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Abstract

We present new methods for the evaluation of one-loop tensor integrals which have been used in
culation of the complete electroweak one-loop corrections to e+e− → 4 fermions. The described metho
for 3-point and 4-point integrals are, in particular, applicable in the case where the conventional Pas
Veltman reduction breaks down owing to the appearance of Gram determinants in the denomina
method consists of different variants for expanding tensor coefficients about limits of vanishing Gr
terminants or other kinematical determinants, thereby reducing all tensor coefficients to the usua
integrals. In a second method a specific tensor coefficient with a logarithmic integrand is evalua
merically, and the remaining coefficients as well as the standard scalar integral are algebraically
from this coefficient. For 5-point tensor integrals, we give explicit formulas that reduce the corresp
tensor coefficients to coefficients of 4-point integrals with tensor rank reduced by one. Similar fo
are provided for 6-point functions, and the generalization to functions with more internal propaga
straightforward. All the presented methods are also applicable if infrared (soft or collinear) divergen
treated in dimensional regularization or if mass parameters (for unstable particles) become comple
 2005 Elsevier B.V. All rights reserved.

1. Introduction

Future high-energy colliders, such as the LHC and the ILC, will allow us to search fo
physics and to test the Standard Model of the electroweak and strong interaction with hig
cision. Various interesting processes naturally involve many particles in the final state,
“many” means three, four, or more particles. Such processes often proceed via one or m
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onances that subsequently decay, or they represent an irreducible background to such re
processes. In order to exhaust the potential of future colliders, precise theoretical pred
including strong and electroweak corrections to many-particle processes are mandatory.

The calculation of radiative corrections to complicated processes poses a number of pro
Besides the huge amount of algebra, the appearance of unstable particles, and the integ
the multi-dimensional phase space, a numerically stable evaluation of the loop integral
important ingredient. In this paper we are concerned with the calculation of one-loop inte
including those with five and six external legs. The generalization from six to more externa
is straightforward.

Pioneering work in the calculation of one-loop integrals was performed by Veltman
collaborators. Together with ‘t Hooft, he provided compact explicit expressions for the
one-loop integrals, the scalar 1-point, 2-point, 3-point, and 4-point integrals[1], which have
been completed later by other authors[2]. Elaborating on an idea of Brown and Feynman[3],
together with Passarino he provided systematic formulas that allow to reduce all tenso
grals with up to four internal propagators to the basic scalar integrals[4]. These methods ar
basically sufficient for the calculation of radiative corrections to processes with four ex
particles for non-exceptional configurations. Nevertheless, in the sequel some improveme
additions have been worked out. Van Oldenborgh and Vermaseren constructed a differen
basis that allows to concentrate some of the numerical instabilities into a number of de
nants[5]. Ezawa et al. performed the reduction using an orthonormal tensor basis[6]. A reduction
in Feynman-parameter space, which is equivalent to the Passarino–Veltman scheme, is
the GRACE package[7].

The main drawback of the Passarino–Veltman reduction and variants thereof is the app
of Gram determinants in the denominator, which spoil the numerical stability if they be
small. In processes with up to four external particles this happens usually only near the e
phase space, e.g. for forward scattering or on thresholds. For the special cases where
determinant is identically zero, alternative reduction procedures have been devised by
and collaborators[8,9] (see also Ref.[10]). However, in processes with more than four exter
particles, Gram determinants also vanish within phase space, and methods for the calcu
tensor integrals are needed where Gram determinants are small but not exactly zero. In R[11]
such a method has been devised by constructing combinations ofN -point and(N − 1)-point
scalar integrals that are finite in the limit of vanishing Gram determinants and using this l
the Gram determinant becomes small.

On the other hand, alternative tensor reduction schemes have been developed using
sets of master integrals. Davydychev could relate the coefficients of one-loop tensor in
to scalar integrals in a different number of space–time dimensions[12], and Tarasov found re
cursion relations between these integrals[13]. These methods have been further elaborate
different groups[14–18]. In this approach all one-loop tensor integrals can be reduced to
4-point integrals in(D + 2) dimensions and divergent 3-point and 2-point integrals inD di-
mensions. Numerical instabilities in this reduction, which are also due to small Gram or
kinematical determinants, have been investigated in Ref.[18] for the massless case, and a syste
atic improvement by an iteration technique has been proposed. While numerically stable a
expressions for the basic integrals are available for the massless case, these turn out to b
construct for the massive case. Therefore, one typically reduces these basic integrals to t
scalar integrals or, in particular for vanishing Gram determinants, calculates them by num
integration[19].
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Other algorithms, which are based on recursion relations similar to Passarino–Veltm
duction and applicable irrespective of the number of external legs, have been prese
Refs. [20,21]. These algorithms do not completely avoid the appearance of inverse Gra
terminants.

It was realized already in the sixties by Melrose that scalar integrals with more than fou
in the loop, i.e., 5-point and higher-point scalar integrals, can be reduced to scalar integra
less internal propagators in four dimensions[22]. These methods were subsequently exten
and improved by several authors[5,11,12,14–16,23–27]and generalized to dimensional reg
larization in Refs.[14,28,29]. In Ref. [26], a method for the reduction of 5-point integrals t
completely avoids inverse leading Gram determinants has been worked out. Recently, a
reduction has been found that even reduces 5-point tensor integrals to 4-point integrals w
reduced by one[19]. In all these approaches 5- and higher-point tensor integrals are redu
tensor integrals with less internal propagators.

Various approaches have been proposed that use numerical integration of loop integ
are, thus, complementary to most of the methods mentioned so far. In the approach of Re[30],
which has been elaborated for general one-loop integrals with up to six external leg
Feynman-parameter integrals are rewritten in such a way that they can be numerically int
in a stable way. A fully numerical approach to calculate loop integrals by contour integ
was proposed in Ref.[31]. A semi-numerical approach that relies on the subtraction of UV
infrared divergences has been advocated in Ref.[32]. A different semi-numerical method mak
use of the fact that all tensor one-loop integrals can be expressed in terms of one- an
dimensional parameter integrals which are suitable for numerical integration[33]. A numerical
method based on multi-dimensional contour deformation has been proposed in Ref.[19]. Finally,
Feynman-parameter integrals have been numerically performed with a small but finite “iε” from
the propagator denominators and a subsequent extrapolationε → 0 in Ref. [34]. So far, none
of these methods has proven their performance in calculations of higher-order correcti
processes with more than four external particles. In practice, one can still expect problem
the numerical stability of the algebraic reduction to standard forms in specific regions of
space and with the speed of the underlying numerical integration of the basic loop integra

In this paper we describe methods that have actually been used in the calculation of th
troweak corrections to e+e− → 4 fermions[35], i.e., in the first established calculation of t
complete one-loop electroweak corrections to a process with six external particles.1 In this ap-
proach, 6-point integrals are directly expressed in terms of six 5-point functions, and the 5
integrals are written in terms of five 4-point functions. While we used the methods descri
Refs.[22,24] and Ref.[26] in the original calculation[35], in this paper we describe improve
methods for the reduction of 6-point and 5-point integrals which have meanwhile been
mented in the code for the electroweak corrections to e+e+ → 4 fermions and which furthe
improve its performance in numerical stability and CPU time. The 3-point and 4-point t
integrals are algebraically reduced to the (standard) scalar 1-point, 2-point, 3-point, and
functions as described below. For 1-point and 2-point integrals explicit numerically stable
are used.

In more detail, the 3-point and 4-point functions are reduced to scalar integrals acc
to the Passarino–Veltman algorithm if no small Gram determinants appear. This is the c

1 The GRACE-loop Collaboration has recently reported on progress towards one-loop calculations for 2→ 4 particle
processes. Using the methods described in Refs.[7,27], first results on e+e− → νν̄HH have been shown at conferenc
[36], and a status report on e+e− → µ−ν̄µud̄ has been given in Ref.[37].
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3-point or 3-point to 2-point functions is done differently. Here we have worked out two alt
tive calculational methods (referred to as “rescue systems” in Ref.[35]). One method makes us
of suitable expansions of the tensor coefficients about the limit of vanishing Gram determ
This is achieved in an iterative way and requires to calculate(N − 1)-point functions of higher
degree compared to the usual Passarino–Veltman reduction.2 Finally, again all tensor coefficien
can be expressed in terms of the standard scalar 1-point, 2-point, 3-point, and 4-point fun
In practice, we use the first two to three terms in the expansions and we have to introdu
ferent expansions for different regions of parameter space. In the second, alternative me
evaluate a specific tensor coefficient, the integrand of which is logarithmic in Feynman pa
trization, by numerical integration. Then the remaining coefficients as well as the standard
integral are algebraically derived from this coefficient. This reduction again involves no in
Gram determinants; instead inverse modified Cayley determinants appear. In this appro
set of master integrals is not given by the standard scalar integrals anymore. For some
3-point integrals, where the modified Cayley determinant vanishes exactly, analytical resul
been worked out that allow for a stable numerical evaluation.

The paper is organized as follows. We summarize our conventions and useful definit
Section2. The evaluation of 1-point and 2-point tensor integrals is summarized in Secti3
and 4, respectively. In Section5, we provide several methods for the reduction of 3-point
4-point tensor coefficients and describe their actual application to e+e− → 4f in Section5.7. In
Section5.8 we consider UV and infrared divergences in detail and conclude that the pro
methods are valid independent of the method for infrared regularization. The reduction of 5
and 6-point tensor integrals to integrals with smaller rank and smaller number of propaga
detailed in Sections6 and 7, respectively. InAppendix A, we list the UV-divergent parts of one
loop integrals that enter the reduction formulas.Appendix Bdescribes a treatment of singul
3-point integrals based on analytical methods. Finally, we discuss alternative reductions of
6-point tensor integrals inAppendices C and D, respectively.

2. Conventions and notation

One-loop tensorN -point integrals have the general form

(2.1)T N,µ1...µP (p1, . . . , pN−1,m0, . . . ,mN−1) = (2πµ)4−D

iπ2

∫
dDq

qµ1 · · ·qµP

N0N1 · · ·NN−1

with the denominator factors

(2.2)Nk = (q + pk)
2 − m2

k + iε, k = 0, . . . ,N − 1, p0 = 0,

where iε (ε > 0) is an infinitesimally small imaginary part. ForP = 0, i.e., no integration
momenta in the numerator of the loop integral,(2.1)defines the scalarN -point integralT N

0 . Fol-
lowing the notation of Ref.[1] we setT 1 = A, T 2 = B, T 3 = C, T 4 = D, T 5 = E, T 6 = F .
Throughout we use the conventions of Refs.[24,26] to decompose the tensor integrals in
Lorentz-covariant structures.

In order to be able to write down the tensor decompositions in a concise way we use a n
(similar to the one of Ref.[4]) in which curly braces denote symmetrization with respec

2 A similar idea, where tensor coefficients are iteratively determined from higher rank tensors has been des
Ref. [18].
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Lorentz indices in such a way that all non-equivalent permutations of the Lorentz indic
metric tensorsg and a generic momentump contribute with weight one and that in covarian
with np momentap

µj

ij
(j = 1, . . . , np) only one representative out of thenp! permutations of the

indicesij is kept. Thus, we have for example

{p . . . p}µ1...µP

i1...iP
= p

µ1
i1

· · ·pµP

iP
,

{gp}µνρ
i1

= gµνp
ρ
i1

+ gνρp
µ
i1

+ gρµpν
i1
,

{gpp}µνρσ
i1i2

= gµνp
ρ
i1
pσ

i2
+ gµρpσ

i1
pν

i2
+ gµσ pν

i1
p

ρ
i2

+ gνρpσ
i1
p

µ
i2

+ gρσ pν
i1
p

µ
i2

+ gσνp
ρ
i1
p

µ
i2
,

(2.3){gg}µνρσ = gµνgρσ + gνρgµσ + gρµgνσ .

This definition is unique up to the selection of the representative permutations of the mo
For our calculation this does not matter, since the covariants are always contracted with qu
that are totally symmetric in the indicesij . In fact in our calculation the definition is equivale
to a normalization of the sum of thenp! covariants with a factor 1/np!; in this case the third line
of (2.3)would contain 12 instead of 6 terms on the r.h.s.

We decompose the general tensor integral into Lorentz-covariant structures as

T N,µ1...µP =
[ P

2 ]∑
n=0

N−1∑
i2n+1,...,iP =1

{g . . . g︸ ︷︷ ︸
n

p . . . p}µ1...µP

i2n+1...iP
T N

0...0︸︷︷︸
2n

i2n+1...iP

=
N−1∑

i1,...,iP =1

p
µ1
i1

. . . p
µP

iP
T N

i1...iP
+

N−1∑
i3,...,iP =1

{gp . . .p}µ1...µP

i3...iP
T N

00i3...iP

+
N−1∑

i5,...,iP =1

{ggp . . . p}µ1...µP

i5...iP
T N

0000i5...iP + · · ·

(2.4)+


∑N−1

iP =1{g . . . gp}µ1...µP

iP
T N

0...0︸︷︷︸
P−1

iP
, for P odd,

{g . . . g}µ1...µP T N
0...0︸︷︷︸

P

, for P even,

where[P/2] is the largest natural number smaller or equal toP/2. For each metric tensor in th
Lorentz covariant the corresponding coefficient carries an index pair “00” and for each m
tumpir it carries the corresponding indexir .

For tensor integrals up to rank five the decompositions more explicitly read

T N,µ =
N−1∑
i1=1

p
µ
i1
T N

i1
, T N,µν =

N−1∑
i1,i2=1

p
µ
i1
pν

i2
T N

i1i2
+ gµνT N

00,

T N,µνρ =
N−1∑

i1,i2,i3=1

p
µ
i1
pν

i2
p

ρ
i3
T N

i1i2i3
+

N−1∑
i1=1

{gp}µνρ
i1

T N
00i1,

T N,µνρσ =
N−1∑

p
µ
i1
pν

i2
p

ρ
i3
pσ

i4
T N

i1i2i3i4
+

N−1∑
{gpp}µνρσ

i1i2
T N

00i1i2
+ {gg}µνρσ T N

0000,
i1,i2,i3,i4=1 i1,i2=1
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T N,µνρστ =
N−1∑

i1,i2,i3,i4,i5=1

p
µ
i1
pν

i2
p

ρ
i3
pσ

i4
pτ

i5
T N

i1i2i3i4i5
+

N−1∑
i1,i2,i3=1

{gppp}µνρστ
i1i2i3

T N
00i1i2i3

(2.5)+
N−1∑
i1=1

{ggp}µνρστ
i1

T N
0000i1

.

Because of the symmetry of the tensorT N
µ1...µP

all coefficientsT N
i1...iP

are symmetric under pe
mutation of all indices. For convenience we assume this symmetry also for indices that ar

When reducing a tensor integralT N+1
µ1...µP

, one encounters tensor integrals that are obtaine
omitting thekth denominatorNk ; we denote such integralsT N

µ1...µP
(k). In the decomposition o

T N
µ1...µP

(k), k = 1, . . . ,N , shifted indices appear which we denote as

(2.6)(ir )k =
{

ir , for k > ir ,

ir − 1, for k < ir .

After cancelling the denominatorN0 the resulting tensor integrals are not in the standard f
but can be expressed in terms of standard integrals by shifting the integration momentu
choose to perform the shiftq → q − p1, so that the followingN -point integrals appear:

T̃ N,µ1...µP (0) = (2πµ)(4−D)

iπ2

∫
dDq

qµ1 · · ·qµP

Ñ1 · · · ÑN

,

(2.7)Ñk = (q + pk − p1)
2 − m2

k + iε, k = 1, . . . ,N.

Note that the scalar integralT N
0 ≡ T N and the tensor coefficientsT N

00, T
N
0000, . . . are invariant

under this shift. The other coefficients ofT N
µ1...µP

(k) can be recursively obtained as

T N
0...0︸︷︷︸

2n

i2n+1...iP
(0) = T̃ N

0...0︸︷︷︸
2n

i2n+1−1,...,iP −1(0), i2n+1, . . . , iP > 1,

(2.8)

T N
0...0︸︷︷︸

2n

1i2n+2...iP
(0) = −T N

0...0︸︷︷︸
2n

i2n+2...iP
(0) −

N∑
r=2

T N
0...0︸︷︷︸

2n

ri2n+2...iP
(0), i2n+2, . . . , iP > 0.

The recursion is solved by

T N
0...0︸︷︷︸

2n

1...1︸︷︷︸
k

i2n+k+1...iP
(0) = (−1)k

k∑
l=0

(
k

l

) N−1∑
i1,...,il=1

T̃ N
0...0︸︷︷︸

2n

i1...il ,i2n+k+1−1,...,iP −1(0),

(2.9)i2n+k+1, . . . , iP > 1.

We also use the notation̄δij = 1−δij , i.e.,
∑

i δ̄ij (· · ·) = ∑
i �=j (· · ·), and employ the caret “ˆ ”

to indicate indices that are omitted, i.e.,

(2.10)T N

i1...îr ...iP
≡ T N

i1...ir−1ir+1...iP
.

In the reduction formulas for the(N + 1)-point functions the Gram matrix

(2.11)Z(N) =
 2p1p1 · · · 2p1pN

...
. . .

...



2pNp1 · · · 2pNpN
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-

n

appears. Its determinant, the Gram determinant, is denoted by

(2.12)�(N) = detZ(N),

and its inverse can be written as

(2.13)
(
Z(N)

)−1
ij

= 1

�(N)
Z̃

(N)
ji ,

whereZ̃
(N)
ij is the adjoint ofZ(N)

ij , which can be calculated as

(2.14)Z̃
(N)
ij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣

2p1p1 · · · 2p1pj−1 2p1pj+1 · · · 2p1pN

...
. . .

...
...

. . .
...

2pi−1p1 · · · 2pi−1pj−1 2pi−1pj+1 · · · 2pi−1pN

2pi+1p1 · · · 2pi+1pj−1 2pi+1pj+1 · · · 2pi+1pN

...
. . .

...
...

. . .
...

2pNp1 · · · 2pNpj−1 2pNpj+1 · · · 2pNpN

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

i.e., from a reduced determinant ofZ(N) where theith row and thej th column have been dis
carded.

We introduce a generalization of the adjoint by

˜̃
Z

(N)
(ik)(j l)

= (−1)i+j+k+l sgn(i − k)sgn(l − j)

(2.15)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2p1p1 · · · 2p1pj−1 2p1pj+1 · · · 2p1pl−1 2p1pl+1 · · · 2p1pN

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
2pi−1p1 · · · 2pi−1pj−1 2pi−1pj+1 · · · 2pi−1pl−1 2pi−1pl+1 · · · 2pi−1pN

2pi+1p1 · · · 2pi+1pj−1 2pi+1pj+1 · · · 2pi+1pl−1 2pi+1pl+1 · · · 2pi+1pN

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
2pk−1p1 · · · 2pk−1pj−1 2pk−1pj+1 · · · 2pk−1pl−1 2pk−1pl+1 · · · 2pk−1pN

2pk+1p1 · · · 2pk+1pj−1 2pk+1pj+1 · · · 2pk+1pl−1 2pk+1pl+1 · · · 2pk+1pN

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
2pNp1 · · · 2pNpj−1 2pNpj+1 · · · 2pNpl−1 2pNpl+1 · · · 2pNpN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

i.e., it is defined from a reduced determinant ofZ(N) where theith andkth rows and thej th and
lth columns have been discarded. Moreover, it is defined to vanish fori = k or j = l. For the
caseN = 2, it is given by

(2.16)˜̃
Z

(2)
(ik)(j l) = δilδkj − δij δkl .

Expanding the determinant ofZ(N) along thekth row or thelth column, respectively, it ca
be written as

(2.17)�(N) =
N∑

m=1

Z
(N)
km Z̃

(N)
km =

N∑
m=1

Z
(N)
ml Z̃

(N)
ml ,
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wherek andl are not summed. Expanding the determinant in(2.14)with thelth column replaced
by (Z1k, . . . ,ZNk)

T along thelth column yields the relation

(2.18)
N∑

m=1

˜̃
Z

(N)
(im)(j l)

Z
(N)
mk = Z̃

(N)
il δjk − Z̃

(N)
ij δlk,

and analogously

(2.19)
N∑

m=1

˜̃
Z

(N)
(ik)(jm)

Z
(N)
lm = Z̃

(N)
kj δil − Z̃

(N)
ij δkl .

These imply the equations

(2.20)˜̃
Z

(N)
(ik)(j l) = (

Z(N)
)−1
jk

Z̃
(N)
il − (

Z(N)
)−1
lk

Z̃
(N)
ij = [

Z̃
(N)
il Z̃

(N)
kj − Z̃

(N)
ij Z̃

(N)
kl

]/
�(N)

and

N∑
m,n=1

˜̃
Z

(N)
(im)(jn)Z

(N)
mn = Z̃

(N)
ij (1− N),

(2.21)
N∑

m,n=1

˜̃
Z

(N)
(im)(jn)Z

(N)
mk Z

(N)
ln = �(N)δilδjk − Z̃

(N)
ij Z

(N)
lk .

An important special case of the last relation is

(2.22)�(N) = Z
(N)
lk Z̃

(N)
lk +

N∑
m,n=1

˜̃
Z

(N)
(lm)(kn)Z

(N)
mk Z

(N)
ln .

The relations(2.13)–(2.22)are valid for any (not necessarily symmetric)N × N matrix Z(N)

with determinant�(N).
We further introduce the(N + 1) × (N + 1) matrix

(2.23)X(N) =


2m2

0 f1 · · · fN

f1 2p1p1 · · · 2p1pN

...
...

. . .
...

fN 2pNp1 · · · 2pNpN

 ,

with

(2.24)fk = p2
k − m2

k + m2
0, k = 1, . . . ,N.

Its determinant is given by

(2.25)det
(
X(N)

) = 2m2
0�

(N) −
N∑

n,m=1

fnfmZ̃(N)
nm =

∣∣∣∣∣∣∣∣
Y00 Y01 · · · Y0N

Y10 Y11 · · · Y1N
...

...
. . .

...

YN0 YN1 · · · YNN

∣∣∣∣∣∣∣∣ = det(Y ),

where

(2.26)Yij = m2
i + m2

j − (pi − pj )
2, i, j = 0, . . . ,N.
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2

The matrixY = (Yij ) is sometimes called modified Cayley matrix and its determinant the m
fied Cayley determinant[22]. Its elements are related to those of the Gram matrix via

(2.27)Yij = Z
(N)
ij − fi − fj + 2m2

0, Y0i = Yi0 = −fi + 2m2
0, i, j = 1, . . . ,N.

The vanishing of det(X(N)) is a necessary condition for the appearance of leading Landa
gularities[38]. The adjoint ofX(N)

ij , i, j = 0, . . . ,N , can be expressed as

X̃
(N)
00 = �(N),

X̃
(N)
0i = X̃

(N)
i0 = −

N∑
n=1

Z̃
(N)
in fn,

(2.28)X̃
(N)
ij = 2m2

0Z̃
(N)
ij +

N∑
n,m=1

˜̃
Z

(N)
(in)(jm)fnfm, i, j = 1, . . . ,N.

For later use we also consider the generalized adjoint ofX(N). The relevant part of it is given b

˜̃
X

(N)
(0i)(0j) = −Z̃

(N)
ij , i, j = 1, . . . ,N,

(2.29)˜̃
X

(N)
(0i)(jk)

= ˜̃
X

(N)
(jk)(0i)

= −
N∑

n=1

fn
˜̃
Z

(N)
(ni)(jk)

, i, j, k = 1, . . . ,N.

These relations together with(2.20)imply

det
(
X(N)

)
Z̃

(N)
ij = �(N)X̃

(N)
ij − X̃

(N)
i0 X̃

(N)
0j ,

(2.30)det
(
X(N)

) ˜̃
X

(N)
(0i)(jk) = X̃

(N)
0k X̃

(N)
ij − X̃

(N)
ik X̃

(N)
0j .

3. Evaluation of 1-point functions

The scalar 1-point integral for an arbitrary complex massm0 is given by

(3.1)A0(m0) = m2
0

[
� + ln

(
µ2

m2
0

)
+ 1

]
,

where� is the standard one-loop divergence

(3.2)� = 2

4− D
− γE + ln(4π)

in D space–time dimensions withγE denoting Euler’s constant. The tensor integrals of rankn

(n = 1,2, . . .) are given by

(3.3)Aµ1...µ2n = {g . . . g︸ ︷︷ ︸
n

}µ1...µ2nA 0...0︸︷︷︸
2n

,

where the tensor coefficients are easily evaluated to

(3.4)A 0...0︸︷︷︸
2n

= m2n
0

2n(n + 1)!

[
A0(m0) + m2

0

n∑
k=1

1

k + 1

]
.

Because of Lorentz invariance obviously all tensors of odd rank vanish.
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4. Evaluation of 2-point functions

In the following we assume that at least one of the parametersp2
1, m0, m1 is different from

zero; otherwise the 2-point integrals identically vanish in dimensional regularization,

(4.1)B...(0,0,0) ≡ 0,

where the dots stand for any Lorentz index or any index of a tensor coefficient.
Up to rank 3 the 2-point tensor integrals are decomposed as

Bµ = p
µ
1 B1, Bµν = p

µ
1 pν

1B11 + gµνB00,

(4.2)Bµνρ = p
µ
1 pν

1p
ρ
1B111+ {gp}µνρ

1 B001.

The tensor coefficients can be algebraically reduced to scalar 1- and 2-point integrals,A0 andB0,
with the Passarino–Veltman algorithm[4] as more generally described in the next section.
corresponding results for tensors up to rank 3 are, e.g., given in the appendix of Ref.[26]. The
algebraic reduction for the coefficientsB00i3i4..., which correspond to covariants involving t
metric tensor,

B00 = 1

6

[
A0(0) + f1B1 + 2m2

0B0 + m2
0 + m2

1 − 1

3
p2

1

]
,

(4.3)B001= 1

8

[
−A0(0) + f1B11 + 2m2

0B1 − 1

6

(
2m2

0 + 4m2
1 − p2

1

)]
, etc.,

are numerically well behaved. However, the reduction formulas for the coefficientsB1...1 cor-
responding to the covariantpµ1

1 · · ·pµP

1 involve a factor 1/p2
1 in each reduction step, so th

these reduction formulas become numerically unstable for smallp2
1. Owing to the simplicity of

2-point integrals it is, however, possible to derive closed expressions for these coefficien
are numerically stable for all values ofp2

1. Such a derivation is described below. Assuming
knowledge of the coefficientsB1...1, the remaining coefficientsB0...01...1 can be obtained from
the recurrence relations

B 0...0︸︷︷︸
2n+2

1...1︸︷︷︸
P−2n−2

= − 1

2(P − 2n − 1)

[
A 0...0︸︷︷︸

2n

1...1︸︷︷︸
P−2n−1

(0) + f1B 0...0︸︷︷︸
2n

1...1︸︷︷︸
P−2n−1

+ 2p2
1B 0...0︸︷︷︸

2n

1...1︸︷︷︸
P−2n

]
,

(4.4)n = 0, . . . ,

[
P − 2

2

]
,

or

B 0...0︸︷︷︸
2n+2

1...1︸︷︷︸
P−2n−2

= 1

2(P + 1)

[
A 0...0︸︷︷︸

2n

1...1︸︷︷︸
P−2n−2

(0) + 2m2
0B 0...0︸︷︷︸

2n

1...1︸︷︷︸
P−2n−2

+ f1B 0...0︸︷︷︸
2n

1...1︸︷︷︸
P−2n−1

(4.5)− 2(D − 4)B 0...0︸︷︷︸
2n+2

1...1︸︷︷︸
P−2n−2

]
, n = 0, . . . ,

[
P − 2

2

]
.

The coefficientsA0...01...1(0) are given by

(4.6)A 0...0︸︷︷︸
2n

1...1︸︷︷︸
P−2n−1

(0) = (−1)P−2n−1Ã 0...0︸︷︷︸
2n

(0),
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whereÃ0...0(0) can be obtained from(3.4). The finite polynomial quantities(D − 4)B00... can
easily be derived by exploiting(4.5) for the UV-singular parts; explicit results for tensors up
rank 5 are summarized inAppendix A.

We derive the expressions forB1...1 by explicitly solving the Feynman-parameter integral

(4.7)B 1...1︸︷︷︸
n

=
1∫

0

dx (−x)n
{
� + lnµ2 − ln

[−p2
1x(1− x) + m2

0(1− x) + m2
1x − iε

]}
.

In the following result we support complex mass parameters; more precisely, the real partm2
i

must be non-negative, the imaginary parts negative or zero. The final results are conve
written as

(4.8)B 1...1︸︷︷︸
n

= (−1)n

n + 1

{
� + ln

(
µ2

m2
0

)
−

2∑
k=1

fn(xk)

}
,

with xk denoting the solutions of the quadratic equation

(4.9)0= −p2
1x(1− x) + m2

0(1− x) + m2
1x − iε.

Forp2
1 = 0 one of thexk is formally∞. The auxiliary functions

(4.10)fn(x) ≡ (n + 1)

1∫
0

dt tn ln

(
1− t

x

)
can be evaluated in a numerically stable way by choosing one of the two representations

(4.11)fn(x) = (
1− xn+1) ln

(
x − 1

x

)
−

n∑
l=0

xn−l

l + 1
= ln

(
1− 1

x

)
+

∞∑
l=n+1

xn−l

l + 1
.

The first form is numerically stable for intermediate values of|x| �= 0. Forx → 0,fn(x) develops
a true logarithmic singularity; forx → 1 the logarithm ln(1− 1/x) is suppressed because of
prefactor. The second equality in(4.11)yields numerically stable results for large|x|. In practice,
we take the first form for|x| < 10 and the second otherwise. The case where one of thexk is zero
corresponds tom0 = 0 and can be easily obtained via taking the limitm0 → 0,

(4.12)

B 1...1︸︷︷︸
n

(
p2

1,0,m1
) = (−1)n

n + 1

{
� + ln

(
µ2

m2
1 − p2

1 − iε

)
+ 1

n + 1
− fn

(
1− m2

1 − iε

p2
1

)}
.

Forp2
1 = m2

1 this further simplifies to

(4.13)B 1...1︸︷︷︸
n

(
m2

1,0,m1
) = (−1)n

n + 1

{
� + ln

(
µ2

m2
1

)
+ 2

n + 1

}
.

In the vicinity of the last two special cases one of thexk becomes small, so that the leading (lo
arithmic) term infn(xk) cancels against the explicit logarithm in(4.8). Although this somewha
worsens the precision of the evaluation, we did not find problems with this approach in pr
Nevertheless we have additionally implemented a more sophisticated representation oB1...1
with more branches where such cancellations are avoided.
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In the above derivation we essentially followed the approach described in the appen
Ref. [4]; the results given there are, however, not applicable to the general case of co
masses.

5. Reduction of 3-point and 4-point functions

The tensor decompositions of 3-point tensor integrals up to rank 4 and 4-point tensor in
up to rank 5 read explicitly

Cµ =
2∑

i1=1

p
µ
i1
Ci1, Cµν =

2∑
i1,i2=1

p
µ
i1
pν

i2
Ci1i2 + gµνC00,

Cµνρ =
2∑

i1,i2,i3=1

p
µ
i1
pν

i2
p

ρ
i3
Ci1i2i3 +

2∑
i1=1

{gp}µνρ
i1

C00i1,

(5.1)

Cµνρσ =
2∑

i1,i2,i3,i4=1

p
µ
i1
pν

i2
p

ρ
i3
pσ

i4
Ci1i2i3i4 +

2∑
i1,i2=1

{gpp}µνρσ
i1i2

C00i1i2 + {gg}µνρσC0000,

Dµ =
3∑

i1=1

p
µ
i1
Di1, Dµν =

3∑
i1,i2=1

p
µ
i1
pν

i2
Di1i2 + gµνD00,

Dµνρ =
3∑

i1,i2,i3=1

p
µ
i1
pν

i2
p

ρ
i3
Di1i2i3 +

3∑
i1=1

{gp}µνρ
i1

D00i1,

Dµνρσ =
3∑

i1,i2,i3,i4=1

p
µ
i1
pν

i2
p

ρ
i3
pσ

i4
Di1i2i3i4 +

3∑
i1,i2=1

{gpp}µνρσ
i1i2

D00i1i2 + {gg}µνρσD0000,

Dµνρστ =
3∑

i1,i2,i3,i4,i5=1

p
µ
i1
pν

i2
p

ρ
i3
pσ

i4
pτ

i5
Di1i2i3i4i5 +

3∑
i1,i2,i3=1

{gppp}µνρστ
i1i2i3

D00i1i2i3

(5.2)+
3∑

i1=1

{ggp}µνρστ
i1

D0000i1.

Because of the symmetry of the tensorT N
µ1...µP

all coefficientsCi1...iP , andDi1...iP are symmetric
under permutation of all indices. To be specific, in the following we give the reduction form
for the 4-point functions, i.e.N = 4. To obtain the corresponding results for 3-point functi
one has to perform the substitutions

C... → B..., D... → C..., Z(3) → Z(2),

(5.3)�(3) → �(2), X(3) → X(2), N → 3,

and similar obvious substitutions.

5.1. Conventional Passarino–Veltman reduction

The one-loop tensor integrals can be reduced to scalar integrals recursively by inver
systems of linear equations[4]. The inhomogeneity of these equations consists of coefficien
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lower rank. The equations of this system are obtained by contractingT N
µ1...µP

with the (N − 1)

external momentapµ1
k and forP � 2 also by contraction with the metricgµ1µ2. Contracting(2.1)

with p
µ1
k and using

(5.4)2pkq = Nk − N0 − fk,

each of the first two terms on the r.h.s. of(5.4) cancels exactly one propagator denomina
of p

µ1
k T N

µ1...µP
and the third term is proportional toT N

µ2...µP
. Likewise the contraction of(2.1)

with gµ1µ2 yields a factorq2 in the numerator ofgµ1µ2T N
µ1...µP

, which can be written as

(5.5)q2 = N0 + m2
0.

TheN0 term cancels the first propagator, the second term leads to the tensorT N
µ3...µP

. This yields

(5.6)2p
µ1
k T N

µ1...µP
= T N−1

µ2...µP
(k) − T N−1

µ2...µP
(0) − fkT

N
µ2...µP

,

(5.7)gµ1µ2T N
µ1µ2...µP

= T N−1
µ3...µP

(0) + m2
0T

N
µ3...µP

.

Note that forT N−1
... (0) a shift of the integration momentumqµ → qµ − p

µ
1 has to be done in

order to achieve the standard form(2.1). The tensor integrals with shifted momentaT̃ N−1
µ1...µP

(0)

are defined in(2.7). Inserting the Lorentz decompositions(5.2) into (5.6) and (5.7), the desired
recurrence relations can be read off by comparing coefficients.

From(5.6)we obtain

SP
ki2...iP

≡ C(i2)k ...(iP )k (k)δ̄ki2 . . . δ̄kiP − Ci2...iP (0) − fkDi2...iP

=
N−1∑
m=1

Z
(3)
kmDmi2...iP + 2

P∑
r=2

δkir D00i2...îr ...iP
,

(5.8)k = 1, . . . ,N − 1, i2, . . . , iP = 0, . . . ,N − 1,

and from(5.7)

SP
00i3...iP ≡ 2Ci3...iP (0) + 2m2

0Di3...iP

=
N−1∑

n,m=1

Z(3)
nmDnmi3...iP + 2

(
D + P − 2+

P∑
r=3

δ̄ir0

)
D00i3...iP ,

(5.9)i3, . . . , iP = 0, . . . ,N − 1,

where the matrixZ(3) is defined in(2.11). Eqs.(5.8) and (5.9)can be solved for the coefficien
of Dµ1...µP as

D00i3...iP = 1

2(3+ P − N)

[
−2(D − 4)D00i3...iP + Ci3...iP (0) + 2m2

0Di3...iP

(5.10)+
N−1∑
n=1

fnDni3...iP

]
,

(5.11)Di1...iP =
N−1∑
n=1

(
Z(3)

)−1
i1n

(
SP

ni2...iP
− 2

P∑
r=2

δnir D00i2...îr ...iP

)
, i1 �= 0.
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Fig. 1. Schematic illustration of conventional Passarino–Veltman reduction.

The relations(5.10) and (5.11)determineDi1...iP in terms ofDi1...iP−1 and 3-point func-
tions. Using these relations recursively, all coefficients of 4-point functions can be exp
in terms of 3-point functions and the scalar 4-point functionD0. The finite polynomial quantitie
(D − 4)D00i3...iP can easily be derived by exploiting(5.10) for the UV-singular parts; explici
results for tensors up to rank 7 are summarized inAppendix A. As explained in Section5.8, IR
divergences do not occur inD00i3...iP . More explicit formulas for all tensor functions up to rank
are given in the appendix of Ref.[26].

Fig. 1 illustrates the Passarino–Veltman reduction scheme for 4-point integrals in a pl
tensor coefficients where the rank of the tensor increases by going down in the rows and th
ber of index pairs “00” increases by going to the right in the columns. The steps in the algo
are indicated by arrows that show which coefficient is deduced from previously calculated
The numbers close to the arrows correspond to the step number which is identical to th
of the tensor coefficients to be calculated; the labels “a”, “ b”, etc. give the order in which th
coefficients within a step are calculated.

Eq. (5.11)becomes numerically unstable ifZ(3) is nearly singular, i.e., if the Gram determ
nant�(3) is close to zero. Reduction schemes for this case are described in Sections5.3–5.6.

5.2. Alternative Passarino–Veltman-like reduction

An alternative to the conventional Passarino–Veltman reduction can be obtained as f
Eqs.(5.8) and (5.10)can be written as

2m2
0 f1 f2 f3

f1 2p1p1 2p1p2 2p1p3
f2 2p2p1 2p2p2 2p2p3




Di2...iP

D1i2...iP

D2i2...iP



f3 2p3p1 2p3p2 2p3p3 D3i2...iP
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Veltman
= X(3)


Di2...iP

D1i2...iP

D2i2...iP

D3i2...iP

 =


2(D + P − N)D00i2...iP − Ci2...iP (0)

ŜP
1i2...iP

− 2
∑P

r=2 δ1ir D00i2...îr ...iP

ŜP
2i2...iP

− 2
∑P

r=2 δ2ir D00i2...îr ...iP

ŜP
3i2...iP

− 2
∑P

r=2 δ3ir D00i2...îr ...iP

 ,

(5.12)i2, . . . , iP = 0, . . . ,N − 1,

where on the r.h.s. the matrixX(3) defined in(2.23)appears and the following abbreviations
introduced,

(5.13)ŜP
ki2...iP

= C(i2)k ...(iP )k (k)δ̄ki2 . . . δ̄kiP − Ci2...iP (0) = SP
ki2...iP

+ fkDi2...iP .

Multiplying (5.12)with the matrixX̃(3) from the left, we obtain

det
(
X(3)

)
Di2...iP = �(3)

[
2(4+ P − N)D00i2...iP + 2(D − 4)D00i2...iP − Ci2...iP (0)

]
(5.14)+

N−1∑
n=1

X̃
(3)
0n

[
ŜP

ni2...iP
− 2

P∑
r=2

δnir D00i2...îr ...iP

]
and

det
(
X(3)

)
Di1i2...iP = X̃

(3)
i10

[
2(4+ P − N)D00i2...iP + 2(D − 4)D00i2...iP − Ci2...iP (0)

]
(5.15)+

N−1∑
n=1

X̃
(3)
i1n

[
ŜP

ni2...iP
− 2

P∑
r=2

δnir D00i2...îr ...iP

]
, i1 �= 0.

Eq.(5.14)yieldsD00i2...iP in terms ofD00i2...îr ...iP
, Di2...iP , and 3-point functions,

2(4+ P − N)�(3)D00i2...iP

= −2�(3)(D − 4)D00i2...iP + �(3)Ci2...iP (0) + det
(
X(3)

)
Di2...iP

(5.16)−
N−1∑
n=1

X̃
(3)
0n

[
ŜP

ni2...iP
− 2

P∑
r=2

δnir D00i2...îr ...iP

]
,

and thereafter(5.15)yieldsDi1...iP . Using these relations recursively, all coefficients of 4-po
functions can be expressed in terms of 3-point functions and the scalar 4-point functioD0.
While the final results are of course identical to those of the usual Passarino–Veltman red
the order in which the different coefficients are calculated is different. As a consequence,
cursion can, in some cases, be numerically more stable than the conventional Passarino–
reduction, in particular, if all the quantities�(3), X̃

(3)
k0 , andX̃

(3)
kl become small.

For the tensor coefficients up to rank 3 the reduction formulas explicitly read

(5.17)

2(5− N)�(3)D00 = −2�(3)(D − 4)D00 + �(3)C0(0) + det
(
X(3)

)
D0 −

N−1∑
n=1

X̃
(3)
0n Ŝ1

n,

(5.18)det
(
X(3)

)
Di1 = X̃

(3)
i10

[
2(5− N)D00 + 2(D − 4)D00 − C0(0)

]+
N−1∑
n=1

X̃
(3)
i1n

Ŝ1
n,
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2(6− N)�(3)D00i2 = −2�(3)(D − 4)D00i2 + �(3)Ci2(0) + det
(
X(3)

)
Di2

(5.19)−
N−1∑
n=1

X̃
(3)
0n

[
Ŝ2

ni2
− 2δni2D00

]
,

det
(
X(3)

)
Di1i2 = X̃

(3)
i10

[
2(6− N)D00i2 + 2(D − 4)D00i2 − Ci2(0)

]
(5.20)+

N−1∑
n=1

X̃
(3)
i1n

[
Ŝ2

ni2
− 2δni2D00

]
, i1, i2 �= 0,

2(7− N)�(3)D00i2i3 = −2�(3)(D − 4)D00i2i3 + �(3)Ci2i3(0) + det
(
X(3)

)
Di2i3

(5.21)−
N−1∑
n=1

X̃
(3)
0n

[
Ŝ3

ni2i3
− 2δni2D00i3 − 2δni3D00i2

]
,

det
(
X(3)

)
Di1i2i3 = X̃

(3)
i10

[
2(7− N)D00i2i3 + 2(D − 4)D00i2i3 − Ci2i3(0)

]
(5.22)+

N−1∑
n=1

X̃
(3)
i1n

[
Ŝ3

ni2i3
− 2δni2D00i3 − 2δni3D00i2

]
, i1, i2, i3 �= 0.

Note that(5.21)holds also fori2 = i3 = 0.
The 3-point tensor coefficients that result from omittingN0 in the 4-point integrals are define

according to(2.8)or more explicitly

Ci1(0) = C̃i1−1(0), i1 = 2, . . . ,N − 1,

(5.23)C1(0) = −
N−1∑
n=2

Cn(0) − C0(0),

Ci1i2(0) = C̃i1−1,i2−1(0), i1, i2 = 2, . . . ,N − 1,

(5.24)C1i1(0) = −
N−1∑
n=2

Cni1(0) − Ci1(0), i1 = 1, . . . ,N − 1,

Ci1i2i3(0) = C̃i1−1,i2−1,i3−1(0), i1, i2, i3 = 2, . . . ,N − 1,

(5.25)C1i1i2(0) = −
N−1∑
n=2

Cni1i2(0) − Ci1i2(0), i1, i2 = 1, . . . ,N − 1.

Fig. 2 illustrates the alternative Passarino–Veltman reduction scheme for 4-point integ
the plane of tensor coefficients similarly toFig. 1 of the previous section for the convention
variant.

5.3. Reduction with modified Cayley determinants

Eq. (5.12)can also be exploited directly to calculate tensor coefficients of lower-rank
higher-rank tensors. Specifically, the coefficientsDi1...iP with i1 �= 0 for tensors of rankP are
expressed in terms of the coefficientsD00i2...iP for tensors of rank(P + 1). This means,(5.12)
recursively expresses tensor coefficientsDi1...iP in terms ofC functions and of a single coefficien
D0...0 which results fromDi1...iP upon replacing all non-zero indicesik by “00”. For sufficiently
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Fig. 2. Schematic illustration of alternative Passarino–Veltman reduction.

high tensor rankP , viz. P � 2N − 4, the integrand of the Feynman parameter integral ofD0...0
involves only polynomials and logarithms of the integration parametersxl . Such integrals ar
numerically well behaved, because singularities appearing in logarithms can be safely
numerically. The explicit form of the Feynman-parameter integral for the general coeffi
T N

0...0 with P � 2N − 4 is given below.
In summary, Eq.(5.12)provides a method for deducing all tensor coefficientsDi1...iP (includ-

ing the standard scalar integralD0) from C functions and the numerically evaluated coeffici
D0...0 of tensor rank 2P . This procedure does not involve the inverse of the Gram dete
nant�(3), as it is the case in the two versions of Passarino–Veltman reduction described
previous sections. However, the method involves the inverse of the modified Cayley deter
det(X(3)), so that it becomes unstable if det(X(3)) becomes small. It is also interesting to no
that the numerically evaluated coefficientD0...0 enters this reduction with a prefactor�(3). Thus,
this method becomes particularly precise if�(3) is small, where Passarino–Veltman reduct
is unstable, because the error in the numerical calculation ofD0...0 is suppressed in this cas
Note, however, that both the reduction of this section and Passarino–Veltman reduction b
problematic if both�(3) and det(X(3)) are small.

For tensor coefficients up to rank 3 the reduction formulas explicitly read

det
(
X(3)

)
D0000= �(3)

[
2(9− N)D000000+ 2(D − 4)D000000− C0000(0)

]
(5.26)+

N−1∑
n=1

X̃
(3)
0n Ŝ5

n0000,

det
(
X(3)

)
D00 = �(3)

[
2(7− N)D0000+ 2(D − 4)D0000− C00(0)

]+
N−1∑
n=1

X̃
(3)
0n Ŝ3

n00,
(5.27)
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(5.28)det
(
X(3)

)
D0 = �(3)

[
2(5− N)D00 + 2(D − 4)D00 − C0(0)

]+
N−1∑
n=1

X̃
(3)
0n Ŝ1

n,

det
(
X(3)

)
D0000i1 = X̃

(3)
i10

[
2(9− N)D000000+ 2(D − 4)D000000− C0000(0)

]
(5.29)+

N−1∑
n=1

X̃
(3)
i1n

Ŝ5
n0000,

det
(
X(3)

)
D00i1 = X̃

(3)
i10

[
2(7− N)D0000+ 2(D − 4)D0000− C00(0)

]
(5.30)+

N−1∑
n=1

X̃
(3)
i1n

Ŝ3
n00,

det
(
X(3)

)
D00i1i2 = X̃

(3)
i10

[
2(8− N)D0000i2 + 2(D − 4)D0000i2 − C00i2(0)

]
(5.31)+

N−1∑
n=1

X̃
(3)
i1n

[
Ŝ4

n00i2 − 2δni2D0000
]
, i1, i2 �= 0.

Finally, Di1, Di1i2, andDi1i2i3 are obtained from(5.18), (5.20), and (5.22), respectively. Thus
all 4-point tensor coefficients up to tensor rank 3 can be recursively deduced fromD000000and
3-point coefficients.

Fig. 3 illustrates the reduction scheme for 4-point integrals up to rank 3 in the plane of t
coefficients similar to the previous sections. The steps of the reduction now proceed from
left, starting with a basis integralD0...0 with as many index pairs “00” as the finally aimed ten
rank, i.e., for rank 3 withD000000. In each step we get all coefficients of at least one rank lo
with one index pair “00” less than in the previous steps.

Generically the Feynman-parameter integral forT N
0...0 reads

T N
0...0︸︷︷︸

2k

= 1

2k(2+ k − N)!

(
N−1∏
j=0

∞∫
0

dxj

)
δ

(
1−

N−1∑
l=0

αlxl

)(
N−1∑
m=0

xm

)N−4−2k

A2+k−N

(5.32)×
[
� +

2+k−N∑
n=1

1

n
− ln

(
A − iε

µ2

)
+ 2 ln

(
N−1∑
m=0

xm

)]
, k � N − 2,

with the shorthand

(5.33)A = A(x0, . . . , xN−1) =
(

N−1∑
l=0

xlpl

)2

−
(

N−1∑
m=0

xm

)(
N−1∑
n=0

xn

(
p2

n − m2
n

))
.

The real parametersαl appearing in(5.32) are widely arbitrary; they only have to fulfil th

constraintsαl � 0 and
∑N−1

l=0 αl > 0. For the numerical evaluation of the Feynman-param
integral it is convenient to take the uniform choiceαl = 1, in which case the integral runs ov
the(N − 1)-dimensional unit simplexσN−1,

(5.34)x0 = 1−
N−1∑
l=1

xl, 0 < xj < 1−
j−1∑
l=1

xl, j = 1, . . . ,N − 1.

The integral representation(5.32)is valid both for real and complex masses.
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Fig. 3. Schematic illustration of the reduction with modified Cayley determinants.

Specifically, the integrals forC000000andD000000, which are needed for tensors of rank 3,
given by

C000000= 1

2880

(
� + 3

2

)[
s2
12 + p4

1 + p4
2 + s12

(
p2

1 + p2
2

)+ p2
1p

2
2

− 3
(
m2

0s12 + p2
1m

2
2 + p2

2m
2
1

)
− 6

[
s12

(
m2

1 + m2
2

)+ p2
1

(
m2

0 + m2
1

)+ p2
2

(
m2

0 + m2
2

)]
+ 15

[
m4

0 + m4
1 + m4

2 + m2
0m

2
1 + m2

0m
2
2 + m2

1m
2
2

]]
(5.35)− 1

16

∫
σ2

d2x A2 ln

(
A − iε

µ2

)
,

D000000= (� + 1)

[
− 1

960

(
s12 + s13 + s23 + p2

1 + p2
2 + p2

3

)
(5.36)+ 1

192

(
m2

0 + m2
1 + m2

2 + m2
3

)]− 1

8

∫
σ3

d3x A ln

(
A − iε

µ2

)
,

with the shorthands

(5.37)s12 = (p1 − p2)
2, s13 = (p1 − p3)

2, s23 = (p2 − p3)
2.
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For an efficient numerical integration of these integrals we use a fortran code based
DCUHRE algorithm[39], as included in the CUBA library[40]. The UV-divergent parts ar
integrated analytically in order to ensure exact cancellation of the singularities.

As mentioned above, the procedure described in this section becomes unstable if det(X(N−1))

becomes small. The basis integralsT N
0...0 are still safely calculated via the numerical integrati

but using the described relations to deduce the remaining coefficients accumulates an in
in each step that turns an index pair “00” into a non-zero tensor index or that elimina
index pair “00”. This accumulation of an instability can be suppressed by extending th
of basis integrals. For instance, the 3-point tensor coefficientsCi1i2i3 can be deduced from th
coefficientsC00, C0000, andC000000, which all have logarithmic integrands in their Feynm
parametrizations, upon using the above relations only once.3 If det(X(N−1)) is not small, we
prefer to deduce all tensor coefficients from one basis integral (e.g.,D000000for Di1i2i3), because
no instabilities accumulate and the recursion preserves relations among the tensor coef
which are less accurately valid if several coefficients are calculated numerically.

If det(X(N−1)) = 0, the described procedure is not applicable. For instance, this is the ca
3-point functions that are either soft or collinear singular. Such cases are much simpler th
case with general kinematics, so that they can be treated more directly. For processes w
external fermions only, det(X(N−1)) is zero only for 3-point functions (N = 3) where a photon
or a gluon is attached to an external fermion. A fully analytic treatment of these cases,
admits a numerically stable evaluation, is described inAppendix B; this method can be extende
to similar cases that appear in other processes.

Finally, we remark that the method of this section is somewhat related to the fully num
procedure advocated in Ref.[30]. There, a method is described how the Feynman-param
representation of one-loop integrals is, upon partial integrations, transformed into integra
logarithmic integrands, which are then treated numerically. The occurring algebraic coeffi
that express the original integral in terms of logarithmic integrals are related to the coefficie
the inverse of the matrixX(N) introduced in this paper. In fact we have verified that the reduc
of the scalar integralC0 to logarithmic integrals leads to the same results as our equation(5.28)
for N = 3 [see(5.3)]. Therefore, like in our approach, also in the approach of Ref.[30], the cases
with small or vanishing modified Cayley determinant det(X(N−1)) require a special treatmen
Moreover, we emphasize that we treat only one basis integral numerically, while the pro
of Ref. [30] in general involves more numerical integrals.

5.4. Reduction for small Gram determinant

Let us now derive a reduction scheme that can be used if the Gram determinant�(3) becomes
small, but without changing the set of basis integrals, which are thus still the standard
integralsA0, B0, C0, D0. Multiplying (5.8)with indicesni1 . . . iP by Z̃

(3)
jn and summing overn

yields

(5.38)X̃
(3)
0j Di1...iP = −

N−1∑
n=1

Z̃
(3)
jn

(
ŜP+1

ni1...iP
− 2

P∑
r=1

δnir D00i1...îr ...iP

)
+ �(3)Dji1...iP

3 Note that the Feynman-parameter integral ofD00 is not logarithmic, so that the calculation ofDi1i2i3 from D0000
andD000000requires the use of the recurrence relations twice.
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for arbitrary j = 1, . . . ,N − 1 and ir = 0, . . . ,N − 1. In order to arrive at this form,(2.17)
and (2.28)have been used. As long as at least one of the quantitiesX̃

(3)
0j , defined in(2.28), is

large compared to�(3), (5.38)can be used to determineDi1...iP from D00i1...îr ...iP
up to terms

that are suppressed by the factor�(3).
In order to obtainD00i1...îr ...iP

, we consider for arbitraryk, l �= 0

�(3)Dkli3...iP =
N−1∑
i,j=1

�(3)δkiδljDiji3...iP

(5.39)=
N−1∑
i,j=1

(
Z̃

(3)
kl Z

(3)
ij +

N−1∑
n,m=1

˜̃
Z

(3)
(kn)(lm)Z

(3)
nj Z

(3)
im

)
Diji3...iP ,

where(2.21) has been used. The first term on the r.h.s. can be reduced with(5.9), the second
term on the r.h.s. upon using(5.8) twice. Collecting terms containingD00i1...iP and making use
of (2.19) and (2.21), we obtain

2

(
6+ P − N +

P∑
r=1

δ̄ir0

)
Z̃

(3)
kl D00i1...iP

= −2(D − 4)Z̃
(3)
kl D00i1...iP − �(3)Dkli1...iP

+ Z̃
(3)
kl SP+2

00i1...iP
+

N−1∑
n=1

(
Z̃

(3)
nl ŜP+2

nki1...iP
− Z̃

(3)
kl ŜP+2

nni1...iP

)
−

N−1∑
n,m=1

˜̃
Z

(3)
(kn)(lm)

[
fnŜ

P+1
mi1...iP

+ 2
P∑

r=1

δnir Ŝ
P+2
m00i1...îr ...iP

− fnfmDi1...iP

(5.40)− 2
P∑

r=1

(fnδmir + fmδnir )D00i1...îr ...iP
− 4

P∑
r,s=1
r �=s

δnir δmis D0000i1...îr ...îs ...iP

]
,

which holds for arbitraryk, l = 1, . . . ,N −1 andi1, . . . , iP = 0, . . . ,N −1. Together with(5.38)
this equation allows to iteratively determine the tensor coefficients of 4-point functions in
of 3-point functions for small Gram determinant�(3). If the 3-point functions are known up t
rankP , all 4-point tensor coefficients up to this rank can be determined recursively up to
of order�(3) from these equations by putting all terms involving�(3) to zero. Inserting thes
results back into the r.h.s. of(5.38) and (5.40)for the terms proportional to�(3), all 4-point tensor
coefficients up to rank(P −1) can be determined up to terms of order(�(3))2, and so on. Finally
the scalar 4-point function is iteratively determined up to terms of order(�(3))P+1. In order to
improve numerical stability, we can choosej in (5.38)such thatX(3)

0j is maximal, andk and l

in (5.40)such thatZ̃(3)
kl is maximal. For�(3) = 0 this reduction scheme essentially correspo

to the one proposed in Ref.[9].
For the lowest tensor coefficients the explicit results read

(5.41)X̃
(3)
0j D0 = −

N−1∑
Z̃

(3)
jn Ŝ1

n + �(3)Dj ,
n=1
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2(6− N)Z̃
(3)
kl D00 = −2(D − 4)Z̃

(3)
kl D00 − �(3)Dkl + Z̃

(3)
kl S2

00

(5.42)

+
N−1∑
n=1

(
Z̃

(3)
nl Ŝ2

nk − Z̃
(3)
kl Ŝ2

nn

)−
N−1∑

n,m=1

˜̃
Z

(3)
(kn)(lm)

[
fnŜ

1
m − fnfmD0

]
,

(5.43)X̃
(3)
0j Di1 = −

N−1∑
n=1

Z̃
(3)
jn

(
Ŝ2

ni1
− 2δni1D00

)+ �(3)Dji1,

2(8− N)Z̃
(3)
kl D00i1

= −2(D − 4)Z̃
(3)
kl D00i1 − �(3)Dkli1 + Z̃

(3)
kl S3

00i1

+
N−1∑
n=1

(
Z̃

(3)
nl Ŝ3

nki1
− Z̃

(3)
kl Ŝ3

nni1

)−
N−1∑

n,m=1

˜̃
Z

(3)
(kn)(lm)

[
fnŜ

2
mi1

+ 2δni1Ŝ
3
m00

(5.44)− fnfmDi1 − 2(fnδmi1 + fmδni1)D00
]
,

(5.45)X̃
(3)
0j Di1i2 = −

N−1∑
n=1

Z̃
(3)
jn

[
Ŝ3

ni1i2
− 2(δni1D00i2 + δni2D00i1)

]+ �(3)Dji1i2,

2(8− N)Z̃
(3)
kl D0000

= −2(D − 4)Z̃
(3)
kl D0000− �(3)D00kl + Z̃

(3)
kl S4

0000

(5.46)+
N−1∑
n=1

(
Z̃

(3)
nl Ŝ4

n00k − Z̃
(3)
kl Ŝ4

n00n

)−
N−1∑

n,m=1

˜̃
Z

(3)
(kn)(lm)

[
fnŜ

3
m00 − fnfmD00

]
,

2(10− N)Z̃
(3)
kl D00i1i2

= −2(D − 4)Z̃
(3)
kl D00i1i2 − �(3)Dkli1i2 + Z̃

(3)
kl S4

00i1i2 +
N−1∑
n=1

(
Z̃

(3)
nl Ŝ4

nki1i2
− Z̃

(3)
kl Ŝ4

nni1i2

)
−

N−1∑
n,m=1

˜̃
Z

(3)
(kn)(lm)

[
fnŜ

3
mi1i2

+ 2
(
δni1Ŝ

4
m00i2 + δni2Ŝ

4
m00i1

)− fnfmDi1i2

− 2(fnδmi1 + fmδni1)D00i2 − 2(fnδmi2 + fmδni2)D00i1

(5.47)− 4(δni1δmi2 + δni2δmi1)D0000
]
, i1, i2 �= 0,

X̃
(3)
0j Di1i2i3 = −

N−1∑
n=1

Z̃
(3)
jn

[
Ŝ4

ni1i2i3
− 2(δni1D00i2i3 + δni2D00i1i3 + δni3D00i1i2)

]
(5.48)+ �(3)Dji1i2i3.

Fig. 4 illustrates a systematic algorithm for this iteration scheme for 4-point integrals i
plane of tensor coefficients similar to the previous sections. Thin arrows indicate that the r
involves a suppression factor�(3). At the beginning of the iteration all 4-point tensor coefficie
as well as the scalar integralD0 are set to zero, i.e., no 4-point basis integral is needed. Thnth
iteration consists of the(n + 1) stepsn → (n − 1) → ·· · → 1 → 0 and requires all 3-poin
coefficients of rankn. Stepn with n > 0 starts with the coefficient of rank(n + 1) with the
highest number of index pairs “00”, i.e. with the right-most coefficient in the(n + 1)th row in
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Fig. 4. Schematic illustration of the iteration for small Gram determinants, where thin arrows indicate that the
involves a suppression factor�(3). In each step the boxed coefficients are calculated in the order indicated by the
“a”, “ b”, etc. Thenth iteration consists of the following(n + 1) steps:n → (n − 1) → ·· · → 1 → 0.

the diagrams inFig. 4. Within a step, coefficients for rank(n + 1) are deduced from the righ
to the left in the diagram; only for the last coefficient (which has no index pair “00”) one h
go one step upwards to rankn in addition. After thenth iteration the tensor coefficientsDi1i2i3...

of rankn without index pairs “00” and all coefficientsD00i1i2... of one rank higher with at leas
one index pair “00” are obtained up to terms that are suppressed by a factor�(3). Coefficients of
a rank that is lower by a numberm are known up to terms suppressed by[�(3)]m+1. Indicating
coefficients that are known up to terms ofO([�(3)]m+1) with a superscript “(m)”, the iteration
proceeds as follows:

• Iteration 0:D(0)
0 is calculated; all other coefficients are still zero.

• Iteration 1: Step 1 yieldsD(0)
00 andD

(0)
i1

; step 0 yieldsD(1)
0 .

• Iteration 2: Steps 2 to 0 deliverD(0)
00i1

, D
(0)
i1i2

, D
(1)
00 , D

(1)
i1

, andD
(2)
0 .

• Iteration 3: Steps 3 to 0 deliverD(0)
0000, D

(0)
00i1i2

, D
(0)
i1i2i3

, D
(1)
00i1

, D
(1)
i1i2

, D
(2)
00 , D

(2)
i1

, andD
(3)
0 .

• Etc.
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The reduction method described in this section breaks down if none of theX̃
(3)
0j is large com-

pared to�(3) or if all Z̃
(3)
kl become small, since in these cases the iteration does not con

A reduction for smallX̃(3)
0j is described in Section5.5. A reduction for smallZ(3)

kl is given in

Section5.6. ForN = 2 the case of smallZ(2)
kl is equivalent to small̃Z(2)

kl ; for N = 3 the case o

smallZ(3)
kl covers the case of smallZ̃

(3)
kl apart from exceptional configurations.4

5.5. Reduction for small Gram determinant and small modified Cayley determinant

If in addition to the Gram determinant�(3) also all quantities̃X(3)
0j , j = 1, . . . ,N −1, become

small, the reduction scheme of Section5.4breaks down. As can be seen from(2.30), in this case
the determinant det(X̃(3)) = det(Y ) of (2.25)becomes small, which is a necessary condition
the appearance of leading Landau singularities. In this situation, we can determine the
coefficients as follows.

For ir �= 0, Eq.(5.38)can be rewritten as

(5.49)2
P∑

r=1

Z̃
(3)
kir

D00i1...îr ...iP
=

N−1∑
n=1

Z̃
(3)
kn ŜP+1

ni1...iP
+ X̃

(3)
k0 Di1...iP − �(3)Dki1...iP .

This allows to determineD00i1...îr ...iP
for i1, . . . , iP �= 0 in terms of 3-point functions as:

2P Z̃
(3)
kl D00 l...l︸︷︷︸

P−1

=
N−1∑
n=1

Z̃
(3)
kn ŜP+1

n l...l︸︷︷︸
P

+ X̃
(3)
k0 D l...l︸︷︷︸

P

− �(3)Dk l...l︸︷︷︸
P

,

2(P − 1)Z̃
(3)
kl D00 l...l︸︷︷︸

P−2

i1 = −2Z̃
(3)
ki1

D00 l...l︸︷︷︸
P−1

+
N−1∑
n=1

Z̃
(3)
kn ŜP+1

n l...l︸︷︷︸
P−1

i1

+ X̃
(3)
k0 D l...l︸︷︷︸

P−1

i1 − �(3)Dk l...l︸︷︷︸
P−1

i1, i1 �= 0, l,

2(P − 2)Z̃
(3)
kl D00 l...l︸︷︷︸

P−3

i1i2 = −2Z̃
(3)
ki1

D00 l...l︸︷︷︸
P−2

i2 − 2Z̃
(3)
ki2

D00 l...l︸︷︷︸
P−2

i1 +
N−1∑
n=1

Z̃
(3)
kn ŜP+1

n l...l︸︷︷︸
P−2

i1i2

(5.50)+ X̃
(3)
k0 D l...l︸︷︷︸

P−2

i1i2 − �(3)Dk l...l︸︷︷︸
P−2

i1i2, i1, i2 �= 0, l,

and so on, provided that at least one of theZ̃
(3)
kl is not small. Againk �= 0 andl �= 0 can be chose

such thatZ̃(3)
kl is maximal in order to improve the numerical stability. The tensor coefficients

more index pairs “00” can be determined by equations that are obtained from(5.50)by adding
additional index pairs “00” to all quantitiesS andD in (5.50).

4 In an alternative approach, one could disregard(5.40)and use(5.38)also to determineD00i1...îr ...iP
. This reduction

method would also work if all̃Z(3)
kl

are small. However, in this case, tensor integrals of higher rank would be neede

instance, to calculateDi i i in leading order in�(3) one would have to calculateD000000andC000000first.
1 2 3
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In order to derive a relation for the calculation ofDi1...iP we rewrite(5.12)as
f1 f2 f3

2p1p1 2p1p2 2p1p3
2p2p1 2p2p2 2p2p3
2p3p1 2p3p2 2p3p3

(
D1i1...iP

D2i1...iP

D3i1...iP

)

(5.51)=


2(D + 1+ P − N)D00i1...iP − Ci1...iP (0) − 2m2

0Di1...iP

ŜP+1
1i1...iP

− 2
∑P

r=1 δ1ir D00i1...îr ...iP
− f1Di1...iP

ŜP+1
2i1...iP

− 2
∑P

r=1 δ2ir D00i1...îr ...iP
− f2Di1...iP

ŜP+1
3i1...iP

− 2
∑P

r=1 δ3ir D00i1...îr ...iP
− f3Di1...iP

 .

After discarding the(j + 1)th of these equations, wherej = 1,2, or 3, the remaining thre
equations have the solution

N−1∑
n=1

fnZ̃
(3)
nj Dii1...iP

= Z̃
(3)
ij

[
2(D + 1+ P − N)D00i1...iP − Ci1...iP (0) − 2m2

0Di1...iP

]
(5.52)+

N−1∑
m,n=1

˜̃
Z

(3)
(in)(jm)

fn

[
ŜP+1

mi1...iP
− 2

P∑
r=1

δmir D00i1...îr ...iP
− fmDi1...iP

]
.

Using(2.28)this can be written as

X̃
(3)
ij Di1...iP

= Z̃
(3)
ij

[
2(5+ P − N)D00i1...iP + 2(D − 4)D00i1...iP − Ci1...iP (0)

]
(5.53)+

N−1∑
m,n=1

˜̃
Z

(3)
(in)(jm)fn

[
ŜP+1

mi1...iP
− 2

P∑
r=1

δmir D00i1...îr ...iP

]
+ X̃

(3)
0j Dii1...iP ,

which holds for arbitraryi, j = 1, . . . ,N −1 andi1, . . . , iP = 0, . . . ,N −1. Together with(5.49)
this equation allows to iteratively determine the tensor coefficients of 4-point functions in

of 3-point functions for small Gram determinant�(3) and smallX̃(3)
k0 and X̃

(3)
0j as long as

at least one of thẽX(3)
ij is not small. Againi and j can be chosen suitably in order to im

prove the numerical accuracy, e.g. by choosing the maximalX̃
(3)
ij . If the 3-point functions are

known up to rankP , all 4-point tensor coefficients up to rank(P − 1) can be determine
up to terms of order�(3), X̃

(3)
k0 , andX̃

(3)
0j from (5.49) and (5.53)by putting all terms propor

tional to these quantities to zero. Inserting these results back into the r.h.s. of these eq
all 4-point tensor coefficients up to rank(P − 3) can be determined up to terms of ord
[max(|�(3)|, |X̃(3)

k0 |, |X̃(3)
0j |)]2, and so on. Finally, the scalar 4-point function is determined

to terms of order[max(|�(3)|, |X̃(3)
k0 |, |X̃(3)

0j |)][(P+1)/2].
For the tensor coefficients up to rank 3 the reduction formulas explicitly read

(5.54)2Z̃
(3)
kl D00 =

N−1∑
Z̃

(3)
kn Ŝ2

nl + X̃
(3)
k0 Dl − �(3)Dkl,
n=1
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X̃
(3)
ij D0 = Z̃

(3)
ij

[
2(5− N)D00 + 2(D − 4)D00 − C0(0)

]
(5.55)+

N−1∑
m,n=1

˜̃
Z

(3)
(in)(jm)fnŜ

1
m + X̃

(3)
0j Di,

4Z̃
(3)
kl D00l =

N−1∑
n=1

Z̃
(3)
kn Ŝ3

nll + X̃
(3)
k0 Dll − �(3)Dkll,

(5.56)2Z̃
(3)
kl D00i1 = −2Z̃

(3)
ki1

D00l +
N−1∑
n=1

Z̃
(3)
kn Ŝ3

nli1
+ X̃

(3)
k0 Dli1 − �(3)Dkli1, i1 �= 0, l,

X̃
(3)
ij Di1 = Z̃

(3)
ij

[
2(6− N)D00i1 + 2(D − 4)D00i1 − Ci1(0)

]
(5.57)+

N−1∑
m,n=1

˜̃
Z

(3)
(in)(jm)fn

[
Ŝ2

mi1
− 2δmi1D00

]+ X̃
(3)
0j Dii1,

6Z̃
(3)
kl D00ll =

N−1∑
n=1

Z̃
(3)
kn Ŝ4

nlll + X̃
(3)
k0 Dlll − �(3)Dklll ,

4Z̃
(3)
kl D00li1 = −2Z̃

(3)
ki1

D00ll +
N−1∑
n=1

Z̃
(3)
kn Ŝ4

nlli1
+ X̃

(3)
k0 Dlli1 − �(3)Dklli1, i1 �= 0, l,

2Z̃
(3)
kl D00i1i2 = −2Z̃

(3)
ki1

D00li2 − 2Z̃
(3)
ki2

D00li1

(5.58)+
N−1∑
n=1

Z̃
(3)
kn Ŝ4

nli1i2
+ X̃

(3)
k0 Dli1i2 − �(3)Dkli1i2, i1, i2 �= 0, l,

X̃
(3)
ij Di1i2 = Z̃

(3)
ij

[
2(7− N)D00i1i2 + 2(D − 4)D00i1i2 − Ci1i2(0)

]
(5.59)+

N−1∑
m,n=1

˜̃
Z

(3)
(in)(jm)fn

[
Ŝ3

mi1i2
− 2δmi1D00i2 − 2δmi2D00i1

]+ X̃
(3)
0j Dii1i2,

8Z̃
(3)
kl D00lll =

N−1∑
n=1

Z̃
(3)
kn Ŝ5

nllll + X̃
(3)
k0 Dllll − �(3)Dkllll ,

6Z̃
(3)
kl D00lli1 = −2Z̃

(3)
ki1

D00lll +
N−1∑
n=1

Z̃
(3)
kn Ŝ5

nllli1
+ X̃

(3)
k0 Dllli1 − �(3)Dkllli1, i1 �= 0, l,

4Z̃
(3)
kl D00li1i2 = −2Z̃

(3)
ki1

D00lli2 − 2Z̃
(3)
ki2

D00lli1

+
N−1∑
n=1

Z̃
(3)
kn Ŝ5

nlli1i2
+ X̃

(3)
k0 Dlli1i2 − �(3)Dklli1i2, i1, i2 �= 0, l,

2Z̃
(3)

D00i1i2i3 = −2Z̃
(3)

D00li2i3 − 2Z̃
(3)

D00li1i3 − 2Z̃
(3)

D00li1i2
kl ki1 ki2 ki3
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(5.60)

+
N−1∑
n=1

Z̃
(3)
kn Ŝ5

nli1i2i3
+ X̃

(3)
k0 Dli1i2i3 − �(3)Dkli1i2i3, i1, i2, i3 �= 0, l,

X̃
(3)
ij Di1i2i3 = Z̃

(3)
ij

[
2(8− N)D00i1i2i3 + 2(D − 4)D00i1i2i3 − Ci1i2i3(0)

]
+

N−1∑
m,n=1

˜̃
Z

(3)
(in)(jm)fn

[
Ŝ4

mi1i2i3
− 2δmi1D00i2i3 − 2δmi2D00i1i3 − 2δmi3D00i1i2

]
(5.61)+ X̃

(3)
0j Dii1i2i3.

Fig. 5 illustrates a systematic algorithm for the iteration scheme for 4-point integrals i
plane of tensor coefficients similar to the previous sections. Thin arrows indicate that the r
involves a suppression factor�(3), X̃

(3)
k0 , or X̃

(3)
0j . At the beginning of the iteration all 4-poin

tensor coefficients as well as the scalar integralD0 are set to zero, i.e., no 4-point basis integra
needed. Thenth iteration consists of the(n + 1) stepsn → (n − 1) → ·· · → 1→ 0 and requires
all 3-point coefficient functions up to rank 2(n + 1). Stepn starts with the two coefficients o
ranks(2n+2) and(2n+3) that have exactly one index pair “00”, i.e. which belong to the sec
column in the respective rows in the diagrams inFig. 5. Within a step, first the two coefficien
are calculated that are reached upon omitting the index pair “00” from the starting coeffic
they are located in the first column two rows above the starting rows in the diagram. Th
coefficients that lie to the right of the starting coefficients are calculated column by co
After the nth iteration the tensor coefficientsDi1i2i3... of ranks 2n and(2n + 1) without index
pairs “00” and all coefficientsD00i1i2... of two ranks higher with at least one index pair “00” a

obtained up to terms that are suppressed by a factor�(3), X̃(3)
k0 , or X̃(3)

0j . Coefficients of a rank tha

Fig. 5. Schematic illustration of the iteration for small Gram and modified Cayley determinants, where thin

indicate that the relation involves a suppression factor�(3), X̃
(3)
k0 , or X̃

(3)
0j

. In each step the boxed coefficients a
calculated in the order indicated by the labels “a”, “ b”, etc. Thenth iteration consists of the following(n + 1) steps:
n → (n − 1) → ·· · → 1 → 0.
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is lower by a number 2m are known up to terms suppressed by[max(|�(3)|, |X̃(3)
k0 |, |X̃(3)

0j |)]m+1.
The iteration proceeds as follows:

• Iteration 0:D(0)
00 , D

(0)
00i1

, D
(0)
0 , andD

(0)
i1

are calculated; all other coefficients are still zero.

• Iteration 1: Step 1 yieldsD(0)
00i1i2

, D
(0)
00i1i2i3

, D
(0)
i1i2

, D
(0)
i1i2i3

, D
(0)
0000, andD

(0)
0000i1

, step 0 yields

D
(1)
00 , D

(1)
00i1

, D
(1)
0 , andD

(1)
i1

.
• Etc.

The reduction described in this section breaks down if none ofX̃
(3)
ij is large compared to�(3)

andX̃
(3)
0j , or if all Z̃

(3)
kl become small, since in these cases the iteration does not converge

duction for smallZ(3)
kl , and thus for small̃Z(3)

kl in non-exceptional configurations, is describ

in Section5.6. If both �(3) and allX̃(3)
k0 andX̃

(3)
ij become small, in some cases the alterna

Passarino–Veltman reduction of Section5.2works. In other cases, none of the discussed re
tion methods is really good. However, this happens only in exceptional cases, and one
discussed methods yields at least crude results.5

5.6. Reduction for small momenta

Finally, we provide a reduction scheme for the case where allZ
(3)
kl and thus all moment

become small. Note that in this case also all of the quantities�(3), Z̃
(3)
kl , X̃

(3)
0k , andX̃

(3)
kl become

small. If thefk are not small as well, we can proceed as follows. We rewrite(5.8)as

fkDi1...iP = ŜP+1
ki1...iP

− 2
P∑

r=1

δkir D00i1...îr ...iP
−

N−1∑
m=1

Z
(3)
kmDmi1...iP ,

(5.62)k = 1, . . . ,N − 1, i1, . . . , iP = 0, . . . ,N − 1,

and(5.9)as

2

(
4+ P +

P∑
r=1

δ̄ir0

)
D00i1...iP

= −2(D − 4)D00i1...iP + 2Ci1...iP (0) + 2m2
0Di1...iP

(5.63)−
N−1∑

n,m=1

Z(3)
nmDnmi1...iP , i1, . . . , iP = 0, . . . ,N − 1.

By using these equations iteratively, we can determineDi1...iP andD00i1...iP for given 3-point

functions for smallZ(3)
kl . If the 3-point functions are known up to rankP , we can determine th

coefficients of the 4-point functions with rankP up to terms of orderZ(3)
kl , those of rank(P − 1)

5 An alternative reduction could be derived, by considering
∑P+1

r=1 X̃
(3)
iir

D
i1...îr ...iP+1

, using(5.53)and inserting(5.49)

on the r.h.s. of the resulting equation to eliminateD00i1...îr ...iP+1
. From the obtained relation, all tensor coefficie

could be calculated. This reduction method would also work if allZ̃
(3)
kl

are small. However, in this case, tensor integr
of higher rank would be needed.
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up to terms of order[Z(3)
kl ]2, . . . , and those of order 0 up to terms of order[Z(3)

kl ]P+1. In order
to improve numerical stability, we can choosek such thatfk is maximal. Note that the structu
of (5.62) and (5.63)is similar to the one of(5.38) and (5.40). In fact, a systematic algorithm fo
this iteration scheme for 4-point integrals is given byFig. 4, if the arrows that point vertically
downwards or horizontally to the left are omitted.

Up to tensor rank 3 the explicit formulas read:

(5.64)fkD0 = Ŝ1
k −

N−1∑
m=1

Z
(3)
kmDm,

(5.65)8D00 = −2(D − 4)D00 + 2C0(0) + 2m2
0D0 −

N−1∑
n,m=1

Z(3)
nmDnm,

(5.66)fkDi1 = Ŝ2
ki1

− 2δki1D00 −
N−1∑
m=1

Z
(3)
kmDmi1,

(5.67)12D00i1 = −2(D − 4)D00i1 + 2Ci1(0) + 2m2
0Di1 −

N−1∑
n,m=1

Z(3)
nmDnmi1,

(5.68)fkDi1i2 = Ŝ3
ki1i2

− 2δki1D00i2 − 2δki2D00i1 −
N−1∑
m=1

Z
(3)
kmDmi1i2,

(5.69)16D00i1i2 = −2(D − 4)D00i1i2 + 2Ci1i2(0) + 2m2
0Di1i2 −

N−1∑
n,m=1

Z(3)
nmDnmi1i2,

(5.70)

fkDi1i2i3 = Ŝ4
ki1i2i3

− 2δki1D00i2i3 − 2δki2D00i1i3 − 2δki3D00i1i2 −
N−1∑
m=1

Z
(3)
kmDmi1i2i3.

If also all thefk become small we can rewrite(5.62) and (5.63)as

2
P∑

r=1

δkir D00i1...îr ...iP
= ŜP+1

ki1...iP
− fkDi1...iP −

N−1∑
m=1

Z
(3)
kmDmi1...iP ,

(5.71)k = 1, . . . ,N − 1, i1, . . . , iP = 0, . . . ,N − 1,

and

2m2
0Di1...iP = 2

(
4+ P +

P∑
r=1

δ̄ir0

)
D00i1...iP + 2(D − 4)D00i1...iP

(5.72)− 2Ci1...iP (0) +
N−1∑

n,m=1

Z(3)
nmDnmi1...iP , i1, . . . , iP = 0, . . . ,N − 1.

By using these equations iteratively, we can determineDi1...iP andD00i1...iP for given 3-point

functions for smallZ(3)
kl and smallfk . The structure of(5.71) and (5.72)is similar to the one

of (5.49) and (5.53). If the 3-point functions are known up to rankP , we can determine th
coefficients of the 4-point functions with rank(P − 1) up to terms of order max(|Z(3)|, |fn|),
kl
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Table 1
Summary of features of the reduction schemes for 3- and 4-point tensor integrals. The type of the method is eithe
tion (red.)” or “expansion (exp.)”; Gram and Cayley determinants are generically indicated by|Z| and|X|, respectively

Section 5.1 5.2 5.3 5.4 5.5 5.6

Method
Type

PV
red.

PV′
red.

Cayley
red.

Gram
exp.

Gram/Cayley
exp.

Momenta
exp.

Applicability |Z| �= 0
|Z| �= 0

|X| �= 0
|X| �= 0

|Z| → 0

X̃0j �= 0

Z̃kl �= 0

|Z| → 0

X̃0k, X̃0j → 0

X̃ij �= 0

Z̃kl �= 0

Z → 0

fk �= 0

Stable for|Z| → 0? no no yes yes yes yes

Stable for|X| → 0? yes no no yes yes

Stable forZ → 0? no no no no no yes

Fast? yes yes no yes yes yes

those of rank(P − 3) up to terms of order[max(|Z(3)
kl |, |fk|)]2, and so on. Finally, the scala

4-point function is determined up to terms of order[max(|Z(3)
kl |, |fk|)][(P+1)/2].

5.7. Summary of reduction schemes and application toe+e− → 4f at one loop

Table 1briefly summarizes some of the features of the described reduction schemes
and 4-point tensor integrals. The type of the method, “reduction (red.)” or “expansion (ex
indicated in the third row. In the fourth row we summarize the conditions for the applica
of the schemes. Conditions that depend on indicesi, j , k, l have to be fulfilled for at least on
choice of these indices. The “yes” and “no” in the last rows indicate whether a method is
or unstable in the corresponding limits or if the method is fast in terms of CPU time. A b
entry means that the method can be stable or unstable in the considered limit.

The reduction schemes described above have been successfully applied in the calcu
the complete one-loop corrections to the charged-current processes e+e− → 4f as presented in
Ref. [35]. As described there, actually two independent calculations of the corrections hav
carried out employing two different procedures (called “rescue systems” there) for the eva
of the one-loop tensor integrals in the numerically delicate kinematical configurations. Bot
cedures make use of the conventional Passarino–Veltman reduction (see Section5.1) as long as
internal consistency checks prove this method to be reliable. If this is not the case, the proc
differ:

(i) Procedure1: reduction with modified Cayley determinants and further exception handl.

If conventional Passarino–Veltman reduction seems not to be trustworthy, since cons
relations among the tensor coefficients are valid only to very few digits or even violate
method with modified Cayley determinants is used as described in Section5.3. Because of
the vanishing modified Cayley determinant this is not possible for the IR-singular (i.e. s
collinear divergent) 3-point functions. Therefore, these cases are evaluated as describeAp-
pendix B, yielding perfectly stable results.

The described procedure fails if both the Gram and the modified Cayley determinan
very small. In practice, this happens only at a small fraction of events that hardly contrib
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the e+e− → 4f cross section. However, if this limitation of the procedure becomes serio
other cases, the double limit of small Gram and modified Cayley determinants can be c
using the method of Section5.5, etc., as it is done in Procedure 2.

(ii) Procedure2: expansions for small Gram determinants, etc.

The second procedure is based on the two versions of Passarino–Veltman reduction
tions5.1 and 5.2and on the expansion methods described in Sections5.4–5.6. If the Passarino–
Veltman reduction fails, at least the Gram determinant of the corresponding integral
integral related to a subgraph) is small. The question which of the different expansions i
appropriate is decided by estimating the number of valid digits in each of the expansion va
the variant promising the highest precision is taken.

For the application to the processes e+e− → 4f , it turned out to be sufficient to impleme
the expansions for small Gram determinant (Section5.4), for small Gram and modified Cayle
determinants (Section5.5), and for small momenta (Section5.6) up to tensor rank 4 for 4-poin
functions and the corresponding formulas for 3-point functions up to tensor rank 5. The
mentation of the modified procedure for smallfk was not required. We also did not yet impleme
the schemes mentioned in footnotes4 and 5.

Note that in the one-loop diagrams for e+e− → 4f 3- and 4-point functions appear only up
rank 3, i.e. the implemented reductions go beyond taking pure limits of vanishing determ
For these processes, the exceptional cases where none of the expansions is good appe
for a very small fraction of events and did not yield sizeable contributions to integrated ph
quantities.

5.8. UV and IR divergences in dimensional regularization and terms of order(D − 4)

In the preceding equations we have kept all terms of order(D − 4) that multiply one-loop
coefficient integrals. These terms give rise to finite terms in dimensional regularization if
integrals are divergent in four dimensions. It is convenient to discuss UV divergences,
formally result from loop momentaq tending to infinity, and IR divergences, which arise fro
finite loop momenta but specific kinematical configurations, separately:

(i) UV divergences.

UV divergences are universal in the sense that the divergent terms in an integral are
functions of the external momentapk and internal massesmk , but these terms do not change
these kinematical quantities approach exceptional configurations (zero limits, on-shell con
tions, etc.). At one loop, UV divergences generally have the form 1/(D − 4) times a polynomia
in pk andmk . Therefore, the terms(D − 4)T N

i1...iP
contained in the above formulas are fin

polynomials inpk andmk . We have listed these(D − 4)T N
i1...iP

terms for 1-point functions o
arbitrary rank, 2-point functions up to rank 5, 3-point functions up to rank 7, 4-point func
up to rank 7, and five-point functions up to rank 6 inAppendix A.

(ii) IR divergences.

IR divergences at one loop originate either from soft or collinear configurations of a
momentum[41]. These types of divergences have the property that they do not show up in
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coefficients with at least one index pair “00”, i.e., all tensor structures containing at lea
factor of the metric tensor are IR finite.

These fact can be seen by inspecting the Feynman-parameter integrals of the tenso
cients or by the following arguments. A soft singularity results from the limit of zero-mome
transfer of a massless particle (q → 0) between two on-shell particles. Assuming that the m
less particle correspond to the propagator denominatorN0, power counting inq shows that sof
divergences can appear only in the scalar integral, but not in tensor integrals, because lo
menta in the numerator render the limitq → 0 in the integral non-singular. Thus, in the gene
case, where the massless particle corresponds to any propagator denominatorNk , soft divergent
parts of tensor integrals are always proportional to powers of the momentapk , as can be seen b
performing a shiftq → q − pk , which mapsNk to N0. A collinear singularity results from th
range where the loop momentumq is parallel to the momentumpk of a light external on-shel
particle that splits into two light particles. If a tensorqµ1 . . . qµP

is present in the loop integral, th
divergence can only show up in covariants that are built up in the singular region. Thus, co
divergences of tensor integrals appear in covariants containing only the momentumpk .

In the reduction formulas given above the factor(D − 4) appears only in front of tenso
coefficientsT N

00i3...iP
containing at least one index pair “00”, which have been shown to b

finite. Therefore, all the reduction formulas are valid without modification if IR singular
are regularized dimensionally. All terms(D − 4)T N

00i3...iP
can be taken fromAppendix A; if

more of these terms are needed, they can be easily derived from the reduction formula
selves.

6. Reduction of 5-point integrals

In four space–time dimensions, 5-point integrals can be reduced to 4-point integra
Ref. [26] we have given relations that express 5-point tensor integrals of rankP by 4-point
tensor integrals of rankP (see alsoAppendix C). This method follows the strategy proposed
Ref. [22] for the reduction of scalar integrals and was actually used in the calculation of
loop corrections to e+e− → 4f [35]. Here we derive formulas that directly reduce 5-point ten
integrals of rankP to 4-point tensor integrals of rank(P − 1). While similar results have bee
presented in Ref.[19], our derivation is more transparent.

We start by considering the determinant

E =

∣∣∣∣∣∣∣∣∣∣∣

qµ −2q2 2qp1 · · · 2qp4

0 2m2
0 f1 · · · f4

p
µ
1 −2p1q 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 −2p4q 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

qµ −N0 − 2m2
0 2qp1 · · · 2qp4

0 2m2
0 f1 · · · f4

p
µ
1 f1 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 f4 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣

qµ −N0 2qp1 · · · 2qp4
0 0 f1 · · · f4

p
µ
1 N0 − N1 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 N0 − N4 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣

qµ −N0 N1 − N0 · · · N4 − N0

0 2m2
0 f1 · · · f4

p
µ
1 f1 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 f4 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣∣

(6.1)+

∣∣∣∣∣∣∣∣∣∣

g
µ
α −N0 2p1,α · · · 2qp4,α

0 0 f1 · · · f4
p

µ
1 qα(N0 − N1) 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 qα(N0 − N4) 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣
.

In the first manipulation, we have split the determinant in the second column, and in the s
we have added the second row of the first determinant to its first row and we have moqα

from the first row to the second column in the second determinant. Moreover, we have u
definitions(2.2) and (2.24).

In four dimensions, the determinantE vanishes, as can be seen from its defining form, bec
q is linearly dependent on the four momentapi , i = 1, . . . ,4. Since we want to derive a relatio
that also holds in dimensional regularization we do not use this fact, but translate the i
overE into a form that has a factor ofO(D − 4) rendering the whole contribution zero for fini
integrals. Inserting the first form ofE in (6.1) into the integrand of the tensor integralEµ1...µP

results in∫
E ≡ (2πµ)4−D

iπ2

∫
dDq

qµ1 · · ·qµP

N0N1 · · ·N4
E

= 2m2
0E

αµ1...µP

∣∣∣∣∣∣∣∣∣
g

µ
α 2p1,α · · · 2p4,α

p
µ
1 2p1p1 · · · 2p1p4
...

...
. . .

...

p
µ
4 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣

(6.2)+ Eαβµ1...µP

∣∣∣∣∣∣∣∣∣∣

g
µ
α −2gαβ 2p1,α · · · 2p4,α

0 0 f1 · · · f4
p

µ
1 −2p1,β 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 −2p4,β 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣
.

This form can be written more compactly by introducing the four-dimensional metric tenso

(6.3)g
µν

(4) =
4∑

j,k=1

2p
µ
j pν

k

(
Z(4)

)−1
kj

= − 1

�(4)

∣∣∣∣∣∣∣∣
0 2pν

1 · · · 2pν
4

p
µ
1 2p1p1 · · · 2p1p4
...

...
. . .

...

p
µ
4 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣ ,
leading to the result∫

E = 2m2
0�

(4)
(
gµ

α − g(4)
µ
α

)
Eαµ1...µP

(6.4)+ 2
4∑

X̃
(4)
n0

[
pµ

n (gαβ − g(4)αβ) − pn,β

(
gµ

α − g(4)
µ
α

)]
Eαβµ1...µP .
n=1
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The second term is obtained by expanding the second determinant in(6.2) along the first two
rows and the first two columns according to(2.17)and using(2.20).

Alternatively integrating over the last form ofE in (6.1), we obtain

∫
E =

∣∣∣∣∣∣∣∣∣∣∣

Eµµ1...µP −Dµ1...µP (0) Dµ1...µP (1) − Dµ1...µP (0) · · · Dµ1...µP (4) − Dµ1...µP (0)

0 2m2
0 f1 · · · f4

p
µ
1 f1 2p1p1 · · · 2p1p4

.

..
.
..

.

..
. . .

.

..

p
µ
4 f4 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣∣

(6.5)+

∣∣∣∣∣∣∣∣∣∣

g
µ
α −Dµ1...µP (0) 2p1,α · · · 2p4,α

0 0 f1 · · · f4
p

µ
1 Dαµ1...µP (0) − Dαµ1...µP (1) 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 Dαµ1...µP (0) − Dαµ1...µP (4) 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣
.

The last determinant can be written as∣∣∣∣∣∣∣∣∣∣

g
µ
α −Dµ1...µP (0) 2p1,α · · · 2p4,α

0 0 f1 · · · f4
p

µ
1 Dαµ1...µP (0) − Dαµ1...µP (1) 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 Dαµ1...µP (0) − Dαµ1...µP (4) 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

g
µ
α 0 2p1,α · · · 2p4,α

0 0 f1 · · · f4
p

µ
1 Dαµ1...µP (0) + pα

1Dµ1...µP (0) − Dαµ1...µP (1) 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 Dαµ1...µP (0) + pα

1Dµ1...µP (0) − Dαµ1...µP (4) 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣

(6.6)=

∣∣∣∣∣∣∣∣∣∣

g
µ
α 0 2p1,α · · · 2p4,α

0 0 f1 · · · f4
p

µ
1 −Dαµ1...µP (1) 2p1p1 · · · 2p1p4
...

...
...

. . .
...

p
µ
4 −Dαµ1...µP (4) 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣∣∣
.

The first equality in(6.6)can be easily checked by expanding along the second column. In
to explain the second equality, we introduce the Lorentz-covariant decompositions

Dαµ1...µP (i) = [
Dαµ1...µP (i)

](p) + [
Dαµ1...µP (i)

](g)
, i = 0, . . . ,4,[

Dαµ1...µP (i)
](p) =

4∑
n=1
n�=i

pα
nxµ1...µP

n (i),
[
Dαµ1...µP (i)

](g) =
P∑

r=1

gαµr yµ1...µ̂r ...µP
r (i),

(6.7)
[
Dαµ1...µP (0) + pα

1Dµ1...µP (0)
](p) =

4∑
n=2

(pn − p1)
αzµ1...µP

n .

The operation “(g)” isolates all tensor structures in which the first Lorentz index appea
a metric tensor; the remaining part of the tensor furnishes the “(p)” contribution. The last
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decomposition in(6.7) becomes obvious after performing a shiftq → q − p1 in the inte-
gral. From(6.7) it follows immediately that the terms in the second line of(6.6) that involve
[Dαµ1...µP

(i)](p), i = 1, . . . ,4, drop out when expanding the determinant along the se
column, because the resulting determinants vanish. Similarly, the contribution proportio
[Dαµ1...µP

(0)+p1αDµ1...µP
(0)](p) vanishes after summation over all contributions. The rem

ing terms involving[D](g) are collected in the quantity

(6.8)Dαµ1...µP (i) = [
Dαµ1...µP (i) − Dαµ1...µP (0)

](g)
, i = 1, . . . ,4.

Inserting(6.6) into (6.5)and expanding the determinants we find∫
E = det

(
X(4)

)
Eµµ1...µP −

4∑
n,m=1

X̃(4)
mnp

µ
m

[
Dµ1...µP (n) − Dµ1...µP (0)

]
−

4∑
n=1

X̃
(4)
n0

[−pµ
n Dµ1...µP (0) +Dµµ1...µP (n)

]
(6.9)+

4∑
n=1

Dαµ1...µP (n)

4∑
m,l=1

2pm,αp
µ
l

˜̃
X

(4)
(ln)(0m)

,

where ˜̃
X

(4)
(ln)(0m) is given in(2.29). Setting this equal to(6.4), we obtain

det
(
X(4)

)
Eµµ1...µP

=
4∑

n,m=1

X̃(4)
mnp

µ
m

[
Dµ1...µP (n) − Dµ1...µP (0)

]
+

4∑
n=1

X̃
(4)
n0

[−pµ
n Dµ1...µP (0) +Dµµ1...µP (n)

]
−

4∑
n=1

Dαµ1...µP (n)

4∑
m,l=1

2pm,αp
µ
l

˜̃
X

(4)
(ln)(0m) + 2m2

0�
(4)

(
gµ

α − g(4)
µ
α

)
Eαµ1...µP

(6.10)+ 2
4∑

n=1

X̃
(4)
n0

[
pµ

n (gαβ − g(4)αβ) − pn,β

(
gµ

α − g(4)
µ
α

)]
Eαβµ1...µP .

In this result, all inverse Gram determinants have been absorbed in the four-dimension
ric tensor, which appears only in the difference(g − g(4)). In four dimensions, all these term
vanish identically. In dimensional regularization they contribute only ifEαβµ1...µP involves sin-
gularities, i.e., only the singular terms inEαβµ1...µP are relevant. As explained in Section5.8, IR
singularities ofEαµ1...µP appear only in contributions that are proportional to a momentumpα

k .
These contributions vanish exactly in(6.10) as long as the external momenta have only n
vanishing components in the four-dimensional subspace. UV singularities appear only ifP � 4.
Therefore, we can omit the last two terms in(6.10)for P < 4.6 For P � 4 the inverse Gram de

6 This result is in agreement with the observation made in Ref.[29] that in the absence of UV divergences reduct
formulas valid in 4 dimensions remain valid inD dimensions up to terms ofO(D − 4), independent of the possib
occurrence of IR singularities.
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terminant that is implicitly contained ing(4) can always be cancelled by a prefactor�(4). In the
last-but-one term of(6.10)this prefactor is already explicit; for the last contribution it is straig
forward to check7 that this factor always arises after symmetrizing the r.h.s. of(6.10)w.r.t. the
indicesµ,µ1, . . . ,µP .

The next step consists in the insertion of the decompositions of tensor integrals into L
covariants. Here and in the following we omit the terms involving(g−g(4)) if P < 4. The genera
tensor decompositions up to rank 5 explicitly read

Eµ =
4∑

i1=1

p
µ
i1
Ei1, Eµν =

4∑
i1,i2=1

p
µ
i1
pν

i2
Ei1i2 + gµνE00,

Eµνρ =
4∑

i1,i2,i3=1

p
µ
i1
pν

i2
p

ρ
i3
Ei1i2i3 +

4∑
i1=1

{gp}µνρ
i1

E00i1,

Eµνρσ =
4∑

i1,i2,i3,i4=1

p
µ
i1
pν

i2
p

ρ
i3
pσ

i4
Ei1i2i3i4 +

4∑
i1,i2=1

{gpp}µνρσ
i1i2

E00i1i2 + {gg}µνρσE0000,

Eµνρστ =
4∑

i1,i2,i3,i4,i5=1

p
µ
i1
pν

i2
p

ρ
i3
pσ

i4
pτ

i5
Ei1i2i3i4i5 +

4∑
i1,i2,i3=1

{gppp}µνρστ
i1i2i3

E00i1i2i3

(6.11)+
4∑

i1=1

{ggp}µνρστ
i1

E0000i1.

In four dimensions, the covariants involving metric tensors are redundant in these deco
tions, since the metric tensor could be replaced by(6.3). By keeping these coefficients we c
avoid the appearance of explicit inverse Gram determinants in the reduction formulas.

Inserting the Lorentz decompositions of the tensor integrals into(6.10), we find the following
reduction equations for the tensor coefficients upon comparing coefficients of covariants,

det
(
X(4)

)
Ēki1...iP

=
4∑

n=1

X̃
(4)
kn

[
D(i1)n...(iP )n(n)δ̄i1n . . . δ̄iP n − Di1...iP (0)

]− X̃
(4)
k0 Di1...iP (0)

− 2
4∑

n=1

P∑
r=1

˜̃
X

(4)
(kn)(0ir )

[
D00(i1)n...(̂ir )n...(iP )n

(n)δ̄i1n . . . δ̄ir−1nδ̄ir+1n . . . δ̄iP n

(6.12)− D00i1...îr ...iP
(0)

]
, k = 1, . . . ,4, P < 4,

(6.13)

det
(
X(4)

)
Ē00i2...iP =

4∑
n=1

X̃
(4)
n0

[
D00(i2)n...(iP )n(n)δ̄i2n . . . δ̄iP n − D00i2...iP (0)

]
, P < 4.

7 Contributions toEαβµ1...µP involving pα
k

vanish, and those involvinggαµi g
βµj cancel after symmetrizing w.r.

the indicesµ,µ1, . . . ,µP . In terms involvinggαβ the surviving(g − g(4)) turns into(D − 4). Finally, terms involving

p
β
k

get a factor
∑4

n=1 Z
(4)
in

X̃
(4) = −fi�

(4) owing to(2.28) and (2.13).

n0
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Since we have distinguished the indexk in the derivation of(6.12), the resulting tensor coeffi
cientsĒ... are not symmetric under the exchange ofk with one of the indicesir , r = 1, . . . ,P . In
order to distinguish them from the symmetric tensor coefficientsE..., we marked them with a ba
Symmetric tensor coefficients can be easily obtained by adding allP results withk exchanged
with one of their and dividing the sum byP , e.g.,

(6.14)Ei1i2i3 = 1

3
(Ēi1i2i3 + Ēi2i1i3 + Ēi3i2i1),

(6.15)E00i1 = 1

3
(Ē00i1 + Ē0i10 + Ēi100).

In (6.15), Ē00i1 andĒ0i10 are determined from(6.13), while Ēi100 is determined from(6.12).
For P � 4 extra terms of order(D − 4)E00... have to be added to Eqs.(6.12) and (6.13).

For P = 4 the last-but-one contribution in(6.10) is of O(D − 4), but the last term yields
finite contribution forD → 4, because the coefficientE000000 is UV divergent. We calculat
this contribution upon insertingEαβµ1...µ4|div = {ggg}αβµ1...µ4E000000|div into (6.4) and using
(D − 4)E000000from (A.5). After symmetrizing in the Lorentz indices, we get

(6.16)
∫

E = − 1

240

4∑
n=1

X̃
(4)
n0 {ggp}µµ1...µ4

n .

This contribution to the coefficientsEi0000can be included by replacing−X̃
(4)
i0 D0000(0) in (6.12)

by −X̃
(4)
i0 [D0000(0)+ 1

48]. The casesP > 4 can be treated analogously, but usually do not ap
in renormalizable quantum field theories.

After the symmetrization, we thus find for the tensor coefficients up to rank 5:

(6.17)det
(
X(4)

)
Ei1 =

4∑
n=1

X̃
(4)
i1n

[
D0(n) − D0(0)

]− X̃
(4)
i10D0(0),

det
(
X(4)

)
E00 =

4∑
n=1

X̃
(4)
n0

[
D00(n) − D00(0)

]
,

2 det
(
X(4)

)
Ei1i2 =

{
4∑

n=1

X̃
(4)
i1n

[
D(i2)n(n)δ̄i2n − Di2(0)

]− X̃
(4)
i10Di2(0)

(6.18)− 2
4∑

n=1

˜̃
X

(4)
(i1n)(0i2)

[
D00(n) − D00(0)

]}+ (i1 ↔ i2),

3 det
(
X(4)

)
E00i1 = 2

4∑
n=1

X̃
(4)
n0

[
D00(i1)n(n)δ̄i1n − D00i1(0)

]
+

4∑
n=1

X̃
(4)
i1n

[
D00(n) − D00(0)

]− X̃
(4)
i10D00(0),

3 det
(
X(4)

)
Ei1i2i3 =

{
4∑

X̃
(4)
i1n

[
D(i2)n(i3)n(n)δ̄i2nδ̄i3n − Di2i3(0)

]− X̃
(4)
i10Di2i3(0)
n=1
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− 2
4∑

n=1

˜̃
X

(4)
(i1n)(0i2)

[
D00(i3)n(n)δ̄i3n − D00i3(0)

]
− 2

4∑
n=1

˜̃
X

(4)
(i1n)(0i3)

[
D00(i2)n(n)δ̄i2n − D00i2(0)

]}
(6.19)+ (i1 ↔ i2) + (i1 ↔ i3),

det
(
X(4)

)
E0000=

4∑
n=1

X̃
(4)
n0

[
D0000(n) − D0000(0)

]
,

4 det
(
X(4)

)
E00i1i2 = 2

4∑
n=1

X̃
(4)
n0

[
D00(i1)n(i2)n(n)δ̄i1nδ̄i2n − D00i1i2(0)

]
+

{
4∑

n=1

X̃
(4)
i1n

[
D00(i2)n(n)δ̄i2n − D00i2(0)

]− X̃
(4)
i10D00i2(0)

− 2
4∑

n=1

˜̃
X

(4)
(i1n)(0i2)

[
D0000(n) − D0000(0)

]+ (i1 ↔ i2)

}
,

4 det
(
X(4)

)
Ei1i2i3i4 =

{
4∑

n=1

X̃
(4)
i1n

[
D(i2)n(i3)n(i4)n(n)δ̄i2nδ̄i3nδ̄i4n − Di2i3i4(0)

]
− X̃

(4)
i10Di2i3i4(0)

− 2
4∑

n=1

˜̃
X

(4)
(i1n)(0i2)

[
D00(i3)n(i4)n(n)δ̄i3nδ̄i4n − D00i3i4(0)

]
− 2

4∑
n=1

˜̃
X

(4)
(i1n)(0i3)

[
D00(i2)n(i4)n(n)δ̄i2nδ̄i4n − D00i2i4(0)

]
− 2

4∑
n=1

˜̃
X

(4)
(i1n)(0i4)

[
D00(i2)n(i3)n(n)δ̄i2nδ̄i3n − D00i2i3(0)

]}
(6.20)+ (i1 ↔ i2) + (i1 ↔ i3) + (i1 ↔ i4),

5 det
(
X(4)

)
E0000i1 = 4

4∑
n=1

X̃
(4)
n0

[
D0000(i1)n(n)δ̄i1n − D0000i1(0)

]
+

4∑
n=1

X̃
(4)
i1n

[
D0000(n) − D0000(0)

]− X̃
(4)
i10

[
D0000(0) + 1

48

]
,

5 det
(
X(4)

)
E00i1i2i3 = 2

4∑
n=1

X̃
(4)
n0

[
D00(i1)n(i2)n(i3)n(n)δ̄i1nδ̄i2nδ̄i3n − D00i1i2i3(0)

]
+

{
4∑

X̃
(4)
i1n

[
D00(i2)n(i3)n(n)δ̄i2nδ̄i3n − D00i2i3(0)

]− X̃
(4)
i10D00i2i3(0)
n=1
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− 2
4∑

n=1

˜̃
X

(4)
(i1n)(0i2)

[
D0000(i3)n(n)δ̄i3n − D0000i3(0)

]
− 2

4∑
n=1

˜̃
X

(4)
(i1n)(0i3)

[
D0000(i2)n(n)δ̄i2n − D0000i2(0)

]
+ (i1 ↔ i2) + (i1 ↔ i3)

}
,

5 det
(
X(4)

)
Ei1i2i3i4i5 =

{
4∑

n=1

X̃
(4)
i1n

[
D(i2)n(i3)n(i4)n(i5)n(n)δ̄i2nδ̄i3nδ̄i4nδ̄i5n − Di2i3i4i5(0)

]
− X̃

(4)
i10Di2i3i4i5(0)

− 2
4∑

n=1

˜̃
X

(4)
(i1n)(0i2)

[
D00(i3)n(i4)n(i5)n(n)δ̄i3nδ̄i4nδ̄i5n − D00i3i4i5(0)

]
− 2

4∑
n=1

˜̃
X

(4)
(i1n)(0i3)

[
D00(i2)n(i4)n(i5)n(n)δ̄i2nδ̄i4nδ̄i5n − D00i2i4i5(0)

]
− 2

4∑
n=1

˜̃
X

(4)
(i1n)(0i4)

[
D00(i2)n(i3)n(i5)n(n)δ̄i2nδ̄i3nδ̄i5n − D00i2i3i5(0)

]
− 2

4∑
n=1

˜̃
X

(4)
(i1n)(0i5)

[
D00(i2)n(i3)n(i4)n(n)δ̄i2nδ̄i3nδ̄i4n − D00i2i3i4(0)

]}
(6.21)+ (i1 ↔ i2) + (i1 ↔ i3) + (i1 ↔ i4) + (i1 ↔ i5).

For the 4-point tensor coefficients that result from omittingN0 in the 5-point integrals, we
have introduced the auxiliary quantities

Di1(0) = D̃i1−1(0), i1 = 2,3,4,

(6.22)D1(0) = −
4∑

n=2

Dn(0) − D0(0),

Di1i2(0) = D̃i1−1,i2−1(0), i1, i2 = 2,3,4,

(6.23)D1i1(0) = −
4∑

n=2

Dni1(0) − Di1(0), i1 = 1, . . . ,4,

Di1i2i3(0) = D̃i1−1,i2−1,i3−1(0), i1, i2, i3 = 2,3,4,

(6.24)D1i1i2(0) = −
4∑

n=2

Dni1i2(0) − Di1i2(0), i1, i2 = 1, . . . ,4,

Di1i2i3i4(0) = D̃i1−1,i2−1,i3−1,i4−1(0), i1, i2, i3, i4 = 2,3,4,

(6.25)D1i1i2i3(0) = −
4∑

Dni1i2i3(0) − Di1i2i3(0), i1, i2, i3 = 1, . . . ,4,
n=2
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and similar quantities resulting from these relations with index pairs “00” added to theD...(0)

functions on both sides.

7. Reduction of 6-point integrals

Following the guideline of the reduction of the scalar 6-point integral to six scalar 5-
integrals[22], the 6-point tensor integrals of rankP can be reduced to six 5-point tensor integr
of rankP as described in Ref.[24]. This method, which was used in the calculation of one-l
corrections to e+e− → 4f [35], is more explicitly worked out inAppendix D.

In the following we describe a method that reduces 6-point tensor integrals of rankP to
5-point tensor integrals of rank(P − 1). The scalar 6-point integral should be treated follow
Refs. [22,35] as explicitly described inAppendix D. The tensor reduction can be derived
considering the determinant

(7.1)F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qµ 2qp1 · · · 2qp5
p

µ
1 2p1p1 · · · 2p1p5
...

...
. . .

...

p
µ
k−1 2pk−1p1 · · · 2pk−1p5

0 f1 · · · f5
p

µ
k+1 2pk+1p1 · · · 2pk+1p5
...

...
. . .

...

p
µ
5 2p5p1 · · · 2p5p5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qµ N1 − N0 · · · N5 − N0
p

µ
1 2p1p1 · · · 2p1p5
...

...
. . .

...

p
µ
k−1 2pk−1p1 · · · 2pk−1p5

0 f1 · · · f5
p

µ
k+1 2pk+1p1 · · · 2pk+1p5
...

...
. . .

...

p
µ
5 2p5p1 · · · 2p5p5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The r.h.s. is obtained by adding the(k + 1)th row to the first row and using(5.4).
In four dimensions, this determinant vanishes, as can be seen from the first form in(7.1),

becauseq is linearly dependent on the four (non-exceptional) momentapi , i = 1, . . . ,5, i �= k.
We again do not use this fact, but translate the integral overF into a form that has a facto
of O(D − 4) rendering the whole contribution zero for finite integrals. Inserting(7.1) into the
integrand of the tensor integralFµ1...µP results in

∫
F ≡ (2πµ)4−D

iπ2

∫
dDq

qµ1 · · ·qµP

N0N1 · · ·N5
F

(7.2)= Fαµ1...µP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g
µ
α 2p1α · · · 2p5α

p
µ
1 2p1p1 · · · 2p1p5
...

...
. . .

...

p
µ
k−1 2pk−1p1 · · · 2pk−1p5

0 f1 · · · f5
p

µ
k+1 2pk+1p1 · · · 2pk+1p5
...

...
. . .

...

p
µ
5 2p5p1 · · · 2p5p5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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We expand the determinant along the(k + 1)th row and use the fact that the four-dimensio
metric tensor can be written as

(7.3)g
µν

(4)

∣∣∣∣∣∣
2k1p1 · · · 2k1p4

...
. . .

...

2k4p1 · · · 2k4p4

∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
0 2pν

1 · · · 2pν
4

k
µ
1 2k1p1 · · · 2k1p4
...

...
. . .

...

k
µ
4 2k4p1 · · · 2k4p4

∣∣∣∣∣∣∣∣
for two arbitrary sets of linear independent momentap1, p2, p3, p4 andk1, k2, k3, k4. This yields

(7.4)
∫

F = −X̃
(5)
k0 Fαµ1...µP

(
gµ

α − g(4)
µ
α

)
.

Inserting the r.h.s. of(7.1) into the integrand of the tensor integralFµ1...µP results in

(7.5)
∫

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Fµµ1...µP Eµ1...µP (1) − Eµ1...µP (0) · · · Eµ1...µP (5) − Eµ1...µP (0)

p
µ
1 2p1p1 · · · 2p1p5
...

...
. . .

...

p
µ
k−1 2pk−1p1 · · · 2pk−1p5

0 f1 · · · f5
p

µ
k+1 2pk+1p1 · · · 2pk+1p5
...

...
. . .

...

p
µ
5 2p5p1 · · · 2p5p5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the determinant along the first row and the first column according to the an
of (2.22), yields

(7.6)
∫

F = −X̃
(5)
k0 Fµµ1...µP −

5∑
n,m=1

˜̃
X

(5)
(km)(0n)p

µ
m

[
Eµ1...µP (n) − Eµ1...µP (0)

]
,

where ˜̃
X

(5)
(km)(0n) is given in(2.29).

From(7.4) and (7.6)we obtain

X̃
(5)
k0 Fµµ1...µP = −

5∑
n,m=1

˜̃
X

(5)
(km)(0n)p

µ
m

[
Eµ1...µP (n) − Eµ1...µP (0)

]
(7.7)+ X̃

(5)
k0 Fαµ1...µP

(
gµ

α − g(4)
µ
α

)
.

The last term in(7.7)only contributes in dimensional regularization ifFαµ1...µP is singular. For
UV singularities this is the case ifP � 7, which is usually not needed in renormalizable theor
As explained in Section5.8, IR (soft and collinear) singularities ofFαµ1...µP only appear in con
tributions that are proportional to a momentumpα

i . These contributions vanish exactly in(7.7).
Therefore, the terms involving(g − g(4)) in (7.7) can be omitted forP < 7.8 For P � 7 the
inverse determinant that is implicitly contained ing(4) can always be cancelled.9

8 This is again in agreement with the observation[29] that in the absence of UV divergences reduction formulas v
in 4 dimensions remain valid inD dimensions up to terms ofO(D − 4), independent of possible IR singularities.

9 According to(2.28), X̃
(5)
k0 = −∑5

n=1 Z̃
(5)
kn

fn. For each of these terms,̃Z
(5)
kn

g(4) can be expressed via(7.3) by a
determinant without denominator.
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Introducing the matrix

(7.8)M(k) =



2p1p1 · · · 2p1p5
...

. . .
...

2pk−1p1 · · · 2pk−1p5
f1 · · · f5

2pk+1p1 · · · 2pk+1p5
...

. . .
...

2p5p1 · · · 2p5p5


,

(7.7)can be written as

Fµµ1...µP =
5∑

n=1

5∑
m=1
m �=k

(
M−1

(k)

)
nm

pµ
m

[
Eµ1...µP (n) − Eµ1...µP (0)

]
(7.9)+ Fαµ1...µP

(
gµ

α − g(4)
µ
α

)
,

which expresses the 6-point tensor integral of rankP in terms of six 5-point tensor integrals
rank(P − 1). The inverse ofM(k) is given by

(7.10)
(
M−1

(k)

)
ij

= − ˜̃
X

(5)
(kj)(0i)/X̃

(5)
k0 , i, j, k = 1, . . . ,N.

In the form(7.9)our result can easily be extended to the reduction ofN -point functions with
N > 6 by simply forming a matrix similar toM(k) by selecting five momenta for the colum
and four momenta for the rows out of the(N − 1) available momenta of theN -point function.

Eq.(7.7)can also be used to derive an alternative reduction of tensor 6-point integrals.

plying it with Xk0, summing overk = 1, . . . ,N , and using(2.30), for ˜̃
X

(5)
(km)(0n) yields

det
(
X(5)

)
Fµµ1...µP =

5∑
n,m=1

X̃(5)
nmpµ

m

[
Eµ1...µP (n) − Eµ1...µP (0)

]
(7.11)+ det

(
X(5)

)
Fαµ1...µP

(
gµ

α − g(4)
µ
α

)
.

Here, as in(6.10), all inverse Gram determinants have been absorbed in the four-dimen
metric tensor, which appears only in the difference(g − g(4)). The result(7.11)is equivalent to
Eq. (64) of Ref.[19].

Finally, we insert the decompositions of tensor 6-point integrals into Lorentz covaria
order to derive explicit reduction formulas for the tensor coefficients. Since we conside
tensors up to rank 3, we can omit the terms involving(g − g(4)). The tensor decomposition
explicitly read

Fµ =
5∑

i1=1

p
µ
i1
Fi1, Fµν =

5∑
i1,i2=1

p
µ
i1
pν

i2
Fi1i2 + gµνF00,

(7.12)Fµνρ =
5∑

i1,i2,i3=1

p
µ
i1
pν

i2
p

ρ
i3
Fi1i2i3 +

5∑
i1=1

{gp}µνρ
i1

F00i1.
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In four dimensions, some covariants in these decompositions are redundant in the sense
can be expressed by the others. For instance, in the decomposition ofFµ one of the five covari
antsp

µ
i1
Fi1 is redundant, because one of the momentapi1 can be expressed by the other fo

linearly independent vectors. Similarly, all covariants involving metric tensors are redu
However, by keeping these coefficients we can avoid the appearance of explicit inverse
determinants in the reduction formulas.

Inserting the Lorentz decompositions of the tensor integrals in the reduction formulas
above, we can read off the reduction formulas for the tensor coefficients upon comparing
cients of covariants on both sides. Generically we find

(7.13)F̄ji1...iP =
5∑

n=1

cjn

[
E(i1)n...(iP )n(n)δ̄i1n . . . δ̄iP n − Ei1...iP (0)

]
, P < 7,

with

(7.14)c0n = ckn = 0, cjn = (
M−1

(k)

)
nj

, j, n = 1, . . . ,5, j �= k

for the reduction given in(7.9)and with

(7.15)c0n = 0, cjn = X̃
(5)
nj

/
det

(
X(5)

) = (
X(5)

)−1
jn

, j, n = 1, . . . ,5

for the reduction given in(7.11). In the numerical reduction we can select the equation
is numerically most stable. For example, in(7.14) we can choosek such that the modulus o
X̃

(5)
k0 = −detM(k) is maximal.
Since we have distinguished one momentum in the derivation of(7.9) the resulting tenso

coefficientsF̄... are not symmetric under the exchange ofj with one of the indicesir . This can
be easily cured as in the case of 5-point functions [see(6.14) and (6.15)] by adding allP results
with j exchanged with one of their , and dividing the sum byP .

Thus, we find from(7.13)for the tensor coefficients up to rank 3

(7.16)Fi1 =
5∑

n=1

ci1n

[
E0(n) − E0(0)

]
, i1 = 1, . . . ,5,

F00 = 0,

(7.17)Fi1i2 = 1

2

5∑
n=1

{
ci1n

[
E(i2)n(n)δ̄i2n − Ei2(0)

]+ (i1 ↔ i2)
}
, i1, i2 = 1, . . . ,5,

F00i1 = 1

3

5∑
n=1

ci1n

[
E00(n) − E00(0)

]
,

Fi1i2i3 = 1

3

5∑
n=1

{
ci1n

[
E(i2)n(i3)n(n)δ̄i2nδ̄i3n − Ei2i3(0)

]+ (i1 ↔ i2) + (i1 ↔ i3)
}
,

(7.18)i1, i2, i3 = 1, . . . ,5.

For the 5-point tensor coefficients that result from omittingN0 in the 6-point integrals, we hav
again used the auxiliary quantities

Ei1(0) = Ẽi1−1(0), i1 = 2, . . . ,5,
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(7.19)E1(0) = −
5∑

n=2

En(0) − E0(0),

Ei1i2(0) = Ẽi1−1,i2−1(0), i1, i2 = 2, . . . ,5,

(7.20)E1i1(0) = −
5∑

n=2

Eni1(0) − Ei1(0), i1 = 1, . . . ,5,

Ei1i2i3(0) = Ẽi1−1,i2−1,i3−1(0), i1, i2, i3 = 2, . . . ,5,

(7.21)E1i1i2(0) = −
5∑

n=2

Eni1i2(0) − Ei1i2(0), i1, i2 = 1, . . . ,5.

8. Summary

Methods for a systematic evaluation of one-loop tensor integrals have been describ
graphs with up to six external legs. The results are presented in a form that can be d
translated into a computer code; only the scalar 3- and 4-point integrals have to be take
elsewhere.

While UV divergences are treated in dimensional regularization, possible IR (soft or coll
divergences can be regularized either dimensionally or with small mass parameters; the de
results are valid in either IR regularization scheme. Moreover, the results hold if internal m
are complex parameters, which naturally appear for unstable internal particles. The gen
tion of the proposed methods to functions with more than six external lines is straightforw

Particular attention is paid to the issue of numerical stability. For 1- and 2-point integr
arbitrary tensor rank, general numerically stable results are presented. For 3- and 4-poin
integrals, serious numerical instabilities are known to arise in the frequently used Pass
Veltman reduction if Gram determinants built of external momenta become small. For
cases we have developed dedicated reduction techniques. One of the techniques rep
standard scalar integral by a specific tensor coefficient that can be safely evaluated num
and reduces the remaining tensor coefficients as well as the standard scalar integral to
set of basis integrals. In this scheme no dangerous inverse Gram determinants occur, bu
modified Cayley determinants instead. In a second class of techniques we keep the b
of standard scalar integrals and iteratively deduce the tensor coefficients up to terms t
systematically suppressed by small Gram determinants or by other kinematical determ
in specific kinematical configurations. The convergence of the iteration can be systema
improved upon including higher tensor ranks. For 5- and 6-point tensor integrals, we de
reductions to 5- and 4-point integrals, respectively, that do not involve inverse Gram determ
either. Compared to some other existing methods, the described methods are distinguishe
fact that the reduction from 6- (5-) to 5- (4-)point integrals decreases the tensor rank at th
time.

We finally emphasize that the presented methods have already been successfully ap
the calculation of a complete one-loop correction to a 2→ 4 scattering reaction, viz. the ele
troweak corrections to the charged-current processes e+e− → 4f . The described methods, thu
have proven their reliability in practice and will certainly be used in future loop calculation
interesting many-particle production processes at the LHC and ILC.
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Appendix A. UV-divergent parts of tensor integrals

In the reduction formulas given above, products of(D − 4) with tensor integrals appea
These give rise to finite terms originating from UV singularities in the loop integrals. As
tioned above, no IR-singular integrals multiplied with(D − 4) appear in the reduction formula
The UV-singular parts of the loop integrals can be derived easily from the Feynman-par
representation or by using(5.10)for these parts only. In the following, we list results for(D − 4)

times one-loop integrals omitting terms of orderO(D − 4). For the 1-point functionsA...(m0)

we get

(A.1)(D − 4)A0 = −2m2
0, (D − 4)A 0...0︸︷︷︸

2n

= − m2n+2
0

2n−1(n + 1)! , n = 1,2, . . . .

For the IR-finite 2-point functionsB...(p1,m0,m1), i.e. excluding the casep2
1 = m2

0 = m2
1 = 0,

we obtain

(D − 4)B0 = −2, (D − 4)B1 = 1,

(D − 4)B00 = 1

6

(
p2

1 − 3m2
0 − 3m2

1

)
, (D − 4)B11 = −2

3
,

(D − 4)B001= − 1

12

(
p2

1 − 2m2
0 − 4m2

1

)
, (D − 4)B111= 1

2
,

(D − 4)B0000= − 1

120

[
p4

1 − 5p2
1

(
m2

0 + m2
1

)+ 10
(
m4

0 + m2
0m

2
1 + m4

1

)]
,

(D − 4)B0011= 1

60

(
3p2

1 − 5m2
0 − 15m2

1

)
, (D − 4)B1111= −2

5
,

(D − 4)B00001= 1

240

[
p4

1 − 4p2
1m

2
0 − 6p2

1m
2
1 + 5m4

0 + 10m2
0m

2
1 + 15m4

1

]
,

(A.2)(D − 4)B00111= − 1

60

(
2p2

1 − 3m2
0 − 12m2

1

)
, (D − 4)B11111= 1

3
.

For the 3-point functionsC...(p1,p2,m0,m1,m2) we obtain, denoting(p1 − p2)
2 = s12,

(D − 4)C00 = −1

2
, (D − 4)C00i = 1

6
,

(D − 4)C0000= 1

48

[
s12 + p2

1 + p2
2

]− 1

12

(
m2

0 + m2
1 + m2

2

)
,

(D − 4)C00ii = − 1

12
, (D − 4)C00ij = − 1

24
,

(D − 4)C0000i = − 1

240

[
2s12 − 5m2

0 +
2∑(

p2
n − 5m2

n

)
(1+ δin)

]
,

n=1



A. Denner, S. Dittmaier / Nuclear Physics B 734 (2006) 62–115 107

so
(D − 4)C00iii = 1

20
, (D − 4)C00iij = 1

60
,

(D − 4)C000000

= − 1

2880

[
2s2

12 − 6s12m
2
0 + 30m4

0 + 2s12

2∑
n=1

(
p2

n − 6m2
n

)− 6m2
0

2∑
n=1

(
2p2

n − 5m2
n

)
+

2∑
m,n=1

(
p2

mp2
n − 6p2

mm2
n + 15m2

mm2
n

)
(1+ δmn)

]
,

(D − 4)C0000ii = 1

720

[
3s12 − 6m2

0 +
2∑

n=1

(
p2

n − 6m2
n

)
(1+ 2δin)

]
,

(D − 4)C0000ij = 1

720

[
2s12 − 3m2

0 +
2∑

n=1

(
p2

n − 6m2
n

)]
,

(D − 4)C00iiii = − 1

30
, (D − 4)C00iiij = − 1

120
, (D − 4)C00iijj = − 1

180
,

(D − 4)C000000i = 1

10080

[
3s2

12 − 7s12m
2
0 + 21m4

0 + s12

2∑
n=1

(
p2

n − 7m2
n

)
(2+ δin)

− 7m2
0

2∑
n=1

(
p2

n − 3m2
n

)
(1+ δin)

+
2∑

m,n=1

(
p2

mp2
n − 7p2

mm2
n + 21m2

mm2
n

)
(1+ 2δimδin)

]
,

(D − 4)C0000iii = − 1

1680

[
4s12 − 7m2

0 +
2∑

n=1

(
p2

n − 7m2
n

)
(1+ 3δin)

]
,

(D − 4)C0000iij = − 1

5040

[
6s12 − 7m2

0 +
2∑

n=1

(
p2

n − 7m2
n

)
(2+ δin)

]
,

(A.3)(D − 4)C00iiiii = 1

42
, (D − 4)C00iiiij = 1

210
, (D − 4)C00iiijj = 1

420
,

wherei, j = 1,2 but i �= j . All other 3-point tensor coefficients up to rank 7 are UV finite,
that for them(D − 4)C... = 0 if they are IR finite.

For the 4-point functionsD...(p1,p2,p3,m0,m1,m2,m3) we find, denoting(p1−p2)
2 = s12,

(p1 − p3)
2 = s13, and(p2 − p3)

2 = s23:

(D − 4)D0000= − 1

12
, (D − 4)D0000i = 1

48
,

(D − 4)D000000= 1

480

[
s12 + s13 + s23 + p2

1 + p2
2 + p2

3

]− 1

96

(
m2

0 + m2
1 + m2

2 + m2
3

)
,

(D − 4)D0000ii = − 1
, (D − 4)D0000ij = − 1

,

120 240
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(D − 4)D000000i = − 1

2880

[
3∑

n=1

p2
n(1+ δin) +

3∑
m,n=1
m>n

smn(1+ δin + δim)

]
+ 1

480

3∑
n=0

m2
n,

(D − 4)D0000iii = 1

240
, (D − 4)D0000iij = 1

720
,

(A.4)(D − 4)D0000ijk = 1

1440
,

wherei, j, k = 1,2,3 but are pairwise different. All other 4-point tensor coefficients up to ra
are UV finite.

For the 5-point functionsE...(p1,p2,p3,p4,m0,m1,m2,m3,m4), there is only one UV-
singular tensor coefficient up to rank 6,

(A.5)(D − 4)E000000= − 1

96
.

Appendix B. Tensor coefficients of singular 3-point functions

The vanishing of the modified Cayley determinant det(X(N)), as defined via(2.25), is a nec-
essary condition for the existence of a leading Landau singularity in a one-loopN -point integral.
For 3-point integrals this means that detX(3) = 0 for IR-singular (either soft or collinear) in
tegrals, so that the reduction methods of Sections5.2 and 5.3are not applicable in this cas
If in addition the Gram determinant is small, for IR-singular 3-point integrals also theX̃0j are
small, and the reduction method of Section5.4 cannot be used either. One could still, howev
use the method of Section5.5. In the following we describe a way of evaluating these spe
3-point functions that does not make use of an iteration technique, but is based on an
simplifications that are admitted by the simple structure of the special cases.

The simplifications are achieved by directly using the analytical results for the standard
integrals and for the tensor coefficients, as obtained with the Passarino–Veltman reducti
by rewriting them in such a way that the limit of vanishing Gram determinant does not in
numerical cancellations. To this end, the scalar integrals are split into two parts: one co
the asymptotic behaviour of the integral in the limit of vanishing Gram determinant�(3) up to
a specific ordern and a corresponding remainder which is ofO([�(3)]n+1). We symbolize this
splitting by introducing the asymptotic operatorsT (n)

x→x0 andR(n)
x→x0, which define the asymptoti

behaviour of a functionf (x) for x → x0 by

f (x) = T (n)
x→x0

[
f (x)

]+R(n)
x→x0

[
f (x)

]
,

(B.1)R(n)
x→x0

[
f (x)

] =O
(
(x − x0)

n+1), n = 0,1, . . . .

If the functionf (x) is analytical atx = x0, T (n)
x→x0 is the usual operator for a Taylor expans

up to ordern.
Making use of these definitions, we now describe the treatment of the IR-singular 3-poi

sor integrals that were needed in the calculation of the one-loop corrections to e+e− → 4f [35].
It is convenient to switch from the original definition(2.1)of arguments on tensor coefficients
the new notation

B...

(
p2

1,m0,m1
) ≡ B...(p1,m0,m1),

(B.2)C...

(
p2

1, (p2 − p1)
2,p2

2,m0,m1,m2
) ≡ C...(p1,p2,m0,m1,m2).
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(i) Collinear-singular case with two off-shell legs: C...(m
2, s, s′,0,m,M).

Herem denotes a small real mass, which will be neglected whenever possible. In this
the relevant scalar integrals read

B0(0) = B0(s,m,M) = � + ln

(
µ2

M2

)
+ 2+

(
M2

s
− 1

)
ln

(
M2 − s

M2

)
,

B0(1) = B0(s
′,0,M) = � + ln

(
µ2

M2

)
+ 2+

(
M2

s′ − 1

)
ln

(
M2 − s′

M2

)
,

B0(2) = B0
(
m2,0,m

) = � + ln

(
µ2

m2

)
+ 2,

C0 = 1

s − s′

{
ln

(
M2 − s

m2

)
ln

(
M2 − s

M2

)
− ln

(
M2 − s′

m2

)
ln

(
M2 − s′

M2

)
(B.3)− 2 Li2

(
s − s′

M2 − s′

)
+ Li2

(
s

M2

)
− Li2

(
s′

M2

)}
,

whereM2 is complex with a finite or infinitesimal negative imaginary part, which is also pre
for vanishingM2. The Gram determinant is given by

(B.4)�(2) = −(s − s′)2,

so that the delicate limit isδs ≡ s′ − s → 0. The asymptotic expansions of the scalar integ
in (B.3) for this limit can be worked out easily; the first few terms read

B0(1) = B0(0) − δs

s

[
1+ M2

s
ln

(
M2 − s

M2

)]
+R(1)

δs→0

[
B0(1)

]
,

C0 = 1

s − M2

{[
1+ δs

2(M2 − s)

]
ln

(
M2 − s

m2

)
+ M2

s

[
1− δs(M2 − 2s)

2s(M2 − s)

]
ln

(
M2 − s

M2

)
(B.5)+ 2− δs(M2 − 2s)

2s(M2 − s)

}
+R(1)

δs→0[C0],

where we have kepts fixed. Inserting these or forms with more explicit terms of the asymp
expansion for the scalar integrals into the explicit formulas for the tensor coefficients, one o
expressions like

C1 = M2[(M2 − s)s − δs(4M2 − 5s)]
2s2(M2 − s)2

+ M2 − s + δs

2(M2 − s)2
ln

(
M2 − s

m2

)
+ M2[M2s(M2 − s) − δs(4M4 − 7M2s + 2s2)]

2(M2 − s)2s3
ln

(
M2 − s

M2

)
− 2(s + δs)

(δs)2
R(2)

δs→0

[
B0(1)

]+ M2 − s − δs

δs
R(1)

δs→0[C0],

C2 = −M2

s2
ln

(
M2 − s

M2

)
− 1

s
+ 1

δs
R(1)

δs→0

[
B0(1)

]
,

C00 = 1
� + 1

ln

(
µ2

2

)
+ M2(M2 − δs)

2
ln

(
M2 − s

2

)
+ M2 + 2s − δs
4 4 M − s 4s M 4s
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(B.6)− M2 − s − δs

4δs
R(1)

δs→0

[
B0(1)

]
.

Here the ordersn in theR(n) operators are chosen in such a way that all terms involvingR(n)

contribute only inO(δs) in spite of the enhancement factors 1/(δs)m. Note that no delicate can
cellations forδs → 0 appear in the other terms, although the original Passarino–Veltman r
contain plenty of terms involving 1/(δs)m in front of linear combinations of scalar integra
Thus, the above forms are numerically stable as long as the remainder termsR(n) can be eval-
uated in a stable way. This task is, however, easily achieved upon expanding the scalar i
as in(B.5) to a high order, e.g., with computer-algebraic methods, and dropping the firstn or-
ders. The resulting series are easy to evaluate, and an arbitrarily high precision can be a
by including sufficiently high orders in the expansions. On the other hand, ifδs is not small,
theR(n) terms can safely be evaluated upon numerically subtracting theT (n) terms from the
scalar integrals. In this way an arbitrarily high precision can be achieved as long ass, s′ �= 0
ands �= M2. The cases = M2 does not occur in our application, the casess = 0 ands′ = 0 are
treated below.

(ii) Collinear-singular case with one off-shell leg: C...(m
2,0, s′,0,m,M).

Specializing the previous case tos = 0, the scalar integrals read

B0(0) = B0(0,m,M) = � + ln

(
µ2

M2

)
+ 1,

(B.7)C0 = 1

s′

{
ln

(
M2

m2

)
ln

(
M2 − s′

M2

)
− Li2

(
s′

M2

)}
,

with B0(1) andB0(2) still as given in(B.3). The limit of vanishing Gram determinant is no
reached fors′ → 0, where the scalar integrals can be expanded according to

B0(1) = B0(0) + s′

2M2
+R(1)

s′→0

[
B0(1)

]
,

(B.8)C0 = − 1

M2

[(
1+ s′

2M2

)
ln

(
M2

m2

)
+ 1+ s′

4M2

]
+R(1)

s′→0[C0],

or to higher orders if needed. Making use of these expansions, the first few tensor coef
can be written as

C1 = M2 + s′

2M4
ln

(
M2

m2

)
− M2 − s′

4M4
− 2

s′R
(1)

s′→0

[
B0(1)

]+ M2 − s′

s′ R(1)

s′→0[C0],

C2 = 1

2M2
+ 1

s′R
(1)

s′→0

[
B0(1)

]
,

(B.9)C00 = 1

4
� + 1

4
ln

(
µ2

M2

)
+ 3M2 + s′

8M2
− M2 − s′

4s′ R(1)

s′→0

[
B0(1)

]
.

TheR(n) terms, which are suppressed by a factor(s′)n+1, can be evaluated to arbitrary precisi
for all values ofs′ as described above.
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(iii) Collinear-singular case with one off-shell leg: C...(m
2, s,0,0,m,M).

Specializing case (i) tos′ = 0, the scalar integrals read

B0(1) = B0(0,0,M) = � + ln

(
µ2

M2

)
+ 1,

(B.10)C0 = 1

s

{
ln

(
M2 − s

m2

)
ln

(
M2 − s

M2

)
− Li2

(
s

M2

)}
,

with B0(0) andB0(2) still as given in(B.3). The limit of vanishing Gram determinant is reach
for s → 0, where the scalar integrals can be expanded according to

B0(0) = B0(1) + s

2M2
+R(1)

s→0

[
B0(0)

]
,

(B.11)C0 = − 1

M2

[(
1+ s

2M2

)
ln

(
M2

m2

)
+ 1− 3s

4M2

]
+R(1)

s→0[C0],

or to higher orders if needed. Making use of these expansions, the first few tensor coef
can be written as

C1 = 1

2M2
ln

(
M2

m2

)
− 1

4M2
+ 1

s
R(1)

s→0

[
B0(0)

]− M2

s
R(1)

s→0[C0],

C2 = 1

2M2
+ 1

s
R(1)

s→0

[
B0(0)

]
,

(B.12)C00 = 1

4
� + 1

4
ln

(
µ2

M2

)
+ 3M2 + s

8M2
− M2 − s

4s
R(1)

s→0

[
B0(0)

]
.

TheR(n) terms, which are suppressed by a factorsn+1, can be evaluated to arbitrary precisi
for all values ofs as described above.

(iv) Soft-singular case: C...(m
2
1, s,m

2
2, λ,m1,m2).

For processes with external fermions in the massless limit (mi → 0), the Passarino–Veltma
reduction of this case turns out to be less delicate than the previous ones. In fact, no
treatment was necessary for e+e− → 4f [35], although one could also improve the stabil
as described in the previous sections. We attribute the robustness of this case to the fo
reasons. Firstly, becauseλ is an infinitesimal photon mass,f1 = f2 = 0 and all 3-point tenso
coefficients are directly obtained from 2-point coefficients without further recursions. Thu
stabilities do not accumulate. Secondly, for massless fermions the Gram determinant�(2) = −s2

vanishes only fors → 0, and this case appears for e+e− → 4f only in regions of phase spac
that are suppressed byΓW/MW.

Appendix C. Alternative reduction of 5-point integrals

In Ref.[26] we have worked out a reduction of 5-point tensor integrals that follows the str
proposed in Ref.[22] for scalar integrals in four space–time dimensions. Here we briefly des
the derivation of this method inD dimensions, to make closer contact to the methods used in
paper.
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The reduction is based on different ways of evaluating the determinant

(C.1)E ′ =

∣∣∣∣∣∣∣∣
2q2 2qp1 · · · 2qp4

2p1q 2p1p1 · · · 2p1p4
...

...
. . .

...

2p4q 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣ ,
which vanishes in four dimensions owing to the linear dependence of any five momentaD

dimensions the integral overE ′ can be easily evaluated to

(2πµ)4−D

iπ2

∫
dDq

qµ1 · · ·qµP

N0N1 · · ·N4
E ′ = Eαβµ1...µP

∣∣∣∣∣∣∣∣
2gαβ 2p1,α · · · 2p4,α

2p1,β 2p1p1 · · · 2p1p4
...

...
. . .

...

2p4,β 2p4p1 · · · 2p4p4

∣∣∣∣∣∣∣∣
(C.2)= 2Eαβµ1...µP �(4)(gαβ − g(4),αβ),

where we have identified the form(6.3)of the metric tensorg(4),αβ in four dimensions.
On the other hand, the integral overE ′ can be evaluated in terms of 4-point functions

described in Section 2 of Ref.[26] with the only difference that no additional UV regularizati
is needed, because we now keep the dimensionD general. In detail, this means that the fac
−Λ2/(q2 − Λ2) introduced in (2.5) of Ref.[26] is absent, and the result analogous to (2.19
Ref. [26] becomes

det(Y )Eµ1...µP = −
4∑

n=0

det(Yn)D
µ1...µP (n) +

4∑
n,m=1

Z̃(4)
nm2pm,αDαµ1...µP (n)

(C.3)+ 2Eαβµ1...µP �(4)(gαβ − g(4),αβ),

whereY = (Yij ), i, j = 0, . . . ,4, was defined in(2.26), andYn is obtained from the 5-dimension
modified Cayley matrixY by replacing all entries in thenth column by 1. The last term of(C.3),
which results from(C.2), contributes only ifEαβµ1...µP involves a divergent coefficientE00...
corresponding to a covariant containing a metric tensor. As explained in Section5.8, such coef-
ficients are free of IR divergences, and power counting shows that UV divergences only
for P � 4. Therefore, the last term in(C.3) is of O(D − 4), and thus irrelevant, forP � 3. For
P = 4, this term can be explicitly evaluated using(A.5) yielding

det(Y )Eµ1...µ4 = −
4∑

n=0

det(Yn)D
µ1...µ4(n) +

4∑
n,m=1

Z̃(4)
nm2pm,αDαµ1...µ4(n)

(C.4)− 1

48
�(4){gg}µ1...µ4 − 1

24(D − 4)
�(4)

{
(g − g(4))g

}µ1...µ4,

where{(g − g(4))g}µ1...µ4 is a symmetric tensor of rank 4 constructed according to the
explained in Section2,{

(g − g(4))g
}µ1...µ4

= (g − g(4))
µ1µ2gµ3µ4 + (g − g(4))

µ1µ3gµ2µ4 + (g − g(4))
µ1µ4gµ2µ3

(C.5)+ (g − g(4))
µ2µ3gµ1µ4 + (g − g(4))

µ2µ4gµ1µ3 + (g − g(4))
µ3µ4gµ1µ2.
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The first term in the last line of(C.4) is just the finite contributionUµ1...µ4 defined in (2.15) of
Ref. [26], and the UV-divergent terms of the second term in the last line exactly cancel th
divergences of the 4-point integrals in the first line. Thus, the result forEµ1...µ4 exactly receives
the form of (2.19) of Ref.[26],

det(Y )Eµ1...µ4 = −
4∑

n=0

det(Yn)D
(fin)µ1...µ4(n) +

4∑
n,m=1

Z̃(4)
nm2pm,αD(fin)αµ1...µ4(n)

(C.6)− 1

48
�(4){gg}µ1...µ4,

where the superscript “(fin)” indicates that the UV parts have to be consistently omitted,
following theMS prescription.

Appendix D. Alternative reduction of 6-point integrals

Here we describe the reduction of 6-point tensor integrals of rankP (including the scalar cas
P = 0) to six 5-point tensor integrals of equal rank that is based on the strategy of Ref.[24]. This
reduction is related to the reduction of 5-point functions as given in Ref.[26] andAppendix Cand
has been used in the calculation of the electroweak corrections to e+e+ → 4f [35]. Moreover, it
is needed to reduce the scalar 6-point function to 5-point functions[22].

It starts from the observation that

(D.1)
(2πµ)4−D

iπ2

∫
dDq

qµ1 · · ·qµP

N0N1 · · ·N5

∣∣∣∣∣∣∣∣
N0 + Y00 2qp1 · · · 2qp5
Y10 − Y00 2p1p1 · · · 2p1p5

...
...

. . .
...

Y50 − Y00 2p5p1 · · · 2p5p5

∣∣∣∣∣∣∣∣ = 0,

which is correct in any space–time dimensionD as long as the five four-momentapi (i =
1, . . . ,5) are linearly dependent, and thus for four-dimensionalpi , because then the five la
columns of the determinant are linearly dependent for an arbitraryD-dimensional momentumq.
The l.h.s. of this relation is practically the same as in Eq. (2.10) of Ref.[26], where the reduction
of 5-point integrals is described. The same manipulations as described there lead to the r

(D.2)

∣∣∣∣∣∣∣∣∣∣

Fµ1...µP −Eµ1...µP (0) −Eµ1...µP (1) · · · −Eµ1...µP (5)

1 Y00 Y01 · · · Y05
1 Y10 Y11 · · · Y15
...

...
...

. . .
...

1 Y50 Y51 · · · Y55

∣∣∣∣∣∣∣∣∣∣
= 0.

Eq.(D.2) expressesFµ1...µP in terms of six 5-point integrals,

(D.3)Fµ1...µP = −
5∑

n=0

ηnE
µ1...µP (n) with ηn = det(Yn)

det(Y )
,

whereY = (Yij ), i, j = 0, . . . ,5, andYn is obtained from the 6-dimensional modified Cay
matrix Y by replacing all entries in thenth column by 1. For the scalar integralF0, this result is
identical with the one of Ref.[22].
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By inserting the Lorentz decompositions as given in(7.12), we can derive explicit formula
for the scalar 6-point function and the coefficients of tensor 6-point integrals from(D.3):

(D.4)F0 = −
5∑

n=0

ηnE0(n),

(D.5)Fi1 = −
5∑

n=1

ηnE(i1)n(n)δ̄i1n − η0Ei1(0), i1 = 1, . . . ,5,

F00 = −
5∑

n=0

ηnE00(n),

(D.6)Fi1i2 = −
5∑

n=1

ηnE(i1)n(i2)n(n)δ̄i1nδ̄i2n − η0Ei1i2(0), i1, i2 = 1, . . . ,5,

F00i1 = −
5∑

n=1

ηnE00(i1)n(n)δ̄i1n − η0E00i1(0), i1 = 1, . . . ,5,

(D.7)Fi1i2i3 = −
5∑

n=1

ηnE(i1)n(i2)n(i3)n(n)δ̄i1nδ̄i2nδ̄i3n − η0Ei1i2i3(0), i1, i2, i3 = 1, . . . ,5.

The 5-point tensor coefficients that result from omittingN0 in the 6-point integrals have bee
given in(7.19).
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