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how robust is the MSSM against its RMSSM extension. We examine the constraints

on the RMSSM parameter space that follow from the required absence of charge breaking

minima in the scalar potential. We point out the possibility of generating non-zero vacuum

expectation values for the charged Higgs field which is not present in the MSSM. However,

given the smallness of neutrino masses indicated by neutrino oscillation data, we show that

the RMSSM represents only a slight perturbation of the MSSM and is thus as safe (or

unsafe) as the MSSM itself from unwanted minima in the scalar potential.
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1. Introduction

Softly broken supersymmetric models contain a fairly large number of scalar fields not

present in the standard model. Their existence leads to a complicated scalar potential,

which might contain undesirable minima which spontaneously break charge and/or color

symmetry, a situation which can not happen within the Standard Model. The condition

that the “realistic” minimum is the global minimum of the theory can be used to obtain

restrictions on the parameter space of supersymmetric models, as already realized more

than 20 years ago [1, 2, 3]. This way a disadvantage of supersymmetry may turn into a

virtue by shedding some light into the unknown supersymmetry breaking mechanism itself.

Due to the enormous complexity of the full scalar potential in the minimal supersym-

metric extension of the standard model (MSSM) early papers on this subject [1]–[4] have

only analyzed particular, but especially dangerous directions in field-space. Casas et al [5]

have presented a more detailed analysis of this subject. They were able to show that in

the constrained MSSM (CMSSM) with minimal supergravity boundary conditions strong

constraints arise ruling out sizeable parts of the parameter space [5].

Similar studies in R-parity violating versions of the MSSM, however, have not been

published.1 Our main goal is to present a detailed analysis of the ’unbounded-from-below’

(UFB) as well as charge/colour breaking minima (CCB) in the bilinear R-parity breaking

model (RMSSM) [7]. This model breaks lepton number and R-parity explicitly through

the simplest bilinear terms. The justification for such emphasis is threefold.

1The work of Abel and Savoy [6] contains a discussion on the possibility of lifting flat directions by

adding explicit trilinear R-parity violating terms to the superpotential. However, they discuss the impact

of bilinear terms only briefly. This is our main emphasis.
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First, it represents the simplest possible scheme of R-parity violation, a mere six pa-

rameter extension of the MSSM. It is therefore interesting to investigate the “stability” of

the MSSM against such “innocuous” perturbation. For this reason we can also call this

model the generalized MSSM where R-parity breaks in the minimal way.

Second, this model is motivated by the fact that it produces the paradigm for the idea

that supersymmetry is the origin of neutrino mass [8], leading to a pattern of neutrino

masses [9] that successfully describes current neutrino data [10]. Last, but not least, it

represents the only model of R-parity breaking consistent with a spontaneous violation of

R-parity [11, 12], where it is the vacuum, not the fundamental theory, that breaks the

symmetry.

In this model the atmospheric neutrino mass scale [13] is generated at the tree-level,

through the mixing of the three neutrinos with the neutralinos [14], in an effective ‘low-

scale” variant of the seesaw mechanism. In contrast, the solar mass and mixings needed to

account for solar neutrino data [15, 16] are generated radiatively [9].

A very important difference between such a supersymmetric approach to the origin of

neutrino mass and seesaw-type schemes, is that here the dimension-five operator responsible

for (Majorana) neutrino masses is generated at an accessibly low energy scale-namely the

weak scale. This makes this model potentially testable by experiment.

In fact it has been shown that such a low-scale scheme for neutrino masses has the

advantage of being testable also “outside” the realm of neutrino physics experiments. Al-

though neutrino properties can not be predicted from first principles, interpreting current

neutrino data in this framework implies unambiguous tests of the theory at accelerator

experiments [17]–[21] which can potentially be used to falsify the model.

This paper is organized as follows. In the next section we will briefly recall some basics

of the discussion on CCB and UFB bounds in the MSSM. This will serve as a basis for

section 3, where we will discuss new features related to the R-parity violating terms. We

show how the bounds from unbounded-from-below directions have to be modified, once

non-zero bilinear R-parity violating (BRpV) terms are allowed. We point out the novel

possibility to generate a non-zero vacuum expectation value of the charged Higgs field,

albeit in regions of parameter space which are now excluded by neutrino physics [10].

We show that, given current data on neutrino masses, bilinear R-parity violation can be

understood as a small perturbation of the MSSM. From the point of view of charge breaking

minima the RMSSM is thus as safe (or unsafe) as the MSSM itself. We will then close with

a short summary.

2. Review of the MSSM results on UFB and CCB

To set up the notation, the superpotential of the MSSM can be written as

W = εab

[
hijU Q̂

a
i ÛjĤ

b
u + hijDQ̂

b
iD̂jĤ

a
d + hijEL̂

b
iR̂jĤ

a
d − µĤa

d Ĥ
b
u

]
. (2.1)

Here, hijU , h
ij
D and h

ij
E are 3×3 Yukawa matrices, Q̂, Û and D̂ are quark doublet and singlet

superfields and L̂ and R̂ are the usual lepton doublet and singlet fields. Supersymmetry
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must be broken and the most general set of soft breaking terms allowed by the standard

model gauge group under the assumption of lepton number conservation can be written as

VSB=M
ij2
Q Q̃a∗

i Q̃a
j +M ij2

U ŨiŨ
∗
j +M ij2

D D̃iD̃
∗
j +M ij2

L L̃a∗i L̃aj +M ij2
R R̃iR̃

∗
j +

2∑

i=1

m2
Hi
Ha∗
i Ha

i +

+

[
−1
2

3∑

i=1

Miλiλi + εab

(
Aij
Uh

ij
U Q̃

a
i ŨjH

b
u +Aij

Dh
ij
DQ̃

b
iD̃jH

a
d +Aij

Eh
ij
EL̃

b
iR̃jH

a
d−

−BµHa
dH

b
u

)
+ h.c.

]
. (2.2)

The Higgs doublets giving mass to the standard model fermions are

Hd =

(
H0
d

H−d

)
, Hu =

(
H+
u

H0
u

)
(2.3)

and the parameters in eq. (2.2) are to be understood at some renormalization scale Q

chosen to minimize the effects of the one loop corrections. This way we can neglect in the

analysis the effect of the one loop radiative corrections [5].

Without loss of generality, we now consider that the fields take the following vev’s,2

〈
H+
u

〉
= 0 ,

〈
H−d
〉
= v− ,

〈
H0
d

〉
= vd ,

〈
H0
u

〉
= vu (2.4)

to obtain

VHiggs =
(
m2
Hu
+ µ2

)
v2
u +

(
m2
Hd
+ µ2

) (
v2
d + v2

−

)
− 2Bµvuvd −

1

2
g2v2

uv
2
d +

+
1

8

(
g2 + g′2

) (
v4
u + v4

d + v4
− + 2v

2
dv

2
−

)
+
1

4

(
g2 − g′2

) (
v2
d + v2

−

)
v2
u . (2.5)

This Higgs potential has the property that v− = 0. To see this we note that the potential

can be written in the form,

VHiggs = C4v
4
− + C2v

2
− + C0 (2.6)

where

C4 =
1

8

(
g2 + g′2

)

C2 =
1

4

(
g2 − g′2

)
v2
u +

1

4

(
g2 + g′2

)
v2
d +

(
m2
Hd
+ µ2

)

C0 =
1

8

(
g2 + g′2

) (
v2
u − v2

d

)2
+
(
m2
Hu
+ µ2

)
v2
u +

(
m2
Hd
+ µ2

)
v2
d − 2Bµvuvd . (2.7)

Now since g > g′ we must have C2 > 0, unless m
2
Hd
+ µ2 < 0.3 Therefore the minimum of

the Higgs potential occurs for vanishing vev of the charged Higgs boson.

2Our normalization here for the vev’s differs from references [7, 9] by a factor of
√
2.

3Casas et al. [5] assume that only m2
Hu

+µ2 can be negative. Even though in mSugra at very large tan β

values m2
Hd

+ µ2 < 0 can occur in exceptional cases, we will follow their assumption.
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By using the minimization equations,

0 = −2Bµvd + 2
(
m2
Hu
+ µ2

)
vu −

1

2

(
g2 + g′2

) (
v2
d − v2

u

)
vu

0 = −2Bµvu + 2
(
m2
Hd
+ µ2

)
vd +

1

2

(
g2 + g′2

) (
v2
d − v2

u

)
vd (2.8)

one can find the value of the Higgs potential at the real minimum,

VMIN = −
1

8

(
g2 + g′2

) (
v2
u − v2

d

)2
. (2.9)

Equation (2.9) will be important to compare with the values of other (and potentially

deeper) minima.

Before starting the discussion of the dangerous directions, a word of caution should

be added, namely, that the condition that the realistic minimum is the global one might

actually be too conservative. In fact, it is possible that the universe resides in a false vacuum

which is stable because the tunneling time into the global minimum is large with respect

to the age of the universe. In this sense, CCB and UFB constraints on the supersymmetric

parameter space are sufficient but might not be necessary, see for example [22, 23]. However,

in inflationary scenarios, the universe could be automatically led towards the large vev

minima through reheating [24]. Therefore we will not follow this line of reasoning any

further but simply explore the CCB and UFB constraints in the RMSSM.

2.1 UFB directions

The ’unbounded-from-below’ (UFB) directions are those where the quartic D-terms vanish

and some coefficient(s) quadratic in the vev’s are negative. Then the potential at the weak

scale seems to be unbounded from below. However, this is a slight misnomer, since if

one assumes that all soft masses are positive at the high unification scale, it appears that

these dangerous directions are not really unbounded from below but there exists a true

local minimum at some large scale. It then must be checked that this local minimum is

not deeper than the physical one. As was shown in reference [5] there are three kinds of

such directions. The first and most obvious one corresponds to the D-flat direction where

|vu| = |vd|, all other vev’s being zero. The potential along this direction reads,

VUFB−1 =
(
m2
Hu
+m2

Hd
+ 2µ2 − 2|Bµ|

)
v2
u (2.10)

and a sufficient condition to avoid developping a deep minimum at large values of the field

is

m2
Hu
+m2

Hd
+ 2µ2 − 2|Bµ| > 0 . (2.11)

In principle, one should check the depth of the true minimum along the dangerous direction

when this coefficient is negative. For simplicity, we will stick however to the condition given

in eq. (2.11).

The second dangerous direction corresponds to the case where a slepton Li takes a vev

vi. Then a combination of vu, vd and vi can cancel the D-term and the potential reads,

VUFB−2 =

(
m2
Hu
+ µ2 +m2

Li −
|Bµ|2

m2
Hd
+ µ2 −m2

Li

)
v2
u −

2m4
Li

g2 + g′2
(2.12)
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which constrains the coefficient of the quadratic term as

m2
Hu
+ µ2 +m2

Li −
|Bµ|2

m2
Hd
+ µ2 −m2

Li

> 0 . (2.13)

Note that in the case of a universal m0 at the unification scale the mLi are usually the

smallest soft masses at the weak scale. Dropping the universality assumption the bound

obtained for mLi , eq. (2.13), must be verified for the squark soft masses as well.

Finally the last UFB direction corresponds to the case where vd = 0 but we have a

neutral slepton Li with nonzero vev, like in the UFB-2 case. This direction is both D- and

F-flat. The difference with respect to UFB-2 is that the F-term is canceled by giving vev’s

to the charged sleptons. The resulting potential reads

VUFB−3 =
(
m2
Hu
+m2

Li

)
v2
u +

|µ|
hej

(
m2
Li +m2

Lj +m2
ej

)
vu −

2m4
Li

g2 + g′2
. (2.14)

Since m2
Hu
must be negative in order to break electroweak symmetry and m2

Li
is small

when one assumes universality of the soft terms, the coefficient quadratic in vu is generally

negative. As shown in references [5, 6] in the case of universal soft masses at the GUT

scale, the condition that the minimum along this UFB-3 direction is not deeper than the

physical minimum implies m0 > αM1/2, where α is a coefficient of O(1).

2.2 CCB minima

For the classical CCB minima, dangerous negative contributions to the scalar potential

are generated by cubic (A-type) soft supersymmetry breaking terms. Therefore these

directions cannot be F-flat, but they are still D-flat. The traditional bound of reference [1]

corresponds to the case where

〈
Q1
〉
=
〈
H2
u

〉
= 〈U〉 = v (2.15)

all other vev’s vanishing. This choice cancels the D-term and the potential reads,

VCCB = v2
(
3h2

uv
2 + 2Auhuv +m2

Hu
+ µ2 +m2

Q +m2
U

)
. (2.16)

In order to avoid a very deep color and charge breaking minimum we must make sure that

the parenthesis in eq. (2.16) never vanishes, which happens if the corresponding second

order equation can not have real solutions. This leads to the well known condition,

|Au|2 < 3
(
m2
Hu
+ µ2 +m2

Q +m2
U

)
. (2.17)

A more complete and general analysis of this and similarly dangerous directions can be

found in reference [5]. Note again, that the bound given in eq. (2.17) for Au must be

checked for all A-terms in the general non-universal MSSM.
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3. UFB and CCB in the RMSSM

The RMSSM is simply the bilinear R-parity violating model, defined by the following

superpotential [7]

W = WMSSM + εabεiL̂
a
i Ĥ

b
u (3.1)

and corresponding soft supersymmetry breaking terms,

VSB = VMSSM +BiεiL̃
a
iH

b
u . (3.2)

It is therefore a rather mild extension of the MSSM. In the following it will be sufficient

to consider for simplicity only a one generation version of the model.4 We are mainly

interested in studying how the appearance of the new terms in the superpotential (and in

VSB) changes the conclusions which hold for the MSSM. Since the MSSM is the limit of

the RMSSM when ε → 0 we expect that the results of the MSSM will hold in that limit.

Note also that the structure of the trilinear terms is not modified, so conclusions like those

of eq. (2.17) are expected also to hold in our case. Defining

〈
H+
u

〉
= 0 ,

〈
H−d
〉
= v− ,

〈
H0
d

〉
= vd ,

〈
H0
u

〉
= vu ,

〈
L0
〉
= v′ ,

〈
L−
〉
= v′− (3.3)

one finds for the scalar potential

V = M2
Hu

v2
u +M2

Hd

(
v2
d + v2

−

)
+M2

L

(
v′2 + v′2−

)
− 2Bµvdvu + 2B′ε vuv′ +

+ε2
(
v2
u + v′2− + v′2

)
+ µ2

(
v2
u + v2

d + v2
−

)
− 2µε

(
v′vd + v−v

′
−

)
+

+
g2

8

[(
v2
u − v2

d − v′2 + v2
− + v′2−

)2
+ 4

(
vdv− + v′v′−

)2]
+

+
g′2

8

(
v2
u − v2

d − v′2 − v2
− − v′2−

)2
(3.4)

where B′ characterizes the soft supersymmetry and R-parity violating bilinear term. We

note that it is not possible to have an UFB direction with non vanishing charged vev’s in

this potential, because the D-terms can not be made to vanish for v− and v
′
− different from

zero. The minimization equations can be found in the usual way taking derivatives with

respects to the fields

0 =

[
2
(
M2

Hd
+ µ2

)
− g2

2

(
v2
u − v2

d − v′2 − v2
− + v′2−

)
− g′2

2

(
v2
u − v2

d − v′2 − v2
− − v′2−

)]
vd −

−
(
2εµ− g2v−v

′
−

)
v′ − 2Bµvu

0 =

[
g2

2

(
v2
u − v2

d − v′2 + v2
− + v′2−

)
+
g′2

2

(
v2
u − v2

d + v′2 − v2
− − v′2−

)
+

]
vu +

+2
(
M2

Hu
+ µ2 + ε2

)
vu + 2

(
B′εv′ −Bµvd

)

4We do not believe that this simplification has any impact on the following discussion, since neutrino

oscillation data require ε
µ
¿ 1 and intergenerational effects between different families of leptons due to

BRpV terms scale as ( ε
µ
)2.
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0 =

[
2
(
M2

L + ε2
)
− g2

2

(
v2
u − v2

d − v′2 + v2
− − v′2−

)
− g′2

2

(
v2
u − v2

d − v′2 − v2
− − v′2−

)]
v′ −

−
(
2εµ− g2v−v

′
−

)
vd + 2B

′εvu

0 =

[
2
(
M2

Hd
+ µ2

)
+
g2

2

(
v2
u + v2

d − v′2 + v2
− + v′2−

)
− g′2

2

(
v2
u − v2

d − v′2 − v2
− − v′2−

)]
v− −

−
(
2εµ− g2vdv

′
)
v′−

0 =

[
2
(
M2

L + ε2
)
+
g2

2

(
v2
u − v2

d + v′2 + v2
− + v′2−

)
− g′2

2

(
v2
u − v2

d − v′2 − v2
− − v′2−

)]
v′− −

−
(
2εµ− g2vdv

′
)
v− . (3.5)

Since we are dealing with a set of five coupled equations this system is difficult to solve for

the vev’s. We can however use the following trick. Instead of solving for the five vev’s we

try to solve those equations for the three soft masses squared M 2
Hu
, M2

Hd
and M2

L [12] and

for the charged vev’s. Using this approach we could find two types of solutions.

Before discussing the general case, however, we consider first the limit in which RMSSM

is considered a perturbation of the MSSM. This is a reasonable approach since the BRpV

parameters must be small to account for the neutrino data [9]. Therefore we can pose the

following question. Suppose that in the limit ε→ 0 the parameters are such that the MSSM

has no UFB directions or CCB minima. This means vu 6= 0 , vd 6= 0 and v′ = v− = v′− = 0.

If we now consider a small non-vanishing value for the ε what will be the corresponding

minimum? In order to answer this question in perturbation theory we write

vd =

∞∑

i=0

v
(i)
d εi , vu =

∞∑

i=0

v(i)
u εi , v′ =

∞∑

i=0

v′(i)εi , v− =

∞∑

i=0

v
(i)
− εi , v′− =

∞∑

i=0

v′
(i)
− εi .

(3.6)

Now we substitute back in the extremum eq. (3.5) and solve order by order in perturbation

theory. The result that we get is as follows,

vd = v
(0)
d + v

(2)
d ε2 + v

(4)
d ε4 + · · ·

vu = v(0)
u + v(2)

u ε2 + v(4)
u ε4 + · · ·

v′ = v′(1)ε+ v′(3)ε3 + v′(5)ε5 + · · ·
v− = 0

v′− = 0 (3.7)

where v
(0)
u , v

(0)
d are the MSSM values for ε = 0. This is precisely the solution of type I that

we will discuss shortly. Note that if ε 6= 0 then also v ′ 6= 0. In fact,

v′ =
µv

(0)
d −B′v

(0)
u

M2
L − 1

4 (g
2 + g′2)

(
v
(0)
u

2 − v
(0)
d

2
)ε+ · · · . (3.8)

So we can formulate the following important result: if we start with the MSSM parameters

such that in the limit ε→ 0 the minimum has no UFB or CCB problems, then by turning

on perturbatively a small value for ε we get a correspondingly safe minimum of the RMSSM.

However, as we will now discuss, in general there are two types of solutions for the minimum

equations.
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Type I. This solution corresponds to the case where the charged vev’s vanish. We are

then in the situation studied usually [7] in the bilinear R-parity model. We get

M2
Hd
= εµ

v′

vd
− µ2 +Bµ

vu
vd
+
g2 + g′2

4

(
v2
u − v′2 − v2

d

)

M2
Hu
= −ε2 − µ2 +Bµ

vd
vu
−B′ε

v′

vu
− g2 + g′2

4

(
v2
u − v′2 − v2

d

)

M2
L = −ε2 + ε

(
µ
vd
v′
−B′

vu
v′

)
+
g2 + g′2

4

(
v2
u − v′2 − v2

d

)

v− = 0

v′− = 0 . (3.9)

This corresponds to the neutral Higgs potential that we will discuss further below. Here

we just note that the value of the potential at the minimum can be shown to be

VBRpV = −
g2 + g′2

8

(
v2
u − v2

d − v′2
)2

. (3.10)

Type II. In the general case we can find the solutions of the minimization equations in

the following way. We start by solving the first three equations in eq. (3.5) for the soft

masses. We get,

M2
Hd
= M2

Hd
(0) − 1

4

(
g2 − g′2

) (
v2
− + v′2−

)

M2
Hu
= M2

Hu
(0)− 1

4

(
g2 + g′2

) (
v2
− + v′2−

)
− 1
2
g2 v′

vd
v′−v−

M2
L = M2

L(0) +
1

4

(
g2 − g′2

)
v2
− −

1

4

(
g2 + g′2

)
v′2− −

1

2
g2 v′

vd
v′−v− (3.11)

where M 2
Hd
(0), M2

Hu
(0) and M 2

L(0) are the soft masses when v− = v′− = 0 and are given in

eq. (3.9). Now we substitute eq. (3.11) into the last two equations in eq. (3.5) to obtain,

0 = −g2

(
v′2v− − v′vdv

′
− + v2

−v
′
−

v′

vd
− v−v

′2
−

)
+ 2εµ

(
v−

v′

vd
− v′−

)
+ 2Bµv−

vu
vd
+ g2v−v

2
u

0 = g2

(
v′2v− − v′vdv

′
− + v2

−v
′
−

v′

vd
− v−v

′2
−

)
vd
v′
− 2εµ

(
v−

v′

vd
− v′−

)
vd
v′
− 2B′εv′−

vu
v′
+

+g2v′−v
2
u . (3.12)

Multiplying the second of the equations in eq. (3.12) by v ′/vd and adding them one obtains,

v′− = κ v− (3.13)

where

κ =
2Bµ+ g2vdvu
2B′ε− g2v′vu

. (3.14)

Finally we use eq. (3.13) to reduce either one of equation (3.12) to

0 = v−

(
D2 v

2
− −D0

)
(3.15)
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where

D2 = g2

(
κ2 − v′

vd
κ

)

D0 = g2
(
v′2 − vdv

′κ− v2
u

)
−
(
Bvu + εv′

) 2µ
vd
+ 2εµκ . (3.16)

Equation (3.15) has the trivial solution v− = 0 which corresponds to type I, the BRpV

solutions. However, if
D0

D2
> 0 (3.17)

we have a new type of solutions for the minimization equations,

v− = ±
√
D0

D2
, v′− = κ v− . (3.18)

As D0,2 do not have in general a well defined sign it can happen that such solutions do

exist for some combination of the parameters. We will discuss this later in more detail.

3.1 UFB directions

We have seen before that for the Higgs potential of the RMSSM the UFB directions can

only arise when the charged Higgs vev’s vanish, otherwise it is not possible to cancel the

quartic D-terms. The neutral Higgs potential obtained from eq. (3.4) when v− = 0, v
′
− = 0

is given by

VNeutral =
(
M2

Hu
+ ε2 + µ2

)
v2
u +

(
M2

Hd
+ µ2

)
v2
d +

(
M2

L + ε2
)
v′2 −

−2Bµvdvu + 2B′εvuv′ − 2µεv′vd +
g2 + g′2

8

(
v2
u − v2

d − v′2
)2

. (3.19)

From this equation we can see that we can make the D-term vanish if we choose the

condition

v2
u = v2

d + v′2 (3.20)

To implement this condition it is convenient to write

vd = vu cos θ , v′ = vu sin θ . (3.21)

Then we get

VNeutral = B(θ)v2
u (3.22)

where

B(θ) =
[
M2

Hu
+ ε2 + µ2 +

(
M2

Hd
+ µ2

)
cos2 θ +

(
M2

L + ε2
)
sin2 θ − 2Bµ cos θ +

+ 2B′ε sin θ − 2µε sin θ cos θ
]
. (3.23)

Therefore the condition for avoiding an UFB direction is that,

B(θmin) > 0 (3.24)
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Figure 1: B(θ) as a function of θ for an example where B(θmin) < 0 but B(0) > 0. The right

panel is an enlarged view of the left one close to the zeros of B(θ).

where θmin is the value of θ that corresponds to the minimum of B(θ). Now consider

eq. (3.23) in the limit ε→ 0 and take the derivative,

dB

dθ
= 2 sin θ

[
−(M 2

Hd
+ µ2 −M2

L) cos θ +Bµ
]
. (3.25)

The right hand side vanishes when θ = 0 and when cos θ = Bµ
M2
Hd

+µ2−M2
L

. These two

solutions correspond to the UFB-1 and UFB-2 directions given in eqs. (2.11) and (2.13),

respectively, when ε = 0.

For ε 6= 0 it does not seem possible to have an analytical expression for θmin. However

for a given set of parameters it is always easy to verify whether eq. (3.24) holds for θ ∈
[0, 2π]. It is also clear from eq. (3.23) that the MSSM condition, eq. (2.11), is not enough

to ensure that we are free from UFB directions. This fact can be best illustrated from

figure 1 that shows a typical example.

One can see clearly that starting from a large value of B(0) is not enough to decide

upon the sign of B(θmin). However it is easy to check numerically whether B(θmin) > 0 or

not. Therefore, although we lack a simple analytical formula, the criterium for avoiding

UFB directions is easily implemented.

Finally we comment briefly on the direction UFB-3. It can be easily shown that at

large values of the field the potential in direction UFB-3 is given as

VUFB−3 =
(
m2
Hu
+m2

Li + εB′
)
v2
u + · · · (3.26)

where the dots stand for irrelevant terms. Since in our notation εB ′ < 0 this leads,

in principle, to a slightly more stringent requirement than the one corresponding to the

R-parity conserving MSSM. However, since ε/µ ∼ O(10−(3−4)) is required by neutrino

oscillation data [9], this modification is numerically irrelevant. This is in agreement with

the argument presented in reference [6].

3.2 Nonzero charged Higgs and slepton vev’s

We now turn to the solutions of type II. We have already seen in eqs. (3.15)–(3.18) that

there are potentially dangerous solutions for the Higgs potential with nonzero vev’s for the
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Figure 2: Range of RMSSM parameters where nonzero charged vev’s for the Higgs and slepton

fields are favoured over the realistic minimum for two examples of tanβ, left tanβ = 1.05, right

tanβ = 1.2. Here we fix for convenience B = B′ = µ = 100 GeV. For a discussion see text.

charged scalars. These solutions, if they exist, would provide new CCB solutions different

from those already present in the MSSM, as explained above. As can be seen from eq. (3.17)

such solutions can exist if the parameters satisfy the relation D0/D2 > 0, where the Di are

given in eq. (3.16).

Since it does not seem possible to give a strict analytic criterion which relates the

condition D0/D2 < 0 (guaranteeing the absence of unwanted minima) to the parameters of

the potential we have resorted to a numerical scan of the parameter space. Our approach

to find the minima of the potential was as follows. We always started with a random set

of parameters with zero charged vev’s and subject to the requirement that,

v2
u + v2

d + v′2 = v2 =
(
2
√
2GF

)−1/2
= 174.1GeV . (3.27)

Note that with this procedure we should always have,

|η| = |v
′|
v

< 1. (3.28)

We then search for the global minimum numerically. If we find a minimum deeper than

the realistic minimum but which breaks charge this part of parameter space should be

discarded. Two examples are shown in figure 2.

The results shown in figure 2 can be understood qualitatively as follows. Starting with

the definitions eqs. (3.14) and (3.16) and taking into account the smallness of ε
µ one can

show that in the limit ε → 0 we always have D2 > 0. On the other hand the condition

D0 > 0 requires

v′2 > v2 tan
2 β − 1

1 + tan2 β
+
2Bµ

g

tan2 β − 1
tan β

. (3.29)

Note that this condition is not strictly valid for tan β ≡ 1, because in this limit we can no
longer neglect the terms proportional to ε in the definitions of D0 and D2. Equation (3.29)

shows that charge breaking minima in the limit of small values of ε require that v ′ take up a

sizeable fraction of v. This trend is clearly visible from figure 2. The figure also illustrates

how these solutions disappear very quickly with tanβ greater than 1.
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Although we find it amusing that such solutions exist, we wish to stress that consistency

with neutrino data requires ε
µ ∼ O(10−(3−4)) and v′

v ∼ O(10−(3−4)). We therefore conclude

that the RMSSM is automatically safe from these unwanted minima in those “physical”

parts of parameter space which account for the neutrino oscillation data.

4. Conclusions

We have studied charge breaking minima and unbounded from below directions within

bilinear R-parity breaking supersymmetry. Such a “reference model” is nothing but the

simplest broken R-parity version of the Minimal Supersymmetric Standard Model. We

have first generalized some results obtained previously in the R-parity conserving MSSM.

Subsequently we discussed new ways to generate a nonzero vacuum expectation value of the

charged Higgs and slepton fields. However, such unwanted solutions occur only in regions

of parameter space which are now excluded by neutrino oscillation data.

In summary it can be said that, given the data on neutrino masses, bilinear R-parity

violation can be understood as a small perturbation of the MSSM. From the point of view

of CCB and UFB directions the RMSSM is as robust as the R-parity-conserving MSSM:

it is equally safe from unwanted minima in the same portions of parameter space.
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