by about a factor of 2 can be
envisaged [3,63,189], the parametric uncertainty induced by mt will dominate over the one induced by 	s(MZ) down
to the level of �mt = 0.1–0.2 GeV.

The mass of the bottom quark currently has an experimental error of about �mb = 0.1 GeV [3,190]. A future
improvement of this error by about a factor of 2 seems to be feasible [190]. The influence of the bottom and sbottom
loops on mh depends on the parameter region, in particular on the values of tan � and � (the Higgsino mass parameter).
For small tan � and/or �, the contribution from bottom and sbottom loops to mh is typically below 1 GeV, in which
case the uncertainty induced by the current experimental error on mb is completely negligible. For large values of
tan � and �, the effect of bottom/sbottom loops can exceed 10 GeV in mh [177,169,97]. Even in these cases we find
that the uncertainty in mh induced by �mb = 0.1 GeV rarely exceeds the level of 0.1 GeV, since higher-order QCD
corrections effectively reduce the bottom quark contributions. Thus, the parametric uncertainty induced by mt will in
general dominate over the one induced by mb, even for �mt ≈ 0.1 GeV.

The comparison of the parametric uncertainties of mh induced by the experimental errors of MW , 	s(MZ) and mb

with the one induced by the experimental error of the top quark mass shows that an uncertainty of �mt ≈ 1 GeV,
corresponding to the accuracy achievable at the LHC, will be the dominant parametric uncertainty of mh. The accuracy
of �mt ≈ 0.1 GeV achievable at the ILC, on the other hand, will allow a reduction of the parametric theoretical
uncertainty induced by �mt to about the same level as the uncertainty induced by the other SM input parameters.

We now turn to the intrinsic theoretical uncertainties in the prediction for mh from unknown higher-order corrections.
Even if all the available higher-order corrections described above are taken into account, the intrinsic uncertainty in mh

from unknown higher-order corrections is still estimated to be quite substantial [100,169].3 The numerical relevance of
the unknown higher-order corrections depends on the region of MSSM parameter space that one considers. An overall
estimate of the intrinsic uncertainty can therefore be only a rough guidance for “typical” MSSM parameter regions.
In regions where higher-order corrections are particularly enhanced (for instance, very large mixing in the stop sector
or regions where the bottom Yukawa coupling is close to being non-perturbative) the theoretical uncertainties can be
significantly larger.

At the two-loop level, various genuine electroweak two-loop corrections from different sectors of the MSSM are not
yet included in the publicly available codes. A rough estimate of their numerical impact can be obtained from the relative
importance of the corresponding contributions at the one-loop level. This has been performed in Ref. [169] and yielded
an estimate of the remaining uncertainty of unknown two-loop corrections of about 2 GeV. Another way of estimating
the effect of unknown two-loop corrections is to apply different renormalization schemes at the one-loop level and to
vary the renormalization scale of quantities that are renormalized according to the DR scheme [100]. As an example for
the latter approach, Fig. 2.7 shows the effect of varying the renormalization scale that enters via the renormalization of
tan � and the Higgs field renormalization constants at the one-loop level for “typical” MSSM parameters (see caption).
The corresponding shift in the one-loop result for mh, which is of the order of genuine two-loop corrections that are
not included in the current prediction for mh, is indicated by the grey areas. The uncertainty in mh from varying �DR
from mt/2 to 2mt is in accordance with the above estimate of the uncertainty from missing two-loop corrections of
about ±2 GeV.

Beyond two-loop order, corrections that effectively shift the value of the top-quark mass entering the calculation are
particularly important because of the sensitive dependence of mh on mt . Corrections of this kind of O(	t	2

s ) can be
estimated by varying the renormalization scheme of the top-quark mass at the two-loop level. Another possibility for
estimating the size of three-loop corrections is to analyse the numerical impact of the leading logarithmic three-loop term
that can easily be obtained with renormalization group methods [169,191]. Both possibilities have been investigated

3 For codes that do not include all the existing higher-order corrections, the intrinsic theoretical uncertainties can be much larger.
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Fig. 2.7. The renormalization scale dependence of mh introduced via a DR definition of tan � and the Higgs field renormalization constants is shown
as a function of MA (left plot) and tan � (right). The lower curves correspond to tan � = 2 (left) and MA = 100 GeV (right). For the upper curves we
have set tan � = 20 (left) and MA = 500 GeV (right). �DR has been varied from mt/2 to 2mt . The other parameters are MSUSY = 500(1000) GeV,
Xt = 2MSUSY, M2 = � = 500 GeV. The dotted line corresponds to a full on-shell scheme, for more details, see Ref. [100].

in detail in Ref. [169], yielding an estimate of the intrinsic theoretical uncertainty beyond the two-loop level of about
1.5 GeV. Similar strategies in the case of the O(	b	2

s ) correction [97] lead to an intrinsic uncertainty of up to 2 GeV
in the case of � < 0 (in regions where the effects of the bottom/sbottom sector are strongly enhanced), and of about
∼ 100 MeV for � > 0.

As an overall estimate for the current intrinsic uncertainties in the prediction of mh, we obtain

�mintr
h (current) = 3 GeV. (2.145)

On the timescale of 5–10, years it seems reasonable to expect that the complete two-loop calculation (which is already
technically feasible with the currently existing tools) can be incorporated into efficient codes and that the higher-order
uncertainties can be reduced by at least a factor of two, leading to the estimate

�mintr
h (future) = 0.5 GeV. (2.146)

2.7.3. Higgs sector corrections in the NMFV MSSM
Within the MSSM with MFV, the dominant one-loop contributions to the self-energies in (2.137) result from the

Yukawa part of the theory (i.e. neglecting the gauge couplings); they are described by loop diagrams involving third-
generation quarks and squarks. Within the MSSM with NMFV, the squark loops have to be modified by introducing
the generation-mixed squarks, as given in Section 1.2.6. The leading terms are obtained by evaluating the contributions
to the renormalized Higgs-boson self-energies at zero external momentum, �̂s(0), s = hh, hH, HH. The evaluation has
been restricted to the dominant Yukawa contributions resulting from the top and t/t̃ (and c/c̃) sector. Corrections from
b and b/b̃ (and s/s̃) could only be important for very large values of tan �, tan ��mt/mb, and have not been considered
so far. The analytical result of the renormalized Higgs-boson self-energies, based on the general 4 × 4 structure of the
t̃/c̃ mass matrix, has been derived in Ref. [25]. However, as has also been shown in Ref. [25], the corrections for Mh

are not significant for moderate generation mixing.
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Fig. 2.8. The generic one-loop diagrams for the MSSM contribution to a�: diagram with an sneutrino–chargino loop (left) and the diagram with an
smuon–neutralino loop (right).

2.8. The anomalous magnetic moment of the muon

Another observable which is important in the context of precision tests of the electroweak theory is the anomalous
magnetic moment of the muon, a� ≡ (g−2)�/2. For the interpretation of the a� results in the context of Supersymmetry
(or other models of new physics) the current status of the comparison of the SM prediction with the experimental result
is crucial, see Refs. [192,193] for reviews and the discussion in Section 1.3.4. It currently results in a deviation of [76]

a
exp
� − atheo

� = (25.2 ± 9.2) × 10−10 : 2.7 
. (2.147)

2.8.1. MSSM one-loop calculation
The anomalous magnetic moment a� of the muon is related to the photon–muon vertex function ���̄A� as follows:

ū(p′)���̄A�(p, −p′, q)u(p) = ū(p′)[��FV (q2) + (p + p′)�FM(q2) + · · ·]u(p), (2.148)

a� = −2m�FM(0). (2.149)

It can be extracted from the regularized vertex function using the projector [194,195]

a� = 1

2(D − 1)(D − 2)m2
�

Tr

{
D − 2

2
[m2

��� − Dp�/p − (D − 1)m�p�]V �

+m�

4
(/p + m�)(���� − ����)(/p + m�)T ��

}
, (2.150)

V� = ���̄A�(p, −p, 0), (2.151)

T�� = �

�q� ���̄A�(p − (q/2), −p − (q/2), q)

∣∣∣∣
q=0

. (2.152)

Here the muon momentum is on-shell, p2 = m2
�, and D is the dimension of space–time. For more details, see

Refs. [194–196].
The complete one-loop contribution to a� can be divided into contributions from diagrams with a smuon–neutralino

loop and with a sneutrino–chargino loop, see Fig. 2.8, leading to

�aSUSY,1L
� = �a

�̃±�̃�
� + �a

�̃0�̃
� . (2.153)

The full one-loop expression can be found in [197], see Ref. [198] for earlier evaluations. If all SUSY mass scales
are set to a common value,

MSUSY = m�̃± = m�̃0 = m�̃ = m�̃� , (2.154)

the result is given by

aSUSY,1L
� = 13 × 10−10

(
100 GeV

MSUSY

)2

tan � sign(�). (2.155)



S. Heinemeyer et al. / Physics Reports 425 (2006) 265 –368 313

Obviously, supersymmetric effects can easily account for a (20 . . . 30) × 10−10 deviation, if � is positive and MSUSY
lies roughly between 100 GeV (for small tan �) and 600 GeV (for large tan �). Eq. (2.155) also shows that for certain
parameter choices the supersymmetric contributions could have values of either aSUSY

� � 55 × 10−10 or aSUSY
� �

− 5 × 10−10, both outside the 3
 band of the allowed range according to Eq. (2.147). This means that the (g − 2)�
measurement places strong bounds on the supersymmetric parameter space.

2.8.2. MSSM two-loop calculation
In order to fully exploit the precision of the (g−2)� experiment within SUSY, see e.g. Refs. [199–202] for discussions

of the resulting constraints on the parameter space, the theoretical uncertainty of the SUSY loop contributions from
unknown higher-order corrections needs to be under control. It should be significantly lower than the experimental
error given in Eq. (1.52) and the hadronic uncertainties in the SM prediction, leading to the combined uncertainty given
in Eq. (2.147).

For the electroweak part of the SM prediction, the desired level of accuracy has been reached with the computation
of the complete two-loop result [194,195], which reduced the intrinsic uncertainty from QED and electroweak effects
below the level of about 1 × 10−10 [76]. For the SUSY contributions, a similar level of accuracy has not been reached
yet, since the corresponding two-loop corrections are partially unknown. Four parts of the two-loop contribution have
been evaluated up to now, which will be reviewed in the next subsections.

Two-loop QED corrections: The first part are the leading log(m�/MSUSY) terms of supersymmetric one-loop dia-
grams with a photon in the second loop. They are given by [203]

�aSUSY,2L,QED
� = �aSUSY,1L

� ×
(

4 	



log

(
MSUSY

m�

))
. (2.156)

They amount to about −8% of the supersymmetric one-loop contribution (for a SUSY mass scale of MSUSY= 500 GeV).
Two-loop Two-Higgs-doublet contributions: In the MSSM, the bosonic electroweak two-loop contributions differ

from the SM because of the extended MSSM Higgs sector. This class is defined by selecting all MSSM two-loop
diagrams without a closed loop of fermions or sfermions and without pure QED diagrams, see the first line in Fig. 2.9.
The results presented in this section have been obtained in Ref. [196].

The result a
bos,2L,MSSM
� reads

abos,2L,MSSM
� = 5

3

G�m2
�

8
2
√

2

	




(
c

bos,2L,MSSM
L log

m2
�

M2
W

+ c
bos,2L,MSSM
0

)
, (2.157)

where the coefficient of the logarithm is given by

c
bos,2L,MSSM
L = 1

30

[
98 + 9ch

L + 23(1 − 4s2
W)2

]
, (2.158)

ch
L = c2�M2

Z

c�

[
c	c	+�

m2
H

+ s	s	+�

m2
h

]
. (2.159)

Here c	 ≡ cos 	, etc. Using the tree-level relations in the Higgs sector, it can be shown that ch
L = 1, and thus the

logarithms in the SM and the MSSM are identical. The coefficient c
bos,2L,MSSM
0 is more complicated and not given

here, see Ref. [196].
Two-loop corrections with a closed SM fermion/sfermion loop: The third known part are the diagrams with a closed

loop of SM fermions or scalar fermions calculated in Ref. [204], extending the previous results of Refs. [205,206].
The two-loop diagrams discussed in this subsection can be subdivided into three classes (all diagrams are understood

to include the corresponding subloop renormalization):
(f̃ V �) diagrams with an sfermion (t̃ , b̃, �̃, �̃�) loop, where at least one gauge and one Higgs boson is exchanged, see

the second line of Fig. 2.9;
(f̃VV) diagrams with an sfermion loop, where only gauge bosons appear in the second loop, see the third line

of Fig. 2.9;
(fV�) diagrams with a fermion (t, b, �, ��) loop, where at least one gauge and one Higgs boson are present in the

other loop, see the fourth line of Fig. 2.9. The corresponding diagrams with only gauge bosons are identical to the SM
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Fig. 2.9. Some MSSM two-loop diagrams for a� with (depending on the diagram) F = �, �̄�; f, f ′ = t, b, �, ��; � = h, H, A, H±, G, G±;
� = G±, H±; f̃ , f̃ ′ = t̃ , b̃, �̃, �̃�; V = �, Z, W ; �̃±

1,2; �̃0
1,2,3,4.

diagrams and give no genuine SUSY contribution. The difference between the SM and the MSSM originates from the
extended Higgs sector of the MSSM. Diagrams where two Higgs bosons couple to the external muon are suppressed
by an extra factor of m2

�/M2
W and hence negligible.
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The counterterm diagrams contain the renormalization constants �M2
W,Z , �Ze, and �th,H corresponding to mass,

charge and tadpole renormalization and can be easily evaluated. For the evaluation the on-shell renormalization scheme
has been chosen. This leads to �M2

W,Z = Re �W,Z(M2
W,Z), where �W,Z denote the transverse parts of the gauge-boson

self-energies, see Section 2.1.2. The charge renormalization is given by �Ze = − 1
2 ��(0), see Eq. (2.9). The tadpoles

are renormalized such that the sum of the tadpole contribution T and the counterterm vanishes, i.e. �th,H = −Th,H , see
Section 2.1.5.

Numerically, the most important contribution comes from the diagrams with a Higgs boson and photon exchange.
This type of contributions can be particularly enhanced by the ratio of the mass scale of the dimensionful Higgs-Sfermion

coupling divided by the mass scale of the particles running in the loop, i.e. by ratios of the form {�, A,
m2

t

MW
}/{m

f̃
, mh,H },

which can be much larger than one. For large tan � and large sfermion mixing, the leading terms are typically given by
the parts of the couplings with the highest power of tan � and by the loop with the lightest sfermion. These contributions
involve only H-exchange, since the h-couplings approach the SM-Higgs coupling for not too small MA. They can be
well approximated by the formulas [204]

�at̃,2L
� = −0.013 × 10−10 mt� tan �

mt̃mH

sign(At ), (2.160)

�ab̃,2L
� = −0.0032 × 10−10 mbAbtan2�

m
b̃
mH

sign(�), (2.161)

where mt̃ and m
b̃

are the masses of the lighter t̃ and b̃, respectively, and mH is the mass of the heavy CP-even
Higgs boson. The formulas holds up to few percent if the respective sfermion mass fulfils m

t̃,b̃
�mH . Since the

heavier sfermions also contribute and tend to cancel the contributions of the lighter sfermions, these formulas do not
approximate the full result very precisely, but they do provide the right sign and order of magnitude.

Two-loop contributions with a closed chargino/neutralino loop: The two-loop contributions to a� containing a closed
chargino/neutralino loop constitute a separately UV-finite and gauge-independent class and have been evaluated in Ref.
[196]. The corresponding diagrams are shown in the last line of Fig. 2.9.

The chargino/neutralino two-loop contributions, a
�,2L
� , depend on the mass parameters for the charginos and neu-

tralinos �, M1,2, theCP-odd Higgs mass MA, and tan �. It is interesting to note that, contrary to Ref. [120], no tree-level
relations in the Higgs sector were needed in order to find a UV-finite result. This is due to the fact that each two-loop
diagram contributing to (g − 2)� together with its corresponding subloop renormalization is finite.

The parameter dependence of a
�,2L
� is quite straightforward [196]. If all supersymmetric mass scales are set equal,

� = M2 = MA ≡ MSUSY (with the only exception that M1 = 5/3 s2
W/c2

WM2), the approximate leading behaviour of

a
�,2L
� is simply given by tan �/M2

SUSY, and the following relation holds

a
�,2L
� ≈ 11 × 10−10

(
tan �

50

)(
100 GeV

MSUSY

)2

sign(�). (2.162)

As shown in Ref. [196], the approximation is very good except for very small MSUSY and small tan �, where the leading
term is suppressed by the small �, and subleading terms begin to dominate.

Remaining intrinsic uncertainties: So far, at the two-loop level, the MSSM corrections to the Two-Higgs-Doublet
model (THDM) one-loop diagrams have been evaluated. The only exception here are the diagrams that contain as a
second loop an additional closed smuon–neutrino or muon–sneutrino loop. However, these corrections are expected to
be small.

The remaining two-loop corrections that are not yet available are:

• the contributions with a mixed SM fermion/sfermion loop attached to a SUSY one-loop diagram;
• the full THDM corrections to the SUSY one-loop diagrams. This will include as a subset also the QED corrections

evaluated in Ref. [203], where, however, all SUSY masses had been set equal to MSUSY.

The first missing class of mixed SM fermion/sfermion contributions might in principle be as large as the SM fermion
or scalar fermion corrections obtained in Ref. [204], see above. This leaves an intrinsic uncertainty of about ∼ 3×10−10.
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The second class gives corrections smaller than 10% to the MSSM one-loop result. Assuming that the corresponding
intrinsic uncertainties are less than half of the evaluated corrections, the combined effect of the unknown two-loop
corrections can be estimated to be about

�aintr
� (current) = 6 × 10−10. (2.163)

After a full two-loop calculation will be available, the intrinsic theoretical uncertainty from unknown QED and elec-
troweak higher-order corrections should be at the level of

�aintr
� (future) = 1 × 10−10. (2.164)

2.9. Tools and codes for the evaluation of electroweak precision observables

The large number of different fields in the MSSM gives rise to a plethora of possible interaction vertices. Calculations
at the one-loop level and beyond therefore usually involve a lot of Feynman diagrams. The diagrams in general contain
several mass scales, making their evaluation (in particular beyond one-loop order) increasingly difficult. Since the
necessary steps can be structured in a strictly algorithmic way, they can be facilitated with the help of computer algebra
tools and numerical programs.

Computer algebra tools have heavily been used in deriving the results discussed above. Because of the multitude
of scales involved in SUSY higher-order corrections, in most cases the result cannot be expressed in a compact form.
Instead, the results presented above have been transformed into public computer codes (also being used for the numerical
evaluation in Sections 3 and 4).

2.9.1. Tools for the calculation of EWPO
The calculation of higher-order SUSY Feynman diagrams consists of several steps. First the topologically different

diagrams for the given loop order and the number of external legs need to be generated. Inserting the fields of the model
under consideration into the topologies in all possible ways leads to the Feynman diagrams. The Feynman rules translate
these graphical representations into mathematical expressions. Since the loop integrals in general lead to divergences,
the expressions need to be regularized and renormalized. The evaluation of the Feynman amplitudes involves a treatment
of the Lorentz structure of the amplitude, calculation of Dirac traces, etc. At the one-loop level it is possible to reduce
all tensor integrals to a set of standard scalar integrals, which can be expressed in terms of known analytic functions.
In contrast to the one-loop case, no general algorithm exists so far for the evaluation of two-loop corrections in the
electroweak theory. The main obstacle in two-loop calculations in massive gauge theories is the complicated structure
of the two-loop integrals, which makes both the tensor integral reduction and the evaluation of scalar integrals very
difficult. In general, the occurring integrals are not expressible in terms of polylogarithmic functions [207]. For the
evaluation of some types of integrals that do not permit an analytic solution, numerical methods and expansions in their
kinematical variables have been developed. Computer-algebraic methods can facilitate most of the above-mentioned
steps. There are computer algebra packages available based on FORM [208], Mathematica [209] or both.

A package for the generation of SUSY amplitudes and drawing the corresponding diagrams is FeynArts [122,210].
As a feature of particular importance for higher-order calculations in the electroweak theory, FeynArts generates not
only the unrenormalized diagrams at a given loop order but also the counterterm contributions at this order and the
counterterm diagrams needed for the subloop renormalization. For one-loop calculations with up to four external legs
(the inclusion of five external legs is currently under way) the package FormCalc [211] can be used, where for numerics
the LoopTools [212] package can easily be linked. For the evaluation of two-loop diagrams with up to two external
legs, the program TwoCalc [213] can be used. It is based on an algorithm for the tensor reduction of general two-loop
two-point functions and can be used for an automatic reduction of Feynman amplitudes for two-loop self-energies with
arbitrary masses, external momenta, and gauge parameters to a set of standard scalar integrals. The above computer
algebra codes evaluate the multi-loop diagrams analytically without performing expansions for small parameters, etc.

The program QGRAF [214] is an efficient generator for Feynman diagrams (its use has been mostly restricted to the
SM so far; see however Ref. [215]). As output the diagrams are encoded in a symbolic notation. Being optimized for
high speed, QGRAF is particularly useful for applications involving a very large number (i.e. O(104)) of diagrams. Its
output, depending on the number of scales and external legs, can then be passed to MATAD [216], MINCER [217] or
EXP [218], where expansions for small parameters are performed.
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An alternative package for SM and SUSY one-loop calculations is the GRACE system [219].
Overviews about codes for higher-loop and -leg calculations can be found in Refs. [220–222].

2.9.2. Public codes for the numerical evaluation of EWPO
The results presented in Sections 2.4–2.6 have been implemented in the code POMSSM,4 which has been used

for the numerical evaluation in Sections 3 and 4. The Higgs boson sector evaluations have been done with the code
FeynHiggs [179,100,174,180], including the corrections described in Section 2.7. This code also performs an evaluation
of all Higgs boson decay widths as well as production cross sections for photon colliders. Also, the results for �� as
described in Section 2.4 are included as a subroutine. Other codes for evaluations of Higgs sector observables are
Hdecay [223] and CPsuperH [224]. The results for the anomalous magnetic moment of the muon, described in Section
2.8, are available as a subroutine for the code FeynHiggs.

3. MSSM predictions versus experimental data

Now we study the impact of the higher-order corrections to the electroweak precision observables discussed above.
The MSSM predictions are compared with the current experimental results and constraints on the parameter space of the
unconstrained MSSM are discussed. We furthermore investigate how the improved electroweak precision measurements
at the next generation of colliders enhance the sensitivity of testing the electroweak theory.

3.1. MSSM predictions for MW and sin2�eff

3.1.1. Numerical analysis in the MSSM
Results for ��: We start our discussion of the numerical results with the quantity ��, which parameterizes leading

SUSY contributions to the W -boson mass and the Z-boson observables, see Section 2.4. The effect of the gluonic
SUSY two-loop contributions as given in Eq. (2.73) (the four squark masses are renormalized on-shell; the mass shift
arising from the SU(2) relation is understood to be absorbed into the one-loop result, see Section 2.4.2) is shown for an
exemplary case in Fig. 3.1 as a function of MSUSY. The other parameters are tan � = 3 and Xt = 0, 2MSUSY. The line
for Xt = 2MSUSY starts only at MSUSY ≈ 300 GeV. For lower values of MSUSY one of the scalar top mass squares is
below zero. ��SUSY

1,gluon can reach values of up to 0.2 × 10−3. The results for the gluino-exchange contribution are shown
in Fig. 3.2 (Xt = 0) and Fig. 3.3 (Xt = 2MSUSY) for mg̃ = 0, 10, 200, 500 GeV (and mg̃ = 800 GeV in the latter) as a
function of MSUSY. The results for mg̃ = 0 and 10 GeV are indistinguishable forXt = 0. The decoupling for large mg̃

is visible already for mg̃ = 500 GeV. In the case of Xt = 2MSUSY, see Fig. 3.3, ��SUSY
1,gluino is in general positive and can

reach values up to 0.5×10−3 for mg̃ =200 GeV. As can be seen in the figure, for larger values of mg̃ the contribution to
�� decouples as expected. Contrary to the SM case where the strong two-loop corrections screen the one-loop result,
the O(		s) corrections in the MSSM increase the one-loop contributions by up to 35%, thus enhancing the sensitivity
to scalar quark effects.

In Fig. 3.4 the numerical result of the leading O(	2
t ) MSSM corrections in the limit of large MSUSY (see Section

2.4.2) is shown. It is compared with the other contributions to ��: the O(	2
t ) SM correction (with MSM

H = mh) and the
SUSY contributions from the scalar quark sector at O(	) and O(		s). The results are shown as a function of MSUSY,
which enters the O(	2

t ) corrections indirectly via its effect on mh. For small tan � and MA =300 GeV, see the left plot of
Fig. 3.4; the effective change arising from the new genuine MSSM corrections compared to the O(	2

t ) SM contribution
with MSM

H = mh is sizable. While the full O(	2
t ) result is larger than the O(	) corrections for MSUSY � 600 GeV, it is

larger than the O(		s) corrections for all MSUSY. However, the genuine MSSM corrections are always smaller than
the MSSM O(	) contributions, but they are of equal size as the O(		s) corrections for MSUSY ≈ 600 GeV. (Note that
for smaller MSUSY the approximation of neglecting the scalar-quark contributions in the O(	2

t ) resultmay no longer be
valid.) Since they enter with a different sign into ��, they can compensate each other. Similar results are found in the
no-mixing case, which is not shown here.

The case of large tan � and MA = 300 GeV is shown in the right plot of Fig. 3.4. The curve for the O(	2
t ) MSSM

corrections in the limit MSUSY → ∞ is indistinguishable in the plot from the O(	2
t ) SM contribution with MSM

H = mh.

4 A new version of POMSSM is currently prepared and will be available from the authors.
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Fig. 3.1. ��SUSY
1,gluon as a function of the common squark mass MSUSY for tan � = 3, Xb = 0 and Xt = 0, 2MSUSY.
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Fig. 3.2. ��SUSY
1,gluino as a function of the common squark mass MSUSY for tan �=3, Xb = 0, Xt = 0 and mg̃ = 0, 10 (the curves are indistinguishable),

200, 500 GeV [98].
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Fig. 3.3. ��SUSY
1,gluino as a function of the common squark mass MSUSY for tan � = 3, Xb = 0, Xt = 2MSUSY and mg̃ = 0, 10, 200, 500, 800 GeV.
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Fig. 3.4. The contribution of the leading O(	2
t ) MSSM corrections in the limit of large MSUSY, ��SUSY

1,Higgs, is shown as a function of MSUSY

for MA = 300 GeV and tan � = 3 (left plot) or tan � = 40 (right plot) in the case of the mmax
h

scenario, see Appendix B. ��SUSY
1,Higgs is compared

with the leading O(	2
t ) SM contribution and with the leading MSSM corrections originating from the t̃/b̃ sector of O(	) and O(		s ). Both O(	2

t )

contributions are negative and are for comparison shown with reversed sign. In the right plot the O(	2
t ) corrections differ by about 1.5×10−7, which

is indistinguishable in the plot.
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Fig. 3.5. The O(	2
t ), O(	t	b), and O(	2

b
) MSSM contributions to �� in the mmax

h
and the no-mixing scenarios (see Appendix B) are compared with

the corresponding SM result with MSM
H

= mh. In the left plot tan � is fixed to tan � = 40, while MA is varied from 50 to 1000 GeV. In the right plot
MA is set to 300 GeV, while tan � is varied. The bottom quark mass is set to mb = 4.25 GeV.

The difference between these two corrections is approximately 1.5 × 10−7, while the O(		s) corrections are about
10−5 even for MSUSY = 1000 GeV. The purely electroweak corrections decouple much faster for large tan � than the
O(		s) corrections, see also Eq. (2.78).

In Fig. 3.5 we show the result for the O(	2
t ), O(	t	b), and O(	2

b) MSSM contributions to �� in the mmax
h and the

no-mixing scenarios [32,33] (see also Appendix B) compared with the corresponding SM result with MSM
H = mh.

In the left plot tan � is fixed to tan � = 40 and MA is varied from 50 to 1000 GeV. In the right plot MA is fixed to
MA = 300 GeV, while tan � is varied.

For large tan � the O(	t	b) and O(	2
b) contributions yield a significant effect caused by the heavy Higgs bosons in

the loops, entering with the other sign than the O(	2
t ) corrections, while the contribution of the lightest Higgs boson

is SM-like. As one can see in Fig. 3.5, for large tan � the MSSM contribution to �� is smaller than the SM value. For
large values of MA, the SM result is recovered.

Quality of the �� approximation: We now turn to the numerical effects on MW and sin2�eff induced by ��. As a
first step the quality of the �� approximation, using Eq. (2.58), is analyzed [140]. We show the comparison of the ��
approximation with the full evaluation at the two-loop level, where such a calculation is available. As described in
Section 2.5.2, only the two-loop gluonic corrections to �r have been calculated so far. In Figs. 3.6, 3.7 we show the
full gluonic two-loop contribution to �r together with the corresponding �� approximation. The no-mixing case in
the b̃ sector is presented in Fig. 3.6 with tan � = 1.6 and Xt = 0, 200 GeV. The case with Xb = 2500 GeV is shown in
Fig. 3.7 with tan � = 40 and Xt = 0, 200 GeV. As for the one-loop case, see Figs. 2.5, 2.6, also in the two-loop case
the �� approximation reproduces the full result to better than 10%.

Corrections to MW and sin2�eff induced by ��: We illustrate the effects of the corrections to �� discussed above
on the observables MW and sin2�eff for the example of the O(	2

t ) MSSM contributions in the limit of large MSUSY.
Fig. 3.8 shows the shift �MW induced by theO(	2

t ) MSSM contribution for MSUSY =1000 GeV in the mmax
h scenario,

see Appendix B. The other parameters are � = 200 GeV, Ab = At . mh is obtained in the left (right) plot from varying
MA from 50 to 1000 GeV, while keeping tan � fixed at tan � = 3, 40 (from varying tan � from 2 to 40, while keeping
MA fixed at MA = 100, 300 GeV). Besides the absolute O(	2

t ) MSSM contribution (solid and short-dashed lines) also
the “effective change” compared to the SM is shown, i.e. the difference between the O(	2

t ) MSSM contribution and the
O(	2

t ) SM contribution with MSM
H = mh (long-dashed and dot-dashed lines). While the full result shows contributions

to MW of up to 11 MeV, the effective change is much smaller, mostly below the level of 2 MeV.
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Fig. 3.6. The t̃/b̃ corrections to �r at the two-loop level, Eq. (2.101), are compared with the �� approximation, Eq. (2.102). The results are shown
as a function of MSUSY for tan � = 1.6, Xb = 0 and Xt = 0, 200 GeV.
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Fig. 3.7. The t̃/b̃ corrections to �r at the two-loop level, Eq. (2.101), are compared with the �� approximation, Eq. (2.102). The results are shown
as a function of MSUSY for tan � = 40, Xb = 2500 GeV and Xt = 0, 200 GeV.

For large tan � the O(	t	b) and O(	2
b) contributions yield a significant effect from the heavy Higgs bosons in the

loops, entering with the other sign than the O(	2
t ) corrections, while the contribution of the lightest Higgs boson is

SM-like, see Section 2.4.2. The effective change in the predictions for the precision observables from the O(	t	b) and
O(	2

b) corrections can exceed the one from the O(	2
t ) corrections. It can amount up to �MW ≈ +5 MeV for tan � = 40.

Fig. 3.9 shows the shift � sin2�eff induced by the absolute O(	2
t ) MSSM contribution (solid and short-dashed lines)

and the effective change (long-dashed and dot-dashed lines) for MSUSY = 1000 GeV in the mmax
h scenario. The other

parameters are �=200 GeV, Ab=At . mh is obtained in the left (right) plot from varying MA from 50 to 1000 GeV, while
keeping tan � fixed at tan �= 3, 40 (from varying tan � from 2 to 40, while keeping MA fixed at MA = 100, 300 GeV).
While the full result shows contributions to sin2�eff of up to 6 × 10−5, the effective change is much smaller, mostly
below the level of 1 × 10−5.
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Fig. 3.9. The shift � sin2�eff induced by the O(	2
t ) MSSM contribution and the effective change compared with the SM result are shown for

MSUSY = 1000 GeV in the mmax
h

scenario. The other parameters are �= 200 GeV, Ab =At . mh is obtained in the left (right) plot from varying MA

from 50 to 1000 GeV, while keeping tan � fixed at tan � = 3, 40 (from varying tan � from 2 to 40, while keeping MA fixed at MA = 100, 300 GeV).

For large tan �, the effective change in the predictions for the precision observables from the O(	t	b) and O(	2
b)

corrections can exceed the one from the O(	2
t ) corrections. It can amount up tp � sin2�eff ≈ −3 × 10−5 for tan � = 40.

MSSM predictions for MW and sin2�eff in comparison with present and future experimental precisions: Now we
focus on the comparison of the MW and sin2�eff prediction with the present data and the prospective experimental
precision at the next generation of colliders.

In Fig. 3.10 we compare the SM and the MSSM predictions for MW as a function of mt (the most recent mt

experimental central value and error [62] have been used). The predictions within the two models give rise to two
bands in the mt–MW plane with only a relatively small overlap region (indicated by a dark-shaded (blue) area in
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Fig. 3.10. The current experimental results for MW and mt and the prospective accuracies at the next generation of colliders are shown in comparison
with the SM prediction (medium-shaded and dark-shaded (red and blue) bands) and the MSSM prediction (light-shaded and dark-shaded (green and
blue) bands).

Fig. 3.10). The allowed parameter region in the SM (the medium-shaded (red) and dark-shaded (blue) bands) arises
from varying the only free parameter of the model, the mass of the SM Higgs boson, from MH = 113 GeV (upper edge
of the dark-shaded (blue) area) to 400 GeV (lower edge of the medium-shaded (red) area). The light-shaded (green)
and the dark-shaded (blue) areas indicate allowed regions for the unconstrained MSSM. SUSY masses close to their
experimental lower limit are assumed for the upper edge of the light-shaded (green) area, while the decoupling limit
with SUSY masses of O(2 TeV) yields the lower edge of the dark-shaded (blue) area. Thus, the overlap region between
the predictions of the two models corresponds in the SM to the region where the Higgs boson is light, i.e. in the MSSM
allowed region (mh � 140 GeV). In the MSSM it corresponds to the case where all superpartners are heavy, i.e. the
decoupling region of the MSSM. The current 68% CL experimental results5 for mt and MW slightly favour the MSSM
over the SM. The prospective accuracies for the LHC and the ILC with GigaZ option, see Table 1.4, are also shown
in the plot (using the current central values), indicating the potential for a significant improvement of the sensitivity of
the electroweak precision tests [63].

In Fig 3.11 the comparison between the SM and the MSSM is shown in the MW – sin2�eff plane (see also Refs.
[225,226]). As above, the predictions in the SM (medium-shaded and dark-shaded (red and blue) bands) and possible
MSSM regions (light-shaded and dark-shaded (green and blue) bands) are shown together with the current 68% CL
experimental results and the prospective accuracies for the LHC and the ILC with GigaZ option. Again, the MSSM is
slightly favoured over the SM. It should be noted that the prospective improvements in the experimental accuracies, in
particular at the ILC with GigaZ option, will provide a high sensitivity to deviations both from the SM and the MSSM.

The central value for the experimental value of sin2�eff in Fig. 3.11 is based on both leptonic and hadronic
data. The two most precise measurements, ALR from SLD and Ab

FB from LEP, differ from each other by about 3


5 The plot shown here is an update of Refs. [136,225,226].
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(see Ref. [18]). This, together with the NuTeV anomaly (see below), gave rise to a relatively low fit probability of the
SM global fit in the past years, and had caused considerable attention in the literature. In particular, several analyses
have been performed where the hadronic data on AFB have been excluded from the global fit (see e.g. Refs. [227,228]).
It has been noted that in this case the SM global fit, possessing a significantly higher fit probability, yields an upper
bound on MH which is rather low in view of the experimental lower bound on MH of MH > 114.4 GeV [13]. The value
of sin2�eff corresponding to the measurement of ALR(SLD) alone is sin2�eff = 0.23098 ± 0.00026 [18]. Fig. 3.11
shows that adopting the latter value of sin2�eff makes the agreement between the data and the SM prediction much
worse, while the MSSM provides a very good description of the data. In accordance with this result, in Ref. [228] it
has been found that the contribution of light gauginos and scalar leptons in the MSSM (in a scenario with vanishing
SUSY contribution to ��) gives rise to a shift in MW and sin2�eff as compared to the SM case which brings the MSSM
prediction in better agreement with the experimental values of MW andALR(SLD).

On the other hand, it has also been investigated whether the discrepancy between ALR and Ab
FB could be explained

in terms of contributions of some kind of new physics. The (loop-induced) contributions from SUSY particles in the
MSSM are however too small to account for the 3
 difference between the two observables (see e.g. Ref. [228]). Thus,
the quality of the fit to ALR and Ab

FB in the MSSM is similar to the one in the SM.
With the latest experimental values of the precision observables and the most up-to-date theory predictions, the

probability of the global fit in the SM is about 15% [18] (if the NuTeV result is not included). Although the discrepancy
between ALR from SLD and Ab

FB from LEP remains, it seems not well motivated to discard any of the two measurements.
As mentioned above, another observable for which the SM prediction shows a large deviation by about 3
 from the

experimental value is the neutrino-nucleon cross section measured at NuTeV [229]. Also in this case loop effects of
SUSY particles in the MSSM are too small to account for a sizable fraction of the discrepancy (see e.g. Refs. [230,231]).
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3.1.2. Intrinsic uncertainty in MW and sin2�eff from SUSY corrections
The remaining theoretical uncertainties in the prediction for MW and sin2�eff from unknown higher-order corrections

in the MSSM (i.e. loop corrections from SM particles and superpartners) are considerably larger than in the SM, since
the results for higher-order corrections in the MSSM are not quite as advanced yet as in the SM. The current intrinsic
uncertainties in the MSSM can roughly be estimated by comparing the size of the known corrections in the MSSM (see
above) to the corresponding corrections in the SM and by assuming that the unknown higher-order corrections in the
MSSM enter with the same relative weight as the corresponding corrections in the SM, whose numerical effects are
known. This kind of estimate does not take into account specific enhancement factors in the MSSM, like for instance
corrections that grow with powers of tan �. In general, the additional contributions from superpartners in the loops will
be bigger the smaller the SUSY mass scale is. As in the case of mh, the estimate for the intrinsic uncertainty of MW

and sin2�eff should be understood to refer to “typical” regions of the MSSM parameter space. In parts of the parameter
space where certain corrections are particularly enhanced (see the discussion in Section 2.2), the intrinsic uncertainties
can be larger.

Taking the above considerations into account, a crude estimate of the current intrinsic uncertainties yields [226]

MSSM: �M intr
W (current) = 10 MeV, � sin2�intr

eff (current) = 12 × 10−5, (3.1)

i.e. uncertainties that are roughly twice as large as the current uncertainties in the SM.
With sufficient effort on higher-order calculations in the MSSM, it should be possible in future to reduce the intrinsic

uncertainties to the same level as we had estimated for the SM (see Eqs. (2.96), (2.126)):

MSSM: �M intr
W (future) = 2 MeV, � sin2�intr

eff (future) = 2 × 10−5. (3.2)

3.1.3. Results in the NMFV MSSM
The analytical results obtained for the EWPO in the NMFV MSSM have been derived for the general case of mixing

between the third and second generations of squarks, i.e. all NMFV contributions, �LL,LR,RL,RR , can be chosen
independently in the t̃/c̃ and b̃/s̃ sectors, see Section 1.2.6. Corrections from the first-generation squarks are not
considered, for reasons discussed in Section 1.2.6. The numerical analysis of NMFV effects for the EWPO, however,
has been performed for the simpler, but well-motivated, scenario where only mixing between t̃L and c̃L as well as
between b̃L and s̃L is considered. The only flavour off-diagonal entries in the squark-mass matrices are normalized
according to �t,b

LL = �t,bM
Q̃3

M
Q̃2

, following [21,23,24],6 where M
Q̃3,Q̃2

are the soft SUSY-breaking masses for the
SU(2) squark doublet in the third and second generations. NMFV is thus parameterized in terms of the dimensionless
quantities �t and �b (see [23,24,232,233] for experimentally allowed ranges). The case of �t = �b = 0 corresponds to
the MSSM with minimal flavour violation (MFV). In detail, it has been set that

�t
LL = �tM

L̃t
M

L̃c
, �t

LR = �t
RL = �t

RR = 0,

�b
LL = �bM

L̃b
M

L̃s
, �b

LR = �b
RL = �b

RR = 0, (3.3)

for the entries in the matrices (1.44) and (1.46).
For the sake of simplicity, the same flavour-mixing parameter has been assumed in the numerical analysis for the

t̃ − c̃ and b̃ − s̃ sectors, � = �t = �b. It should be noted in this context that the LL blocks of the up- and down-squark
mass matrices are not independent because of the SU(2) gauge invariance; they are related through the CKM mass
matrix [24], which also implies that a large difference between these two parameters is not allowed.

Results for ��: For the numerical evaluation [25], the mmax
h and the no-mixing scenario have been used [33], but

with a free scale MSUSY, see Appendix B. The results are independent of MA. The numerical values of the SUSY
parameters are

MSUSY = 1 and 2 TeV, tan � = 30, � = 200 GeV, ε = 0.04, (3.4)

if not explicitly stated otherwise. The variation with � and tan � is very weak, since they do not enter the squark
couplings to the vector bosons.

6 The parameters �t and �b introduced here are denoted by (�u
LL)23 and (�d

LL)23 in [21,23,24].
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Fig. 3.12. The variation of ��q̃ with �(=�t = �b) in the mmax
h

and no-mixing scenarios for different relative signs of ε and � [25]. MSUSY = 2 TeV,
the other SUSY parameters are given in Eq. (3.4).

The behaviour with the sign of ε is shown in Fig. 3.12 for the corrections to ��q̃ as a function of � (= �t = �b).
The results are shown for different relative signs of ε and �, choosing � > 0, and fixing |ε| = 0.04. MSUSY has been
set to MSUSY = 2 TeV. For the mmax

h scenario the effect is small, but in the no-mixing scenario the results are affected
significantly by the sign of ε. The squark contribution to ��q̃ can become of O(10−3) for ��0.5.

In Fig. 3.13 we show the dependence of ��q̃ on � (=�t = �b) for both the mmax
h and no-mixing scenario and for two

values of the SUSY mass scale, MSUSY = 1 TeV and MSUSY = 2 TeV. It is clear that ��q̃ grows with the � parameter,
being close to zero for � = 0 and MSUSY = 2 TeV. One can also see that the effects on ��q̃ are in general larger for the
no-mixing scenario (see also the results shown in Ref. [98]). For large values of MSUSY the correction increases with
increasing � since the splitting in the squark sector increases.

The behaviour of the corrections with the SUSY mass scale is shown in Fig. 3.14 for different values of � in the mmax
h

scenario (left panel) and in the no-mixing scenario (right panel). The region below MSUSY � 400 GeV (depending on
the scenario) implies too low and hence forbidden values for the squark masses. The curves are only for the allowed
regions. For � = 0, ��q̃ decreases, being zero for large MSUSY values, in agreement with the results shown in Ref.
[98]. We have also found that, for � �= 0 and small values of MSUSY, ��q̃ decreases until it reaches a minimum and
then increases for largest values of the SUSY scale. This increasing behaviour is more pronounced for larger � values,
reaching the level of a few per mill. The reason lies once again in the increasing mass splitting.

Numerical evaluation for MW and sin2�eff : Here, the numerical effects of the NMFV contributions on the electroweak
precision observables, �MW and � sin2�eff , are briefly analysed [25]. The shifts in MW and sin2�eff have been evaluated
both from the complete expressions for the scalar quark contributions, Eqs. 2.101 and 2.132, and using the ��q̃

approximation (2.58). The corrections to these two observables based on Eq. (2.58) as a function of � (=�t = �b) are
presented in Fig. 3.15 with the other parameters chosen according to (3.4). The mmax

h scenario and no-mixing scenario
are selected for both plots, with two values of MSUSY, as before. The induced shifts in MW can become as large as
0.14 GeV for the extreme case, i.e. when MSUSY = 2 TeV, � = 0.6 and the case of no-mixing is considered. In the
mmax

h scenario �MW is smaller, �MW � 0.05 GeV, but still sizeable. Using the complete expressions, Eq. (2.101) and
(2.132), yields results practically indistinguishable from those shown in Fig. 3.15 [25]. Thus, Eq. (2.58) is a sufficiently
accurate, simple approximation for squark-mixing effects in the electroweak precision observables.
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scenario (left panel) and no-mixing scenario (right panel), for different values of � [25].

The shifts � sin2�eff , shown in the right plot of Fig. 3.15, can reach values up to 7 × 10−4 for MSUSY = 2 TeV and
� = 0.6 in the no-mixing scenario, being smaller (but still sizeable) for the other scenarios considered here.

Extreme parts of the NMFV parameter space (especially for �t �= �b) can be excluded already with today’s precision.
But even small values of � = �t = �b could be probed with the future precision on sin2�eff , provided that theoretical
uncertainties will be sufficiently under control [226].
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and no-mixing scenarios and different choices of MSUSY
obtained with Eq. (2.58) [25]. Using the complete expressions, Eq. (2.101) and (2.132), yields practically indistinguishable results.

3.2. The lightest MSSM Higgs boson mass

The light CP-even MSSM Higgs-boson mass, mh, depends at tree level on MA and tan �. Via loop corrections, see
2.7.1, it depends most strongly on the top-quark mass and on the parameters of the scalar top sector. As an example, in
Fig. 3.16 we show mh as a function of tan � in two benchmark scenarios, the mmax

h and the no-mixing scenario [33],
see Appendix B. mh is shown for a central value of mt = 172.7 GeV (dashed curves), and the variation with mt by
±2.9 GeV is shown as the shaded (green) band. Higher mh values are obtained for larger mt . (All results in this section
have been obtained with FeynHiggs2.2 [100,174,179,180].)

From the result for the mmax
h scenario in Fig. 3.16, the upper bound of mh � 131 GeV for mt = 172.7 GeV and

MSUSY = 1 TeV (neglecting the intrinsic theoretical uncertainties), can be read off that was mentioned in Section 2.7.
Allowing a 1
 variation of mt shifts the upper bound on mh to about 134 GeV. The variation of the mh prediction with
mt is even larger in the region of small tan �. The comparison of the MSSM prediction with the LEP exclusion bound
is shown in more detail in Fig. 3.18.

The relevance of the parametric uncertainty in mh induced by different experimental errors on mt is emphasized
in Fig. 3.17 [64], where the prediction for mh is shown as a function of MA in the mmax

h benchmark scenario. The
evaluation of mh has been done for a central value of the top-quark mass of mt = 175 GeV and for tan � = 5. The
figure shows that a reduction of the experimental error from �m

exp
t = 1–2 GeV (LHC) to �m

exp
t = 0.1 GeV (ILC) has a

drastic effect on the prediction for mh.
The prospective experimental error on mh is also shown in Fig. 3.17, while no intrinsic theoretical uncertainty from

unknown higher-order corrections is included. If this intrinsic uncertainty can be reduced to a level of �m
intr,future
h ≈

0.1 GeV, its effect in the plot would be roughly as big as the one induced by �m
exp
t = 0.1 GeV. An intrinsic uncertainty

of �m
intr,future
h ≈ 1 GeV, on the other hand, would lead to a significant widening of the band of predicted mh values

(similar to the effect of �m
exp
t =1 GeV). In this case, the intrinsic uncertainty would dominate, implying that a reduction

of �m
exp
t =1 GeV to �m

exp
t =0.1 GeV would lead to an only moderate improvement of the overall theoretical uncertainty

of mh.
Confronting the theoretical prediction for mh with a precise measurement of the Higgs-boson mass constitutes a

very sensitive test of the MSSM, which allows one to obtain constraints on the model parameters. The sensitivity of
the mh prediction to MA shown in Fig. 3.17 cannot directly be translated into a prospective indirect determination of
MA, however, since Fig. 3.17 shows the situation in a particular benchmark scenario [33] where, by definition, certain
fixed values of all other SUSY parameters are assumed. In a realistic situation the anticipated experimental errors of
the other SUSY parameters and possible effects of intrinsic theoretical uncertainties have to be taken into account.
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2.9 GeV [62].

In Section 3.5 the prospects for an indirect determination of SUSY parameters from precision physics in the MSSM
Higgs sector will be discussed.

As another example, we demonstrate the impact of the current theory uncertainty of �mintr
h ≈ 3 GeV [169] on the

exclusion bound of tan �, see Ref. [187] for a detailed discussion. The mmax
h benchmark scenario [33] has been designed

such that for fixed values of mt and MSUSY the predicted value of the lightest CP-even Higgs boson mass is maximized
for each value of MA and tan �. In Fig. 3.18 we show again mh as a function of tan �, together with the LEP exclusion
bound for the mass of a SM-like Higgs [13], MSM

H �114.4 GeV, as a vertical long-dashed line. The solid thick line
shows the result in the mmax

h scenario for mt = 172.7 GeV.
While in general a detailed investigation of a variety of different possible production and decay modes is necessary

in order to determine whether a particular point of the MSSM parameter space can be excluded via the Higgs searches
or not, the situation simplifies considerably in the region of small tan � values. In this parameter region the lightest
CP-even Higgs boson of the MSSM couples to the Z boson with SM-like strength, and its decay into a bb̄ pair is
not significantly suppressed. Thus, within good approximation, constraints on tan � can be obtained in this parameter
region by confronting the exclusion bound on the SM Higgs boson with the upper limit on mh within the MSSM. From
the intersection of the theoretical upper bound in the mmax

h scenario (solid thick line) with the experimentally excluded
region for mh, the experimentally excluded region for tan � can be read off. For comparison, we also show the same
upper bound, including the theory uncertainty from unknown higher-order corrections, �mintr

h ≈ 3 GeV [169] (solid thin
line). Taking the theory uncertainty into account, the bound on tan � is significantly weakened (see also Ref. [186]).
Furthermore, we show that the mmax

h scenario with the top-quark mass shifted upwards by one standard deviation,
mt = 175.6 GeV (dot-dashed thick line), also including the 3 GeV intrinsic theoretical uncertainty (dot-dashed thin
line). Both variations result in a considerable reduction of the region of tan � that can be excluded from the Higgs
search at LEP. This example shows that both a reduction of the experimental error on mt and of the intrinsic theoretical
uncertainty will be crucial in order to obtain reliable bounds on the SUSY parameters from measurements in the Higgs
sector (see also Section 3.5).
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3.3. MSSM predictions for (g − 2)�

In our numerical discussion of SUSY contributions to the anomalous magnetic moment of the muon, we first analyse
the one-loop results from a scan over the MSSM parameter space [201] and then focus on two recently obtained two-
loop corrections: the corrections involving a closed SM fermion/sfermion loop [204], and the ones involving closed
chargino/neutralino loops [196].

3.3.1. One-loop results from a MSSM parameter scan
The possible size of the MSSM one-loop contributions to a� can be assessed by a parameter scan. In Fig. 3.19 (from

Ref. [201]) the possible MSSM contributions to a� are shown as a function of the lightest observable SUSY particle
(LOSP). The lighter (green) dots correspond to a �̃ LOSP, darker (red) dots represent charginos/neutralinos as LOSP.
The dashed lines show the allowed contours if |A�| is allowed to vary up to 100 TeV. The shaded bands correspond to
the one/two 
 allowed ranges in 2001. One can see that the MSSM can easily explain the discrepancy in Eq. (2.147).
On the other hand, a� can place stringent constraints on the allowed MSSM parameter space. In order to set reliable
bounds in the MSSM the theoretical uncertainties have to be under control. This requires the evaluation of higher-order
contributions. The existing two-loop corrections are reviewed in the following subsections.

3.3.2. Contributions from closed SM fermion/sfermion loops
The two-loop corrections to (g−2)� involving a closed SM fermion/sfermion loop, corresponding to the diagrams in

lines 2–4 of Fig. 2.9, have been evaluated in Ref. [204], extending earlier analyses of Refs. [205,206]. These two-loop
corrections have a complicated parameter dependence. Therefore, a parameter scan has been performed. tan � was
set to tan � = 50, and universal soft SUSY-breaking parameters in the scalar fermion mass matrices were assumed. It
turned out to be crucial to take experimental constraints from mh, ��, BR(b → s�) and BR(Bs → �+�−) into account
(for details, see Ref. [204]). It was shown that the diagrams involving a photon and a Higgs boson (diagram no. 12 in
Fig. 2.9) give the by far largest contribution.
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The whole contribution of this set of diagrams is shown in Fig. 3.20. The results shown in the figure are the following
(see Refs. [204] for further details):

• The outer lines show the largest possible results if all experimental constraints are ignored. They show a steep rise of
�a2L

� for decreasing m
f̃1

; for m
f̃1

< 150 GeV contributions larger than 15 × 10−10, corresponding to two standard
deviations of the experimental error on a�, are possible.

• The next two lines show the possible results if the bound mh > 106.4 GeV (it results from the experimental bound
of 114.4 GeV by taking into account a 5 GeV parametric uncertainty from the experimental error of mt and a
3 GeV intrinsic uncertainty, see Section 2.7.2) and then in addition the bound on �� are satisfied. The maximum
contributions are very much reduced already by the mh bound, and the �� bound reduces further the positive region
for small sfermion masses. If both bounds are taken into account, �a2L

� > 5 × 10−10 and �a2L
� < − 10 × 10−10 is

excluded for m
f̃1

� 100 GeV.

• The two innermost lines correspond to taking into account in addition the bound on BR(Bs → �+�−) and finally also
on BR(b → s�), resulting in the shaded area. In particular, taking into account the BR(b → s�) bound eliminates
most data points with m

f̃1
� 150 GeV and thus leads to a strong reduction of the possible size of the contributions

(see however the discussion in Refs. [234,235]). The largest contributions of ±4 × 10−10 to �a2L
� , corresponding to

∼ 0.7
 of the experimental error, are possible for m
f̃1

≈ 150, . . . , 200 GeV.

It should be kept in mind that the size of the corrections shown in Fig. 3.20 depends on the assumption of the univer-
sality of the soft SUSY-breaking parameters. It has been shown in Ref. [204] that lifting this universality assumption
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Fig. 3.20. Maximum contributions of the diagrams with a closed SM fermion/sfermion loop to �a2L
� as a function of the lightest squark

mass, min{mt̃1
, mt̃2

, m
b̃1

, m
b̃2

}. The constraints from mh, ��, BR(b → s�) and BR(Bs → �+�−) have been taken into account (for details,

see Ref. [204]).
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can lead to substantially larger contributions. As an example, for M
D̃

/M
Ũ

= 10 (see Eq. (1.15)), �a2L
� > 15 × 10−10

could be achieved without violating any experimental constraint.

3.3.3. Contributions from closed chargino/neutralino loops
The two-loop contributions to a� containing a closed chargino/neutralino loop [196] constitute a separately UV-finite

and gauge-independent class. The corresponding diagrams are shown in the last line of Fig. 2.9. The chargino/neutralino
two-loop contributions, a

�,2L
� , depend on the mass parameters for the charginos and neutralinos �, M1,2, the CP-odd

Higgs mass MA, and tan �.
The chargino/neutralino sector does not only contribute to a

�,2L
� but already to a

SUSY,1L
� , so it is interesting to

compare the one- and two-loop contributions. For the case that all masses, including the smuon and sneutrino masses,
are set equal to MSUSY, the one-loop and two-loop contributions can be trivially compared using Eqs. (2.155), (2.162),
showing that the two-loop contribution shifts the one-loop result by about 2%.

However, the chargino/neutralino sector might very well be significantly lighter than the slepton sector of the second
generation, in particular in the light of FCNC andCP-violating constraints, which are more easily satisfied for heavy first
and second generation sfermions. In Fig. 3.21 the chargino/neutralino two-loop contributions are therefore compared
with the supersymmetric one-loop contribution a

SUSY,1L
� at fixed high smuon and sneutrino masses M

l̃
= 1 TeV. The

other masses are again set equal, � = M2 = MA ≡ MSUSY. Furthermore, we use a large tan � value, tan � = 50, which
enhances the SUSY contributions to a�.

It has been found that for MSUSY � 400 GeV the two-loop contributions become more and more important. For
MSUSY ≈ 100 GeV they amount to 50% of the one-loop contributions, which are suppressed by the large smuon and
sneutrino masses.

The two-loop corrections have an important impact on constraints on the MSSM parameter space obtained from
confronting the MSSM prediction with the experimental value. This is shown in Fig. 3.22, where the regions in the
�–M2-plane resulting from the MSSM prediction including the two-loop correction, a

SUSY,1L
� + a

�,2L
� , are compared

with the corresponding regions obtained by neglecting the two-loop correction, i.e. with a
SUSY,1L
� alone. The different

panels correspond to different values of tan � and the common smuon and sneutrino mass M
l̃

(the latter has an impact
only on the one-loop contribution), while MA has been fixed to MA = 200 GeV. These parameter choices are allowed
essentially in the entire �–M2-plane by the current experimental constraints mentioned above, provided the t̃ and b̃
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Fig. 3.22. Constraints on the MSSM parameter space in the �–M2-plane for MA = 200 GeV from comparing the MSSM prediction with the data.

The different regions resulting from the MSSM prediction based on a
SUSY,1L
� + a

�,2L
� (contours with solid border) and from the prediction based

on a
SUSY,1L
� alone (dashed contours) are shown. The slepton mass scale (which enters only the one-loop prediction) and tan � are indicated for each

plot. The contours are at (24.5, 15.5, 6.5, −2.5, −11.5, −20.5)×10−10 corresponding to the central value of a
exp
� −a

theo,SM
� =(24.5±9.0)×10−10

and intervals of 1–5
 [196]).

mass parameters are of O(1 TeV). The contours drawn in Fig. 3.22 correspond to the 1
, 2
, . . . regions around the
value a

exp
� −a

theo,SM
� = (24.5 ± 9.0)× 10−10, based on Refs. [69,73]. We find that for the investigated parameter space

the SUSY prediction for a� lies mostly in the 0.2
 region if � is positive. However, the new two-loop corrections shift
the 1
 and2
 contours considerably. This effect is more pronounced for smaller tan � and larger M

l̃
.
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3.4. MSSM fits and constraints from existing data

There have been many studies of the sensitivity of low-energy observables to the scale of supersymmetry, including the
precision electroweak observables [63,202,228,236–240]. Such analyses face the problem of the large dimensionality
of the MSSM parameter space. In this section, we discuss global fits in the unconstrained MSSM (for real parameters
and using certain universality assumptions). Analyses in specific soft SUSY-breaking scenarios, such as mSUGRA,
will be discussed in Section 4. An overview of non-supersymmetric analyses of precision observables and resulting
constraints can be found in Ref. [241].

The most recent global fit of the MSSM to the electroweak precision data has been performed in Ref. [239] (for
previous analyses, see Refs. [56,236–238]). The results are shown in Fig. 3.23, where the predictions in the SM, the
MSSM and the constrained MSSM (i.e. the mSUGRA scenario) are compared with the experimental data (the SUSY
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predictions are for tan � = 35). Fig. 3.23 shows the features discussed above: the MSSM predictions for MW and (for
large tan �) (g − 2)� are in better agreement with the data than in the SM (slight improvements also occur for the
total width of the Z boson, �Z , and for B → Xs�). On the other hand, for the observables with the largest deviations
between theory and experiment, namely Ab

FB and the neutrino–nucleon cross section measured at NuTeV (the latter is
not shown in Fig. 3.23), the MSSM does not yield a significant improvement compared to the SM. The global fit in
the MSSM has a lower �2 value than in the SM. Since the MSSM fit has less degrees of freedom than the SM one, the
overall fit probability in the MSSM is only slightly better than in the SM.

3.5. Future expectations

In this section, we give a few examples of the possible physics gain obtainable with the anticipated improvements of
the accuracies of the experimental results and the theoretical predictions for the precision observables (see Table 1.4
and the discussion in Chapter 2). We focus here on the effects from MW , sin2�eff and mh. For a discussion of (g − 2)�
in the framework of the mSUGRA scenario, see Chapter 4 below.

Two examples of future prospects were already presented in Section 3.1.1. In Fig. 3.10 the SM and MSSM predictions
in the mt–MW plane are shown and compared with the current and future experimental precisions. Likewise, in
Fig. 3.11 the results for the MW – sin2�eff plane are given. It becomes apparent that the prospective improvements in
the experimental accuracies, in particular at the ILC with GigaZ option, will provide a high sensitivity to deviations
both from the SM and the MSSM.

The indirect constraints on supersymmetric models from electroweak precision tests, in particular with GigaZ
accuracy, will yield information complementary to that obtained from the direct observation of supersymmetric particles
at the Tevatron, the LHC or the ILC (for a comprehensive overview on the prospects of the LHC and the ILC and the
potential for combined analyses using LHC and ILC data, see Ref. [10]). As an example, we present an analysis in the
scalar top sector [225]. Direct information on the stop sector parameters mt̃1

and �t̃ can be obtained at the ILC from
the process e+e− → t̃1 t̃1, yielding a precision of O(1%) [242]. These direct measurements can be combined with the
indirect information from requiring consistency of the MSSM with a precise measurement of mh, MW and sin2�eff .
This is shown in Fig. 3.24, where the allowed parameter space according to measurements of mh, MW and sin2�eff is
displayed in the plane of the heavier stop mass, mt̃2

, and | cos �t̃ | for the accuracies at the ILC with and without the
GigaZ option and at the LHC (see Table 1.4). For mt̃1

(with an assumed central value of 180 GeV), a precision at the
ILC of 1.25 GeV is taken [242], while for the LHC an (optimistic) uncertainty of 10% in mt̃1

is assumed. For the other
parameters the following central values and prospective experimental errors have been used: MA = 257 ± 10 GeV,
� = 263 ± 1 GeV, M2 = 150 ± 1 GeV, mg̃ = 496 ± 10 GeV. For the top-quark mass an error of 0.2 GeV has been used
for GigaZ/ILC and of 2 GeV for the LHC. For tan � a lower bound of tan � > 10 has been taken. For the future theory
uncertainty of mh from unknown higher-order corrections, an error of 0.5 GeV has been assumed. The central values
for MW and sin2�eff have been chosen in accordance with a non-zero contribution to the precision observables from
SUSY loops. For the experimental errors at the different colliders, the values given in Table 1.4 have been used. For
the future intrinsic theoretical uncertainties the estimates of Eq. (3.2) have been taken.

As one can see in Fig. 3.24, the allowed parameter space in the mt̃2
–| cos �t̃ | plane is significantly reduced from

the LHC to the ILC, in particular in the GigaZ scenario (i.e. precision measurements of MW and sin2�eff ). Using
the information on | cos �t̃ | from the direct measurement [242] allows an indirect determination of mt̃2

with a pre-
cision of better than 5% in the GigaZ case. By comparing this indirect prediction for mt̃2

with direct experimental
information on the mass of this particle, the MSSM could be tested at its quantum level in a sensitive and highly
non-trivial way.

As a further example [64] for the potential of a precise measurement of the EWPO to explore the effects of new
physics, we show in Fig. 3.25 the predictions for MW and sin2�eff in the SM and the MSSM in comparison with the
prospective experimental accuracy obtainable at the LHC and the ILC without GigaZ option (labelled as LHC/LC)
and with the accuracy obtainable at the ILC with GigaZ option (labelled as GigaZ). For the assumed experimental
central values of MW and sin2�eff the current central values [18] are used. For the Higgs-boson mass a future measured
value of mh = 115 GeV has been assumed. The MSSM parameters have been chosen in this example according to
the reference point SPS1b [34]. In Fig. 3.25 the inner (blue) areas correspond to �m

exp
t = 0.1 GeV (ILC), while the

outer (green) areas arise from �m
exp
t = 2 GeV (LHC). For the error of �	had we have assumed a future determination
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view of the prospective accuracies for these observables at the ILC with and without GigaZ option and at the LHC. The direct information on the
mixing angle from a measurement at the ILC is indicated together with the corresponding indirect determination of mt̃2

.

of 7 × 10−5. In the SM, this is the only relevant uncertainty apart from �mt (the remaining effects of future intrinsic
uncertainties have been neglected in this figure). The future experimental uncertainty of mh is insignificant for this
kind of electroweak precision tests. For the experimental errors on the SUSY parameters, we have assumed a 5%
uncertainty for mt̃1

, mt̃2
, m

b̃1
, m

b̃2
around their values given by SPS1b. The mixing angles in the t̃ and b̃ sectors have

been left unconstrained. The mass of the CP-odd Higgs-boson MA is assumed to be determined to about 10%, and it
is assumed that tan � ≈ 30 ± 4.5.

The figure shows that the improvement in �mt from �mt = 2 to 0.1 GeV strongly reduces the parametric uncertainty
in the prediction for the EWPO. In the SM case it leads to a reduction by about a factor of 10 in the allowed parameter
space of the MW . sin2�eff plane. In the MSSM case, where many additional parametric uncertainties enter, a reduction
by a factor of more than 2 is obtained in this example. The comparison of the theoretical prediction in both models with
the GigaZ accuracy on sin2�eff and MW illustrates how sensitively the electroweak theory will be tested via EWPO (for
a comparison with the current experimental errors, which are not shown in Fig. 3.25, see Fig. 3.11). The simultaneous
improvement of the precision on mt , sin2�eff (by an order of magnitude compared to the situation at the LHC) and
MW (by a factor of two compared to the LHC case) will greatly enhance the potential for establishing the effects of
new physics via EWPO.

As mentioned above, the precision observable mh will allow to set very stringent constraints on the MSSM parameters,
in particular in the scalar top sector (for large values of tan � also in the scalar bottom sector). This can be crucial for
determining the mixing angle in the scalar top sector, and (as a related quantity) the trilinear Higgs-stop coupling, At .
If the scalar top quarks are too heavy to be directly produced at the ILC, only rather limited information on the mixing
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in the stop sector will be available from the LHC [10]. The prospects for an indirect determination of At within the
MSSM from a precision measurement of mh are illustrated in Fig. 3.26. A precise knowledge of the parameter At

turned out to be crucial for global fits of the MSSM to the data [53,54], which will be necessary in order to determine
the low-energy SUSY Lagrangian parameters, and for an extrapolation of the results obtainable at the next generation
of colliders to physics at high scales [64].

Fig. 3.26 shows the prediction for mh as a function of At , where the parametric uncertainties induced by all other
MSSM input parameters are taken into account according to the prospective experimental information on the SUSY
spectrum from the LHC and the ILC in the SPS 1b scenario [34] (see Ref. [10]). The impact of the LHC and the
ILC precision on the top-quark mass is indicated. The sensitivity for an indirect determination of At follows from
intersecting the MSSM prediction for mh with the experimental value. This comparison is affected, however, by the
intrinsic theoretical uncertainties of the mh prediction. The effect of the intrinsic theoretical uncertainties is shown by
two horizontal bands illustrating the present intrinsic uncertainty of 3 GeV and a prospective uncertainty of 0.5 GeV.
While the present intrinsic uncertainty on mh would not allow to obtain a reliable indirect determination of At , a future
theoretical uncertainty of 0.5 GeV together with a precision measurement of mt at the ILC would allow an indirect
determination of At to better than about 10%, up to a sign ambiguity. The sign ambiguity can be resolved using precision
measurements of Higgs branching ratios at the ILC, see Ref. [243].

Likewise, it has been shown in Ref. [243] that an indirect determination of MA can be performed (investigated in
the case of the SPS 1a scenario [34]) from Higgs boson branching ratio measurements at the ILC combined with a
precision measurement of mt and information on the SUSY spectrum from the LHC and ILC.
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intrinsic theoretical uncertainty on mh of 3 GeV (today) and 0.5 GeV (future).

4. Implications in soft SUSY-breaking scenarios

The fact that no SUSY partners of the SM particles have so far been observed means that low-energy SUSY cannot
be realized as an unbroken symmetry in nature, and SUSY models thus have to incorporate additional Supersymmetry
breaking contributions. This is achieved by adding to the Lagrangian (defined by the SU(3)C ×SU(2)L ×U(1)Y gauge
symmetry and the superpotential W ) further terms that respect the gauge symmetry but break SUSY (softly, i.e. no
quadratic divergences appear), so called “soft SUSY-breaking” (SSB) terms. The assumption made in the MSSM that
the R-parity symmetry is conserved reduces the amount of new soft terms allowed in the Lagrangian.

In the previous sections the EWPO have been discussed within the unconstrained MSSM. In the MSSM, no further
assumptions are made on the structure of the soft SUSY-breaking parameters, and a parameterization of all possible
SUSY-breaking terms is used [244,245]. This gives rise to the huge number of more than 100 new parameters in addition
to the SM, which in principle can be chosen independently of each other. A phenomenological analysis of the EWPO in
this model in full generality would clearly be very involved, and one usually restricts to certain benchmark scenarios,
see e.g. Refs. [32–35]. On the other hand, models in which all the low-energy parameters are determined in terms of a
few parameters at the Grand Unification scale (or another high-energy scale), employing a specific soft SUSY-breaking
scenario, provide an attractive framework for investigating SUSY phenomenology. The most prominent scenarios in
the literature are minimal Supergravity (mSUGRA) [26,27], minimal Gauge Mediated SUSY Breaking (mGMSB) [28]
and minimal Anomaly Mediated SUSY Breaking (mAMSB) [29–31].

The Higgs boson sector has been analysed in all three soft SUSY-breaking scenarios, see Refs. [16,17,186,246,247]
and references therein. For a comprehensive analysis of EWPO within the mSUGRA scenario, see Ref. [248].
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4.1. The soft SUSY-breaking scenarios

The three most commonly studied soft SUSY-breaking scenarios are

• mSUGRA (minimal Super Gravity scenario) [26,27]: Apart from the SM parameters (for the experimental values
of the SM input parameters we use Ref. [3]), four parameters and a sign are required to define the mSUGRA
scenario:

{m0, m1/2, A0, tan �, sign(�)}. (4.1)

The parameter m0 is a common scalar mass, m1/2 a common fermion mass and A0 a common trilinear couplings,
all defined at the GUT scale (∼ 1016 GeV). On the other hand, tan � (the ratio of the two vacuum expectation
values) and sign(�) are defined at the low-energy scale.7

• mGMSB (minimal Gauge Mediated SUSY-Breaking) [28]: An interesting alternative to mSUGRA is based on
the hypothesis that the soft SUSY-breaking occurs at relatively low energy scales and is mediated mainly by
gauge interactions through the so-called “messenger sector” [28,249,250]. Also in this scenario, the low-energy
phenomenology is characterized in terms of four parameters and a sign,

{Mmess, Nmess, �, tan �, sign(�)}, (4.2)

where Mmess is the overall messenger mass scale; Nmess is a number called the messenger index, parameterizing
the structure of the messenger sector; � is the universal soft SUSY-breaking mass scale felt by the low-energy
sector. The phenomenology of mGMSB is characterized by the presence of a very light gravitino G̃ with mass
given by m3/2 =m

G̃
=F/

√
3M ′

P � (
√

F/100 TeV)22.37 eV [251], where
√

F is the fundamental scale of SUSY
breaking and M ′

P = 2.44 × 1018 GeV is the reduced Planck mass. Since
√

F is typically of order 100 TeV, the G̃

is always the LSP in the GMSB scenario.
• mAMSB (minimal Anomaly Mediated SUSY-Breaking) [29–31]: In this model, SUSY breaking happens on a

separate brane and is communicated to the visible world via the super-Weyl anomaly. The particle spectrum is
determined by three parameters and a sign:

{maux, m0, tan �, sign(�)}. (4.3)

The overall scale of SUSY particle masses is set by maux, which is the VEV of the auxiliary field in the supergravity
multiplet. m0 is introduced as a phenomenological parameter to avoid negative slepton mass squares, for other
approaches to this problem see Refs. [29,252–255].

4.2. �� in mSUGRA, mGMSB, mAMSB

In order to compare the prediction for �� in three soft SUSY-breaking scenarios, a scan has been performed over
the parameters defined in Eqs. (4.1)–(4.3). For our numerical analysis, the scan has been done in the following ranges:

• mSUGRA:

50 GeV�m0 �1 TeV,

50 GeV�m1/2 �1 TeV,

−3 TeV�A0 �3 TeV,

1.5� tan ��60,

sign � = +1. (4.4)

7 More precisely, the scenario where universality of the soft SUSY-breaking parameters m0, m1/2 and A0 at the GUT scale is assumed should
be called the constrained MSSM (CMSSM). An economical way to ensure this universality is by gravity-mediated SUSY breaking in a minimal
supergravity (mSUGRA) scenario, but there are other ways to validate the CMSSM assumptions. The mSUGRA scenario predicts in particular a
relation between the gravitino mass and m0, which is not necessarily fulfilled in the CMSSM. For simplicity, we do not make the distinction between
the CMSSM and the mSUGRA scenario, but use the phrase “mSUGRA” for both.
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• GMSB:

104 GeV���2 × 105 GeV,

1.01��Mmess �105�,

1�Nmess �8,

1.5� tan ��60,

sign � = +1. (4.5)

• AMSB:

20 TeV�maux �100 TeV,

0�m0 �2 TeV,

1.5� tan ��60,

sign � = +1. (4.6)

For each scan point the full low-energy spectrum of the MSSM has been evaluated. It has been checked that the
low-energy result respects the existing experimental constraints (for a more detailed discussion, see Ref. [246]):

• LEP Higgs bounds:
The results from the Higgs search at LEP have excluded a considerable part of the MSSM parameter space [12,13].
The results of the search for the MSSM Higgs bosons are usually interpreted in three different benchmark scenarios
[32]. The 95% CL exclusion limit for the SM Higgs boson of MSM

H > 114.4 GeV [13] applies also for the lightestCP-
even Higgs boson of the MSSM, except for the parameter region with small MA and large tan �. In the unconstrained
MSSM this bound is reduced to mh > 91.0 GeV [12] for MA � 150 GeV and tan �� 8 as a consequence of a reduced
coupling of the Higgs to the Z boson. For the CP-odd Higgs boson a lower bound of MA > 91.9 GeV has been
obtained [12]. In order to correctly interpolate between the parameter regions where the SM lower bound8 of
MSM

H � 113 GeV and the bound mh � 91 GeV apply, we use the result for the Higgs-mass exclusion given with
respect to the reduced ZZh coupling squared (i.e. sin2(� − 	eff)) [256]. We have compared the excluded region with
the theoretical prediction obtained at the two-loop level for mh and sin2(� − 	eff) for each parameter set (using
mt = 175 GeV).

• Experimental bounds on SUSY particle masses:
In order to restrict the allowed parameter space in the three soft SUSY-breaking scenarios, the current experimental
constraints on their low-energy mass spectrum [3] have been employed. The precise values of the bounds that we
have applied can be found in Ref. [246].

• Other restrictions:
As mentioned above, the top-quark mass is fixed to mt =175 GeV in our analysis. While ��SM depends quadratically
on mt at the one-loop level, the impact on ��SUSY is relatively mild.
We briefly list here the further restrictions that we have taken into account for the analysis in this section. For a
detailed discussion, see Ref. [246].
◦ The GUT or high-energy scale parameters are taken to be real, no SUSY CP-violating phases are assumed.
◦ In all models under consideration the R-parity symmetry is taken to be conserved.
◦ Parameter sets that do not fulfil the condition of radiative electroweak symmetry breaking (REWSB) are discarded

(already at the level of generating the model parameters).
◦ Parameter sets that do not fulfil the constraints that there should be no charge- or colour-breaking minima are

discarded (already at the level of generating the model parameters).

8 Instead of the actual experimental lower bound, MSM
H

� 114.4 GeV [13], we use the value of 113 GeV in order to take into account some effect
of the uncertainty in the theoretical evaluation of mh from unknown higher-order corrections, which is currently estimated to be ∼ 3 GeV in the
unconstrained MSSM (see Eq. (2.145)).
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Fig. 4.1. ��SUSY is shown in the three soft SUSY-breaking scenarios as a function of the lightest scalar top-quark mass.

◦ We demand that the lightest SUSY particle (LSP) is uncoloured and uncharged. In the mGMSB scenario the LSP
is always the gravitino, so this condition is automatically fulfilled. Within the mSUGRA and mAMSB scenario,
the LSP is required to be the lightest neutralino. Parameter sets that result in a different LSP are excluded.

◦ We do not apply any further cosmological constraints, i.e. we do not demand a relic density in the region favoured
by dark matter constraints [257].

◦ The scan has been stopped at high-squark masses, since the contributions of heavy particles to ��SUSY decouple
[98,120]. No parameter points with mq̃ � 1.5 TeV have been considered.

If a point has passed all constraints, the results for the masses and mixing angles have been used to determine ��,
based on the one-loop result given in Eq. (2.64) and the SUSY two-loop contributions described in Section 2.4.2.
The result is shown in Fig. 4.1, where ��SUSY is plotted as a function of the lightest scalar top-quark mass, mt̃1

. In
general, mSUGRA allows smaller scalar-quark masses than mGMSB and mAMSB, and correspondingly larger values
of ��SUSY can be realized. For mt̃1

� 300 GeV, values of ��mSUGRA � 7 × 10−4 can be reached. For larger mt̃1
values

all three soft SUSY-breaking scenarios result in ��SUSY � 1 × 10−4 (a shift in ��SUSY of 1 × 10−4 corresponds to
shifts in MW and sin2�eff of about �MW =6 MeV and � sin2�eff =−3×10−5, respectively). No part of the mSUGRA,
mGMSB, or mAMSB parameter space that fulfils all other phenomenological constraints (see above) can be excluded
with the current precision on the EWPO. On the other hand, for mt̃1

� 500 GeV all three scenarios result in roughly the
same prediction, i.e. it would be very challenging in this case to obtain information on the soft SUSY-breaking scenario
with the help of ��.

Using Eq. (2.58) the SUSY contribution to �� can be translated into a shift in the prediction of MW and sin2�eff .
For mt̃1

� 300 GeV, the shift induced within the mSUGRA scenario can amount up to

�MmSUGRA
W � 35 MeV, |� sin2�mSUGRA

eff |� 2 × 10−4, (4.7)

which corresponds roughly to one standard deviation of the current experimental uncertainties. For larger mt̃1
, mt̃1

�
500 GeV, the shifts induced in MW and sin2�eff for all three soft SUSY-breaking scenarios fulfil

�MSUSY
W � 6 MeV, |� sin2�SUSY

eff |� 3.5 × 10−5. (4.8)
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Fig. 4.2. Allowed tan � values as a function of xtop = Xt/MSUSY in the mGMSB scenario [259]. The high-energy scan parameters are chosen as in
Eq. (4.5) (but with both signs of �).

While for MW the possible shift in this case is about one standard deviation of the GigaZ precision, for sin2�eff
deviations of 2–3
 of the GigaZ precision could be realized.

4.3. Prediction for mh in mSUGRA, mGMSB, mAMSB

We now turn to the prediction of the lightest Higgs-boson mass for the case where the low-energy parameters are
obtained from high-scale parameters within specific soft SUSY-breaking scenarios. Since the low-energy parameters
are connected to each other via the renormalization group equations, they cannot be chosen independently. This results
in a reduction of the upper bound on mh compared to the unconstrained MSSM. As an example, we show in Fig. 4.2
the allowed values of tan � as a function of xtop ≡ Xt/MSUSY in the mGMSB scenario [259]. The high-energy scan
parameters are chosen as in Eq. (4.5) (but with both signs of �). It can be seen that large values of tan �, which are
necessary for large mh values, can only be realized for Xt/MSUSY between −0.3 and −1. On the other hand, the largest
values for mh are obtained for Xt/MSUSY ≈ +2 [165,166], which cannot be realized in the mGMSB. Similarly, also
the variation of the upper bound on mh with mt turns out to be somewhat different in the soft SUSY-breaking scenarios
compared to the unconstrained MSSM (see below).

In the following we refer to the results of Ref. [186], which are in agreement with the previous results in Refs.
[17,246], but use the most recent experimental value of the top-quark mass. In Table 4.1, the maximum values of mh

for mt = 178.0 GeV in mSUGRA, mGMSB and mAMSB are compared. In order to have comparable numbers, an
upper limit on the scalar top masses in all scenarios has been chosen, √mt̃1

mt̃2
�2 TeV. No theoretical uncertainties are

included. One can see that all three scenarios result in significantly lower maximum mh values than the unconstrained
MSSM, where masses up to ∼ 138 GeV can be realized for MSUSY � 2 TeV and mt =178.0 GeV (see Figs. 3.16, 3.18).
The variation of this maximum mh value with mt is also shown. In the unconstrained MSSM, one has �mh/�mt ≈ 1
[187]. In the mSUGRA, mGMSB and mAMSB scenarios, this is reduced down to ∼ 0.58–0.7.

These results have an interesting consequence for the Higgs search at the Tevatron. The Tevatron has the potential
to exclude an SM-like Higgs boson with a mass of MSM

H � 130 GeV with an integrated luminosity of 4–8 fb−1 [14]
per experiment (and it will furthermore reduce the experimental error on mt ). Since the coupling of the lightest
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Table 4.1
The maximum mh values (for mt = 178.0 GeV and

√
mt̃1

mt̃2
�2 TeV) and the variation of this maximum value with mt are shown in the three soft

SUSY-breaking scenarios

Maximum mh (GeV) �mh/�mt

mSUGRA 129.0 0.65
mGMSB 123.7 0.70
mAMSB 124.6 0.58

No theoretical uncertainties are included. See Refs. [17,186,246].

CP-even Higgs boson to gauge bosons is close to the SM value for essentially all the parameter space of the three soft
SUSY-breaking scenarios [246], the Tevatron should either observe an excess of Higgs-like events over the background
expectation or rule out the mSUGRA, the mGMSB and the mAMSB scenarios.

4.4. EWPO in mSUGRA

In this section we review the prediction for MW , sin2�eff , the lightest Higgs-boson mass, the anomalous magnetic
moment of the muon, a� ≡ (g−2)�/2, and BR(b → s�) within the mSUGRA scenario, taking into account constraints
on the cold dark matter (CDM) relic density from WMAP and other cosmological data [257]. More details can be found
in Ref. [248]. The results have been obtained by scanning the universal soft supersymmetry-breaking gaugino mass
m1/2 and scalar mass m0 for different representative values of tan � and the trilinear soft supersymmetry-breaking
parameter A0. The sign of the supersymmetric Higgs parameter � has been chosen to be positive.

We require the cosmological relic density ��h
2 due to the neutralino LSP to fall into the range [260]

0.094 < ��h
2 < 0.124. (4.9)

Lower values of ��h
2 would be allowed if not all the cosmological dark matter is composed of neutralinos. However,

larger values of ��h
2 are excluded by cosmology. The CDM constraints have the effect within the mSUGRA scenario,

assuming that the dark matter consists largely of neutralinos, of restricting m0 to very narrow allowed strips for any
specific choice of A0, tan � and the sign of � [261,262]. Thus, the dimensionality of the mSUGRA scenario is effectively
reduced, and one may explore SUSY phenomenology along these “WMAP strips”. We furthermore take into account
the constraints on the parameter space from the direct search for supersymmetric particles [3] and Higgs bosons [12,13].

For tan � two values have been chosen, tan � = 10, 50, representing values in the lower and upper parts of the
(experimentally and theoretically) allowed parameter space. For the GUT-scale parameter A0, five different values
have been investigated (below also a scan over A0 is performed), A0 = (−2, −1, 0, 1, 2) × m1/2, in order to cover
the allowed parameter space. The top-quark mass has been fixed to mt = 178 GeV. (Results for mt = 172.7 GeV and
tan � = 10 have been presented in Ref. [258]. They show qualitatively the same behaviour as the results given below.)
Since the results are analysed along the WMAP strips, they are given as a function of m1/2. The corresponding m0
values (for fixed A0 and tan �) follow from the CDM constraint. The nonexcluded values for m1/2 start at around
m1/2 ≈ 200 GeV for both values of tan �. While for tan � = 10 m1/2 is restricted by the CDM constraint to be
m1/2 � 900 GeV, for tan � = 50 the allowed values exceed m1/2 � 1500 GeV.

We start with the prediction for MW . The evaluation is based on the corrections described in Section 2.5. We display
in Fig. 4.3 the mSUGRA prediction for MW and compare it with the present measurement (solid lines) and a possible
future determination with GigaZ (dashed lines). Panel (a) shows the values of MW obtained with tan �=10 and |A0|�2,
and panel (b) shows the same for tan � = 50. It is striking that the present central value of MW (for both values of
tan �) favours low values of m1/2 ∼ 200–300 GeV, though values as large as 800 GeV are allowed at the 1
 level, and
essentially all values of m1/2 are allowed at the 90% confidence level. The GigaZ determination of MW might be able
to determine indirectly a low value of m1/2 with an accuracy of ±50 GeV, but even the GigaZ precision would still be
insufficient to determine m1/2 accurately if m1/2 � 600 GeV (in accordance with the discussion in Section 4.2).

The situation is similar for the prediction of sin2�eff shown in Fig. 4.4. The results are based on the corrections
described in Section 2.6 and are given for the same values of A0 and tan � as in Fig. 4.3. As in the case of MW , low
values of m1/2 are also favoured by sin2�eff . The present central value prefers m1/2 = 300–500 GeV, but the 1
 range
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Fig. 4.3. The mSUGRA prediction for MW as a function of m1/2 along the WMAP strips for (a) tan �= 10 and (b) tan �= 50 for various A0 values
[248]. In each panel, the centre (solid) line is the present central experimental value, and the (solid) outer lines show the current ±1
 range. The
dashed lines correspond to the anticipated GigaZ accuracy, assuming the same central value.

200 400 600 800 1000 1200 1400
m1/2 [GeV]

0.2300

0.2305

0.2310

0.2315

0.2320

si
n2 θ e

ff

CMSSM, µ > 0

tanβ = 10, A0 = 0
tanβ = 10, A0 = +m1/2

tanβ = 10, A0 = -m1/2

tanβ = 10, A0 = +2 m1/2

tanβ = 10, A0 = -2 m1/2

200 400 600 800 1000 1200 1400
m1/2 [GeV]

0.2300

0.2305

0.2310

0.2315

0.2320

si
n2 θ e

ff

CMSSM, µ > 0

tanβ = 50, A0 = 0
tanβ = 50, A0 = +m1/2

tanβ = 50, A0 = -m1/2

tanβ = 50, A0 = +2 m1/2

tanβ = 50, A0 = -2 m1/2

Fig. 4.4. The mSUGRA prediction for sin2�eff as a function of m1/2 along the WMAP strips for (a) tan � = 10 and (b) tan � = 50 for various A0
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The dashed lines correspond to the anticipated GigaZ accuracy, assuming the same central value.

extends beyond 1500 GeV (depending on A0), and all values of m1/2 are allowed at the 90% confidence level. The
GigaZ precision on sin2�eff would be able to determine m1/2 indirectly with even greater accuracy than MW at low
m1/2, but would also be insufficient if m1/2 � 700 GeV.

Next, the prediction of a� within mSUGRA is analysed. The evaluation is based on the full one-loop result [197],
the corresponding QED two-loop corrections [203] and the two-loop corrections from the closed SM fermion/sfermion
loops [204]. The very recent two-loop corrections of Ref. [196] have been included via an approximation formula.
For older evaluations of a� within mSUGRA (mostly based on the full one-loop result and the corresponding QED
corrections), see Refs. [199–202].
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As seen in Fig. 4.5, the mSUGRA prediction for a� is almost independent of A0 for tan � = 10, but substantial
variations are possible for tan � = 50, except at very large m1/2. In the case tan � = 10, m1/2 ∼ 200–400 GeV is again
favoured at the ±1
 level, but this preferred range shifts up to 400–800 GeV if tan � = 50, depending on the value of
A0. For the two tan � values the requirement of agreement of the mSUGRA prediction with the experimental data at
the 95% CL restricts m1/2 to

tan � = 10: 200 GeV �m1/2 � 600 GeV, (4.10)

tan � = 50: 350 GeV �m1/2 � 1100 GeV. (4.11)

Now we turn to the decay b → s�. Since this decay occurs at the loop level in the SM, the MSSM contribution might
be of similar magnitude. A recent theoretical estimate of the SM contribution to the branching ratio yields [263]

BR(b → s�) = (3.70 ± 0.30) × 10−4, (4.12)

where the calculations have been carried out completely to NLO in the MS renormalization scheme, and the error is
dominated by higher-order QCD uncertainties. However, the error estimate for BR(b → s�) is still under debate, see
e.g. Refs. [234,235]. The MSSM evaluation shown below is based on Refs. [263,264].

For comparison, the present experimental value estimated by the Heavy Flavour Averaging Group (HFAG) is [265]

BR(b → s�) = (3.54+0.30
−0.28) × 10−4, (4.13)

where the error includes an uncertainty due to the decay spectrum, as well as the statistical error. The very good agreement
between Eq. (4.13) and the SM prediction Eq. (4.12) imposes important constraints on the MSSM. The uncertainty
range shown in Fig. 4.6 combines linearly the current experimental error and the present theoretical uncertainty in the
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Fig. 4.7. The mSUGRA predictions for mh as functions of m1/2 with (a) tan � = 10 and (b) tan � = 50 for various A0 [248]. A hypothetical
experimental value is shown, namely mh = 120 GeV. We display an optimistic anticipated theory uncertainty of ±0.2 GeV, as well as a more
realistic theory uncertainty of ±0.5 GeV and the current theory uncertainty of ±3 GeV.

SM prediction. Since the mSUGRA corrections are generally smaller for smaller tan �, even values of m1/2 as low as
∼ 200 GeV would be allowed at the 90% confidence level if tan � = 10, whereas m1/2 � 400 GeV would be required
if tan � = 50. These limits are very sensitive to A0, and, assuming that in the future the experimental and theoretical
uncertainty in BR(b → s�) can be reduced by a factor ∼ 3, the combination of BR(b → s�) with the other precision
observables might be able, in principle, to constrain A0 significantly.

Finally, we present results for the lightest Higgs-boson mass in the CDM allowed strips of the mSUGRA parameter
space. In Fig. 4.7 we show the results for mh. A hypothetical measurement at mh = 120 GeV is shown. Since the
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experimental error at the ILC will be smaller than the prospective theory uncertainties (see Section 2.7.2), we display
the effect of the current and future intrinsic uncertainties. In addition, a more optimistic value of �mh = 200 MeV
is also shown. The figure clearly illustrates the high sensitivity of this electroweak precision observable to variations
of the supersymmetric parameters (detailed results for Higgs-boson phenomenology in mSUGRA can be found in
Refs. [16,17,246,247]). The comparison between the measured value of mh and a precise theory prediction will allow
to set tight constraints on the allowed parameter space of m1/2 and A0.

4.5. Fits in mSUGRA

The results for EWPO presented in the last section have been used to perform a fit for the mSUGRA parameter
space with CDM constraints [248]. We first review the fit using the currently existing data on MW , sin2�eff , a� and
BR(b → s�). Secondly, we show the precision that can be obtained in the future, using improved measurements of
the EWPO and including also the mh measurement as well as the measurement of Higgs-boson branching ratios. More
details can be found in Ref. [248].

4.5.1. Present situation
We now investigate the combined sensitivity of the four low-energy observables for which experimental measure-

ments exist at present, namely MW , sin2�eff , (g − 2)� and BR(b → s�). We begin with an analysis of the sensitivity
to m1/2 moving along the WMAP strips with fixed values of A0 and tan �. The experimental uncertainties, the intrinsic
errors from unknown higher-order corrections and the parametric uncertainties have been added quadratically, except
for BR(b → s�), where they have been added linearly. Assuming that the four observables are uncorrelated, a �2 fit
has been performed with

�2 ≡
N∑

n=1

(
R

exp
n − Rtheo

n


n

)2

. (4.14)

Here R
exp
n denotes the experimental central value of the nth observable, so that N = 4 for the set of observables included

in this fit, Rtheo
n is the corresponding mSUGRA prediction and 
n denotes the combined error, as specified above.

The results are shown in Fig. 4.8 for tan �=10 and 50. They indicate that, already at the present level of experimental
accuracies, the electroweak precision observables combined with the WMAP constraint provide a sensitive probe
of the mSUGRA scenario, yielding interesting information about its parameter space. For tan � = 10, mSUGRA
provides a very good description of the data, resulting in a remarkably small minimum �2 value. The fit shows a clear
preference for relatively small values of m1/2, with a best-fit value of about m1/2 = 300 GeV. (Performing the fit for
mt = 172.7 ± 2.9 GeV instead of mt = 178.0 ± 4.3 GeV yields a minimum that is even somewhat more pronounced
and located at a slightly lower m1/2 value, see Ref. [258].) The best fit is obtained for A0 �0, while positive values
of A0 result in a somewhat lower fit quality. The fit yields an upper bound on m1/2 of about 600 GeV at the 90% CL
(corresponding to ��2 �4.61). The mass spectrum favoured at the 90% CL contains many light states that should be
accessible at the LHC and the ILC, offering good prospects of the direct detection of SUSY.

For tan � = 50 the overall fit quality is worse than for tan � = 10, and the sensitivity to m1/2 from the precision
observables is lower. This is related to the fact that, whereas MW and sin2�eff prefer small values of m1/2 also for
tan � = 50, as seen in Figs. 4.3 and 4.4, the CMSSM predictions for (g − 2)� and BR(b → s�) for high tan � are
in better agreement with the data for larger m1/2 values, as seen in Figs. 4.5 and 4.6. Also in this case the best fit is
obtained for negative values of A0, but the preferred values for m1/2 are 200–300 GeV higher than for tan � = 10. The
mass spectrum favoured at the 90% CL is heavier than for tan � = 10. However, still several SUSY particles should
be accessible at the ILC. Since coloured SUSY particles should be within the kinematic reach of the LHC, also in this
case there are good prospects of the direct detection of SUSY.

We now turn to the results obtained from a scan over the m1/2–A0 parameter plane. Fig. 4.9 shows the CDM-allowed
regions in the m1/2–A0 plane for tan � = 10 and 50. The current best-fit values obtained via �2 fits for tan � = 10
and 50 are indicated. The coloured regions around the best-fit values correspond to the 68% and 90% CL regions
(corresponding to ��2 �2.30, 4.61, respectively).

For tan �= 10 (upper plot of Fig. 4.9), the precision data yield sensitive constraints on the available parameter space
for m1/2 within the WMAP-allowed region. The precision data are less sensitive to A0. The 90% CL region contains
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Fig. 4.8. The results of �2 fits based on the current experimental results for the precision observables MW , sin2�eff , (g − 2)� and BR(b → s�)
are shown as functions of m1/2 in the mSUGRA parameter space with CDM constraints for different values of A0 [248]. The upper plot shows the
results for tan � = 10, and the lower plot shows the case tan � = 50.
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Fig. 4.9. The results of �2 fits for tan � = 10 (upper plot) and tan � = 50 (lower plot) based on the current experimental results for the precision
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all the WMAP-allowed A0 values in this region of m1/2 values. As expected from the discussion above, the best fit is
obtained for negative A0 and relatively small values of m1/2. At the 68% CL, the fit yields an upper bound on m1/2 of
about 450 GeV. This bound is weakened to about 600 GeV at the 90% CL.9

As discussed above, the overall fit quality is worse for tan � = 50, and the sensitivity to m1/2 is less pronounced.
This is demonstrated in the lower plot of Fig. 4.9, which shows the result of the fit in the m1/2–A0 plane for tan �= 50.
The best fit is obtained for m1/2 ≈ 500 GeV and negative A0. The upper bound on m1/2 increases to nearly 1 TeV at
the 68% CL.

4.5.2. Future expectations
We now investigate the combined sensitivity of the precision observables MW , sin2�eff , (g − 2)�, BR(b → s�), mh

and the ratio BR(h → bb̄)/BR(h → WW ∗) in the m1/2–A0 plane of the mSUGRA scenario using ILC (and GigaZ)
accuracies. For (g − 2)� we assume a reduction of the error by two, for BR(b → s�) by a factor of three. At the ILC
with

√
s = 1 TeV, a measurement of BR(h → bb̄)/BR(h → WW ∗) with an accuracy of ∼ 1.5% can be envisaged

[266]. Fig. 4.10 shows the fit results for tan � = 10, while Fig. 4.11 shows the tan � = 50 case.
In each figure we show two plots, where the WMAP-allowed region and the best-fit point according to the current

situation (see Fig. 4.9) are indicated. In both plots two further hypothetical future ‘best-fit’ points have been chosen for
illustration. For all the ‘best-fit’ points, the assumed central experimental values of the observables have been chosen
such that they precisely coincide with the ‘best-fit’ points.10 The coloured regions correspond to the 68% and 90% CL
regions around each of the ‘best-fit’ points according to the ILC accuracies.

The comparison of Figs. 4.10, 4.11 with the result of the current fit, Fig. 4.9, shows that the ILC experimental precision
will lead to a drastic improvement in the sensitivity to m1/2 and A0 from comparing precision data with the mSUGRA
predictions. For the best-fit values of the current fits for tan � = 10 and 50, the ILC precision would allow one to narrow
down the allowed mSUGRA parameter space to very small regions in the m1/2–A0 plane. The comparison of these
indirect predictions for m1/2 and A0 with the information from the direct detection of supersymmetric particles would
provide a stringent test of the model at the loop level. A discrepancy could indicate that supersymmetry is realized in
a more complicated way than assumed in mSUGRA.

The additional hypothetical ‘best-fit’ points shown in Figs. 4.10, 4.11 illustrate the indirect sensitivity to the mSUGRA
parameters in scenarios where the precision observables prefer larger values of m1/2. Because of the decoupling property
of supersymmetric theories, the indirect constraints become weaker for increasing m1/2.

For tan �= 10, we have investigated hypothetical ‘best-fit’ values for m1/2 of 500, 700 GeV (for A0 > 0 and A0 < 0)
and 900 GeV. For m1/2 = 500 GeV, the 90% CL region in the m1/2–A0 plane is significantly larger than for the current
best-fit value of m1/2 ≈ 300 GeV, but interesting limits can still be set on both m1/2 and A0. For m1/2 = 700 and
900 GeV, the 90% CL region extends up to the boundary of the WMAP-allowed parameter space for m1/2. Even for
these large values of m1/2, however, the precision observables (in particular the observables in the Higgs sector) still
allow one to constrain A0.

For tan � = 50, where the WMAP-allowed region extends up to much higher values of m1/2, we find that for a
‘best-fit’ value of m1/2 as large as 1 TeV the precision data still allow one to establish an upper bound on m1/2 within
the CDM-allowed region. This indirect sensitivity to m1/2 could give important hints for supersymmetry searches
at high-energy colliders. For ‘best-fit’ values of m1/2 in excess of 1.5 TeV, on the other hand, the indirect effects of
heavy sparticles become so small that they are difficult to resolve even with ILC accuracies. To conclude, the indirect
sensitivity from the measurement of precision observables at the ILC have a potential even to exceed the direct search
reach of both the LHC and ILC.

9 A preference for relatively small values of m1/2 within the mSUGRA has also been noticed in Ref. [239], where only (g−2)� and BR(b → s�)
had been analysed.

10 It was checked explicitly that assuming future experimental values of the observables with values distributed statistically around the present
‘best-fit’ points with the estimated future errors does not degrade significantly the qualities of the fits.
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Fig. 4.10. The results of a �2 fit based on the prospective experimental accuracies for the precision observables MW , sin2�eff , (g−2)�, BR(b → s�),
mh and Higgs branching ratios at the ILC are shown in the m1/2–A0 plane of the mSUGRA with WMAP constraints for tan �=10 [248]. In both plots
the WMAP-allowed region and the best-fit point according to the current situation (see Fig. 4.9) are indicated. In both plots two further hypothetical
future ‘best-fit’ values have been chosen for illustration. The coloured regions correspond to the 68% and 90% CL regions according to the ILC
accuracies.

5. Conclusions

An overview of the current status of precision tests of supersymmetry has been given, and future prospects have
been discussed. We have mainly focused on the W boson mass, MW , the effective leptonic weak mixing angle, sin2�eff ,
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Fig. 4.11. The results of a �2 fit based on the prospective experimental accuracies for the precision observables MW , sin2�eff , (g−2)�, BR(b → s�),
mh and Higgs branching ratios at the ILC are shown in the m1/2–A0 plane of the mSUGRA scenario with WMAP constraints for tan � = 50 [248].
In both plots the WMAP-allowed region and the best-fit point for tan � = 50 according to the current situation (see Fig. 4.9) are indicated. In both
plots two further hypothetical future ‘best-fit’ values have been chosen for illustration. The coloured regions correspond to the 68% and 90% CL
regions according to the ILC accuracies.

the anomalous magnetic moment of the muon, (g − 2)�, and the lightest CP-even MSSM Higgs-boson mass, mh, but
constraints from b physics, direct collider searches and cosmological data have also been included in the discussion.

Precise experimental data are available for MW , sin2�eff and (g − 2)�, while mh is expected to become a precision
observable if a supersymmetric Higgs sector is realized in nature. Confronting the high experimental precision with
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the theory predictions provides sensitivity to quantum corrections of the theory, where the whole structure of the
model enters. This allows to set indirect constraints on the properties of particles even if they are too heavy to be
produced directly. In order to exploit the experimental precision, the theoretical predictions for the electroweak precision
observables in supersymmetry (or in other models that are confronted with the data) should be at least at the same
level of accuracy. Ideally, the remaining theoretical uncertainties should be so small that they are negligible compared
to the experimental errors. Sophisticated higher-order calculations are necessary in order to match this demand, and a
considerable effort will be required for keeping up with the prospective improvements of the experimental accuracies
in future experiments.

We have briefly discussed the necessary ingredients of higher-order calculations in supersymmetry, focusing in
particular on regularization and renormalization, and have pointed out important differences compared to the case of
the SM. The large number of parameters in the MSSM, most of which are not directly related to any particular physical
observable, and the relations imposed by the underlying symmetry make it quite involved to formulate a coherent and
easily applicable renormalization prescription for the whole MSSM. Different prescriptions exist in the literature for
various sectors of the MSSM, but no common standard has emerged yet.

The current status of the theoretical predictions for the most important precision observables has been revieved, and
estimates of the remaining theoretical uncertainties from unknown higher-order corrections and from the experimental
errors of the SM input parameters have been given. The theoretical predictions have then been compared with the
current experimental results (in the case of mh the MSSM prediction has been confronted with the exclusion bounds
from the Higgs search at LEP). The resulting constraints on the MSSM parameter space have been analysed. We have
investigated how well the MSSM describes the data and whether the data give some preference for the MSSM as
compared to the SM. This has been analysed both for the unconstrained MSSM and for specific soft SUSY-breaking
scenarios. The mSUGRA scenario, characterized by four parameters and a sign, can still simultaneously satisfy the
constraints from the electroweak precision data, direct collider searches and the stringent bounds on cold dark matter
in the universe from WMAP and other cosmological data. It turns out that the mSUGRA scenario with cosmological
constraints in fact yields a very good fit to the data. The fit results indicate a clear preference for a relatively light mass
scale of the SUSY particles, offering good prospects for direct SUSY searches at the LHC and at the ILC.

We have investigated future prospects of electroweak precision tests of supersymmetric models. Anticipated improve-
ments in the experimental precision have been discussed in view of the LHC and the ILC, and the prospects for a further
reduction of the theoretical uncertainties have been analysed. Based on these estimates of future experimental and the-
oretical precisions, we find that the sensitivity of the precision tests will improve very significantly, leading to stringent
constraints on the MSSM parameter space (and on any other conceivable model of new physics). If supersymmetric
particles are discovered at the next generation of colliders, the combination of information from the direct observation
of SUSY particles and the indirect information from electroweak precision observables will allow very powerful tests
of the model. This can lead to a discrimination between the minimal and non-minimal models, a distinction between
different SUSY-breaking scenarios, and indirect predictions for parameters or particle masses that are not directly
experimentally accessible. These consistency tests at the quantum level using all available experimental information
will be crucial in the quest to extrapolate the results of the next generation of colliders to physics at high scales.
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Appendix A. Loop integrals

In this appendix, we present the loop integrals needed for the two-loop evaluation of the SUSY contributions to
the EWPO. D denotes the space–time dimension and � ≡ 1

2 (4 − D). In the following formulas we neglected the
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terms proportional to �E − ln(4
�2), which are connected to the divergent parts. They always cancel for physical
observables.

The analytical formulas for A0 and B0 are taken from Ref. [141], T134 and T234′ are taken from Ref. [142], the other
integrals can be found in Ref. [127]. The notation for the integrals is as in Ref. [213].

A.1. A0(m)
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r1 and r2 are the solutions of
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T134′(m2, m2, 0) = D/2 − 1

(D − 3)m2
(A0(m))2, (A.20)
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A.4. T234′

Here p2 contains a small imaginary part, iε, ε > 0.
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where r1 and r2 are given by Eq. (A.6).
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A.5. T123′4

The following formula, looking at the series expansion in 1/�, are correct up to O(�0).
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with the following functions
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xij = 2m2
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�(x, y) = 1 + 2x + 2y + (x − y)2, (A.27)

F(x) = 6Li3(x) − 4Li2(x) ln(x) − ln2(x) ln(1 − x), (A.28)

G(x) = −2Li2(1 − x) + 
2

3
+ x

1 − x
ln2(x). (A.29)
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A.6. T1123′4

The following formula, looking at the series expansion in 1/�, is correct up to O(�0).
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A.7. T123′45

The following formula, looking at the series expansion in 1/�, correct up to O(�0).
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This function is finite in the limit � → 0.

Appendix B. Input parameters and benchmark scenarios

For our numerical results, the following values of the SM parameters have been used if not otherwise indicated (all
other quark and lepton masses are negligible):

GF = 1.16639 × 10−5, m� = 1.777 GeV,

MW = 80.450 GeV, mt = 174.3 GeV,

MZ = 91.1875 GeV, mb = 4.25 GeV,

�Z = 2.4952 GeV, mc = 1.5 GeV. (B.1)

The predictions for the observables in this report are in some cases expressed in terms of running bottom- and top-quark
masses in order to absorb QCD corrections. The numerical values of these running masses differ from the pole masses
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given in Eq. (B.1). The impact of varying the input value of the top-quark mass has been discussed in the report for
several observables.

For our numerical evaluation, we often refer to four benchmark scenarios that have been defined in Ref. [33] for
Higgs boson searches at hadron colliders and beyond. The four benchmark scenarios are (more details can be found in
Ref. [33]):

• the “mmax
h ” scenario, which yields a maximum value of Mh for given MA and tan �:

mt = 174.3 GeV, MSUSY = 1 TeV, � = 200 GeV, M2 = 200 GeV,

Xt = 2MSUSY, A� = Ab = At, mg̃ = 0.8MSUSY, (B.2)

• the “no-mixing” scenario, with no mixing in the t̃ sector:

mt = 174.3 GeV, MSUSY = 2 TeV, � = 200 GeV, M2 = 200 GeV,

Xt = 0, A� = Ab = At, mg̃ = 0.8MSUSY, (B.3)

• the “gluophobic-Higgs” scenario, with a suppressed ggh coupling:

mt = 174.3 GeV, MSUSY = 350 GeV, � = 300 GeV, M2 = 300 GeV,

Xt = −750 GeV, A� = Ab = At, mg̃ = 500 GeV, (B.4)

• the “small-	eff ” scenario, with possibly reduced decay rates for h → bb̄ and h → �+�−:

mt = 174.3 GeV, MSUSY = 800 GeV, � = 2.5MSUSY, M2 = 500 GeV,

Xt = −1100 GeV, A� = Ab = At, mg̃ = 500 GeV. (B.5)

As explained above, for the sake of simplicity, MSUSY is chosen as a common soft SUSY-breaking parameter for all
three generations.
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