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Abstract

We present new methods for the evaluation of one-loop tensor integrals which have been used in the cal-
culation of the complete electroweak one-loop corrections @ e— 4 fermions. The described methods
for 3-point and 4-point integrals are, in particular, applicable in the case where the conventional Passarino—
Veltman reduction breaks down owing to the appearance of Gram determinants in the denominator. One
method consists of different variants for expanding tensor coefficients about limits of vanishing Gram de-
terminants or other kinematical determinants, thereby reducing all tensor coefficients to the usual scalar
integrals. In a second method a specific tensor coefficient with a logarithmic integrand is evaluated nu-
merically, and the remaining coefficients as well as the standard scalar integral are algebraically derived
from this coefficient. For 5-point tensor integrals, we give explicit formulas that reduce the corresponding
tensor coefficients to coefficients of 4-point integrals with tensor rank reduced by one. Similar formulas
are provided for 6-point functions, and the generalization to functions with more internal propagators is
straightforward. All the presented methods are also applicable if infrared (soft or collinear) divergences are
treated in dimensional regularization or if mass parameters (for unstable particles) become complex.
0 2005 Elsevier B.V. All rights reserved.

1. Introduction

Future high-energy colliders, such as the LHC and the ILC, will allow us to search for new
physics and to test the Standard Model of the electroweak and strong interaction with high pre-
cision. Various interesting processes naturally involve many particles in the final state, where
“many” means three, four, or more particles. Such processes often proceed via one or more res-
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onances that subsequently decay, or they represent an irreducible background to such resonanc
processes. In order to exhaust the potential of future colliders, precise theoretical predictions
including strong and electroweak corrections to many-particle processes are mandatory.

The calculation of radiative corrections to complicated processes poses a number of problems.
Besides the huge amount of algebra, the appearance of unstable particles, and the integration o
the multi-dimensional phase space, a numerically stable evaluation of the loop integrals is an
important ingredient. In this paper we are concerned with the calculation of one-loop integrals,
including those with five and six external legs. The generalization from six to more external legs
is straightforward.

Pioneering work in the calculation of one-loop integrals was performed by Veltman and
collaborators. Together with ‘t Hooft, he provided compact explicit expressions for the basic
one-loop integrals, the scalar 1-point, 2-point, 3-point, and 4-point intefthlsvhich have
been completed later by other authf2$. Elaborating on an idea of Brown and Feynnidh
together with Passarino he provided systematic formulas that allow to reduce all tensor inte-
grals with up to four internal propagators to the basic scalar intefthl§hese methods are
basically sufficient for the calculation of radiative corrections to processes with four external
particles for non-exceptional configurations. Nevertheless, in the sequel some improvements and
additions have been worked out. Van Oldenborgh and Vermaseren constructed a different tensor
basis that allows to concentrate some of the numerical instabilities into a number of determi-
nantg5]. Ezawa et al. performed the reduction using an orthonormal tenso{8hagisreduction
in Feynman-parameter space, which is equivalent to the Passarino—Veltman scheme, is used in
the GRACE packagf].

The main drawback of the Passarino—Veltman reduction and variants thereof is the appearance
of Gram determinants in the denominator, which spoil the numerical stability if they become
small. In processes with up to four external particles this happens usually only near the edge of
phase space, e.g. for forward scattering or on thresholds. For the special cases where a Gran
determinant is identically zero, alternative reduction procedures have been devised by Stuart
and collaboratorf8,9] (see also Ref10]). However, in processes with more than four external
particles, Gram determinants also vanish within phase space, and methods for the calculation of
tensor integrals are needed where Gram determinants are small but not exactly zero[llh]Ref.
such a method has been devised by constructing combinatioNspafint and(N — 1)-point
scalar integrals that are finite in the limit of vanishing Gram determinants and using this limit if
the Gram determinant becomes small.

On the other hand, alternative tensor reduction schemes have been developed using different
sets of master integrals. Davydychev could relate the coefficients of one-loop tensor integrals
to scalar integrals in a different number of space—time dimengiijsand Tarasov found re-
cursion relations between these integfdl3]. These methods have been further elaborated by
different groupqd14-18] In this approach all one-loop tensor integrals can be reduced to finite
4-point integrals in(D + 2) dimensions and divergent 3-point and 2-point integral®irali-
mensions. Numerical instabilities in this reduction, which are also due to small Gram or other
kinematical determinants, have been investigated in[R&ffor the massless case, and a system-
atic improvement by an iteration technique has been proposed. While numerically stable analytic
expressions for the basic integrals are available for the massless case, these turn out to be hard t
construct for the massive case. Therefore, one typically reduces these basic integrals to the usua
scalar integrals or, in particular for vanishing Gram determinants, calculates them by numerical
integration[19].
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Other algorithms, which are based on recursion relations similar to Passarino—\Veltman re-
duction and applicable irrespective of the number of external legs, have been presented in
Refs.[20,21] These algorithms do not completely avoid the appearance of inverse Gram de-
terminants.

It was realized already in the sixties by Melrose that scalar integrals with more than four lines
in the loop, i.e., 5-point and higher-point scalar integrals, can be reduced to scalar integrals with
less internal propagators in four dimensiq@8]. These methods were subsequently extended
and improved by several authds11,12,14-16,23-27nd generalized to dimensional regu-
larization in Refs[14,28,29] In Ref.[26], a method for the reduction of 5-point integrals that
completely avoids inverse leading Gram determinants has been worked out. Recently, a similar
reduction has been found that even reduces 5-point tensor integrals to 4-point integrals with rank
reduced by on§l9]. In all these approaches 5- and higher-point tensor integrals are reduced to
tensor integrals with less internal propagators.

Various approaches have been proposed that use numerical integration of loop integrals and
are, thus, complementary to most of the methods mentioned so far. In the approach[80Ref.
which has been elaborated for general one-loop integrals with up to six external legs, the
Feynman-parameter integrals are rewritten in such a way that they can be numerically integrated
in a stable way. A fully numerical approach to calculate loop integrals by contour integration
was proposed in Ref31]. A semi-numerical approach that relies on the subtraction of UV and
infrared divergences has been advocated in RBe}. A different semi-numerical method makes
use of the fact that all tensor one-loop integrals can be expressed in terms of one- and two-
dimensional parameter integrals which are suitable for numerical integf88pnA numerical
method based on multi-dimensional contour deformation has been proposed|[itoRé&finally,
Feynman-parameter integrals have been numerically performed with a small but &ihftefin
the propagator denominators and a subsequent extrapotatio® in Ref.[34]. So far, none
of these methods has proven their performance in calculations of higher-order corrections for
processes with more than four external particles. In practice, one can still expect problems with
the numerical stability of the algebraic reduction to standard forms in specific regions of phase
space and with the speed of the underlying numerical integration of the basic loop integrals.

In this paper we describe methods that have actually been used in the calculation of the elec-
troweak corrections to'e~ — 4 fermions[35], i.e., in the first established calculation of the
complete one-loop electroweak corrections to a process with six external partinléfsis ap-
proach, 6-point integrals are directly expressed in terms of six 5-point functions, and the 5-point
integrals are written in terms of five 4-point functions. While we used the methods described in
Refs.[22,24] and Ref.[26] in the original calculatior35], in this paper we describe improved
methods for the reduction of 6-point and 5-point integrals which have meanwhile been imple-
mented in the code for the electroweak corrections'tete— 4 fermions and which further
improve its performance in numerical stability and CPU time. The 3-point and 4-point tensor
integrals are algebraically reduced to the (standard) scalar 1-point, 2-point, 3-point, and 4-point
functions as described below. For 1-point and 2-point integrals explicit numerically stable results
are used.

In more detail, the 3-point and 4-point functions are reduced to scalar integrals according
to the Passarino—Veltman algorithm if no small Gram determinants appear. This is the case for

1 The GRACE-Ioop Collaboration has recently reported on progress towards one-loop calculations foparticle
processes. Using the methods described in Ref27], first results on te~ — viHH have been shown at conferences
[36], and a status report ofe™ — wu~ v, ud has been given in Ref37].
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most points in parameter space. If a small Gram determinant appears, the reduction of 4-point to
3-point or 3-point to 2-point functions is done differently. Here we have worked out two alterna-
tive calculational methods (referred to as “rescue systems” in[B&}). One method makes use

of suitable expansions of the tensor coefficients about the limit of vanishing Gram determinants.
This is achieved in an iterative way and requires to calculate- 1)-point functions of higher
degree compared to the usual Passarino—Veltman redddimrally, again all tensor coefficients

can be expressed in terms of the standard scalar 1-point, 2-point, 3-point, and 4-point functions.
In practice, we use the first two to three terms in the expansions and we have to introduce dif-
ferent expansions for different regions of parameter space. In the second, alternative method we
evaluate a specific tensor coefficient, the integrand of which is logarithmic in Feynman parame-
trization, by numerical integration. Then the remaining coefficients as well as the standard scalar
integral are algebraically derived from this coefficient. This reduction again involves no inverse
Gram determinants; instead inverse modified Cayley determinants appeatr. In this approach, the
set of master integrals is not given by the standard scalar integrals anymore. For some specific
3-pointintegrals, where the modified Cayley determinant vanishes exactly, analytical results have
been worked out that allow for a stable numerical evaluation.

The paper is organized as follows. We summarize our conventions and useful definitions in
Section2. The evaluation of 1-point and 2-point tensor integrals is summarized in Se&ions
and 4 respectively. In Sectiob, we provide several methods for the reduction of 3-point and
4-point tensor coefficients and describe their actual applicatiofido e> 4 f in Section5.7. In
Section5.8 we consider UV and infrared divergences in detail and conclude that the proposed
methods are valid independent of the method for infrared regularization. The reduction of 5-point
and 6-point tensor integrals to integrals with smaller rank and smaller number of propagators is
detailed in Section6 and 7 respectively. IMppendix A we list the UV-divergent parts of one-
loop integrals that enter the reduction formulAppendix Bdescribes a treatment of singular
3-point integrals based on analytical methods. Finally, we discuss alternative reductions of 5- and
6-point tensor integrals iAppendices C and Drespectively.

2. Conventions and notation

One-loop tensoN -point integrals have the general form

(27-[“)40/ b ghtL...ghe
TNHLBP (py o pN_1,mQ, ..., mMN—1) = ——n— | d 2.1
(P1-++s PN=1, M0, - .., MN—1) 2 9 NoN1 - Nw 1 (2.1)
with the denominator factors

Nkz(q—i-pk)z—m%—i—ie, k=0,...,N—1, po=0, (2.2)

where & (¢ > 0) is an infinitesimally small imaginary part. Fa@@ = 0, i.e., no integration
momenta in the numerator of the loop integ(al,l) defines the scalav-point integraIToN. Fol-
lowing the notation of Ref[1] we setT! = A, T?=B, T3=C,T*=D, T°=E, TS =F.
Throughout we use the conventions of Rgf4,26] to decompose the tensor integrals into
Lorentz-covariant structures.

In order to be able to write down the tensor decompositions in a concise way we use a notation
(similar to the one of Ref[4]) in which curly braces denote symmetrization with respect to

2 A similar idea, where tensor coefficients are iteratively determined from higher rank tensors has been described in
Ref.[18].
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Lorentz indices in such a way that all non-equivalent permutations of the Lorentz indices on
metric tensorg and a generic momentupm contribute with weight one and that in covariants
with n, momentapfﬁ" (j =1,...,np) only one representative out of thg! permutations of the
indicesi is kept. Thus, we have for example

{p..py it =pitpit

(e}, ="' pf + 8" pi, + 8" pil,

{eppY i =&V pp pf, + 8" pf i, + &7 i, P, + 8" P Pty 4 877 Pl + 87V Pl Pl

{gg},uvpcr _g;wgpa +gvpg/u1 +gp/4 vo (23)

This definition is unique up to the selection of the representative permutations of the momenta.
For our calculation this does not matter, since the covariants are always contracted with quantities
that are totally symmetric in the indicés In fact in our calculation the definition is equivalent
to a normalization of the sum of thg,! covariants with a factor/Iz,!; in this case the third line
of (2.3)would contain 12 instead of 6 terms on the r.h.s.

We decompose the general tensor integral into Lorentz-covariant structures as

(%1
N,u1...kp __ Z Z H1...kp N )
T {g et g p }12n+1 lP TOO 12n+1---1p
n=0iz41,....ip=1 n o
MP N H1...kp N
Z P : R P Z {ep---Phiy.ip" Tovis...ip
Lip=1 i3,...,ip=1

{1 bp N
+ Z {ggp - PV " Toooas. ip T

..... lp =1
ZiP;l{g--~g ey o4, for Podd
——
+ o 2.4
{g...gpareTY o, for P even (2.4)
——

P

where[ P /2] is the largest natural number smaller or equaPi2. For each metric tensor in the
Lorentz covariant the corresponding coefficient carries an index pair “00” and for each momen-
tum p;, it carries the corresponding indéx

For tensor integrals up to rank five the decompositions more explicitly read

N, l/- N
T M_Zpll i1 T = Z pllplz 1112+guvT00’
i1=1 i1,ip=1
N _ wp N
T = Z pllplzpta 111213 + Z{gp} Too,
i1,i2,i3=1 i1=1
N-1 N-1
N, — HVPO =N N
TP = Z pl1p12p13pl4 11121314 + Z {gpp}tltz TOOiliz + {gg}/wpo TOOOO

i1,i2,i3,i4=1 i1,iz=1
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N—-1 N-1
N,uvpot __ HVPOT = N
r - Z ptlplzplapmplsTili2i3i4i5 + Z {gppp}lllzts 001123
i1,i2,i3, i4 is=1 i1,i2,iz3=1
;wpﬂt
+ Z{ggp} Tgvoa; (2.5)
i1=1

Because of the symmetry of the tenggf . all coefficientsTl.IlY_,.P are symmetric under per-
mutation of all indices. For convenience we assume this symmetry also for indices that are zero.
When reducing a tensor mtegrﬁlj”ltp, one encounters tensor integrals that are obtained by

omlttmg thekth denominatowv; ; we denote such integrals) (k). In the decomposition of

M up®), k=1,..., N, shifted indices appear which we denote as

fork > i,,
(i) = { —1, fork<i,.

After cancelling the denominata¥y the resulting tensor integrals are not in the standard form
but can be expressed in terms of standard integrals by shifting the integration momentum. We
choose to perform the shift— ¢ — p1, so that the followingV-point integrals appear:

(2nu)<4 D) /d qm -ghP
1---Ny
Nk=(q+pk—p1)2—mk+|e, kzl,...,N. 2.7

Note that the scalar integrabN = TV and the tensor coefficienfsf‘(’,, Té\c])oo ... are invariant
under this shift. The other coefficients Bf! , (k) can be recursively obtained as

(2.6)

TN:u1.. HP(Q) =

__FN . .
To 0 igpq1..ip 0) = TO...O ,-2)1“,1,,,,,,-1,,1(0), 2n41,...,1p > 1
2n 2n
N . .
To.0 Ligg42.. 1P(0) 0 -0 izn42. IP Z TO .0 r12n+2 ip ©),  izn42,...,ip > 0.
2n 2n
(2.8)
The recursion is solved by
k
k
Ty O =D Ty )
0.0 1.1 lgn+k+1 ip 0 .0 i1...0], 12n+1\+1 1,..., lp—l ?
on M =0 i1,..,0=1 2n
l.2n+k+l, e iP > 1. (29)

We also use the notatlcmj =1- 81], e,y 5; HEDES Zi#(« -+), and employ the caret™
to indicate indices that are omitted, i.e.,

™w. =7V (2.10)

i1 dyip i1edp—1ir41.0p”

In the reduction formulas for thgV + 1)-point functions the Gram matrix

2pip1 -+ 2pipN
7N — L (2.11)

2pnp1 -+ 2PNDPN
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appears. Its determinant, the Gram determinant, is denoted by

AWM =detz™), (2.12)

and its inverse can be written as

wn-1__ 1 s
(™), =xm i » (2.13)

whereZi(]].V) is the adjoint onl.(]].V), which can be calculated as

2pip1 -+ 2pipj-1 2pipj+1 - 2PiPN

200 = i+ ;pt:—lpl ;pl:—lp]:—l ;pl:—lp]:—‘rl ;pz:—lPN L @14
Pi+1p1 - Pi+1Pj-1 4pPi+1Pj+1 - Pi+1PN
2pnp1r -+ 2pNPj-1 2pNpj+1 - 2PNDN

i.e., from a reduced determinant @f") where theith row and thejth column have been dis-
carded.
We introduce a generalization of the adjoint by

Z(N)
Z ik

= (=)' sgnii — k) sgni — )

2pip1 -+ 2pipj-1 2pipj+1 - 2papi-1 2pipivl -+ 2PADPN
2pi—1p1 -+ 2pi-1pj-1 2pi-1Pj+1 -+ 2pi—1Pi-1 2pi-1Pi+1 -+ 2Pi-1PN
2pitap1 v+ 2piiPj-1  2pi+iPj+1l  cc+ 2Pi+iPi-1  2Pi+1PI+1  *+ 2Dit+1PN
X : . : : . : : . : ,
2pk-1p1 -+ 2Pk-1Pj-1 2pk-1Pj+1 -+  2Pk-1PI-1 2Pk—1Pi+1 '+ 2Dk—1PN
2pkyaP1 v 2Dk41Pj-1  2Pk+1Pj+1  ccc 2Pk+1Pi-1  2Pk+1Pl+1 -+ 2Dk+1PN
2pNp1 -+ 2pNpj-1 2pNpj+1 - 2pNPi-1 2PpNDPi+1 - 2DNDN
(2.15)

i.e., it is defined from a reduced determinan#st) where theith andkth rows and thejth and
Ith columns have been discarded. Moreover, it is defined to vanish=fot or j = [. For the
caseN =2, itis given by

=2
Zzilz)(jl) = 8i10kj — 8ijdu- (2.16)

Expanding the determinant &) along thekth row or thel/th column, respectively, it can
be written as

N N
N V) 5(N) (N) 5(N)
AN =Nz 720 =20 Z (2.17)

ml
m=1 m=1
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wherek and/ are not summed. Expanding the determinaiiRid4)with the/th column replaced

by (Z1, ..., Zyk) " along thelth column yields the relation
N ~
5(N) (N) 5(N) (N)
D ZimanZm =24 8k — 21 dur. (2.18)
m=1

and analogously

N

= (N) (N) _ 5N g 5(N)
D ZaimZim =2 8= 72 du. (2.19)
m=1
These imply the equations
Z(N) N\—15W) NY—15(0V) 5(N) 5(N) _ 5(N) 5(N) N
Z(ik)(jl):(z( ))jk Z _(Z( ))lk Zij :[Zil ij _Zij Zy ]/A( ) (2.20)

and

N
>(N) N) _ 5(N)
2 ZimymZm =Zij A= N,
m,n=1
N ~
5(N) W) 7 (N) _ AN)g 5. 5(N) 7 (N)
D ZiimZk Zin) =AM M8usi = 2.0 7). (2.21)
m,n=1

An important special case of the last relation is

N
(N) _ 7(N) 5(N) Z(N) (N) »(N)
A =2y Ly + Z Z imymyZmk Zin - (2.22)

m,n=1

The relationg(2.13)—(2.22)are valid for any (not necessarily symmetri€)x N matrix Z)
with determinaniA®¥).
We further introduce théN + 1) x (N + 1) matrix

2md  fi o fw
fi 2pipr -+ 2pipn
xWN) — ] ] ] , (2.23)
SN 2pNp1 -+ 2pNpN
with
fi=pZ—m?+m5 k=1,...,N. (2.24)
Its determinant is given by
Yoo Yo1 -+ Yon
N 2 (N l -y | Yo Yoo Yy
det( X M) =2mga™ — N £ fuZi) =| . o _ | =dety), (2.25)
nomet : : L
Yvo Yy1 -+ Ynn

where

Yij=m?+mé—(pi—pp? i.j=0,....N. (2.26)
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The matrixY = (¥;;) is sometimes called modified Cayley matrix and its determinant the modi-
fied Cayley determinarj22]. Its elements are related to those of the Gram matrix via
N ..
nj=z§j>—ﬁ—fj+2mg, Yo =Yio=—fi +2md, i,j=1.... N. (2.27)

The vanishing of degix M) is a necessary condition for the appearance of leading Landau sin-
gularities[38]. The adjoint ole.(jl.V), i,j=0,..., N, can be expressed as

v(N) _ A(N)
XOO =AY,
N
v(N) _ g(N) _ 5(N)
XOi _Xio __Zzin f”’
n=1

N
S(N) _ o 25(N) Z(N) Co
XV =2m§Zi + N ZG o Fafms G i=1...,N. (2.28)

n,m=1

For later use we also consider the generalized adjoint'8f. The relevant part of it is given by

SN) 5N

Xonoy =—2ij » Li=1...N,

~ - N 5

v (N) _ v(N) _ Z(N) o .

X(Ol)(/k) _X(/k)(ol) - _anz(m)(/k)’ L, J,k—l,,N (229)
n=1

These relations together wifB.20)imply
N)\ 5 (N) N (N) _ (V) 5(N)
det{x ™)z = AMXEY — X0 Xp,
MYFN) N W) _ 5 (N) (V)
det(X ™) X (00 = Xow X7 — Xip X5 - (2.30)

3. Evaluation of 1-paint functions

The scalar 1-point integral for an arbitrary complex magds given by

2
Ao(mo) =mg[A+|n<“—2) +1], (3.1)
Mg
whereA is the standard one-loop divergence
2
A= —— — In(4 3.2
1-D YE + In(4m) (3.2)

in D space—time dimensions with: denoting Euler’'s constant. The tensor integrals of ramk 2
(n=1,2,...) are given by

AMlon — (o oYLl g (3.3)
—— N——
n 2n

where the tensor coefficients are easily evaluated to

2n n
Ao o __ "0 Ao(Mo)-i—M%E i . (3.4)
——= 2"(n+1)! klk-i-l
- =

Because of Lorentz invariance obviously all tensors of odd rank vanish.
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4. Evaluation of 2-point functions

In the following we assume that at least one of the param@tfarmo, my is different from
zero; otherwise the 2-point integrals identically vanish in dimensional regularization,

B_(0,0,00=0, (4.1)

where the dots stand for any Lorentz index or any index of a tensor coefficient.
Up to rank 3 the 2-point tensor integrals are decomposed as

B"=pyB1,  B"'=pypiBii+g"" Boo,
B*P = pl' py p7 B111+ {gp}]"” Boot. 4.2)

The tensor coefficients can be algebraically reduced to scalar 1- and 2-point intég s Bo,

with the Passarino—Veltman algorithid] as more generally described in the next section. The
corresponding results for tensors up to rank 3 are, e.g., given in the appendix 2&eT.he
algebraic reduction for the coefficieni&g;,;,..., which correspond to covariants involving the
metric tensor,

1 1
Boo= G |:A0(0) + f1B1+2m3Bo + m3 +m? — épi],

1 1
Boo1= s |:—A0(0) + fiB11+2m3By — 5(2’"% +4m3 — P%)} etc, (4.3)

are numerically well behaved. However, the reduction formulas for the coeffichants cor-
responding to the cov::xriarp‘ﬁ_‘l pf” involve a factor lpf in each reduction step, so that
these reduction formulas become numerically unstable for smﬁatDwing to the simplicity of
2-point integrals it is, however, possible to derive closed expressions for these coefficients that
are numerically stable for all values pﬁ. Such a derivation is described below. Assuming the
knowledge of the coefficientB1._1, the remaining coefficient8g_o1..1 can be obtained from

the recurrence relations

1
B - 7[/4 0) + f1B 2p2B ]
0.0 1.1 2P 2= 1) 0011()+f10011+P10011
2n+2 P—2n-2 2n P-— 2n 1 2n P— 2n 1 211 P—2n
P-2
=0,...,| —|, 4.4
" [ . } (4.9)
or
B __ 1 [A (0) + 2m2B + f1B
0.0 1.1 =55 400 L1 080.0 1.1 180.0 1.1
2n+2 P-2n-2 2n P72n—2 2n P— 2n 2 2n P— 2)1 1
P-2
—2(D-%Bo.o 1.1 ] n=0,..., | —=2]|. (4.5)
e 2
2142 P—2n-2
The coefficientsAg,_01..1(0) are given by
Ao.0 1.1 (=D 1A (0, (4.6)
—— ——

2n P-2n-1 2n
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where Ag_(0) can be obtained fron(8.4). The finite polynomial quantitieéD — 4) Bog.. can
easily be derived by exploitin(t.5) for the UV-singular parts; explicit results for tensors up to
rank 5 are summarized Wppendix A

We derive the expressions f8%._1 by explicitly solving the Feynman-parameter integral

1
B1i1= / dr (—x)"{A +Inp? —In[—p2x(1—x) + md(L— x) + mix —ie]}.  (4.7)
=
n 0

In the following result we support complex mass parameters; more precisely, the real ;mfrts of
must be non-negative, the imaginary parts negative or zero. The final results are conveniently
written as

By, =Y A+|n<”—2>—22:f(x) (4.8)
i’é—l/_n—i-l m% ] e '

with x; denoting the solutions of the quadratic equation

0=—p2x(1—x) + m5(1—x) + mix —ie. (4.9)

For pf = 0 one of thex; is formally co. The auxiliary functions

1
t
fox)=n+1) / dr 1" In<1 — —) (4.10)
X
0
can be evaluated in a numerically stable way by choosing one of the two representations
-1 nLoxn! 1 O xnl
() = (L—x" ) In[ Z—=) — —In(1-= . 411
fa(0 = (1 =" < X > ;l—i—l ( x>+l§ll+1 ( )

The first form is numerically stable for intermediate valuegidpt~ 0. Forx — 0, f,,(x) develops

a true logarithmic singularity; for — 1 the logarithm 1 — 1/x) is suppressed because of its
prefactor. The second equality(#h.11)yields numerically stable results for largg. In practice,
we take the first form fofx| < 10 and the second otherwise. The case where one af tisezero
corresponds te:g = 0 and can be easily obtained via taking the limig— 0O,

D" { < W > 1 mi —le
B 2.0,mq) = A+1In — |+ —fal 1= :
1.1 (p1 1) n+1 m3 — p? —ie n+1 Jn ps

(4.12)
For p? = m? this further simplifies to
=" W 2
Lm0y =S a e ) i (12)

In the vicinity of the last two special cases one of thébecomes small, so that the leading (log-
arithmic) term inf,, (x;) cancels against the explicit logarithm(#.8). Although this somewhat
worsens the precision of the evaluation, we did not find problems with this approach in practice.
Nevertheless we have additionally implemented a more sophisticated representaigm of
with more branches where such cancellations are avoided.
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In the above derivation we essentially followed the approach described in the appendix of
Ref. [4]; the results given there are, however, not applicable to the general case of complex
masses.

5. Reduction of 3-point and 4-point functions

The tensor decompositions of 3-point tensor integrals up to rank 4 and 4-point tensor integrals
up to rank 5 read explicitly

2 2
Ch=) PhCn.  C"™= 3 pip},Ciir+8" Coo,
i1=1 i1,i2=1
2 2
CcHr = Z P}, ph P Cisinis + Z{gp}ﬁvpcool'l,
i1,ip,iz3=1 i1=1
2 2
CHP = " plpb Pl s Cirigisia + Y, (8PPYi” Coigiy + {881 Coooo
i1,i2,i3,i4=1 i1,ip=1
(5.1)
3
D'=) piDin. D™=} plp}Disi,+ " Doo.

i1=1 i1, i2—1

DI = Z p,liplvzpm inigiz + Z{gp}ﬂ 'OD()o,'l,
i1,i2,iz3=1 i1=1
3 3
DM = N phphph pY Disisisia+ Y, {gppYsiy” Dovisi + {28} Doooo,
i1,i2,i3,i4=1 i1,ip=1
3
DM =N plphpi PSPl Disisisisis Z {eppPYi ™ Dooiyigis

i1,i2,i3,i4,i5=1 i1,i2,i3=1

+ Z{ggp}fiwﬁDooool- (5.2)
i1=1

Because of the symmetry of the ten , all coefficientsC;, _;,, andD;, ;, are symmetric
under permutation of all indices. To be specmc in the following we give the reduction formulas
for the 4-point functions, i.eN = 4. To obtain the corresponding results for 3-point functions
one has to perform the substitutions

C.—>B._, D.—C._, z® - 7@,
A® A(z), x® X(Z), N — 3, (5.3)

and similar obvious substitutions.
5.1. Conventional Passarino—\Veltman reduction

The one-loop tensor integrals can be reduced to scalar integrals recursively by inversion of
systems of linear equatioifé]. The inhomogeneity of these equations consists of coefficients of
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lower rank. The equations of this system are obtained by Contrafﬁ'j]g” with the (N — 1)
external momenta,* and forP > 2 also by contraction with the metrig¢'1#2. Contracting2.1)
with p;* and using

2pkg = Ny — No — fi, (5.4)

each of the first two terms on the r.h.s. (5f4) cancels exactly one propagator denominator
of pleM/\i up and the third term is proportional tf MZ up- Likewise the contraction of2.1)

with g"1#2 yields a factoiz? in the numerator ogﬂlﬂzTN _up» Which can be written as

q% = No+m}. (5.5)

The Ng term cancels the first propagator, the second term leads to the ﬂ%ﬁggrp. This yields

N N-1 N-1

20 Ty iy = Ty 0 = Ty up(o) ST, 12 ip? (5.6)
N N-1

8T i = T uP(O)"'mO 13 fip (5.7)

Note that for7V=1(0) a shift of the integration momentugt* — g* — p/' has to be done in

order to achieve the standard fo{gh1). The tensor integrals with shifted momel‘ﬂ,ﬁji » (0
are defined ir(2.7). Inserting the Lorentz decompositio(&2) into (5.6) and (5.7)the desired
recurrence relations can be read off by comparing coefficients.

From(5.6) we obtain

Stipip = C(iz)k (ipy K)Skiy .. 8kip — Ciy..ip (0) — fkDiy..ip

P
3
= Z Z( )Dmtz-..iP + 2281‘[* DOOiz---lA‘r'-jP’
r—2

k_l,...,N—l, i2,...,ip=0,...,N =1, (5.8)
and from(5.7)

S&y}_;}, =2Ci,.ip (0) +2m3D;, i,

N-1 P
=Y Z Dumis..ip + 2<D +P -2+ Zéi,o> Dois...ip -
n,m=1 r=3
is,....ip=0,...,N—1, (5.9)

where the matrixZ® is defined in(2.11) Egs.(5.8) and (5.9kan be solved for the coefficients
of D#1-1P gs

1
Doois...ip = m |:—2(D —4) Dogis...ip + Cis...ip(0) + 2m(z)Di3...ip
N-1
+ Z annig..‘ip:|v (5.10)

=S |
Dipip= Z 70 ,ln( i dp _225,1”0002.__;’””), i1#0. (5.11)
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basis integral

2b 2a 2a

3b 3a 3a

4b 4a 4a 4e N\ de

ivinigis < Dooiyin Doooo

Fig. 1. Schematic illustration of conventional Passarino—\Veltman reduction.

The relations(5.10) and (5.11petermineD;,. ;, in terms of D;, ;, , and 3-point func-
tions. Using these relations recursively, all coefficients of 4-point functions can be expressed
in terms of 3-point functions and the scalar 4-point functiag The finite polynomial quantities
(D — 4)Dooi,...i can easily be derived by exploitin@.10) for the UV-singular parts; explicit
results for tensors up to rank 7 are summarizedppendix A As explained in SectioB.8, IR
divergences do not occur iog;,...; - More explicit formulas for all tensor functions up to rank 5
are given in the appendix of R4£6].

Fig. lillustrates the Passarino—Veltman reduction scheme for 4-point integrals in a plane of
tensor coefficients where the rank of the tensor increases by going down in the rows and the num-
ber of index pairs “00” increases by going to the right in the columns. The steps in the algorithm
are indicated by arrows that show which coefficient is deduced from previously calculated ones.
The numbers close to the arrows correspond to the step number which is identical to the rank
of the tensor coefficients to be calculated; the labels “5", etc. give the order in which the
coefficients within a step are calculated.

Eq. (5.11)becomes numerically unstableZf® is nearly singular, i.e., if the Gram determi-
nantA® is close to zero. Reduction schemes for this case are described in S&cliehis

5.2. Alternative Passarino—\Veltman-like reduction

An alternative to the conventional Passarino—\eltman reduction can be obtained as follows.
Eqgs.(5.8) and (5.10tan be written as

2my  f1 f2 f3 in.ip
fi 2pip1 2pip2 2pip3 D1, ip
f2 2p2p1 2p2p2 2p2ps3 D2iy..ip
f3  2p3p1 2p3p2 2p3p3 D3iy...ip

o
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D;.. 2(D + P — N)DOOiz...ip - Ci2...ip (O)
ip...ip _oyP s D )
-x® Dyj,...ip — Sllz ip Z;}:Z Lir 00ip...0y...ip ’
gsz"'iP S212 ip 22r:252ir DO()iz...f,.,.ip
i P
Siz-ip 5312...ip 23 203, D00i2...2,...ip
iz, ....ip=0,...,N -1, (5.12)

where on the r.h.s. the matrix® defined in(2.23)appears and the following abbreviations are
introduced,

'§]52...ip = C(i2)k-~~(iP)k (k)gkiz cee Skip - Ciz.‘.ip (O) = S’52---iP + kal'ZmiP . (513)
Multiplying (5.12)with the matrixX® from the left, we obtain

det(X®) Dy, i, =A® [2<4 + P — N)Dogi,...ip + 2(D — 4) Dogiy...ip — Ciy...ir (0)]

P
o3| opP
+ Z X5 [sz i =2 bui, DOQ.ZM;N.P} (5.14)

n=1 r=2

and

det(X®) Dy, .ip = Xy [2(4+ P — N)Dogiy...ip + 2(D — 4 Dogy...i — Ciy..ip (0)]

P
3 .
Z xlw [5,52 iy 22 Sni, DOWZ_“;._I‘P}, i1 #0. (5.15)

r=2

Eq.(5.14)yields Dqgi,...i, in terms ofD , Dj,..ip, and 3-point functions,

00ip...ir...i p

24+ P — N)A® Dog,y. i,
—2A<3>(D — &) Dogi,..ip + ADCyy. i, (0) +de(XP) Dy, s,

3| gpP
-S| 82300 | (516)

r=2

and thereafte(5.15)yields D;, . ;,. Using these relations recursively, all coefficients of 4-point
functions can be expressed in terms of 3-point functions and the scalar 4-point fubgtion
While the final results are of course identical to those of the usual Passarino—Veltman reduction,
the order in which the different coefficients are calculated is different. As a consequence, this re-
cursion can, in some cases, be numerically more stable than the conventional Passarino—Veltman
reduction, in particular, if all the quantities®, X2, andX\Y become small.

For the tensor coefficients up to rank 3 the reduction formulas explicitly read

N-1
25— N)A® Do = —2A3 (D — 4) Dog + AP Co(0) + det( X D) Do — 3 XY 81,
n=1
(5.17)
N-1
det(X®) Dy, = X 9[2(5 — N)Doo + 2(D — 49 Doo — Co(O)] + »_ X 52, (5.18)

n=1
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2(6 — N)A® Dogi, = —ZA(?’)(D — 4) Dogi, + AP C,(0) + det( X®) D,
Z X [82, — 2841, Doo). (5.19)
det(X®) Dyyi, = X5 [2(6 N) Doty + 2(D — 4) Dooi, — Cip(0)]
+ Z X2 (82, — 28ui,D00]. i.i2#0, (5.20)
2(7— N)A® Dogiiy = —2A(3)(D — &) Dogiyiz + A Ciyiy (0) + det( X D) Dy,
Z X821, — 28ni, Dovis — 25ni3 Doz ). (5.21)
det{X®) Dyyjpiy = X;fé[2(7 — N) Dotiyiz + 2(D — 4) Dogiyiz — Ciyis(0)]
+ Z X821 — 28ui,Dovis — 20ni3Dow, ], i1.i2. i3 #0.  (5.22)

Note that(5.21)holds also fonz =i3=0.
The 3-point tensor coefficients that result from omittigin the 4-point integrals are defined
according td2.8)or more explicitly

Cin(0=Ci;—1(0), i1=2,...,N—1,
N-1

C1(0)=— > Ca(0) — Co(0), (5.23)
n=2

1112(0) 11 1,io— 1(0) il: i2=27"'7N_ 1a
N-1
Ciy( ==Y Cuiy(0) = Cyy(0), i1=1....N-1, (5.24)
n=2

111213(0) l]_ 1,io—1,i3— 1(0) i1, 02, i3=2: o N-=1
N-1
C1i1ip(0) = — Y Coigip(0) — Cigip(0), iniz=1,....,N -1 (5.25)
n=2
Fig. 2illustrates the alternative Passarino—Veltman reduction scheme for 4-point integrals in

the plane of tensor coefficients similarly Edg. 1 of the previous section for the conventional
variant.

5.3. Reduction with modified Cayley determinants

Eq. (5.12) can also be exploited directly to calculate tensor coefficients of lower-rank from
higher-rank tensors. Specifically, the coefficiefts. ;, with i1 # 0 for tensors of rankP are
expressed in terms of the coefficieri?gy;,..;, for tensors of ranKP + 1). This means(5.12)
recursively expresses tensor coefficieBfs ;, in terms ofC functions and of a single coefficient
Do..0 which results fromD;, . ;, upon replacing all non-zero indicggby “00”. For sufficiently
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basis integral

D;,
1b la
D;i, = 2 Doo
2b 2a l 2a
D; ivis < 30 Dooi,
3b 3a l 3a 3c
Diyiyigiy Dooiy iy Doooo

Fig. 2. Schematic illustration of alternative Passarino—\Veltman reduction.

high tensor rankP, viz. P > 2N — 4, the integrand of the Feynman parameter integrdd®fo
involves only polynomials and logarithms of the integration parameterSuch integrals are
numerically well behaved, because singularities appearing in logarithms can be safely treated
numerically. The explicit form of the Feynman-parameter integral for the general coefficient
T& , with P > 2N — 4 is given below.

In summary, Eq(5.12)provides a method for deducing all tensor coefficights ;, (includ-
ing the standard scalar integrb) from C functions and the numerically evaluated coefficient
Do..o of tensor rank 2. This procedure does not involve the inverse of the Gram determi-
nantA®, as it is the case in the two versions of Passarino—\Veltman reduction described in the
previous sections. However, the method involves the inverse of the modified Cayley determinant
det X®), so that it becomes unstable if ¢&t®) becomes small. It is also interesting to note
that the numerically evaluated coefficigbg, o enters this reduction with a prefactaf®. Thus,
this method becomes particularly preciseif® is small, where Passarino—Veltman reduction
is unstable, because the error in the numerical calculatiabgoh is suppressed in this case.
Note, however, that both the reduction of this section and Passarino—Veltman reduction become
problematic if bothA® and de¢x®) are small.

For tensor coefficients up to rank 3 the reduction formulas explicitly read

det{X®) Dogoo= A®[2(9 — N) Doooooo+ 2(D — 4) Doooooo— Coooo0) ]
N-1
-3
+ > X6) S30000 (5.26)
n=1

N-1
det(X®) Doo = A®[2(7 — N) Doooo+ 2(D — 4) Doooo— Coo(0)] + > Xgy S0
n=1

(5.27)
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def{X®) Do = A®[2(5— N)Doo+ 2(D — 4)Dog — Co(0)] + Z x®§t (5.28)

On “n>

det(X (3))D00001 =X ,-(138[2(9 — N) Doooooo+ 2(D — 4) Doooooo— Coooo(o)]

N-1
v (3 &5
+ > X 8000 (5.29)
n=1
det{X®) Doy, = X; X [2(7 N)Doooo+ 2(D — 4) Doooo— Coo(0) ]

3
+ Z Xl(]_}’)l SnOO’ (530)
n=1

det(X®) Dogii, = leg[z(a — N)Doooa, + 2(D — 4) Dooog, — Coni, (0)]
+ Z X[ 8400, — 260, Doooo].  i1.i2 #0. (5.31)

Finally, D;,, D;,;,, and D;,;,;, are obtained fron{5.18), (5.20), and (5.22Jespectively. Thus,
all 4-point tensor coefficients up to tensor rank 3 can be recursively deducedXfgestooand
3-point coefficients.

Fig. 3illustrates the reduction scheme for 4-point integrals up to rank 3 in the plane of tensor
coefficients similar to the previous sections. The steps of the reduction now proceed from right to
left, starting with a basis integrdlg o with as many index pairs “00” as the finally aimed tensor
rank, i.e., for rank 3 withDgggoog In each step we get all coefficients of at least one rank lower
with one index pair “00” less than in the previous steps.

Generically the Feynman-parameter integral]l’éfo reads

1 N1 N-1 N-1 \ N—4-2
j — 2+k—N
Tiﬁ Zk(2+k—N)!<H /dx-/>(S<1 Z“lxz)< xm) A
2%k j=070
2+k—N
[ g e

with the shorthand

N-1 2 N-1
A=A(xg,...,XxN_1) = <Zx1pz> (me>(2xn pz—m5)>. (5.33)
=0 n=0

The real parameterg; appearing in(5.32) are widely arbitrary; they only have to fulfil the
constraintsy; > 0 andzf\’= _Oloq > 0. For the numerical evaluation of the Feynman-parameter
integral it is convenient to take the uniform choige= 1, in which case the integral runs over
the (N — 1)-dimensional unit simplexy_1,

xo=1-)"x. O<xj<1-Yx. j=1...N-1 (5.34)

The integral representati@b.32)is valid both for real and complex masses.
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Dy
D;,
3b 3a
Dilig < 36 DOO

Doo;,

\\

21222324 DOOzm <— DOOOO
D; inizigis Dooiyiyis Daoooi;
la basis
mtegral
Di1i2i3i4i5i6 D0021222324 D00002122 DOOOOUO

Fig. 3. Schematic illustration of the reduction with modified Cayley determinants.

Specifically, the integrals fa€ggooooand Doooooa Which are needed for tensors of rank 3, are
given by
_ i § 2 4 4 2 2 2 2

Coo0000= A+ 2 |[st2+ pT + P2 +s12(pT + P3) + PiP3
2880 2
— 3(m3s12+ pZm5 + psm3)
— 6[s12(m3 + m3) + pf(m§+m3) + p5(m§ +m3)]
+ 15[mé + m‘l1 + mg + m(zjm% + m(zjm% + m%m%]]

1 5 A —ie
_l_6/d x A In( 2 ), (5.35)
02

Doooooo= (A + 1)|:

960(s12 + 513+ 523+ pi + p5 + p3)

1 /‘ 3 <A—ie>
m2+m?+mé+m d°x Aln , 5.36
192( o tmy+m3 3)] 3 2 (5.36)

o3

with the shorthands

s12=(p1— p2)%, s13= (p1— p3)?, s23= (p2 — p3)°. (5.37)



A. Denner, S. Dittmaier / Nuclear Physics B 734 (2006) 62—-115 81

For an efficient humerical integration of these integrals we use a fortran code based on the
DCUHRE algorithm[39], as included in the CUBA librarj40]. The UV-divergent parts are
integrated analytically in order to ensure exact cancellation of the singularities.

As mentioned above, the procedure described in this section becomes unstalgléiY d&
becomes small. The basis integrﬁ@%o are still safely calculated via the numerical integration,
but using the described relations to deduce the remaining coefficients accumulates an instability
in each step that turns an index pair “00” into a non-zero tensor index or that eliminates an
index pair “00”. This accumulation of an instability can be suppressed by extending the set
of basis integrals. For instance, the 3-point tensor coeffici€nts, can be deduced from the
coefficientsCoo, Coooo, and Coooooa Which all have logarithmic integrands in their Feynman
parametrizations, upon using the above relations only 8rtelet(Xx ¥—Y) is not small, we
prefer to deduce all tensor coefficients from one basis integral @goooofor D;,i,i5), because
no instabilities accumulate and the recursion preserves relations among the tensor coefficients,
which are less accurately valid if several coefficients are calculated numerically.

If det(x VD) = 0, the described procedure is not applicable. For instance, this is the case for
3-point functions that are either soft or collinear singular. Such cases are much simpler than the
case with general kinematics, so that they can be treated more directly. For processes with light
external fermions only, dex V1) is zero only for 3-point functionsN = 3) where a photon
or a gluon is attached to an external fermion. A fully analytic treatment of these cases, which
admits a numerically stable evaluation, is describetigpendix B this method can be extended
to similar cases that appear in other processes.

Finally, we remark that the method of this section is somewhat related to the fully numerical
procedure advocated in RgBO0]. There, a method is described how the Feynman-parameter
representation of one-loop integrals is, upon partial integrations, transformed into integrals with
logarithmic integrands, which are then treated numerically. The occurring algebraic coefficients
that express the original integral in terms of logarithmic integrals are related to the coefficients of
the inverse of the matriX ¥) introduced in this paper. In fact we have verified that the reduction
of the scalar integral’ to logarithmic integrals leads to the same results as our equ&tip8)
for N = 3 [see(5.3)]. Therefore, like in our approach, also in the approach of Béi, the cases
with small or vanishing modified Cayley determinant(@&t'—2) require a special treatment.
Moreover, we emphasize that we treat only one basis integral numerically, while the procedure
of Ref.[30] in general involves more numerical integrals.

5.4. Reduction for small Gram determinant

Let us now derive a reduction scheme that can be used if the Gram determifabécomes
small, but without changing the set of basis integrals, which are thus still the standard scalar

integralsAo, Bo, Co, Do. Multiplying (5.8) with indicesnis ...ip by Z{ and summing over
yields

P

>(3) _ 5(3) P+1 . R An.. .
XOj i1..ip = 7 Z Z; (Snzl ip 228”‘:- DO()il...iy...ip) + A( )DJIL-JP (5'38)
r=1

3 Note that the Feynman-parameter integralgp is not logarithmic, so that the calculation D%, ;,;, from Dgooo
and Dgggooorequires the use of the recurrence relations twice.
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for arbitrary j =1,...,N — 1 andi, =0,..., N — 1. In order to arrive at this form(2.17)
and (2.28)have been used. As long as at least one of the quanﬁﬁ?s defined in(2.28) is
large compared ta®, (5.38)can be used to determir®;,. ;, from Dyg,

that are suppressed by the factoP.
In order to obtainDOOl.l ioip We consider for arbitrarg, ! #0

.......

, Up to terms

cdpld

N—1
A(?’)Dklia..ip = Z A(3)5ki51jDiji3...ip
i,j=1

N-1 N-1

_ 5(3) ,(3) Z(3) 3,03

= Z (Zkl Zj + Z Z Genyamy Znj Zim>Diji3~~iP’ (5.39)
i,j=1 n,m=1

where(2.21) has been used. The first term on the r.h.s. can be reduced5®hthe second
term on the r.h.s. upon usir(§.8) twice. Collecting terms containinfog;, ...;, and making use
of (2.19) and (2.21)we obtain

P

s V5@

2(6+ P—N+ Z‘Sim) Z,EI)DOOil...iP
r=1

(3
=—2(D - %HZ> Doqiyip — A® Dpiiy iy

N—1
5@) ¢P+2 7(3) gP+2 5@) gP+2
+ 77 Soai,ip T Z(an S —Zy'S )

nkii...ip nnii...ip
n=1
N-1 _ P
53 oP+1 qP+2
— 7§ SPAl 42NV, SPY2 g Dy
Z (kn)(Im) f" ml]_..‘lp+ Z niy mO0i1...5y...i p fnfm i1...1p
n,m=1 r=1

- rs=1
r#s

which holds for arbitrary,/=1,..., N —1andi1,...,ip =0,..., N — 1. Together with{5.38)
this equation allows to iteratively determine the tensor coefficients of 4-point functions in terms
of 3-point functions for small Gram determinant®. If the 3-point functions are known up to
rank P, all 4-point tensor coefficients up to this rank can be determined recursively up to terms
of order A® from these equations by putting all terms involving® to zero. Inserting these
results back into the r.h.s. (5.38) and (5.40for the terms proportional ta®, all 4-point tensor
coefficients up to rankP — 1) can be determined up to terms of ordar®)?, and so on. Finally,
the scalar 4-point function is iteratively determined up to terms of ofdéP)”*1. In order to

improve numerical stability, we can choogeén (5.38)such thatXéi.) is maximal, andk and!/
in (5.40)such thatZ,(dg) is maximal. ForA® = 0 this reduction scheme essentially corresponds

to the one proposed in Rdf].
For the lowest tensor coefficients the explicit results read

P P
- ZZ(fn(Smir + fm(gnir)DOOil ;-r ip 4 Z (Sni,8mi5 DOOOO]_..JA'W..IA'_;‘..I'P:|’ (540)

N-1

s s

X5 Do=— 281 +AOD;, (5.41)
n=1
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26— N)ZD Doo = —2(D —4HZP Doo— A® Dy + 2D $3,

733 (3)A2 Z(3)
+ Z DS~ 2 S Z Z emyam) L fn S — fu fm Do),
n,m=1
(5.42)
N-1
Xe) Dy ==Y 2% (82, — 28,4, Doo) + AP D, (5.43)
n=1

28— N)Z(3) Dooiy
3 5(3
=-2(D - HZ Dooi, — A® Dui, + 23 Saa,
N-1

53 g 7(3) &3 3 Q2 33
+ Z Z Snkl]_ Z Snml) Z Z(kn)(lm)[f" Smil + 26”1‘1‘5‘m00
n=1 n,m=1
- fnmei - 2(fn6mi1 + fm(Snil)DOO]s (544)
) 3
X(()j)Dlllz - Z Z( ) Sy?,llz 2((SnilD00i2 + (SnizDOOil)] + A(S)Djiliza (545)

28— N)Z,d Doooo
~(3 ~3
=-2(D— 4)Z,il)Doooo— A® Dogy + Zliz)sgooo
N-1
5(3) ¢4 (3) o4 Z(3) 3
+ D (Z St = Zii Siioon) — Z Z (enytm) [ nSmo0 = S fin Dool. (5.46)
— n,m=1

2(10— N)ZY Dodiyi

3 3 3
= —2(D — 9 Z) Doviyi, — A® Duaiyip + Zkz)Soolllz + Z Z! )Snkll,z — 738k

nniiip
n=1

>(3) &4 o4
- Z Z(kn)(lm) mlllz + 2(87”'1sm00t'2 + 8}11'25”100;'1) - f” fm Di1i2

n,m=1
- Z(fn(smil + fmSnil)DOOiz - Z(fnfsmig + fmaniz)DOOil
- 4(8ni13mi2 + anizamil)DOOOO]v i1,1i2 75 0, (547)
-3 3
X(()j) Dlllzl3 = — Z Z( ) S3111213 2(8ni1D00i2i3 + ‘SnizDOOilig, + 6ni3D00i1i2)]
+ A9 Dy (5.48)

Fig. 4illustrates a systematic algorithm for this iteration scheme for 4-point integrals in the
plane of tensor coefficients similar to the previous sections. Thin arrows indicate that the relation
involves a suppression factar® . At the beginning of the iteration all 4-point tensor coefficients
as well as the scalar integrBl are set to zero, i.e., no 4-point basis integral is neededxTte
iteration consists of thén + 1) stepsn —- (n — 1) — --- — 1 — 0 and requires all 3-point
coefficients of rank:. Stepn with n > 0 starts with the coefficient of rania + 1) with the
highest number of index pairs “00”, i.e. with the right-most coefficient in(he- 1)th row in
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Step 0 Step 1 Step 2
DO DO

a

o

\ )
D, i, Doo | Doo| D4, Doo

o x b
D inis Doo;, D inig Doo;, D; iyiz -4

SEl]
5

Step 3
Dg
D;,
Dzlzg DOO
b a
Dilig’ig DOO’h

fe ¥
¢ a
DZ1127,324 — <b— DOOOO

b

Fig. 4. Schematic illustration of the iteration for small Gram determinants, where thin arrows indicate that the relation
involves a suppression factar® . In each step the boxed coefficients are calculated in the order indicated by the labels
a”, " b", etc. Thenth iteration consists of the following: + 1) stepsn - (n —1) —» ---— 1— 0.

the diagrams irig. 4. Within a step, coefficients for rante + 1) are deduced from the right

to the left in the diagram; only for the last coefficient (which has no index pair “00") one has to
go one step upwards to rankin addition. After thenth iteration the tensor coefficient3;,;,;, ..

of rankn without index pairs “00” and all coefficient®qq;,;,... Of one rank higher with at least
one index pair “00” are obtained up to terms that are suppressed by afdéto€oefficients of

a rank that is lower by a number are known up to terms suppressed[y®]1”+1. Indicating
coefficients that are known up to terms®@f[A@1"+1) with a superscript )", the iteration
proceeds as follows:

Iteration O: D(O) is calculated; all other coefficients are still zero.
Iteration 1: Step 1 y|eld$)(0) andD(O) step 0 yleldsD(l).

lteration 2: Steps 2 to 0 denv@gg;l fo}z Dgy. DY, andD?.

Iteration 3: Steps 3t0 0 delivéﬁé%)oo, DC(J(C)))iliz Dfﬁ)zl3 Dc%l?.l Dflll)2 Dé%), Dl.(lz), anch(,3).
e EtC.
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The reduction method described in this section breaks down if none (if((ﬁlués large com-
pared toA® or if all Z,E,s) become small, since in these cases the iteration does not converge.
A reduction for smallf(é? is described in SectioB.5. A reduction for smallz(> is given in
Section5.6. For N = 2 the case of smallg) is equivalent to smaIZ,il), for N = 3 the case of
small Z,E?) covers the case of smef[l,i;q’) apart from exceptional configuratiofis.

5.5. Reduction for small Gram determinant and small modified Cayley determinant

If in addition to the Gram determinamt® also alll quantltleg((3) j=1,...,N—1, become
small, the reduction scheme of Sectl#d breaks down. As can be seen fr¢230) in this case
the determinant dex ®) = det(Y) of (2.25)becomes small, which is a necessary condition for
the appearance of leading Landau singularities. In this situation, we can determine the tensor
coefficients as follows.
Fori, # 0, Eq.(5.38)can be rewritten as

nij...ip

N—
3 R 53) oP+1 ) I A . .
22 2 Dogy i in = Z Z)8 + X0 Diy.ip — A® Dy . (5.49)

This allows to determln@ool for i1, ...,ip # 0interms of 3-point functions as:

N-1
2PZ]EI)D00 1] = Z Z(S)S:_Fll +X(3)D l — AG )Dk 1.1,
p-1  n=1 T P P

N—
(3 3 7(3) & §P+1
2(P — 1)Z Doo 1.1 iy = ZZkleOO I. E_ Zi

n l d g
P-2 - P— 1
3 .
+X( 'D '1—A(3)Dk 1.1 iy i1#0,1,
\/-/ ~——
P-1 P-1
N—-1
2P -2Z%D i, =—2729D, 279D Z73gr+1
(P—=2)Z;7"Do0 1.1 iriz = kiy P00 L1 iz = 22y, 001111+Z kn Sn 1.1 irin
P-3 ey P-2 n=1 et

3 o
+X( )Dl 1 i — AP Dy Lodisizs 11, i#0,1,  (5.50)

P2 P2

and so on, provided that at least one ofﬁﬁ? is not small. Agairk £ 0 and! # 0 can be chosen

such thalZ(3) is maximal in order to improve the numerical stability. The tensor coefficients with
more mdex pairs “00” can be determined by equations that are obtained$:60) by adding
additional index pairs “00” to all quantitiesand D in (5.50)

4 In an alternative approach, one could disreg&td0)and us€5.38)also to determine) gy oip” This reduction
iy

method would also work if aIZ,El are small. However, in this case, tensor integrals of h|gher rank would be needed. For

instance, to calculat®; ;,;, in leading order inA(® one would have to calculat®ggopgoand Cogoooofirst.
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In order to derive a relation for the calculationBf, ;, we rewrite(5.12)as

1 f2 f3 Dy
2pip1 2pip2 2pip3 2?"""’
2p2p1 2p2p2  2p2ps3 1Ltp
2p3p1 2p3p2  2p3p3

2(D +1+4 P — N)Doqy..ip — Ciy...ip (0) — 2m3Djy iy

QP+1
S - 22 181'r 00i1...0.ip leil-uiP

liy...ip

= ) (5.51)
P+1
Szz;L ip 22r=152ir Dooz'l...?,.,.ip — f2Diy i
P+1 P
S3l;_ ip 22,,2183[, DOOi]_.“lTr‘..ip - f3Di1'"iP
After discarding the(j + 1)th of these equations, where= 1, 2, or 3, the remaining three
equations have the solution

N-1

~(3
E fnZ,(lj)Diilu.ip
n—=

= 2(3) [Z(D +14P— N)DOOI']_‘..I'P - Ci]_..‘ip (0) - 2m2Di]_..‘ip]

D3, ..ip

P+1
+ Z tn)(jm)f” |:Sm11 ip 228’"” 0011...1,...1p - meil'"“’]' (552)
m,n=1
Using(2.28)this can be written as
(3
Xl'(j)Dil...iP
= z<3>[2(5+ P — N)Dogy...ip +2(D — 4 Dogiy...ip — Ciy...ip (0)]
P+1
+ Z m)(jm)f” |:Sm11 ip 228”1ir DOOil...tA'r.‘.l :| + XO] Dlll--»iP’ (553)
m,n=1 =

which holds for arbitrary, j =1,...,N —1andi1,...,ip =0,..., N — 1. Together witH5.49)
this equation allows to iteratively determine the tensor coefficients of 4-point functions in terms

of 3-point functions for small Gram determinant® and smallf(,f;) and X’((E) as long as
at least one of thé(i(f) is not small. Againi and j can be chosen suitably in order to im-
prove the numerical accuracy, e.g. by choosing the maxﬁ‘n{]%ll. If the 3-point functions are
known up to rankP, all 4-point tensor coefficients up to rar® — 1) can be determined

up to terms of orden®, X3, and Xé‘j’.) from (5.49) and (5.53py putting all terms propor-
tional to these quantities to zero. Inserting these results back into the r.h.s. of these equations,
all 4-point tensor coefficients up to ranl® — 3) can be determined up to terms of order

[max(|A®)], |X,E‘°(’,)| |X(3)|)]2 and so on. Finally, the scalar 4-point function is determined up
to terms oforde(max(|A<3>| X1 1XG) DIE+D/2,
For the tensor coefficients up to rank 3 the reductlon formulas explicitly read
N-1
2282 oo~ 3. 24355+ X301~ 59 0y, 654
n=1
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X Do=7 [2<5 — N)Doo+ 2(D — 4)Doo — Co(0)]

Z(3) ol (3)
+ Z Z iy jmy IS + X0 Di. (5.55)
m,n=1
N-1
3 3
4ZIEZ)D001 = Z Z( )S nll +X( )Dll — A® Dy,
n=1

(3 3 3 3 .
273 Dooi, = —2Zy; Do + Z 7083, + XDy, — A®Dy;y, i1#0,1,  (5.56)

XPpy, =2 [2(6 — N)Dogiy + 2(D — ) Dogiy — Ciy (0)]

=3
+ Z 23 iy Fn[8241 = 28y Doo] + X5 Dy, (5.57)
m,n=1
=3 3 =3
6, Doar = Z 284, + X3 D — A® Dy,
N-1

5(3 3 =3 .
4Zl(<l)0001i1 _ZZ]EZJ)_DOOH + Z Z( )Snml + X;EO) Duiy — A® Dyyyiy, i1 #0,1,
n=1

3 3 (3
27,3 Doviyi, = —2Zy; Doai, — 22,3 Doaiy

3 (3 ..
+ Z Zlgn) Snltj_lz + X](co) Dliliz - A(a) Dklilizv i1,i2 # 0,1/, (5.58)
n=1

XD Diip = ) [2<7 — N)Dogiyi; + 2(D — 4) Doty — Ciyiy (0)]

3 = (3
+ Z ZE”z)(]m)fn miyip Z‘SmilDOOiz_25mi2D00il]+X(()j)Dii1iz’ (5.59)

m,n=1
N-1
SZkz Doan = Z an) Soun + X Dllll - A® Dy,
n=1
N-1
62,5’) Doqyi, = —ZZ,E,l)Doouz + Z Zki) S,,mll + X]E%)Dlllil — A® Dy, i1#0,1,
n=1

3) @3 5(3
42,9 Doaiyi, = —2Z} )DOOIIiz - ZZ,Ei;Doozzil
3 (3 Lo
+ Z 2 8 in + Xi8 Ditiniy — A® Digtiyiy. 1,12 #0,1,

5(3 5 (3 5(3 ~(3
27, Dovinis = —2212100011'2:'3 — 27 Doaiyis — 2253 Dodiyiy
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N-1
~(3) A ~(3 Lo
+ Z Z]En) S’?liliZiS + X]EO) Dli1i2i3 - A(g) Dkli1i2i3» 11,12,13 7é 07 la
n=1
(5.60)

(3 5(3
X{? Diyigiy = 23 [2(8 — N) Dotiyiis + 2(D — 4) Dosiyiis — Cirigis (0)]

N-1
+ Z Zgii)(jm)fn[sriilizig — 28y Dovizis — 28mip Dooigis — Z‘SmisDOOiliz]
m,n=1
+ X(():;) Dijjiiz- (5.61)

Fig. 5illustrates a systematic algorithm for the iteration scheme for 4-point integrals in the
plane of tensor coefficients similar to the previous sections. Thin arrows indicate that the relation
involves a suppression factaxr®, X,(C%), or Xé‘jf). At the beginning of the iteration all 4-point
tensor coefficients as well as the scalar inte@rgbre set to zero, i.e., no 4-point basis integral is
needed. Theth iteration consists of thé: + 1) stepsi - (n — 1) — --- — 1 — 0 and requires
all 3-point coefficient functions up to rank2+ 1). Stepn starts with the two coefficients of
ranks(2n + 2) and(2n + 3) that have exactly one index pair “00”, i.e. which belong to the second
column in the respective rows in the diagramg$-ig. 5. Within a step, first the two coefficients
are calculated that are reached upon omitting the index pair “00” from the starting coefficients;
they are located in the first column two rows above the starting rows in the diagram. Then all
coefficients that lie to the right of the starting coefficients are calculated column by column.
After the nth iteration the tensor coefficieni;,;,;,... of ranks 2 and (2n + 1) without index
pairs “00” and all coefficient®og,;,... Of two ranks higher with at least one index pair “00” are
obtained up to terms that are suppressed by a factdr f(,ig), or f(é‘;’.). Coefficients of a rank that

S 0 S 1
tep Dy tep
ol b
\ Dy,
bT b

a
Diy Doo

a b
\ bT b‘\
D igis Z b Do,
d ;\ \
D Daooo Diyigigis— N\ ‘

i1iaigia Dooiyiy N

N

D\ iyigigis Dooiyisis Dooooi, Dili2i314i5a—> c—’ Dooooi

Fig. 5. Schematic illustration of the iteration for small Gram and modified Cayley determinants, where thin arrows
indicate that the relation involves a suppression facté?, )?,%, or )?8). In each step the boxed coefficients are
calculated in the order indicated by the label$, b”, etc. Thenth iteration consists of the following: + 1) steps:
n—->mn-1)—.--—>1->0.
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is lower by a number:2 are known up to terms suppressed/max|A®)|, |X(3)| |X(3)|)]erl
The iteration proceeds as follows:

e lteration O:Dé%), D(()%z , D(()O), andD(O) are calculated; all other coefficients are still zero.

e lteration 1: Step 1 erld@écgllz D(()%lem Dfloi)z, Dl.(lol.)zia, D(()%)oo andDé?))OOl, step O yields

@ (1) D D
Dy » Doa » Dy ,andDi1 .
o Etc.

The reduction described in this section breaks down if non!éfﬁfis large compared ta®

andX(3) orifall Z(3) become small, since in these cases the iteration does not converge. A re-

ductlon for smaIIZ,f), and thus for smaIZ(g) in non-exceptional configurations, is described

in Section5.6. If both A® and aIIX(%) and X(3) become small, in some cases the alternative
Passarino—\Veltman reduction of Sectl2 Wor{<s In other cases, none of the discussed reduc-
tion methods is really good. However, this happens only in exceptional cases, and one of the
discussed methods yields at least crude results.

5.6. Reduction for small momenta

Finally, we provide a reduction scheme for the case Wheragfl and thus all momenta

become small. Note that in this case also all of the quantiti€l Z,S’), X((i), andX(s) become
small. If the f; are not small as well, we can proceed as follows. We re5sit®) as

§P+1 3
kail...iP k,:r ip Zzgkl, 00iq...0y...i p Z Z( )Dmll.‘.ipﬂ
k=1,...,N—1, i1,...,lp=0 N — 1 (5.62)
and(5.9)as
P _
2(4+ P+ Z&,o) Doai;...ip
r=1
= —2(D — 4) Doviy...ip + 2Ciy...ip (0) + 2m3Diy. i,
— Y Z Dumiyips i1.....ip=0.... N -1 (5.63)
n,m=1

By using these equations iteratively, we can deternie ;, and Dog;,..i, for given 3-point

functions for smaIIZ(B) If the 3-point functions are known up to rak we can determine the

coefficients of the 4-point functions with rarkup to terms of ordeZS), those of rank P — 1)

5 An alternative reduction could be derived, by conside@ﬁfl x®p . , using(5.53)and insertind5.49)

Uy 1y..dp..dpy]

on the r.h.s. of the resulting equation to eIiminal)sOi1 boipag . From the obtained relation, all tensor coefficients
wdpedipy

could be calculated. This reduction method would also work iﬁéﬁ) are small. However, in this case, tensor integrals
of higher rank would be needed.
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up to terms of orde[Z,Elg)]z, ..., and those of order 0 up to terms of orquj)]”*l. In order
to improve numerical stability, we can chodssuch thatf; is maximal. Note that the structure
of (5.62) and (5.63)s similar to the one 0f5.38) and (5.40)In fact, a systematic algorithm for
this iteration scheme for 4-point integrals is givenHiyg. 4, if the arrows that point vertically
downwards or horizontally to the left are omitted.

Up to tensor rank 3 the explicit formulas read:

N-1
fiDo=8t->" 23Dy, (5.64)
m=1
N-1
8Doo = —2(D — 4) Doo+ 2Co(0) + 2m§Do — » ~ Z{3) Dy, (5.65)
n,m=1
N-1
fiDiy = 8%, — 25, Doo— > . Zi) Diniy. (5.66)
m=1
N-1
o . . 27, 3 .
12Dog, = —2(D — 4) Dog, + 2Ciy (0) + 2m3Diy — > Z\) Dypiy. (5.67)
n,m=1
N-1
a 3
kailiz = S]?iliz - Z(SkilDOOiz - 28ki2D00i1 - Z Z[Ensziliza (568)
m=1
N-1
R . - 2n. . 3 .
16D001112 - _Z(D - 4)D00l112 + 2C1112(0) + ZmODl]_tz - Z anDnmlllzv (569)
n,m=1
N-1
kailizig = S]fi]_izi3 - zakilDOOizig - 28ki2D00i]_ig - 28ki3D00i1i2 - Z Z]E?;,z Dmi1i2i3-
m=1
(5.70)
If also all the f;, become small we can rewri{6.62) and (5.63as
P N-1
oP+1 (€©))
ZZSM, Dogiy iip = Sk,»:,ip — fiDiy..ip — Z Zn Dmiy..ip»
r=1 m=1
k=1,...,N—1, i1,...,ip=0,...,N—1, (5.71)
and
P
2mgDi,.ip = 2(4 +P+>y a,-,.o> Doo;..ip +2(D — 4) Doo;...ip
r=1
N-1
—2Ci.ip O+ Y Z& Dumiyips i1e-...ip=0,....N—1 (5.72)
n,m=1

By using these equations iteratively, we can deternie ;, and Dqg;,..i, fOr given 3-point

functions for smaIIZS) and smallf;. The structure of5.71) and (5.72)s similar to the one
of (5.49) and (5.53)If the 3-point functions are known up to rarfk, we can determine the
coefficients of the 4-point functions with rari® — 1) up to terms of order ma(}@,ﬁ%, [ fn]),
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Table 1
Summary of features of the reduction schemes for 3- and 4-point tensor integrals. The type of the method is either “reduc-
tion (red.)” or “expansion (exp.)”; Gram and Cayley determinants are generically indicated agyd|X |, respectively

Section 5.1 5.2 5.3 5.4 55 5.6
Method PV PV Cayley Gram Gram/Cayley Momenta
Type red. red. red. exp. exp. exp.
|Z| -0
Z|#0 121> 0 Xor. Xoj — 0 Z50
~ s P —>
Applicability izj20 A7 1X| £0 Xo; #0 ~ Ok 20 -
|X1#0 740 £0 Xij #0 Sk #0
ki 5
Zy #0
Stable for|Z| — 0? no no yes yes yes yes
Stable for| X| — 0? yes no no yes yes
Stable forZ — 0? no no no no no yes
Fast? yes yes no yes yes yes

those of rank(P — 3) up to terms of orde[max(|Z,§l3)|, | /)12, and so on. Finally, the scalar
4-point function is determined up to terms of 0rtﬂmax(|Z,£13)|, | fi)]HP+D/2]

5.7. Summary of reduction schemes and applicaticer&® — 4f at one loop

Table 1briefly summarizes some of the features of the described reduction schemes for 3-
and 4-point tensor integrals. The type of the method, “reduction (red.)” or “expansion (exp.)” is
indicated in the third row. In the fourth row we summarize the conditions for the applicability
of the schemes. Conditions that depend on indi¢gs &, I have to be fulfilled for at least one
choice of these indices. The “yes” and “no” in the last rows indicate whether a method is stable
or unstable in the corresponding limits or if the method is fast in terms of CPU time. A blank
entry means that the method can be stable or unstable in the considered limit.

The reduction schemes described above have been successfully applied in the calculation of
the complete one-loop corrections to the charged-current processese4f as presented in
Ref.[35]. As described there, actually two independent calculations of the corrections have been
carried out employing two different procedures (called “rescue systems” there) for the evaluation
of the one-loop tensor integrals in the numerically delicate kinematical configurations. Both pro-
cedures make use of the conventional Passarino—\Veltman reduction (see Sdtaanlong as
internal consistency checks prove this method to be reliable. If this is not the case, the procedures
differ:

(i) Procedurel: reduction with modified Cayley determinants and further exception handling

If conventional Passarino—\Veltman reduction seems not to be trustworthy, since consistency
relations among the tensor coefficients are valid only to very few digits or even violated, the
method with modified Cayley determinants is used as described in Séc8oBecause of
the vanishing modified Cayley determinant this is not possible for the IR-singular (i.e. soft or
collinear divergent) 3-point functions. Therefore, these cases are evaluated as deschiped in
pendix B yielding perfectly stable results.

The described procedure fails if both the Gram and the modified Cayley determinants are
very small. In practice, this happens only at a small fraction of events that hardly contribute to
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the e"e~ — 4f cross section. However, if this limitation of the procedure becomes serious in
other cases, the double limit of small Gram and modified Cayley determinants can be covered
using the method of Sectidn5, etc., as it is done in Procedure 2.

(i) Procedure2: expansions for small Gram determinants, etc

The second procedure is based on the two versions of Passarino—Veltman reduction of Sec-
tions5.1 and 5.2and on the expansion methods described in Sectiohs.6 If the Passarino—
Veltman reduction fails, at least the Gram determinant of the corresponding integral (or an
integral related to a subgraph) is small. The question which of the different expansions is most
appropriate is decided by estimating the number of valid digits in each of the expansion variants;
the variant promising the highest precision is taken.

For the application to the processesee — 4f, it turned out to be sufficient to implement
the expansions for small Gram determinant (Sechigh, for small Gram and modified Cayley
determinants (Sectiob.5), and for small momenta (Secti@n6) up to tensor rank 4 for 4-point
functions and the corresponding formulas for 3-point functions up to tensor rank 5. The imple-
mentation of the modified procedure for smallwas not required. We also did not yetimplement
the schemes mentioned in footnoteand 5

Note that in the one-loop diagrams fore — 4 f 3- and 4-point functions appear only up to
rank 3, i.e. the implemented reductions go beyond taking pure limits of vanishing determinants.
For these processes, the exceptional cases where none of the expansions is good appeared only
for a very small fraction of events and did not yield sizeable contributions to integrated physical
guantities.

5.8. UV and IR divergences in dimensional regularization and terms of @ider 4)

In the preceding equations we have kept all terms of otder 4) that multiply one-loop
coefficient integrals. These terms give rise to finite terms in dimensional regularization if these
integrals are divergent in four dimensions. It is convenient to discuss UV divergences, which
formally result from loop momenta tending to infinity, and IR divergences, which arise from
finite loop momenta but specific kinematical configurations, separately:

(i) UV divergences

UV divergences are universal in the sense that the divergent terms in an integral are regular
functions of the external momenta and internal massesy, but these terms do not change if
these kinematical quantities approach exceptional configurations (zero limits, on-shell configura-
tions, etc.). At one loop, UV divergences generally have the fof(®1- 4) times a polynomial
in pr andmy. Therefore, the terméD — 4)TN . contained in the above formulas are finite

dp
polynomials inp; andm;. We have listed theseD 4)TN i, terms for 1-point functions of

arbitrary rank, 2-point functions up to rank 5, 3-point functions up to rank 7, 4-point functions
up to rank 7, and five-point functions up to rank GAppendix A

(i) IR divergences

IR divergences at one loop originate either from soft or collinear configurations of a loop
momentuni41]. These types of divergences have the property that they do not show up in tensor
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coefficients with at least one index pair “00”, i.e., all tensor structures containing at least one
factor of the metric tensor are IR finite.

These fact can be seen by inspecting the Feynman-parameter integrals of the tensor coeffi-
cients or by the following arguments. A soft singularity results from the limit of zero-momentum
transfer of a massless particle - 0) between two on-shell particles. Assuming that the mass-
less particle correspond to the propagator denominggopower counting iy shows that soft
divergences can appear only in the scalar integral, but not in tensor integrals, because loop mo-
menta in the numerator render the limit> 0 in the integral non-singular. Thus, in the general
case, where the massless particle corresponds to any propagator denominatift divergent
parts of tensor integrals are always proportional to powers of the mompgnés can be seen by
performing a shifiy — ¢ — px, which mapsV; to Np. A collinear singularity results from the
range where the loop momentunris parallel to the momentumy, of a light external on-shell
particle that splits into two light particles. If a tensgy, . ..q,, is presentin the loop integral, the
divergence can only show up in covariants that are built up in the singular region. Thus, collinear
divergences of tensor integrals appear in covariants containing only the momgpntum

In the reduction formulas given above the fact@ — 4) appears only in front of tensor
coefﬁuentsTool ; contamlng at least one index pair “00”, which have been shown to be IR
finite. Therefore aII the reduction formulas are valid without modification if IR singularities
are regularized dimensionally. All term® — 4)T0A(/), ;, can be taken fromAppendix A if
more of these terms are needed, they can be easny "derived from the reduction formulas them-
selves.

6. Reduction of 5-point integrals

In four space-time dimensions, 5-point integrals can be reduced to 4-point integrals. In
Ref. [26] we have given relations that express 5-point tensor integrals of Pably 4-point
tensor integrals of rank (see als®Appendix Q. This method follows the strategy proposed in
Ref. [22] for the reduction of scalar integrals and was actually used in the calculation of one-
loop corrections toee~ — 41 [35]. Here we derive formulas that directly reduce 5-point tensor
integrals of rankP to 4-point tensor integrals of ranl® — 1). While similar results have been
presented in Refl9], our derivation is more transparent.

We start by considering the determinant

q" =29 2qp1 -+ 2qpa
0 2md A o fa
E=|pPt —2p1g 2pip1 -+ 2pipa
Pa  —2paq 2pap1 -+ 2paps
q" —No—2mg 2qp1 -~ 2qpa| |q" —No  2gp1 -+ 2qpa
0 2md fi - fa OM 0 fi - fa
—| Py f1 2pip1 -+ 2pipal4|py No—Ni 2pip1 -+ 2pipa
Py fa 2pap1 -+~ 2papal |py No—Na 2pap1 -+ 2papa
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g —No N1—No --- Na—No
0 2nm§ A o fa
=|\ri fi 2pipr - 2pipa

Py fa 2pap1 -+ 2papa

gl —No 2p1a o 2qpac
01 0 fi o fa

L |Pf q*(No—N1) 2pipr -+ 2pipal (6.1)

Py q*(No—Ns) 2pap1 -+ 2papa

In the first manipulation, we have split the determinant in the second column, and in the second
we have added the second row of the first determinant to its first row and we have gfoved
from the first row to the second column in the second determinant. Moreover, we have used the
definitions(2.2) and (2.24)

In four dimensions, the determinafitvanishes, as can be seen from its defining form, because
g is linearly dependent on the four momemtai =1, ..., 4. Since we want to derive a relation
that also holds in dimensional regularization we do not use this fact, but translate the integral
over¢ into a form that has a factor @ (D — 4) rendering the whole contribution zero for finite
integrals. Inserting the first form & in (6.1) into the integrand of the tensor integu@f1--#»
results in

2r )P Bi...ghp
/557(”.“) /quiq T_¢

im? NoN1---Ng
gll; Zpl,a cee 2P4.a
n
Py 2pap1 -+ 2papa
8« —28up 2P1a - 2P4a
0 0 fi o fa
4 gefuienr Py —2p1p 2pip1 -+ 2pipal 6.2)
Py —2pap 2pap1r -+ 2papa
This form can be written more compactly by introducing the four-dimensional metric tensor
% 2p8 - 2py
1 |Py 2pip1 -+ 2pipa
(4) S
g(4) ;1 2p Z ] TTA@ | . . . ) (6.3)
i : : . :
Py 2pap1r -+ 2papa

leading to the result

4
+ ZZX,io) [Pl (8ap — 8@yup) — Pup (8 — gy JECPIL (6.4)
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The second term is obtained by expanding the second determiné@®)jralong the first two
rows and the first two columns according(®17)and using2.20)
Alternatively integrating over the last form éfin (6.1), we obtain

Eum Hpo —DHL-EP(Q)  DHLRP (1) — DFL-RP(Q) ... DHIRP(4) — DFL-RP(0)
2"1(2) fl e f4
/ E= P1 f 2p1p1 2p1ps
p4 Ja 2pap1 e 2papa
gg — DH1-1P () 2p1a 2D4w
n pi}, Da,ul...ptp (O) _ Dalllv--l“’(l) 2p1p1 te 2P1P4 . (65)
plif  DYM-RP(0) — DMK (4) 2papy -+ 2papa
The last determinant can be written as
gtl; —DH1-EP(Q) 2p1,a cee 2p4,a
pi DYMLHP(0) — DURRP(L) 2pipy --- 2p1pa
Pl DYHLHP () — DURRP(A) 2papy - 2papa
g 0 2P1a 0 2Paa
_|p} DeH1-HP(Q) + p¥ DHL-HP(Q) — DOML-HP(1) 2pip1 -+ 2pipa
Pl Dem-kr (O) + po & .- HP(Q) — D¥FHP(4)  2papy -+ 2papa
g‘/x/’ 0 2p1,a e 2P4,a
—|py —DURrQ) 2pipy o 2papa) (6.6)
py —DUtr (@A) 2papy -+ 2papa

The first equality in6.6) can be easily checked by expanding along the second column. In order
to explain the second equality, we introduce the Lorentz-covariant decompositions

DOHLIP () = [Dﬂlﬂlu-ﬂp (i)](l’) [Dﬂlltlu-ltp (i)](g), i=0,...,4,

P
[Daul up (l) (1’) Z pnxﬂl P (7Y, [Daﬂ-ln-l/-P (i)](g) _ Zgaﬂryﬂlmllr-nﬂP (i),
=1
n;éz "

4
[Dera47.©) 4+ p§ DP-42 (] P =3 (pu — p)* . (6.7)
n=2

The operation “¢)” isolates all tensor structures in which the first Lorentz index appears at
a metric tensor; the remaining part of the tensor furnishes thg" “€ontribution. The last
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decomposition in(6.7) becomes obvious after performing a shjft— ¢ — p1 in the inte-

gral. From(6.7) it follows immediately that the terms in the second line(66) that involve
[Dam.,,w(i)](l’), i=1,...,4, drop out when expanding the determinant along the second
column, because the resulting determinants vanish. Similarly, the contribution proportional to
[Dayy...;ip (0 + p1a Dyy.up (0017 vanishes after summation over all contributions. The remain-

ing terms involving[ D]® are collected in the quantity
DUHL-IP () = [Daltl...up (i) — D¥H1-p (O)](g), i=1....4 (6.8)
Inserting(6.6)into (6.5) and expanding the determinants we find

/5 det(X(“) EHMBLpp Z X’(fr)lpm DHHP () — DMl---MP(O)]

n,m=1

Z X(4) plLDFHP (Q)  DHILIP (n)]

4
+ ZDaﬂl M (1) Z 2Pm. oD XEZZ)(Om)’ (6.9)
n=1 m, =1

where):(gfr)l)wm) is given in(2.29) Setting this equal t(6.4), we obtain

det(Xm)) E ML P

4
_ Z )}r(:;;p [DN—lmMP(n)_DHlmMP(O)]
n,m=1

+ZX(4) plEDFHP (Q) 4 DHIL- up(n)]

4 4
S(4
= D D) Y 2pma ) X oy + 2mGAD (8l — giaylt) B
n=1 m,l=1
4
~(4

+2 X0 [Pl (gap — 8ap) — Prp(8h — gaylt) | EXP1L-1r. (6.10)

n=1

In this result, all inverse Gram determinants have been absorbed in the four-dimensional met-
ric tensor, which appears only in the differenge— g)). In four dimensions, all these terms
vanish identically. In dimensional regularization they contribute on§%#*1--#* involves sin-
gularities, i.e., only the singular terms Eff#1--17 gre relevant. As explained in Sectibrg, IR
singularities ofE“#1--#F appear only in contributions that are proportional to a momensfim
These contributions vanish exactly (6.10) as long as the external momenta have only non-
vanishing components in the four-dimensional subspace. UV singularities appear Brity4f
Therefore, we can omit the last two termg@10)for P < 4.8 For P > 4 the inverse Gram de-

6 This result is in agreement with the observation made in R8f.that in the absence of UV divergences reduction
formulas valid in 4 dimensions remain valid i dimensions up to terms @@ (D — 4), independent of the possible
occurrence of IR singularities.
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terminant that is implicitly contained ig) can always be cancelled by a prefactdf. In the
last-but-one term of6.10)this prefactor is already explicit; for the last contribution it is straight-
forward to check that this factor always arises after symmetrizing the r.h.¢6df0)w.r.t. the
indicesu, w1, ..., up.

The next step consists in the insertion of the decompositions of tensor integrals into Lorentz
covariants. Here and in the following we omit the terms involvigg- g4)) if P < 4. The general
tensor decompositions up to rank 5 explicitly read

4
EM=3 phEn.  E"= 3 phphEn;+g" Eco
i1=1 i1,ip=1

4 4
EMP = Z Pﬁp,'vngEiliziﬁZ{gp}ﬁinEooz'l,

i1,i2,i3=1 i1=1
4 4
EMPO = N plplpl i Eisigisia + Y, (8PPYes” Eooisi + {881 Eoooo,
in,iniz,ia=1 i1,ia=1
4
EMoT = N plpt pl pg b Ensigisiais + Y, {8PPPYi EoGisini
i1.i2.i5,ia,i5=1 i1.i2.i3=1
4
+ Z{ggp}fimeooool. (6.11)
i=1

In four dimensions, the covariants involving metric tensors are redundant in these decomposi-
tions, since the metric tensor could be replaced®$). By keeping these coefficients we can
avoid the appearance of explicit inverse Gram determinants in the reduction formulas.

Inserting the Lorentz decompositions of the tensor integralqé1fid®), we find the following
reduction equations for the tensor coefficients upon comparing coefficients of covariants,

det{X ) Eiy..i,

4
sS4 < < (4
= ZX](m)[D(il),,...(ip),, (M)8isn - .- 8ipn — Diy..ip (0)] — X,((o) D, ..ip(0)
n=1

_ZZZX<kn>(Ozr)[DOOu1)n iy MBian 81 _inbin - Sipn

n=1r=1
—Dogiy i (0)], k=1,...,4 P<4, (6.12)
def(x'?) Eoa..., = ZX [Do0tiz),...ip)w MBign - - - 8ipn — Dotip...ip ()], P <4

(6.13)

7 Contributions toE*f#1--P involving pg vanish, and those involving®*i gﬂ”f cancel after symmetrizing w.r.t.
the indicesu, i1, ..., wp. Interms involvingg®? the surviving(g — g(4)) turns into(D — 4). Finally, terms involving

pl getafactory?_; P x Y = — £, A® owing to(2.28) and (2.13)
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Since we have distinguished the indein the derivation of6.12) the resulting tensor coeffi-
cientsE__ are not symmetric under the exchangé efith one of the indices,, r =1,..., P. In
order to distinguish them from the symmetric tensor coefficightswe marked them with a bar.
Symmetric tensor coefficients can be easily obtained by adding edlsults withk exchanged
with one of thei, and dividing the sum by, e.g.,

1 - _ _
Ei1i2i3 = é(Eilizig + Ei2i1i3 + Ei3i2i1)’ (614)
1 - _ _
Eow, = 3 (Eooiy + Eoi0 + Eiy00)- (6.15)

In (6.15) Eoo;, and Eq;,0 are determined fron(6.13) while E;, oo is determined fron(6.12)

For P > 4 extra terms of orde(D — 4)Eqq.. have to be added to Eq&.12) and (6.13)
For P = 4 the last-but-one contribution i6.10) is of O(D — 4), but the last term yields a
finite contribution forD — 4, because the coefficietflpoogoo is UV divergent. We calculate
this contribution upon insertingg@?#1-#4| g, = {ggg}*PH114 Eqonoodgiv iNto (6.4) and using
(D — 4) Egpoooofrom (A.5). After symmetrizing in the Lorentz indices, we get

4

[ =540 2 KB tsepiiree (6.16)
=1

This contribution to the coefficients;gopo can be included by replacingf(fg) Doooo(0) in (6.12)

by —)?i(g)[Doooo(O) + 4—18]. The case® > 4 can be treated analogously, but usually do not appear
in renormalizable quantum field theories.
After the symmetrization, we thus find for the tensor coefficients up to rank 5:

det( X @) E; Zx(“) [Do(n) — Do(0)] — X {3 Do(0). (6.17)
4 ~
det{X¥)Eqo= Z X ,(,‘(1)) [ Doo(n) — Doo(0)],
n=1

4
2de(X @) Eyyy, { Y X Diiyy, (1)Bizn — Din(0)] = X {0 Do (0)
n=1

4 ~
—23 XD i [Poo(n) — Doo(0)] § + (i1 <> i2), (6.18)

n=1

3de(X ) Eon, = ZZX,,O Doy, (M)8iyn — Doy (0)]
n=1

ZXfl,), [ Doo(n) — Doo(0)] — X )Doo(O)

3de(X(4)) i1iziz = Z len Dyiy), (i3)n (”)812'!8!3'1 — Diyig (0)] - Xi(f())Dizig(O)
n=1
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4
= 4 -
=23 X 0 [Po0tia), (Mizn — Dooi(0)]
n=1

4
= (4) —-
— 23 X 01 [ P00z, (M)8izn — Doaip (0)]

+ (i1 <> i2) + (i1 < i3), (6.19)

det(X®) Eqooo= ZX [ Doooo(n) — Doooo(0) ],
n=1

4de(X( ))EOOI ir = ZZX DOO(zl),,(tz),, (n)‘slln(slgn - DOOllzg(O)]
n=1

{qun Dooi), (dizn — Dooi,(0)] — X {1 Dooi, (0)

-2 Z X2 i [ Po00on) — Doooo(0)] + (i1 <> iz)
n=1

4

4 (4 s 5 s

4de(X V) Eiyjyiziy = {inln[DUz)n(is)n(u)n (1)8i3n8i5n8ian — Disisiy (0)]
n=1

- X,10D1213i4(0)

= (4) — -
- 22 X (i) 0iz) [ P00z 40, (M)Bignian — Dooizia (0)]
n=1

4
~ (4) — —
-2 Z X(iln)(Ois) [DOO(iz)n(M)n (n)8i2n5i4n - D00i2i4 (O)]
n=1

4
= (4) - -
-2 Z X(iln)(0i4) [DOO(iz),, @i3)n (n)(sizn(sign - D00i2i3 (O)] }
n=1

+ (i1 <> i2) + (i1 < i3) + (i1 < i4), (6.20)

5de(X ) Eooo0, = 42 X6 [ Dooodiy),, (M)3isn — Doooa; (0)]
n=1

4
i 1
+ > X[ Doooon) — Doooo0)] — X z(:%[D 0000(0) + EJ’
n=1

4
-4 o
5de(X¥) Eonyipis = 2 Z X0 [ D001} 123 131 ()81 Bi2nBizn — Doiziniz (0)]
n=1

o4
Z Xlln DOO(’Z)n (i3)n (n)812"513’1 - DO()iziS (0)] - Xi(l(%DOOizlé (0)
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4
~ (4) —
- 22 X (1) 0y | P000Q3), () ign — Doooas (0)]
n=1

4
~ (4) —
-2 E X (o) @iy | P0000i2), ()8i5n — Doooa, (0)]
n=1

+(i1<—>i2)+(i1<—>i3)},

4

~ (4 - -

5de(X(4))E,-1i2,-3,-4i5 = { § :Xi(lr)t[D(iZ)n(i3)n(i4)n(i5)n (m)8i2n8i3nbignBisn — Di2i3i4i5(0)]
n=1

7 (4
- XiloDi2i3i4i5 (O)

4
~ (4) - - -
=2 " XD 01y [ P00 a2 i5)n () inBignisn — Dovisiais (0)]
n=1

4
= (4) - - -
=2 X 01 [ P00 (a2 is)n ) 8ignBignisn — Doviziais (0)]
n=1

4
= (4) — - -
=2 " X 01 [ P00 G3)n is)n () ignBignSisn — Dovizisis (0)]
n=1

4
= 4) - - -
=2 Xy 0is) [ DO%i2) i) 1 (Wi BignBian — D00i2i3i4(0)]}
n=1

+ (i1 < i2) + (i1 <> i3) + (i1 < ig) + (i1 <> i5). (6.21)

For the 4-point tensor coefficients that result from omitti¥ig in the 5-point integrals, we
have introduced the auxiliary quantities

D;;(0)=D;;—1(0), i1=2,3,4,

4
D1(0) ==Y D,(0) — Do(0), (6.22)
n=2

Djyi,(0) = Diy—1,i,-1(0), i1,i2=2,3,4,

4
D1;y(0) ==Y Duy(0) — D;(0), i1=1,....4, (6.23)
n=2

Diyi5i3(0) = Djj—1,iy—1,i3-1(0), i1,i2,i3=2,3,4,

4
D11yi(0) = = Y " Dpigip(0) = Diyjp(0),  in.iz=1,....4, (6.24)
n=2

D izizia(0) = Djy_1i,—1i3-1,is—1(0), i1,i2,i3,i4=2,3,4,

4
Di111i5i5(0) = = Daininiz(0) — Diigis (0),  in,iz,iz=1,...,4, (6.25)
n=2
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and similar quantities resulting from these relations with index pairs “00” added tD th@)
functions on both sides.

7. Reduction of 6-point integrals

Following the guideline of the reduction of the scalar 6-point integral to six scalar 5-point
integralg22], the 6-point tensor integrals of rartkcan be reduced to six 5-point tensor integrals
of rank P as described in Ref24]. This method, which was used in the calculation of one-loop
corrections to €e~ — 4f [35], is more explicitly worked out ilAppendix D

In the following we describe a method that reduces 6-point tensor integrals ofRraok
5-point tensor integrals of ranl® — 1). The scalar 6-point integral should be treated following
Refs.[22,35] as explicitly described i\ppendix D The tensor reduction can be derived by
considering the determinant

gt 29p1 - 2qps g* Ni—No -+ Ns—DNo
pi  2pip1 - 2pips pY  2pip1 - 2pips
Fe Pi_1 2Pk-1p1 -+ 2pk-1ps| | Py_1 2Pk-1p1 -+ 2Pk-1ps 7.1)
0 f e /5 0 f e fs | '
Pis1i 2Pk1P1 -+ 2pk4iPs| | Phy1 2Pk+1P1 0 2pki1ps
pe  2psp1 -+ 2psps pe  2psp1 -+ 2psps

The r.h.s. is obtained by adding ttle+ 1)th row to the first row and using.4).

In four dimensions, this determinant vanishes, as can be seen from the first f¢rd)in
becauseg is linearly dependent on the four (non-exceptional) momenta =1, ...,5,i # k.
We again do not use this fact, but translate the integral gvénto a form that has a factor
of O(D — 4) rendering the whole contribution zero for finite integrals. Inser{ing) into the
integrand of the tensor integralt--## results in

27 w)4 D Ri...ghP
/'fz(ﬂiﬂ) deqq "’ -

2 NoNjp---Ns
g% 2p1a o 2pse
Py 2pip1 -+ 2pips
— FOHL.-pp pll:—l 2pr-1p1 -+ 2pk-1ps (7.2)
0 f1 . s '
Pfﬂ 2pk+1p1 -t 2pk+1ps
pt  2psp1 -+ 2psps
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We expand the determinant along tite+ 1)th row and use the fact that the four-dimensional
metric tensor can be written as

0 200 ... 2p!
2k 2k 1 4
v 1'171 1'174 Ky 2kip1 2k1p4
S| ST ; : (7.3)
2kap1 2kapa ki 2kap1 2kaps

for two arbitrary sets of linear independent momemtapz, p3, pa andky, k2, k3, k4. This yields

(5
/“TZ —Xjg Foa--tr (ght — ga)lt). (7.4)
Inserting the r.h.s. of7.1)into the integrand of the tensor integiatt--#? results in
FHAHLip BRI (1) — ERL-IP (Q) EPL-HP (5) — ERL--IP (Q)
Py 2p1p1 2p1ps
u i i
/}": Pi—1 Pk—-1P1 Dk—1P5 (7.5)
0 /1 /5
Prs1 2pr+1p1 2pk+1P5
Ps 2psp1 2psps

Expanding the determinant along the first row and the first column according to the analogue
of (2.22) yields

/]:— —Xjg Frair — Z X(km)(On)pm[E'ul P (n) — EM-RE(0)], (7.6)
n,m=1
WhereXEkm)(0 ) is given in(2.29)
From(7.4) and (7.6we obtain
v (5
XIEO)FMM wp — _ Z X(km)(On)pm Eul HE () — EM MP(O)]
n,m=1
+ Xig Forie (gh — g gy, (7.7)

The last term in(7.7) only contributes in dimensional regularizatiorFif#1--#F is singular. For
UV singularities this is the case i > 7, which is usually not needed in renormalizable theories.
As explained in SectioB.8, IR (soft and collinear) singularities @gf*#1--*r only appear in con-
tributions that are proportional to a momentyh. These contributions vanish exactly(if.7).
Therefore, the terms involvingg — g)) in (7.7) can be omitted forP < 78 For P > 7 the
inverse determinant that is implicitly containedg, can always be cancelléd.

8 This is again in agreement with the observati29] that in the absence of UV divergences reduction formulas valid
in 4 dimensions remain valid ip dimensmns up to terms @P(D — 4), |ndependent of possible IR singularities.

9 According t0(2.28), X(S) 72‘;’ 1an fn- For each of these termﬁ’q g(4) can be expressed vi@.3) by a
determinant without denomlnator
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Introducing the matrix

2pip1 -+ 2pips
2pk-—1p1 -+ 2pk-1ps
M) = 1 e f5 . (7.8)
2pry1p1 -+ 2pk+aps
2psp1 -+ 2psps

(7.7)can be written as

FHIL P _Z Z (k) nmpm E“l I () — Emu.up(o)]

n=1 m=1
m#k
+ FOHL-p (ght — gg)l), (7.9)

which expresses the 6-point tensor integral of ré@nin terms of six 5-point tensor integrals of
rank (P —1). The inverse oM, is given by
-1 & (5)
(May)i; ==X
In the form(7.9) our result can easily be extended to the reductioN gfoint functions with
N > 6 by simply forming a matrix similar td/, by selecting five momenta for the columns
and four momenta for the rows out of ti¥ — 1) available momenta of th&-point function.
Eq.(7.7)can also be used to derive an alternative reduction of tensor 6-point integrals. Multi-
plying it with X0, summing ovek =1, ..., N, and using2.30) for ngn)(on) yields

/XD i jk=1,...,N. (7.10)

5
de‘(}(@))p#ﬂl---ﬂp — Z )}r(l?zp#l [Eul-uup (n) — EF1-1p (O)]

n,m=1

+de1(X(5))F"‘“1""‘P (gf; —g(4)5). (7.12)

Here, as in(6.10) all inverse Gram determinants have been absorbed in the four-dimensional
metric tensor, which appears only in the differerige- g)). The resuli(7.11)is equivalent to
Eq. (64) of Ref[19].

Finally, we insert the decompositions of tensor 6-point integrals into Lorentz covariants in
order to derive explicit reduction formulas for the tensor coefficients. Since we consider only
tensors up to rank 3, we can omit the terms involvigg— g)). The tensor decompositions
explicitly read

5 5
Fl=) phFas F"= 37 plipiFui+ 8" Foo,

i1=1 i1,ip=1

5
F/LU/) = Z p11p12p13 i1i2i3 + Z{gp}ﬁvaOOi]g (712)

i1,i2,iz=1 i1=1
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In four dimensions, some covariants in these decompositions are redundant in the sense that they
can be expressed by the others. For instance, in the decompositithafe of the five covari-
ants pili F;, is redundant, because one of the momeniacan be expressed by the other four
linearly independent vectors. Similarly, all covariants involving metric tensors are redundant.
However, by keeping these coefficients we can avoid the appearance of explicit inverse Gram
determinants in the reduction formulas.

Inserting the Lorentz decompositions of the tensor integrals in the reduction formulas given
above, we can read off the reduction formulas for the tensor coefficients upon comparing coeffi-
cients of covariants on both sides. Generically we find

5
Fjiy.ip = chn[E(il)n...(ip)n (M)8iyn - .8ipn — Eir.ip(0)], P <7, (7.13)
n=1
with
con=cin=0,  cjn= (M(;)l)nj, jin=1,...,5, j#k (7.14)
for the reduction given if7.9) and with
con=0, =X /def(Xx®)=(x®) " jn=1..5 (7.15)

for the reduction given in(7.11) In the numerical reduction we can select the equation that
is numerically most stable. For example,(ih14) we can choosé& such that the modulus of
X = — detMy, is maximal.

Since we have distinguished one momentum in the derivatiof7.8) the resulting tensor
coefficientsF _ are not symmetric under the exchangejofith one of the indices,. This can
be easily cured as in the case of 5-point functions (6ek4) and (6.19)by adding all P results
with j exchanged with one of thig, and dividing the sum by.

Thus, we find fron(7.13)for the tensor coefficients up to rank 3
5

Fy =) cim[Eo(n) — Eo(0)]. i1=1.....5, (7.16)
n=1
Foo=0,
13 _
Fiji, = > Z{C,’ln [E(iz)n (n)diyn — E,’Z(O)] + (i1 < iz)}, i1,io=1,...,5, (7.17)
n=1

5
1
Fooi = 5 ) Cian[ Eoo(n) — Eoo(0)].
n=1
5
1 < < . . . .
Firipiy = 3 Z{Ciln [E 12 (i3)n (M inbign — Eiyig(0)] + (i1 <> i2) + (i1 < i3)},
n=1
i1,i2,i3=1,...,5. (7.18)

For the 5-point tensor coefficients that result from omittivigin the 6-point integrals, we have
again used the auxiliary quantities

E (0 =E;; 10, i1=2,...,5
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5
E1(0) ==Y E,(0) — Eo(0), (7.19)
n=2

Eii,(0) =Ej_1,,-1(0), i1,i2=2,...,5,

5
E1y(0) ==Y Eny(0) — E;y(0), i1=1,...,5, (7.20)
n=2

Ei1iris(0) =Eij_1i,-1i3-1(0), i1,iz,iz=2,...,5,

5
Eliliz(o) = Z Eniliz(o) - Ei1i2 (O)’ i1,i2= 19 ceey 5. (721)
n=2

8. Summary

Methods for a systematic evaluation of one-loop tensor integrals have been described for
graphs with up to six external legs. The results are presented in a form that can be directly
translated into a computer code; only the scalar 3- and 4-point integrals have to be taken from
elsewhere.

While UV divergences are treated in dimensional regularization, possible IR (soft or collinear)
divergences can be regularized either dimensionally or with small mass parameters; the described
results are valid in either IR regularization scheme. Moreover, the results hold if internal masses
are complex parameters, which naturally appear for unstable internal particles. The generaliza-
tion of the proposed methods to functions with more than six external lines is straightforward.

Particular attention is paid to the issue of numerical stability. For 1- and 2-point integrals of
arbitrary tensor rank, general numerically stable results are presented. For 3- and 4-point tensor
integrals, serious numerical instabilities are known to arise in the frequently used Passarino—
Veltman reduction if Gram determinants built of external momenta become small. For these
cases we have developed dedicated reduction techniques. One of the techniques replaces th
standard scalar integral by a specific tensor coefficient that can be safely evaluated numerically
and reduces the remaining tensor coefficients as well as the standard scalar integral to the new
set of basis integrals. In this scheme no dangerous inverse Gram determinants occur, but inverse
modified Cayley determinants instead. In a second class of techniques we keep the basis set
of standard scalar integrals and iteratively deduce the tensor coefficients up to terms that are
systematically suppressed by small Gram determinants or by other kinematical determinants
in specific kinematical configurations. The convergence of the iteration can be systematically
improved upon including higher tensor ranks. For 5- and 6-point tensor integrals, we describe
reductions to 5- and 4-point integrals, respectively, that do not involve inverse Gram determinants
either. Compared to some other existing methods, the described methods are distinguished by the
fact that the reduction from 6- (5-) to 5- (4-)point integrals decreases the tensor rank at the same
time.

We finally emphasize that the presented methods have already been successfully applied in
the calculation of a complete one-loop correction to-a 2} scattering reaction, viz. the elec-
troweak corrections to the charged-current processes e> 4 f. The described methods, thus,
have proven their reliability in practice and will certainly be used in future loop calculations for
interesting many-particle production processes at the LHC and ILC.
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Appendix A. UV-divergent partsof tensor integrals

In the reduction formulas given above, products(ff — 4) with tensor integrals appear.
These give rise to finite terms originating from UV singularities in the loop integrals. As men-
tioned above, no IR-singular integrals multiplied with — 4) appear in the reduction formulas.

The UV-singular parts of the loop integrals can be derived easily from the Feynman-parameter
representation or by usir(§.10)for these parts only. In the following, we list results f@ — 4)

times one-loop integrals omitting terms of ord@¢D — 4). For the 1-point functiong\ _(mq)

we get

2n+2

m
D —4)Ag = —2m3, D—-4A =——20 =12,.... A.l
( )Ao ( VA 0.0 =~ 5= T " (A.1)

2n

For the IR-finite 2-point function®._ (p1, mo, m1), i.e. excluding the Cas)e1 = m(ZJ m? =0,
we obtain

(D—4Bo=-2, (D—-4B1=1,

1 2
(D—4)300:6(p§_3m3—3m§), (D~ 4By =7,

1 1

(D —4)Boo1= —12( —2m5— 4m§) (D —4Bi11= >

1
(D — &) Boooo= — | p1 — 5p5 (m§ + m}) + 10(mg + mgm3 + m3)],

120
2
(D — 4)Boo11= a)(3pl — 5m§ — 15m3), (D—4Bun=—¢,
1
(D — 4)Boooo1= 2—40[ 4plm0 6p1m1 + 5m0 + 10mom1 + 15m4]
1 1
(D — 4)3001112 —6—0(2p1 — 3m(2, — 12171%), (D — 4)Blllll= é (A-Z)

For the 3-point functiong’_(p1, p2, mo, m1, m2) we obtain, denotingp1 — p2)2 = s12,

1 1
(D—4)Coo=—§, (D—4)C005=6,

1

(D — #Coo00= ~=[s12+ P + p3] — — (m3 +m?3 + m3),
48 12

D — &Coni = — — D —4Conj = ——

( ) Cooii 12 ( ) Cooij o4

2

1 2 2 2

(D —4)Copoa = — 240|:2S12 —omg+ E l(l’n —5my)(1+ 5in):|,
n=
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1 1
(D =4 Cooiii = 57 (D —HCoaiij = =,

20° 60
(D = 4)Cooo000
1 2 2 5 X
= 2880|:2312 Bs12m3 + 30mg + 2512 Zl - 6m,2L) — 6m3 Zl(an —5m%)
n n

2
Z (P2 ph — 6p5m5 + 15m), ;1)(1+8mn):|»
2

1
(D — 4 Coooai = ﬁ[iiuz — 6m3+ Z(P,z, - 6mf)(l + 28m)},
n=1

(D —4)Cooogj = 720[2&2—3"104-2 6m5)}

n=1
1 1 1
(D — A Copiiii = ~30’ (D —4)Coaiiij = 120 (D —4)Coaiijj = ~180°
2
1
(D —4)Cooo000 = TOSO[SS%Z - 7S12mg + 21}%61 + 512 Z(p,f - 7m,%)(2 +8in)
n=1

—7mOZ —3m2)(1+ 8in)

2
+ ) (r Tppmy +2Lmim )(1+28,-m6,-n)},
m,n=1
1 2
(D = 4)Cooouii =~ 7ga0 4s12—7m0+z 7m3)(1+35;) |,
n=1

2
1
(D =4 Coo0uij = ~ 5510 |:6S12 —Tm§+ Y _(ph —Tmh) 2+ Sm)]
n=1

(D — 4 Coqiiiii = (D — %) Coqijiij = (D — 4 Coqiiijj = (A.3)

1 1
4_2’ 210 420
wherei, j = 1,2 buti # j. All other 3-point tensor coefficients up to rank 7 are UV finite, so
that for them(D — 4)C.. =0 if they are IR finite.
For the 4-point function®_ (p1, po, pa, mo, m1, m2, m3) we find, denoting p1 — p2)2 = s12,
(p1— p3)? = s13, and(p2 — p3)? = s23:

1 1
(D — 4) Doooo 12 (D — 4) Doooa 28

1
§12+ 513+ 23+ P1 +Pz +P3] 96(mc2>+m§+m%+m%)’

1
(D — 4) Doooooo= 480[

1
(D —4) Doooai = — (D = 4)Doooa; =~ 55,

120°
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3 3 3
1 2 1 2
(D — 4) Dooooos = —M[anm Sin)+ Y Smn(L+ 8in +a,-m)} + 2502 "
n=1 m,n=1 n=0
m>n
(D — 4 oot = — (D — 4) Doooaij = =
000Qii = 240’ 000Qi; — 720’
1
D—4)D = — A.4
( ) Doooa jx 1240 (A.4)

wherei, j, k =1, 2, 3 but are pairwise different. All other 4-point tensor coefficients up to rank 7
are UV finite.

For the 5-point functionsE  (p1, p2, p3, pa, mo, m1, m, m3, my), there is only one UV-
singular tensor coefficient up to rank 6,

(D —&E _ 1 (A.5)
000000= 96' .

Appendix B. Tensor coefficients of singular 3-point functions

The vanishing of the modified Cayley determinant(@ét’), as defined vig2.25) is a nec-
essary condition for the existence of a leading Landau singularity in a oneMeugint integral.

For 3-point integrals this means that 8¢ = 0 for IR-singular (either soft or collinear) in-
tegrals, so that the reduction methods of Sect@sand 5.3are not applicable in this case.

If in addition the Gram determinant is small, for IR-singular 3-point integrals alsd?tj}eare

small, and the reduction method of Sectd cannot be used either. One could still, however,
use the method of Sectidn5. In the following we describe a way of evaluating these specific
3-point functions that does not make use of an iteration technique, but is based on analytical
simplifications that are admitted by the simple structure of the special cases.

The simplifications are achieved by directly using the analytical results for the standard scalar
integrals and for the tensor coefficients, as obtained with the Passarino—Veltman reduction, and
by rewriting them in such a way that the limit of vanishing Gram determinant does not involve
numerical cancellations. To this end, the scalar integrals are split into two parts: one contains
the asymptotic behaviour of the integral in the limit of vanishing Gram determif&htup to
a specific order and a corresponding remainder which is@f{ A®]"+1). We symbolize this
splitting by introducing the asymptotic operatd’agﬁxo ande{ixo, which define the asymptotic
behaviour of a functiory (x) for x — xg by

F@ =T [f0]+RE, [ F™)].

R, [f@]=0(x —x0)"™), n=0.1,.... (B.1)
If the function f(x) is analytical atx = xo, Tx@xo is the usual operator for a Taylor expansion
up to ordem.

Making use of these definitions, we now describe the treatment of the IR-singular 3-point ten-

sor integrals that were needed in the calculation of the one-loop correctiohsto-e 4 f [35].
It is convenient to switch from the original definiti¢®.1) of arguments on tensor coefficients to
the new notation

B.(p?,mo,m1) = B_(p1, mo, m1),

C..(P?, (p2 — p1)?, p3,mo, m1,mp) = C._(p1, p2, mo, m1, ma). (B.2)
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i) Collinear-singular case with two off-shell legs_ (m?2, s, s’, 0, m, M).
g

Herem denotes a small real mass, which will be neglected whenever possible. In this limit
the relevant scalar integrals read

2 M? M?—5s
Bo(0) = Bo(s,m, M) = A+|n(M )+2+<T_1)In< e ),

2 2 2 _
Bo(1) = Bo(s',0, M) = A+In<M>+2+<£—1>I <M S),

M2

2
Bo(2) = Bo(m?,0,m) = A—Hn( >+2,
o 1 n M2 — n M2 —s n M?2— n M2 —y
o= o in(5 ) () (o ()
. s—s' K s’
—2LI2<1V127_>+LI2<M > LI2<M2>} (B.3)

whereM? is complex with a finite or infinitesimal negative imaginary part, which is also present
for vanishingM?. The Gram determinant is given by

AD = (s — )2, (B.4)

so that the delicate limit i8s = s’ — s — 0. The asymptotic expansions of the scalar integrals
in (B.3) for this limit can be worked out easily; the first few terms read

2 2 _
Bo(1) = Bo(0) — S—S[H M (MM2 S)} +RY [Bo()],

Co— 1 1 8s In M?—5 M_2 1 Ss(M? — 2s) n M?—s
°_s—M2{[ +2(M2—s>} ( m? >+ s [ _2s(M2—s)] ( M? )

Ss(M?2 — 2s) e
m} 5s_>0[C0] (B-S)

+2-

where we have keptfixed. Inserting these or forms with more explicit terms of the asymptotic

expansion for the scalar integrals into the explicit formulas for the tensor coefficients, one obtains
expressions like

o M2[(M? — 5)s — 8s(4M? —55)]  M? —5+36s . M2 —
1= 252(M2 — )2 2(M2 —5)2 m2
N M2[M?s(M? — 5) — 8s(4M* — TM?s + 252)] | M2 —5
2(M? — s5)2s3 M2
Z(S + 85‘) &) M2 —5—4s )
- (8s )2 RSS—)O[BO(J')] + TR(SSQO[CO],
M2 M2 — S 1 1 @
Co=—— |n(—M2 ) -5+ gR(SHO[BO(l)],

c —1A+1In w? +M2(M2—8s)|n M2Z— +M2+2s—8s
=227\ M2 =5 452 M2 4s
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2
- MTSS‘”RQLO[BO(D]. (B.6)

Here the orders in the R operators are chosen in such a way that all terms involRfg

contribute only inO(8s) in spite of the enhancement factorgds)™ . Note that no delicate can-

cellations fords — O appear in the other terms, although the original Passarino—Veltman results

contain plenty of terms involving /18s)™ in front of linear combinations of scalar integrals.

Thus, the above forms are numerically stable as long as the remainderRétnsan be eval-

uated in a stable way. This task is, however, easily achieved upon expanding the scalar integrals

as in(B.5) to a high order, e.g., with computer-algebraic methods, and dropping the first

ders. The resulting series are easy to evaluate, and an arbitrarily high precision can be achieved

by including sufficiently high orders in the expansions. On the other hardd, i not small,

the R™ terms can safely be evaluated upon numerically subtracting theterms from the

scalar integrals. In this way an arbitrarily high precision can be achieved as lang’as 0

ands # M?. The case = M? does not occur in our application, the cases 0 ands’ = 0 are

treated below.

(i) Collinear-singular case with one off-shell te§_ (m?2, 0, s’, 0, m, M).

Specializing the previous caseste= 0, the scalar integrals read

2
Bo(0) = Bo(0, m, M) = A + In(;flz> s

CO=;{|n<Z—22> |n<M[2W_2 S/) L|2<;1/2)} (B.7)

with Bp(1) and Bo(2) still as given in(B.3). The limit of vanishing Gram determinant is now
reached fos’ — 0, where the scalar integrals can be expanded according to

Bo(1) = Bo(0) + W +RY [Bo)],

Co=——1(1 /Ianl s R! (B.8)
0= MZ +2M2 m + +m + saO[ ] .

or to higher orders if needed. Making use of these expansions, the first few tensor coefficients
can be written as

M2+ M? M?—s' @ M?— @
1= l(ﬁ)_ am*4 __RAﬁo[BO(l)] % R —olCol:

1

D

Co= 2 T Rs—m[BO(l)]’

1 1, [ pu? M2+ M%2—5'_ g
Coo==-A+=In| = - R Bo(D)]. B.9
©=2%"2 <M2> 8M2 G RmolBod)] (&)

TheR™ terms, which are suppressed by a fagtdy*+1, can be evaluated to arbitrary precision
for all values ofs’ as described above.
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(iii) Collinear-singular case with one off-shell teq“(mz, 5,0,0,m, M).
Specializing case (i) t&' = 0, the scalar integrals read
12
Bo(1) = Bo(0,0, M) = A + In<M ) +1,

Coz%{ln<M;2_s>ln<M;;S)—Li2<#)}, (B.10)

with Bp(0) and Bg(2) still as given in(B.3). The limit of vanishing Gram determinant is reached
for s — 0, where the scalar integrals can be expanded according to

Bo(0) = Bo(D) + 5.5 +R<1> [Bo(0)],

s—0

Co=— =l PP P M +1— 3 +RP [Col, (B.11)
M2 2M2 m2 am2 -0

or to higher orders if needed. Making use of these expansions, the first few tensor coefficients
can be written as

1 M? 11 M?
— (1) (l)

1 1_q
Co= W + ;RsHO[BO(O)],

1 1, (2 AM%2+s M?—5s_
COOZZAJer(W)Jr T “RY [Bo(0)]. (B.12)

The R™ terms, which are suppressed by a fastbr!, can be evaluated to arbitrary precision
for all values ofs as described above.

(iv) Soft-singular caseC. (m2, s, m3, x, m1, my).

For processes with external fermions in the massless limit$ 0), the Passarino—Veltman
reduction of this case turns out to be less delicate than the previous ones. In fact, no special
treatment was necessary fores — 4f [35], although one could also improve the stability
as described in the previous sections. We attribute the robustness of this case to the following
reasons. Firstly, becausgeis an infinitesimal photon masg; = f> = 0 and all 3-point tensor
coefficients are directly obtained from 2-point coefficients without further recursions. Thus, in-
stabilities do not accumulate. Secondly, for massless fermions the Gram deternifiaat—s?
vanishes only fos — 0, and this case appears fofes — 4 f only in regions of phase space
that are suppressed Byy/ M.

Appendix C. Alternative reduction of 5-point integrals

In Ref.[26] we have worked out a reduction of 5-point tensor integrals that follows the strategy
proposed in Ref22] for scalar integrals in four space—time dimensions. Here we briefly describe
the derivation of this method iP dimensions, to make closer contact to the methods used in this
paper.
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The reduction is based on different ways of evaluating the determinant

2> 2qp1 -+ 2qpa
2p1q 2pip1 -+ 2pipa

E=|". } _ o (C.1)
2paq  2papr -+ 2papa

which vanishes in four dimensions owing to the linear dependence of any five momemita. In
dimensions the integral ovéf can be easily evaluated to

2 291 - 2paa
(2rp)4-P /dD ght---qhr &' — goBui-ip 2p1p 2pip1 - 2pipa
im? qNoNl"'N4 B :
2p4”3 2p4p1 s 2P4P4
_ 2E0tﬂMl~~MP A(4)(ga,3 _ g(4),aﬂ)» (C.Z)

where we have identified the for(6.3) of the metric tensog s o in four dimensions.

On the other hand, the integral ovéf can be evaluated in terms of 4-point functions as
described in Section 2 of RgR6] with the only difference that no additional UV regularization
is needed, because we now keep the dimensiageneral. In detail, this means that the factor
—A?/(g° — A?) introduced in (2.5) of Ref[26] is absent, and the result analogous to (2.19) of
Ref.[26] becomes

4 4
eV 3 e DI ) 3 22 TP )
n=0 n,m=1
+ 2EP1I A (gog — g4y ap), (C.3)

whereY = (Y;;),i, j =0, ..., 4, was defined if2.26) andY, is obtained from the 5-dimensional
modified Cayley matriX’ by replacing all entries in theth column by 1. The last term ¢€.3),

which results from(C.2), contributes only ifE*##1--1F involves a divergent coefficienfigg..
corresponding to a covariant containing a metric tensor. As explained in Séd@j@uch coef-
ficients are free of IR divergences, and power counting shows that UV divergences only occur
for P > 4. Therefore, the last term {€.3)is of O(D — 4), and thus irrelevant, foP < 3. For

P =4, this term can be explicitly evaluated usif#g5) yielding

4 4
det(y) EF-a — _ Z det(y, ) DH114 (n) + Z Zr(fzzpm,apam'“““(n)

n=0 n,m=1
1 1
— _A(4) n1..-p1a4 __ A(4) _ H1...104 c.4
252 leg) 24D —43) {(g —ga@e}™ ™, (C.4)

where{(g — gw))g}*1*4 is a symmetric tensor of rank 4 constructed according to the rules
explained in Sectiog,

.. fba

{(g — 848}
+ (g _ 8(4))/L2H3gﬂvlﬂ4 + (g _ g(4))ﬂ2/l4gﬂll"3 + (g _ g(4))ﬂ3ﬂ4gﬂlll2. (C5)
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The first term in the last line (fC.4) s just the finite contributior/#1--#4 defined in (2.15) of
Ref.[26], and the UV-divergent terms of the second term in the last line exactly cancel the UV
divergences of the 4-point integrals in the first line. Thus, the resulEfar-#4 exactly receives

the form of (2.19) of Ref[26],

4 4
det(Y)E 114 — Zdet(Yn)D(ﬁ”)“l“'““(n) + Z Z,(LQme,aD(ﬁn)“’”“'““(n)
n=0 n,m=1
1
_ _A(4){gg}u1mu4, (C.6)

48

where the superscript “(fin)” indicates that the UV parts have to be consistently omitted, as e.g.
following the MS prescription.

Appendix D. Alternative reduction of 6-point integrals

Here we describe the reduction of 6-point tensor integrals of Rafikcluding the scalar case
P = 0) to six 5-point tensor integrals of equal rank that is based on the strategy ¢2&ef his
reduction is related to the reduction of 5-point functions as given in[RgfandAppendix Cand
has been used in the calculation of the electroweak correctiont®to-e 4 f [35]. Moreover, it
is needed to reduce the scalar 6-point function to 5-point funcfiiis

It starts from the observation that

No+Yoo 2g9p1 -~ 2qps
@rw*P 5 q"r--gtr |Yio—Yoo 2pip1 -+ 2pips
-_—a 2 d q . . . . = 07 (D'l)
1 NoN1---Ns : . :
Yso—Yoo 2psp1 -+ 2psps

which is correct in any space—time dimensifnas long as the five four-momenia (i =
1,...,5) are linearly dependent, and thus for four-dimensiomalbecause then the five last
columns of the determinant are linearly dependent for an arbifpagymensional momentu.

The I.h.s. of this relation is practically the same as in Eq. (2.10) of[Réf, where the reduction

of 5-point integrals is described. The same manipulations as described there lead to the result

FHL-RP  _ERL-HP(Q)  —EALHP (D) ... — ERL-KP ()
1 Yoo Yo1 Yos
1 Y10 Y11 Y15 =0. (D.2)
1 Y50 Y51 e Y55

Eq.(D.2) expresseg#1--#P in terms of six 5-point integrals,

5
R R
n=0

_detYy)
" dety)’

(D.3)

whereY = (¥;;), i, j =0,...,5, andY, is obtained from the 6-dimensional modified Cayley
matrix Y by replacing all entries in theth column by 1. For the scalar integr&, this result is
identical with the one of Ref22].
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By inserting the Lorentz decompositions as giverfdri2) we can derive explicit formulas
for the scalar 6-point function and the coefficients of tensor 6-point integrals(fbo8)

5
F0: —ZTMEO(”L (D4)
n=0
5
Fyy=— Z NnEGp, (M)8in —noEi(0), i1=1,...,5 (D.5)
n=1

5
Foo=—_ naEoo(n),
n=0
5

Fiji, =— Z nnE(il)n(iz)n (n)gilngizn —nokEiji, 0, i1,ip=1,...,5, (D.6)
n=1

5

Fooi, = — Z N Eootiy), (M8izn — noEow; (0), i1=1,...,5,
n=1
5

Fisigis == > M Eip),(i2)ntiz)y M)8isnSiandign — N0Eiyiiz(0),  i1.i2.i3=1,....5. (D.7)
n=1

The 5-point tensor coefficients that result from omittiNg in the 6-point integrals have been
given in(7.19)

References

[1] G. 't Hooft, M.J. Veltman, Nucl. Phys. B 153 (1979) 365.
[2] W. Beenakker, A. Denner, Nucl. Phys. B 338 (1990) 349;
A. Denner, U. Nierste, R. Scharf, Nucl. Phys. B 367 (1991) 637.
[3] L.M. Brown, R.P. Feynman, Phys. Rev. 85 (1952) 231.
[4] G. Passarino, M.J. Veltman, Nucl. Phys. B 160 (1979) 151.
[5] G.J. van Oldenborgh, J.A. Vermaseren, Z. Phys. C 46 (1990) 425.
[6] Y. Ezawa, et al., Comput. Phys. Commun. 69 (1992) 15.
[7] G. Bélanger, et al., hep-ph/0308080.
[8] R.G. Stuart, Comput. Phys. Commun. 48 (1988) 367;
R.G. Stuart, A. Gongora, Comput. Phys. Commun. 56 (1990) 337.
[9] G. Devaraj, R.G. Stuart, Nucl. Phys. B 519 (1998) 483, hep-ph/9704308.
[10] F. Boudjema, A. Semenov, D. Temes, Phys. Rev. D 72 (2005) 055024, hep-ph/0507127.
[11] J.M. Campbell, E.W. Glover, D.J. Miller, Nucl. Phys. B 498 (1997) 397, hep-ph/9612413.
[12] A.l. Davydychev, Phys. Lett. B 263 (1991) 107.
[13] O.V. Tarasov, Phys. Rev. D 54 (1996) 6479, hep-th/9606018;
J. Fleischer, F. Jegerlehner, O.V. Tarasov, Nucl. Phys. B 566 (2000) 423, hep-ph/9907327.
[14] Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Lett. B 302 (1993) 299, hep-ph/9212308;
Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Lett. B 318 (1993) 649, Erratum;
Z. Bern, L.J. Dixon, D.A. Kosower, Nucl. Phys. B 412 (1994) 751, hep-ph/9306240.
[15] T. Binoth, J.P. Guillet, G. Heinrich, Nucl. Phys. B 572 (2000) 361, hep-ph/9911342.
[16] G. Duplargic, B. Nizi¢, Eur. Phys. J. C 35 (2004) 105, hep-ph/0303184.
[17] W.T. Giele, E.W.N. Glover, JHEP 0404 (2004) 029, hep-ph/0402152.
[18] W. Giele, E.W.N. Glover, G. Zanderighi, Nucl. Phys. B (Proc. Suppl.) 135 (2004) 275, hep-ph/0407016;
R.K. Ellis, W.T. Giele, G. Zanderighi, hep-ph/0508308.



A. Denner, S. Dittmaier / Nuclear Physics B 734 (2006) 62—-115 115

[19] T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, C. Schubert, JHEP 0510 (2005) 015, hep-ph/0504267.
[20] F. del Aguila, R. Pittau, JHEP 0407 (2004) 017, hep-ph/0404120.
[21] A. van Hameren, J. Vollinga, S. Weinzierl, Eur. Phys. J. C 41 (2005) 361, hep-ph/0502165.
[22] D.B. Melrose, Nuovo Cimento A 40 (1965) 181.
[23] W.L. van Neerven, J.A. Vermaseren, Phys. Lett. B 137 (1984) 241.
[24] A. Denner, Fortschr. Phys. 41 (1993) 307.
[25] A.T. Suzuki, E.S. Santos, A.G. Schmidt, hep-ph/0210083;
F. Tramontano, Phys. Rev. D 67 (2003) 114005, hep-ph/0211390.
[26] A. Denner, S. Dittmaier, Nucl. Phys. B 658 (2003) 175, hep-ph/0212259.
[27] G. Bélanger, et al., Phys. Lett. B 559 (2003) 252, hep-ph/0212261;
G. Belanger, et al., Phys. Lett. B 576 (2003) 152, hep-ph/0309010.
[28] W. Beenakker, et al., Nucl. Phys. B 653 (2003) 151, hep-ph/0211352.
[29] S. Dittmaier, Nucl. Phys. B 675 (2003) 447, hep-ph/0308246.
[30] A. Ferroglia, M. Passera, G. Passarino, S. Uccirati, Nucl. Phys. B 650 (2003) 162, hep-ph/0209219.
[31] V. Kurihara, T. Kaneko, hep-ph/0503003.
[32] Z. Nagy, D.E. Soper, JHEP 0309 (2003) 055, hep-ph/0308127.
[33] T. Binoth, G. Heinrich, N. Kauer, Nucl. Phys. B 654 (2003) 277, hep-ph/0210023.
[34] E. de Doncker, et al., Nucl. Instrum. Methods A 534 (2004) 269, hep-ph/0405098;
E. de Doncker, Y. Shimizu, J. Fujimoto, F. Yuasa, Comput. Phys. Commun. 159 (2004) 145.
[35] A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Phys. Lett. B 612 (2005) 223, hep-ph/0502063;
A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Nucl. Phys. B 724 (2005) 247, hep-ph/0505042.
[36] V. Yasui, talk given at the ECFA Workshop: Physics and Detectors for a Linear Collider, Durham, September, 2004;
K. Kato, talk given at the International Linear Collider Workshop (LCWS05), Stanford, March, 2005.
[37] F. Boudjema, et al., Nucl. Phys. B (Proc. Suppl.) 135 (2004) 323, hep-ph/0407079.
[38] R.J. Eden, P.V. Landshoff, D.l. Olive, J.C. Polkinghorne, The Analytic S Matrix, Cambridge Univ. Press, Cambridge,
1966.
[39] J. Berntsen, T. Espelid, A. Genz, ACM Trans. Math. Software 17 (1991) 437;
J. Berntsen, T. Espelid, A. Genz, ACM Trans. Math. Software 17 (1991) 452;
TOMS algorithm 698.
[40] T. Hahn, Comput. Phys. Commun. 168 (2005) 78, hep-ph/0404043.
[41] T. Kinoshita, J. Math. Phys. 3 (1962) 650.



	Reduction schemes for one-loop tensor integrals 
	Introduction
	Conventions and notation
	Evaluation of 1-point functions
	Evaluation of 2-point functions
	Reduction of 3-point and 4-point functions
	Conventional Passarino-Veltman reduction
	Alternative Passarino-Veltman-like reduction
	Reduction with modified Cayley determinants
	Reduction for small Gram determinant
	Reduction for small Gram determinant and small modified Cayley determinant
	Reduction for small momenta
	Summary of reduction schemes and application to e+e->4f at one loop
	UV and IR divergences in dimensional regularization and terms of order (D-4)

	Reduction of 5-point integrals
	Reduction of 6-point integrals
	Summary
	Acknowledgements
	UV-divergent parts of tensor integrals
	Tensor coefficients of singular 3-point functions
	Alternative reduction of 5-point integrals
	Alternative reduction of 6-point integrals
	References


