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Abstract

This is a review article about neutrino mass models, particularly see-saw models involving
three active neutrinos that are capable of describing both the atmospheric neutrino oscillation
data and the large mixing angle (LMA) MSW solar solution, which is now uniquely specified
by recent data. We briefly review the current experimental status, show how to parametrize
and construct the neutrino mixing matrix, and present the leading order neutrino Majorana
mass matrices. We then introduce the see-saw mechanism and discuss a natural application
of it to current data using the sequential dominance mechanism, which we compare with an
early proposal for obtaining LMAs. We show how both the Standard Model and the Minimal
Supersymmetric Standard Model may be extended to incorporate the see-saw mechanism
and show how the latter case leads to the expectation of lepton flavour violation. The see-
saw mechanism motivates models with additional symmetries such as unification and family
symmetry models, and we tabulate some possible models before focusing on two particular
examples based on SO(10) grand unification and either U(1) or SU(3) family symmetry
as specific examples. This review contains extensive appendices that include techniques for
analytically diagonalizing different types of mass matrices involving two LMAs and one small
mixing angle, to leading order in the small mixing angle.
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1. Introduction

1.1. Overview for the non-specialist

In 1930, the Austrian physicist Wolfgang Pauli proposed the existence of particles called
neutrinos as a ‘desperate remedy’ to account for the missing energy in a type of radioactivity
called beta decay. He deduced that some of the energy must have been taken away by a new
particle emitted in the decay process, the neutrino. Since then, after decades of painstaking
experimental and theoretical work, neutrinos have become enshrined as an essential part of
the accepted quantum description of fundamental particles and forces, the Standard Model
of Particle Physics. This is a highly successful theory in which elementary building blocks
of matter are divided into three generations of two kinds of particle—quarks and leptons. It also
includes three of the fundamental forces of Nature but does not include gravity. Leptons consist
of the charged electron, muon and tau, together with three electrically neutral particles—the
electron neutrino, muon neutrino and tau neutrino.

Unlike the case for quarks and charged leptons, however, the Standard Model predicts
that neutrinos have no mass! This might seem curious for a matter particle, but the Standard
Model predicts that neutrinos always have a left-handed spin—rather like rifle bullets, which
spin counter-clockwise to the direction of travel. If right-handed neutrinos were to be added
to the Standard Model, then neutrinos could have the same sort of masses as the quarks and
charged leptons, and the theory would also predict the existence of antineutrinos. However,
even without right-handed neutrinos, neutrinos with mass are possible, providing that the
neutrino is its own antiparticle. Such a mass is then called a Majorana mass, named after
the Sicilian physicist Ettore Majorana. But the current Standard Model forbids such Majorana
masses. These subtle theoretical arguments about the nature of neutrinos have now come to the
fore as the results from experiments detecting neutrinos from the Sun, as well as atmospheric
neutrinos produced by cosmic rays, suggest that they do have mass after all.

The first clues came from an experiment deep underground, carried out by an American
scientist, Raymond Davis Jr, detecting solar neutrinos. It revealed only about one-third of
the number predicted by theories of how the Sun works. The result puzzled both solar and
neutrino physicists. However, some Russian researchers, Mikheyev and Smirnov, developing
ideas proposed previously by Wolfenstein in the US, suggested that the solar neutrinos might
be changing into something else. Only electron neutrinos are emitted by the Sun and they
could be converting into muon and tau neutrinos that were not being detected on Earth. This
effect, called neutrino oscillations as the types of neutrino interconvert over time from one
kind to another, was first proposed some time earlier by Pontecorvo. The precise mechanism
proposed by Mikheyev, Smirnov and Wolfenstein involved the resonant enhancement of
neutrino oscillations due to matter effects and is known as the MSW effect.

Most recently, the Sudbury Neutrino Observatory (SNO) in Canada spectacularly showed
this to be the case. The experiment measured both the flux of the electron neutrinos and the
total flux of all three types of neutrinos. The data revealed that physicists’ theories of the Sun
were correct after all. The idea of neutrino oscillations had already gained support from the
Japanese experiment Super-Kamiokande, which in 1998 showed that there was a deficit of
muon neutrinos reaching Earth when cosmic rays strike the upper atmosphere. The results
were interpreted as muon neutrinos oscillating into tau neutrinos that could not be detected.

Such neutrino oscillations are analogous to coupled pendulums, where oscillations in
one pendulum induce oscillations in another pendulum. The coupling strength is defined in
terms of something called the ‘mixing angle’. Following the SNO results, several research
groups showed that the electron neutrino must have a mixing angle of about 30˚ and forms
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a mass state of 0.007 eV or greater (by comparison, the electron has a mass of about half a
megaelectronvolt). The muon and tau neutrinos must have a (maximal) mixing angle of about
45˚ and form a mass state of about 0.05 eV or greater.

Experimental information on neutrino masses and mixings implies new physics beyond
the Standard Model, and there has been much activity on the theoretical implications of these
results. An attractive mechanism for explaining small neutrino masses is the so-called see-saw
mechanism proposed in 1979 by Murray Gell-Mann, Pierre Ramond and Richard Slansky,
working in the US, and independently by Tsutomu Yanagida of Tokyo University. The idea
is to introduce right-handed neutrinos into the Standard Model, which are Majorana-type
particles with very heavy masses, possibly associated with the large mass scale at which the
three forces of the Standard Model unify. The Heisenberg Uncertainty Principle, which allows
energy conservation to be violated on small time intervals, then allows a left-handed neutrino to
convert spontaneously into a heavy right-handed neutrino for a brief moment before reverting
back to being a left-handed neutrino. This results in the very small observed Majorana mass for
the left-handed neutrino, its smallness being associated with the heaviness of the right-handed
neutrino, rather like a flea and an elephant perched on either end of a see-saw.

An alternative explanation of small neutrino masses comes from the concept of extra
dimensions beyond the three that we know of, motivated by theoretical attempts to extend the
Standard Model to include gravity. The extra dimensions are ‘rolled up’ on a very small scale,
so that they are not normally observable. It has been suggested that right-handed neutrinos (but
not the rest of the Standard Model particles) experience one or more of these extra dimensions.
The right-handed neutrinos then only spend part of their time in our world, leading to apparently
small neutrino masses.

Cosmology today presents two major puzzles: Why there is an excess of matter over
antimatter in the Universe, and what is the major matter constituent of the Universe? Massive
neutrinos may hold important clues.

Matter and antimatter would have been created in equal amounts in the Big Bang, but
all we see is a small amount of excess matter. The see-saw mechanism allows for a novel
resolution to this puzzle. The idea, due to Masataka Fukugita and Tsutomu Yanagida of
Tokyo University, is that when the Universe was very hot, just after the Big Bang, the heavy
right-handed neutrinos would have been produced and could have decayed preferentially into
leptons rather than antileptons. The see-saw mechanism therefore opens up the possibility of
generating the baryon asymmetry of the Universe via ‘leptogenesis’. This process requires CP
violation for neutrinos, which could be studied experimentally by firing a very intense neutrino
beam right through the Earth and detecting it with a huge neutrino detector when it emerges.

Studies of the movements of galaxies and galaxy clusters suggest that at least 90% of the
mass of the Universe is made of unknown dark matter. Cosmology is sensitive to the absolute
values of neutrino masses, in the form of relic hot dark matter. Neutrinos could constitute
anything from 0.1% to 2% of the mass of the Universe, corresponding to the heaviest neutrino
being in the mass range 0.05 to about 0.23 eV. Neutrinos any heavier than this would lead to
galaxies being less clumped than actually observed by the recent 2dF Galaxy Redshift Survey.
This illustrates the breathtaking rate at which neutrino physics continues to advance.

1.2. About this review

There are many good reviews already in the literature, for example [1–4]. Three possible
ways to extend the Standard Model in order to account for the neutrino mass spectrum are the
see-saw mechanism [5], extra dimensions [6] and R-parity violating supersymmetry [7]. In
this review, we focus on theoretical approaches to understanding neutrino masses and mixings
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in the framework of the see-saw mechanism, assuming three active neutrinos. The goal of
such models is to account for two large mixing angles (LMAs), one small mixing angle and
a pattern of neutrino masses consistent with observation. We are now in the unique position
in the history of neutrino physics of not only knowing that neutrino mass is real, and hence
the Standard Model at least in its minimal formulation is incomplete, but also having a unique
solution to the solar neutrino problem in the form of the LMA solution. In this sense, a review
of neutrino mass models is very timely since it has only been within the last year that the solar
solution has been uniquely specified. That combined with the atmospheric oscillation data
severely constrains theoretical models and in fact rules out many possibilities that predicted
other solar solutions. Of course, many possibilities remain, and we shall mention several
of them here. However, this review is not supposed to be an encyclopaedic review of all
possible models but instead a review of useful approaches and techniques that may be applied
to constructing different classes of models.

We give a strong emphasis to classes of models where the two LMAs can arise naturally
and consistently with a neutrino mass hierarchy, and although we classify all possible neutrino
mass structures, we do not spend much time on those structures that apparently require a high
degree of fine-tuning to achieve. We show that if one of the right-handed neutrinos contributes
dominantly in the see-saw mechanism to the heaviest neutrino mass and a second right-handed
neutrino contributes dominantly to the second heaviest neutrino mass, then large atmospheric
and solar mixing angles may be interpreted as simple ratios of Yukawa couplings. We refer to
this natural mechanism as sequential dominance (SD). Although SD looks very specialized it is
not: either the right-handed neutrinos contribute equally via the see-saw mechanism to neutrino
masses or some of them contribute more than others. The second possibility corresponds to SD
and allows a very natural and intuitively appealing explanation of the neutrino mass hierarchy
with two LMAs. SD is not a model, it is a mechanism in search of a model. The conditions
for SD, such as ratios of Yukawa couplings being of order unity for LMAs, and the required
pattern of right-handed neutrino masses are put in by hand and require further theoretical input.
This motivates models with extra symmetry, such as unified models and models with family
symmetry, which we briefly review. There are a huge number of proposals in the literature, but
assuming SD, and the important clues provided by quark masses and mixing angles, severely
constrains the possible successful models. We discuss one particularly successful model as
an example, but of course there may be others, but may be not so many as may be thought at
first.

The layout of the remainder of this review is as follows. In section 2, we introduce and
review the current status of neutrino masses and mixing angles. We also parametrize the
neutrino mixing matrix in two different ways, whose equivalence is discussed in an appendix.
We show how it may be constructed theoretically from the underlying mass matrices and then
show how the procedure may be driven the other way to derive the form of the neutrino
mass matrix whose leading order forms may be classified. The properties of the matrix
corresponding to hierarchical neutrino masses are explored. Section 3 introduces the see-saw
mechanism, which is central to this review, in both its simplest version and including more
complicated versions. In section 4, we show how the see-saw mechanism may be applied to
the hierarchical case in a very natural way using SD and discuss different types of SD and a
link with leptogenesis. We also discuss an alternative early approach to obtaining LMAs from
the see-saw mechanism and show that it is quite different from SD. Section 5 incorporates the
see-saw mechanism into the Standard Model, and its supersymmetric version, where it leads to
lepton flavour violation. In section 6, we go beyond these minimal extensions of the Standard
Model, or its supersymmetric version, and show how the see-saw mechanism motivates ideas
of unification and family symmetry and briefly review the huge literature that has grown up
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around such approaches before focusing on two particular models based on SO(10) grand
unification and either U(1) or SU(3) family symmetry. Section 7 concludes the review.

We also present extensive appendices that deal with more technical issues but which may
provide useful model building tools. Appendix A proves the equivalence between different
parametrizations of the neutrino mixing matrix and gives a useful dictionary. Appendix B
gives the full three family neutrino oscillation formula (in vacuum). Appendix C derives the
formula given in the text for charged lepton contributions to the neutrino mixing matrix. Finally
appendix D discusses in detail how to diagonalize different kinds of mass matrices involving
two LMAs analytically to leading order in the small mixing angle.

2. Neutrino masses and mixing angles

The history of neutrino oscillations dates back to the work of Pontecorvo, who in 1957 [8]
proposed ν → ν̄ oscillations in analogy with K → K̄ oscillations, described as the mixing
of two Majorana neutrinos. Pontecorvo was the first to realize that what we call the ‘electron
neutrino’ for example, is really a linear combination of mass eigenstate neutrinos and that
this feature could lead to neutrino oscillations of the kind νe → νµ [9]. Later on, MSW
proposed that such neutrino oscillations could be resonantly enhanced in the Sun [10]. The
present section introduces the basic formalism of neutrino masses and mixing angles, gives an
up-to-date summary of the current experimental status of this fast moving field and discusses
future experimental prospects. Later in this section, we also discuss some more theoretical
aspects such as charged lepton contributions to neutrino mixing angles, and the neutrino mass
matrix.

2.1. Two state atmospheric neutrino mixing

In 1998, the Super-Kamiokande experiment published a paper [11] that represents a watershed
in the history of neutrino physics. Super-Kamiokande measured the number of electron and
muon neutrinos that arrive at the Earth’s surface as a result of cosmic ray interactions in
the upper atmosphere, which are referred to as ‘atmospheric neutrinos’. While the number
and angular distribution of electron neutrinos is as expected, Super-Kamiokande showed that
the number of muon neutrinos is significantly smaller than expected and that the flux of
muon neutrinos exhibits a strong dependence on the zenith angle. These observations gave
compelling evidence that muon neutrinos undergo flavour oscillations, and this in turn implies
that at least one neutrino flavour has a non-zero mass. The standard interpretation is that muon
neutrinos are oscillating into tau neutrinos.

Current atmospheric neutrino oscillation data are well described by simple two state
mixing, (

νµ

ντ

)
=

(
cos θ23 sin θ23

− sin θ23 cos θ23

) (
ν2

ν3

)
(2.1)

and the two state probability oscillation formula,

P(νµ → ντ ) = sin2 2θ23 sin2

(
1.27�m2

32
L

E

)
, (2.2)

where

�m2
ij ≡ m2

i − m2
j (2.3)

and mi are the physical neutrino mass eigenvalues associated with the mass eigenstates νi .
�m2

32 is in units of eV2, the baseline, L, is in km and the beam energy, E, is in GeV.
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Figure 1. Summary of the currently allowed regions from a global analysis of atmospheric and
solar neutrino experiments including first results from KamLAND (from H Murayama’s Web site
http://hitoshi.berkeley.edu/neutrino/).

The atmospheric data are statistically dominated by the Super-Kamiokande results, and
the latest reported data sample as of the time of writing leads to

sin2 2θ23 > 0.92, 1.3 × 10−3 eV2 < |�m2
32| < 3.0 × 10−3 eV2 (90% C.L.) (2.4)

The Super-Kamiokande region is shown in figure 1. The atmospheric neutrino data are thus
consistent with maximal νµ − ντ neutrino mixing, θ23 ≈ π/4 with |�m2

32| ≈ 2.5 × 10−3 eV2,
and the sign of �m2

32 undetermined. The maximal mixing angle means that we identify the
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heavy atmospheric neutrino of mass m3 as being approximately

ν3 ≈ νµ + ντ√
2

(2.5)

and in addition there is a lighter orthogonal combination of mass m2,

ν2 ≈ νµ − ντ√
2

. (2.6)

2.2. Three family solar neutrino mixing

Super-Kamiokande is also sensitive to the electron neutrinos arriving from the Sun, the ‘solar
neutrinos’, and has independently confirmed the reported deficit of such solar neutrinos long
reported by other experiments. For example, Davis’s Homestake Chlorine experiment, which
began data taking in 1970, consists of 615 tons of tetrachloroethylene and uses radiochemical
techniques to determine the Ar37 production rate. More recently, the SAGE and Gallex
experiments contain large amounts of Ga71, which is converted to Ge71 by low energy electron
neutrinos arising from the dominant pp reaction in the Sun. The combined data from these
and other experiments imply an energy dependent suppression of solar neutrinos which can
be interpreted as due to flavour oscillations. Taken together with the atmospheric data, this
requires that a second neutrino flavour has a non-zero mass. The standard interpretation is that
the electron neutrinos, νe, oscillate into the light linear combination ν2 ≈ (νµ − ντ )/

√
2.

SNO measurements of the charged current (CC) reaction on deuterium is sensitive
exclusively to νes, while the elastic scattering (ES) off electrons also has a small sensitivity
to νµs and ντ s. The CC ratio is significantly smaller than the ES ratio. This immediately
disfavours oscillations of νes to sterile neutrinos, which would lead to a diminished flux of
electron neutrinos but equal CC and ES ratios. On the other hand, the different ratios are
consistent with oscillations of νes to active neutrinos νµs and ντ s since this would lead to a
larger ES rate since this has a neutral current component. The SNO analysis is nicely consistent
with both the hypothesis that electron neutrinos from the Sun oscillate into other active flavours
and with the Standard Solar Model prediction. The latest results from SNO, including the data
taken with salt inserted into the detector to boost the efficiency of detecting the neutral current
events [12], strongly favour the LMA MSW solution. In other words there is no longer any
solar neutrino problem: we have instead solar neutrino mass!

The minimal neutrino sector required to account for the atmospheric and solar neutrino
oscillation data thus consists of three light physical neutrinos with left-handed flavour
eigenstates, νe, νµ and ντ , defined to be those states that share the same electroweak doublet
as the left-handed charged lepton mass eigenstates. Within the framework of three-neutrino
oscillations, the neutrino flavour eigenstates νe, νµ and ντ are related to the neutrino mass
eigenstates ν1, ν2 and ν3 with mass m1, m2 and m3, respectively, by a 3 × 3 unitary matrix
called the lepton mixing matrix, U [13]:

νe

νµ

ντ


 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3





ν1

ν2

ν3


 . (2.7)

Assuming the light neutrinos are Majorana, U can be parametrized in terms of three mixing
angles θij and three complex phases δij . A unitary matrix has six phases, but three of them
are removed by the phase symmetry of the charged lepton Dirac masses. Since the neutrino
masses are Majorana, there is no additional phase symmetry associated with them, unlike the
case of quark mixing, where a further two phases may be removed.
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If we suppose to begin with that the phases are zero, then the lepton mixing matrix may
be parametrized by a product of three Euler rotations,

U = R23R13R12, (2.8)

where

R23 =

1 0 0

0 c23 s23

0 −s23 c23


 , (2.9)

R13 =

 c13 0 s13

0 1 0
−s13 0 c13


 , (2.10)

R12 =

 c12 s12 0

−s12 c12 0
0 0 1


 , (2.11)

where cij = cos θij and sij = sin θij . Note that the allowed range of the angles is
0 � θij � π/2.

CHOOZ is a reactor experiment that failed to see any signal of neutrino oscillations over
the Super-Kamiokande mass range. CHOOZ data from ν̄e → ν̄e disappearance not being
observed provides a significant constraint on θ13 over the Super-Kamiokande (SK) preferred
range of �m2

32 [14]:

sin2 2θ13 < 0.1–0.3. (2.12)

The CHOOZ experiment therefore limits θ13 � 0.2 over the favoured atmospheric range, as
shown in figure 1.

KamLAND is a more powerful reactor experiment that measures ν̄es produced by
surrounding nuclear reactors. KamLAND has already seen a signal of neutrino oscillations
over the LMA MSW mass range and has recently confirmed the LMA MSW region ‘in the
laboratory’ [15]. KamLAND and SNO results when combined with other solar neutrino data,
especially those of Super-Kamiokande, uniquely specify the LMA MSW [10] solar solution
with three active light neutrino states, a large solar angle,

tan2 θ12 ≈ 0.4, �m2
21 ≈ 7 × 10−5 eV2, (2.13)

according to the most recent global fits [16] performed after the SNO salt data [12]. KamLAND
has thus not only confirmed solar neutrino oscillations but has also uniquely specified the LMA
solar solution, heralding a new era of precision neutrino physics.

The regions of atmospheric and solar parameter space currently allowed by all experiments
are depicted in figure 11. In figure 1, the atmospheric and LMA MSW solar regions are clearly
shown as elliptical regions, with the SMA, LOW and VAC regions now having disappeared.
One of the KamLAND rate plus shape allowed regions shown in figure 1 intersects the central
part of the LMA ellipse near the best fit LMA point as determined from the solar data alone,
thereby confirming the LMA MSW solution.

2.3. Summary of neutrino mixing angles and mass patterns

The current experimental situation is summarized by θ23 ≈ π/4, θ13 � 0.2 and θ12 ≈ π/6.
Ignoring phases, the relation between the neutrino flavour eigenstates νe, νµ and ντ and the

1 For more detailed most up to date plots of the LMA MSW region, see [16].
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θ
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ν

ν

ν
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µ

τ

θ23

Figure 2. The relation between the neutrino flavour eigenstates νe , νµ and ντ and the neutrino mass
eigenstates ν1, ν2 and ν3 in terms of the three mixing angles θ12, θ13 and θ23. The atmospheric
angle is θ23 ≈ π/4, the CHOOZ angle is θ13 � 0.2 and the solar angle is θ12 ≈ π/6.

Figure 3. Alternative neutrino mass patterns that are consistent with neutrino oscillation
explanations of the atmospheric and solar data. The absolute scale of neutrino masses is not
fixed by oscillation data, and the lightest neutrino mass may vary from 0.0 to 0.23 eV.

neutrino mass eigenstates ν1, ν2 and ν3 is just given as a product of three Euler rotations in
equation (2.8) as depicted in figure 2. This corresponds to the approximate form of the mixing
matrix,

U ≈




c12 s12 θ13

− s12√
2

c12√
2

1√
2

s12√
2

− c12√
2

1√
2




, (2.14)

where θ12 ≈ π/6 corresponds to s12 ≈ 1
2 , c12 ≈ √

3/2.
It is clear that neutrino oscillations, which only depend on �m2

ij ≡ m2
i − m2

j , give no
information about the absolute value of the neutrino mass squared eigenvalues m2

i , and there
are basically two patterns of neutrino mass squared orderings consistent with the atmospheric
and solar data as shown in figure 3.

2.4. Three family neutrino mixing with phases

Including the phases, assuming the light neutrinos are Majorana, U can be parametrized in
terms of three mixing angles θij and a Dirac phase δ, together with two Majorana phases,
β1 and β2, as follows:

U = R23U13R12P12, (2.15)
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where

U13 =

 c13 0 s13 e−iδ

0 1 0
−s13 eiδ 0 c13


 , (2.16)

P12 =

eiβ1 0 0

0 eiβ2 0
0 0 1


 , (2.17)

where cij = cos θij and sij = sin θij , and R23 and R12 were defined below equation (2.8).
Alternatively, the lepton mixing matrix may be expressed as a product of three complex

Euler rotations,

U = U23U13U12, (2.18)

where

U23 =

1 0 0

0 c23 s23 e−iδ23

0 −s23 eiδ23 c23


 , (2.19)

U13 =

 c13 0 s13 e−iδ13

0 1 0
−s13 eiδ13 0 c13


 , (2.20)

U12 =

 c12 s12 e−iδ12 0

−s12 eiδ12 c12 0
0 0 1


 . (2.21)

The equivalence of different parametrizations of the lepton mixing matrix, and the relation
between them are discussed in appendix A.

Three family oscillation probabilities depend upon the time-of-flight (and hence the
baseline, L), the �m2

ij and U (and hence θ12, θ23, θ13 and δ). Three state neutrino mixing
is discussed in appendix B. Since we have assumed that the neutrinos are Majorana, there are
two extra phases, but only one combination, δ = δ13 − δ23 − δ12, affects oscillations. If the
neutrinos are Dirac, then the phases β1 = β2 = 0, but the phase δ remains.

2.5. The LSND signal

The signal of another independent mass splitting from the LSND accelerator experiment [17]
would require either a further light neutrino state with no weak interactions (a so-called ‘sterile
neutrino’) or some other non-standard physics. This effect has not been confirmed by a similar
experiment, KARMEN [18], and currently a decisive experiment, MiniBooNE, is under way to
decide the issue. In figure 1, the LSND signal region is indicated, together with the KARMEN
excluded region.

2.6. Future experimental prospects

Further experimental progress from SNO and KamLAND will consist of pinning down LMA
MSW parameters to high accuracy. Neutrino physics has now entered the precision era.
Future neutrino oscillation experiments will give accurate information about the mass squared
splittings �m2

ij ≡ m2
i − m2

j , mixing angles and CP violating phase. In the near future, much
better solar neutrino measurements will be available as KamLAND, SNO and Borexino furnish
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us with new and better data. The K2K long baseline (LBL) experiment from KEK to Super-
Kamiokande has recently reported results in its phases I and II, which cover the atmospheric
region and support the Super-Kamiokande results. In the longer term, LBL experiments such
as MINOS, and eventually, the CERN to Gran Sasso experiments, will give more accurate
determinations of the atmospheric parameters, eventually to 10%. J-PARC will be an ‘off-axis
superbeam’, over a LBL of 295 km, to Super-Kamiokande, due to start in 2008. Its first goal
is to measure θ13 or set a limit on it of about 0.05 (as compared with the CHOOZ limit on θ13

of about 0.2). Interestingly, MINOS, over a LBL of 735 km, is more sensitive than J-PARC
to matter effects, and so there should be some interesting complementarity between these
two experiments, which could, for example, allow the sign of �m2

32 to be determined. The
ultimate goal of oscillation experiments however is to measure the CP violating phase δ. An
upgraded J-PARC with a 4 MW proton driver and a 1 megaton Hyper-Kamiokande detector or
some sort of Neutrino Factory based on muon storage rings would seem to be required for this
purpose [19].

Oscillation experiments are not capable of telling us anything about the absolute scale
of neutrino masses. The tritium beta decay experiment KATRIN will tell us about the
absolute scale of neutrino mass down to about 0.35 eV. The neutrinoless double beta decay
experiment GENIUS will probe the Majorana nature of the electron neutrino down to about
0.01 eV [20]. Recent results from the 2dF Galaxy Redshift Survey and WMAP, when combined
with oscillation data, give the strong limit on the absolute mass of each neutrino species of about
0.23 eV [21,22]. Turning to astrophysics, a galactic supernova could give valuable information
about neutrino masses [23]. In future, detection of energetic neutrinos from gamma ray bursts
(GRBs) by neutrino telescopes such as ANTARES or ICECUBE could also provide important
astrophysical information and may provide another means of probing neutrino mass and even
quantum gravity [24].

2.7. Charged lepton contributions to neutrino masses and mixing angles

Although we refer to neutrino masses and mixing angles, it is worth pointing out that in
general they could originate, at least in part, from the charged lepton sector. The (low energy)
Lagrangian involving the charged lepton and neutrino mass matrices,

Lmass = −(ēL1ēL2ēL3)m
E
LR(eR1eR2eR3)

T − 1
2 (ν̄L1ν̄L2ν̄L3)mLL(νc

L1ν
c
L2ν

c
L3)

T + H.c., (2.22)

where eLi are the three left-handed charged lepton states, eRi are the right-handed charged
lepton states νLi are the three left-handed neutrino states and νc

Li are their CP conjugates. Note
that the states νLi are not the mass eigenstate neutrinos since mLL is not diagonal in general. We
shall refer to the mass eigenstate neutrinos as νi (without the L subscript), as in equation (2.7).

In general the neutrino and charged lepton masses are given by the eigenvalues of a complex
charged lepton mass matrix, mE

LR , and a complex symmetric neutrino Majorana matrix, mLL,
obtained by diagonalizing these mass matrices,

V ELmE
LRV ER

† =

me 0 0

0 mµ 0
0 0 mτ


 , (2.23)

V νLmLLV νL T =

m1 0 0

0 m2 0
0 0 m3


 , (2.24)

where V EL , V ER and V νL are unitary transformations on the left-handed charged lepton fields,
EL, right-handed charged lepton fields, ER and left-handed neutrino fields, νL, which put the
mass matrices into diagonal form with real eigenvalues.
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After having diagonalized the mass matrices, the lepton mixing matrix is then
constructed by

U = V ELV νL †
. (2.25)

A unitary three-dimensional matrix has six independent phases. As discussed in appendix B,
the freedom in the charged lepton phase enables three of the phases to be removed from U

to leave three phases. Since we have assumed that the neutrinos are Majorana, there is no
further phase freedom, and the three remaining phases are physical (unlike the case of Dirac
neutrinos, where a further two phases can be removed, analogous to the case of the CKM
matrix in the quark sector). Having constructed the lepton mixing matrix as discussed above,
it may then be parametrized as discussed in section 2. Having done this, one may then ask
how much of a contribution to a particular mixing angle or phase comes from the neutrino
sector and how much comes from the charged lepton sector. The lepton mixing matrix is
constructed in equation (2.17) as a product of a unitary matrix from the charged lepton sector,
V EL , and a unitary matrix from the neutrino sector, V νL †. Each of these unitary matrices may
be parametrized by its own mixing angles and phases, analogous to the lepton mixing matrix
parameters. As shown in appendix C [26], the lepton mixing matrix can be expanded in terms
of neutrino and charged lepton mixing angles and phases to leading order in the charged lepton
mixing angles which are assumed to be small,

s23 e−iδ23 ≈ s
νL

23 e−iδ
νL
23 − θ

EL

23 c
νL

23 e−iδ
EL
23 , (2.26)

θ13 e−iδ13 ≈ θ
νL

13 e−iδ
νL
13 − θ

EL

13 c
νL

23 e−iδ
EL
13 + θ

EL

12 s
νL

23 ei(−δ
νL
23 −δ

EL
12 ), (2.27)

s12 e−iδ12 ≈ s
νL

12 e−iδ
νL
12 + θ

EL

23 s
νL

12 e−iδ
νL
12 + θ

EL

13 c
νL

12s
νL

23 ei(δ
νL
23 −δ

EL
13 ) − θ

EL

12 c
νL

23c
νL

12 e−iδ
EL
12 . (2.28)

Clearly, θ13 receives important contributions not just from θ
νL

13 but also from the charged lepton
angles θ

EL

12 and θ
EL

13 . In models where θ
νL

13 is extremely small, θ13 may originate almost entirely
from the charged lepton sector. Charged lepton contributions could also be important in models
where θ

νL

12 = π/4 since charged lepton mixing angles may allow consistency with the LMA
MSW solution. Such effects are important for the inverted hierarchy model [26].

Note that it is useful and possible to be able to diagonalize the mass matrices analytically,
at least to first order in the small 13 mixing angles but allowing the 23 and 12 angles to be
large, while retaining all the phases. The procedure for doing this is discussed for a hierarchical
general mass matrix in appendix D.1, for a hierarchical neutrino mass matrix in appendix D.2
and for an inverted hierarchical neutrino mass matrix in appendix D.3. The analytic results
in these appendices enable the separate mixing angles and phases associated with each of the
unitary transformations V EL and V νL † to be obtained in many useful cases of interest.

2.8. The neutrino mass matrix

For many (but not all) purposes, it is convenient to forget about the division between charged
lepton and neutrino mixing angles and work in a basis where the charged lepton mass matrix is
diagonal. Then the lepton mixing angles and phases simply correspond to the neutrino ones.
In this special basis, the mass matrix is given by equations (2.24) and (2.17) as

mLL = U


m1 0 0

0 m2 0
0 0 m3


 UT. (2.29)

For a given assumed form of U and set of neutrino masses, mi , one may use equation (2.29)
to ‘derive’ the form of the neutrino mass matrix, mLL, and this results in the candidate mass
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Table 1. Leading order low energy neutrino Majorana mass matrices, mLL, consistent with large
atmospheric and solar mixing angles, classified according to the rate of neutrinoless double beta
decay and the pattern of neutrino masses.

Type I Type II
Small ββ0ν Large ββ0ν

A
Normal hierarchy ββ0ν � 0.0082 eV

m2
1, m

2
2 � m2

3


0 0 0

0 1 1
0 1 1


 m

2
—

B
Inverted hierarchy ββ0ν � 0.0082 eV ββ0ν � 0.0085 eV

m2
1 ≈ m2

2 � m2
3


0 1 1

1 0 0
1 0 0


 m√

2




1 0 0
0 1

2
1
2

0 1
2

1
2


 m

C
Approximate degeneracy ββ0ν � 0.035 eV

diag(1,1,1)m

m2
1 ≈ m2

2 ≈ m2
3




0
1√
2

1√
2

1√
2

1
2

1
2

1√
2

1
2

1
2




m


1 0 0

0 0 1
0 1 0


 m

matrices in table 1 [28]. Only the leading order forms are displayed explicitly in table 1, and
more accurate structures may be obtained case by case.

In table 1, the mass matrices are classified into two types:

Type I—small neutrinoless double beta decay.
Type II—large neutrinoless double beta decay.

They are also classified into the limiting cases consistent with the mass squared orderings
in figure 3:

A—normal hierarchy, m2
1, m

2
2 � m2

3.
B—inverted hierarchy, m2

1 ≈ m2
2 � m2

3.
C—approximate degeneracy, m2

1 ≈ m2
2 ≈ m2

3.

Thus, according to our classification, there is only one neutrino mass matrix consistent
with the normal neutrino mass hierarchy, which we call Type IA, corresponding to the leading
order neutrino masses of the form mi = (0, 0, m). For the inverted hierarchy, there are
two cases, Type IB, corresponding to mi = (m, −m, 0), and Type IIB, corresponding to
mi = (m, m, 0). For the approximate degeneracy cases, there are three cases, Type IC,
corresponding to mi = (m, −m, m), and two examples of Type IIC corresponding to either
mi = (m, m, m) or mi = (m, m, −m).

At present experiment allows any of the matrices in table 1. In future, it will be possible
to specify the neutrino matrix uniquely in the following way:

1. Neutrinoless double beta effectively measures the 11 element of the mass matrix, mLL,
corresponding to

ββ0ν ≡
∑

i

U 2
eimi (2.30)
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and is clearly capable of resolving Type I from Type II cases according to the bounds given
in table 1 [29]. There has been a recent claim of a signal in neutrinoless double beta decay
corresponding to ββ0ν = 0.11–0.56 eV at 95% C.L. [30]. However, this claim has been
criticised by two groups [31, 32], and in turn this criticism has been refuted [33]. Since
the Heidelberg–Moscow experiment has almost reached its full sensitivity, we may have
to wait for a next generation experiment such as GENIUS [20] that is capable of pushing
down the sensitivity to 0.01 eV to resolve this question.

2. A neutrino factory will measure the sign of �m2
32 and resolve A from B.

3. Tritium beta decay experiments are sensitive to C since they measure the ‘electron neutrino
mass’ defined by

|mνe
| ≡

∑
i

|Uei |2|mi |. (2.31)

For example, the KATRIN [34] experiment has a proposed sensitivity of 0.35 eV. As
already mentioned, the galaxy power spectrum combined with solar and atmospheric
oscillation data already limits each neutrino mass to be less than about 0.23 eV, and this
limit is also expected to improve in the future. Also, it is worth mentioning that in future
it may be possible to measure neutrino masses from GRBs using time-of-flight techniques
in principle down to 0.001 eV [24].

Types IIB and C involve small fractional mass splittings, |�m2
ij | � m2, that are unstable

under radiative corrections [35], and even the most natural Type IC case is difficult to
implement [36, 37]. Types IA and IB seem to be the most natural cases.

Consider the case of full neutrino mass hierarchy, m3 � m2 � m1 ≈ 0, which is a special
case of Type IA, where in this case

m3 ∼
√

|�m2
32| ∼ 5 × 10−2 eV and m2 ∼

√
|�m2

21| ∼ 7 × 10−3 eV.

From equations (2.14) and (2.29) we find the symmetric mass matrix,

mLL ≈




m2s
2
12

1√
2
(m2s12c12 + m3θ13) − 1√

2
(m2s12c12 − m3θ13)

· 1
2 (m3 + m2c

2
12)

1
2 (m3 − m2c

2
12)

· · 1
2 (m3 + m2c

2
12)


 , (2.32)

neglecting terms like m2θ13. Clearly, this expression reduces to the leading Type IA form
with m = m3 in the approximation that m2 and θ13 are neglected. However, the more exact
expression in equation (2.32) shows that the required form of mLL should have a very definite
detailed structure, which goes beyond the leading approximation in table 1. For example, the
requirement m2 � m3 implies that the sub-determinant of the mass matrix, mLL, is small:

det

(
m22 m23

m23 m33

)
� m2

3. (2.33)

This requirement in equation (2.33) is satisfied by equation (2.32), as may be readily seen, and
this condition must be reproduced in a natural way (without fine-tuning) by any successful
theory.

3. The see-saw mechanism

There are several different kinds of see-saw mechanism in the literature. In this review we shall
focus on the simplest Type I see-saw mechanism, which we shall introduce below. However,
for completeness we shall also discuss the Type II see-saw mechanism and the double see-saw
mechanism.
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3.1. Type I see-saw

Before discussing the see-saw mechanism, it is worth first reviewing the different types of
neutrino mass that are possible. So far, we have been assuming that neutrino masses are
Majorana masses of the form

mLLν̄Lνc
L, (3.1)

where νL is a left-handed neutrino field and νc
L is the CP conjugate of a left-handed neutrino

field, in other words a right-handed antineutrino field. Such Majorana masses are possible
since both the neutrino and the antineutrino are electrically neutral and so Majorana masses
are not forbidden by electric charge conservation. For this reason, a Majorana mass for the
electron would be strictly forbidden. However, such Majorana neutrino masses violate lepton
number conservation and in the Standard Model, assuming only Higgs doublets are present,
are forbidden at the renormalizable level by gauge invariance. The idea of the simplest version
of the see-saw mechanism is to assume that such terms are zero to begin with but are generated
effectively after right-handed neutrinos are introduced [5].

If we introduce right-handed neutrino fields, then there are two sorts of additional neutrino
mass terms that are possible. There are additional Majorana masses of the form

MRRν̄Rνc
R, (3.2)

where νR is a right-handed neutrino field and νc
R is the CP conjugate of a right-handed neutrino

field, in other words a left-handed antineutrino field. In addition, there are Dirac masses of
the form

mLRν̄LνR. (3.3)

Such Dirac mass terms conserve lepton number and are not forbidden by electric charge
conservation even for the charged leptons and quarks.

Once this is done, then the types of neutrino mass discussed in equations (3.2) and (3.3)
(but not equation (3.1) since we assume no Higgs triplets) are permitted, and we have the mass
matrix (

ν̄L ν̄c
R

) (
0 mLR

mT
LR MRR

) (
νc

L

νR

)
. (3.4)

Since the right-handed neutrinos are electroweak singlets, the Majorana masses of the right-
handed neutrinos, MRR , may be orders of magnitude larger than the electroweak scale. In the
approximation that MRR � mLR , the matrix in equation (3.4) may be diagonalized to yield
effective Majorana masses of the type in equation (3.1),

mLL = −mLRM−1
RRmT

LR. (3.5)

The effective left-handed Majorana masses, mLL, are naturally suppressed by the heavy scale
MRR . In a one family example, if we take mLR = MW and MRR = MGUT, then we find
mLL ∼ 10−3 eV, which looks good for solar neutrinos. Atmospheric neutrino masses would
require a right-handed neutrino with a mass below the GUT scale.

The see-saw mechanism can be formally derived from the following Lagrangian,

L = −ν̄LmLRνR − 1
2νT

RMRRνR + H.c., (3.6)

where νL represents left-handed neutrino fields (arising from electroweak doublets) and
νR represents right-handed neutrino fields (arising from electroweak singlets), in a matrix
notation where the mLR matrix elements are typically of order the charged lepton masses,
while the MRR matrix elements may be much larger than the electroweak scale and may be
up to the Planck scale. The number of right-handed neutrinos is not fixed, but the number of
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left-handed neutrinos is equal to three. Below the mass scale of the right-handed neutrinos,
we can integrate them out using the equations of motion

dL
νR

= 0, (3.7)

which gives

νT
R = −ν̄LmLRM−1

RR, νR = −M−1
RRmT

LRν̄T
L. (3.8)

Substituting back into the original Lagrangian, we find

L = − 1
2 ν̄LmLLνc

L + H.c. (3.9)

with mLL as in equation (3.5).

3.2. Type II see-saw and double see-saw

The version of the see-saw mechanism discussed so far is sometimes called the Type I
see-saw mechanism. It is the simplest version of the see-saw mechanism and can be thought
of as resulting from integrating out heavy right-handed neutrinos to produce the effective
dimension 5 neutrino mass operator,

− 1
2HuL

TκHuL, (3.10)

where

κ = Y ν
LRM−1

RRY ν
LR

T
. (3.11)

One might wonder if it is possible to simply write down an operator by hand similar to
equation (3.10), without worrying about its origin. In fact, historically, such an operator
was introduced, suppressed by the Planck scale (rather than the right-handed neutrino mass
scales) by Weinberg in order to account for small neutrino masses [38]. The problem is that
such a Planck scale suppressed operator would lead to neutrino masses of the order of 10−5 eV,
which are too small to account for m2 or m3 (though they could account for m1). To account
for m3 requires dimension 5 operators suppressed by a mass scale of order 3 × 1014 GeV if the
dimensionless coupling of the operator is of order unity and the Higgs VEV is equal to that of
the Standard Model.

One might also wonder if the see-saw mechanism with right-handed neutrinos is the only
possibility. In fact, it is possible to generate the dimension 5 operator in equation (3.10) by the
exchange of heavy Higgs triplets of SU(2)L, referred to as the Type II see-saw mechanism.

Alternatively, the see-saw can be implemented in a two stage process by introducing
additional neutrino singlets beyond the three right-handed neutrinos that we have considered
so far. It is useful to distinguish between ‘right-handed neutrinos’, νR , which carry B–L and
perhaps form SU(2)R doublets with right-handed charged leptons, and ‘neutrino singlets’, S,
which have no Yukawa couplings to the left-handed neutrinos but which may couple to νR . If
the singlets have Majorana masses MSS but the right-handed neutrinos have a zero Majorana
mass, MRR = 0, the see-saw mechanism may proceed via mass couplings of singlets to
right-handed neutrinos, MSR . In the basis (νL, νR, S), the mass matrix is

 0 mLR 0
mLR 0 MRS

0 MT
RS MSS


 . (3.12)

Assuming MSS � MRS , the light physical left-handed Majorana neutrino masses are then
doubly suppressed,

mLL = mLRM−1
RSMSSM

T
RS

−1
mT

LR. (3.13)

This is called the double see-saw mechanism. It is often used in string inspired neutrino mass
models [39].
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4. Right-handed neutrino dominance

In this section, we discuss an elegant and natural way of accounting for a neutrino mass
hierarchy and two LMAs, by simply assuming that not all the right-handed neutrinos contribute
equally to physical neutrino masses in the see-saw mechanism. This mechanism, called SD,
is a technique rather than a model and can be applied to large classes of models. Indeed the
conditions for SD can only be understood within particular models and provide useful clues
to the nature of such models.

4.1. Single right-handed neutrino dominance

With three left-handed neutrinos and three right-handed neutrinos, the Dirac masses, mLR , are a
3×3 (complex) matrix and the heavy Majorana masses, MRR , form a separate 3×3 (complex
symmetric) matrix. The light effective Majorana masses, mLL, are also a 3 × 3 (complex
symmetric) matrix and continue to be given from equation (3.5), which is now interpreted as a
matrix product. From a model building perspective, the fundamental parameters that must be
input into the see-saw mechanism are the Dirac mass matrix, mLR , and the heavy right-handed
neutrino Majorana mass matrix, MRR . The light effective left-handed Majorana mass matrix,
mLL, arises as an output according to the see-saw formula in equation (3.5). The goal of
see-saw model building is therefore to choose input see-saw matrices mLR and MRR that will
give rise to one of the successful matrices, mLL, in table 1.

We now show how the input see-saw matrices can be simply chosen to give the Type IA
matrix, with the property of a naturally small sub-determinant in equation (2.33) using a
mechanism first suggested in [40] 2. The idea was developed in [42], where it was called
single right-handed neutrino dominance (SRHND). SRHND was first successfully applied to
the LMA MSW solution in [43].

To understand the basic idea of dominance, it is instructive to begin by discussing a simple
2×2 example, where we have in mind applying this to the atmospheric mixing in the 23 sector:

MRR =
(

Y 0
0 X

)
, mLR =

(
e b

f c

)
. (4.1)

The see-saw formula in equation (3.5), mLL = mLRM−1
RRmT

LR , gives

mLL =




e2

Y
+

b2

X

ef

Y
+

bc

X

ef

Y
+

bc

X

f 2

Y
+

c2

X


 ≈




e2

Y

ef

Y

ef

Y

f 2

Y


 , (4.2)

where the approximation in equation (4.2) assumes that the right-handed neutrino of mass Y

is sufficiently light that it dominates in the see-saw mechanism:

e2, f 2, ef

Y
� b2, c2, bc

X
. (4.3)

The neutrino mass spectrum from equation (4.2) then consists of one neutrino with mass
m3 ≈ (e2 + f 2)/Y and one naturally light neutrino, m2 � m3, since the determinant of
equation (4.2) is clearly approximately vanishing, due to the dominance assumption [40]. The
atmospheric angle from equation (4.2) is tan θ23 ≈ e/f [40], which can be large or maximal
providing e ≈ f , even in the case e, f, b � c, where the neutrino Dirac mixing angles arising
from equation (4.1) are small. Thus two crucial features, namely a neutrino mass hierarchy

2 See also [41].
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m2
3 � m2

2 and a large neutrino mixing angle, tan θ23 ≈ 1, can arise naturally from the see-saw
mechanism assuming the dominance of a single right-handed neutrino. It was also realized
that small perturbations from the sub-dominant right-handed neutrinos can then lead to a small
solar neutrino mass splitting [40], as we now discuss.

4.2. Sequential right-handed neutrino dominance

In order to account for the solar and other mixing angles, we must generalize the above
discussion to the 3×3 case. The SRHND mechanism is most simply described assuming three
right-handed neutrinos in the basis where the right-handed neutrino mass matrix is diagonal,
although it can also be developed in other bases [42, 43]. In this basis, we write the input
see-saw matrices as

MRR =

Y 0 0

0 X 0
0 0 X′


 , (4.4)

mLR =

d a a′

e b b′

f c c′


 . (4.5)

In [40] it was suggested that one of the right-handed neutrinos may dominate the contribution
to mLL if it is lighter than the other right-handed neutrinos. The dominance condition was
subsequently generalized to include other cases where the right-handed neutrino may be heavier
than the other right-handed neutrinos but dominates due to its larger Dirac mass couplings [42].
In any case, the dominant right-handed neutrino may be taken to be the one with mass Y without
loss of generality.

It was subsequently shown how to account for the LMA MSW solution with a large solar
angle [43] by careful consideration of the sub-dominant contributions. One of the examples
considered in [43] is when the right-handed neutrinos dominate sequentially,

|e2|, |f 2|, |ef |
Y

� |xy|
X

� |x ′y ′|
X′ , (4.6)

which is the straightforward generalization of equation (4.3), where x, y ∈ a, b, c and
x ′, y ′ ∈ a′, b′, c′. Assuming SRHND with sequential sub-dominance as in equation (4.6),
then equations (3.5), (4.4) and (4.5) give

mLL ≈




a2

X
+

d2

Y

ab

X
+

de

Y

ac

X
+

df

Y

.
b2

X
+

e2

Y

bc

X
+

ef

Y

. .
c2

X
+

f 2

Y




, (4.7)

where the contribution from the right-handed neutrino of mass X′ may be neglected according
to equation (4.6). If the couplings satisfy the SD condition in equation (4.6), then the
matrix in equation (4.7) resembles the Type IA matrix and furthermore has a naturally small
sub-determinant as in equation (2.33). This leads to a full neutrino mass hierarchy,

m2
3 � m2

2 � m2
1 (4.8)

and, ignoring phases, the solar angle only depends on the sub-dominant couplings and is given
by tan θ12 ≈ a/(c23b − s23c) [43]. The simple requirement for a large solar angle is then
a ∼ b − c [43].
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Including phases, the neutrino masses are given to leading order in m2/m3 by diagonalizing
the mass matrix in equation (4.7) using the analytic procedure described in appendix D [26].
In the case that d = 0, corresponding to a 11 texture zero in equation (4.5), we have

m1 ∼ O

(
x ′y ′

X′

)
, (4.9)

m2 ≈ |a|2
Xs2

12

, (4.10)

m3 ≈ |e|2 + |f |2
Y

, (4.11)

where s12 = sin θ12 is given below. Note that with SD each neutrino mass is generated
by a separate right-handed neutrino, and the SD condition naturally results in a neutrino mass
hierarchy m1 � m2 � m3. The neutrino mixing angles are given to leading order in m2/m3 by

tan θ23 ≈ |e|
|f | , (4.12)

tan θ12 ≈ |a|
c23|b| cos(φ̃b) − s23|c| cos(φ̃c)

, (4.13)

θ13 ≈ ei(φ̃+φa−φe)
|a|(e∗b + f ∗c)
[|e|2 + |f |2]3/2

Y

X
, (4.14)

where we have written some (but not all) complex Yukawa couplings as x = |x|eiφx . The
phase δ is fixed to give a real angle θ12 by

c23|b| sin(φ̃b) ≈ s23|c| sin(φ̃c), (4.15)

where

φ̃b ≡ φb − φa − φ̃ + δ,

φ̃c ≡ φc − φa + φe − φf − φ̃ + δ.
(4.16)

The phase φ̃ is fixed to give a real angle θ13 by

φ̃ ≈ φe − φa − φCOSMO, (4.17)

where

φCOSMO = arg(e∗b + f ∗c) (4.18)

is the leptogenesis phase (for a recent review see [25] and original references are contained
therein) corresponding to the interference diagram involving the lightest and next-to-lightest
right-handed neutrinos [26].

4.3. Types of sequential dominance

Assuming SD, there is still an ambiguity regarding the mass ordering of the heavy Majorana
right-handed neutrinos. So far we have assumed that the dominant right-handed neutrino of
mass Y is dominant because it is the lightest one. We emphasize that this need not be the case.
The neutrino of mass Y could be dominant even if it is the heaviest right-handed neutrino,
providing its Yukawa couplings are strong enough to overcome its heaviness and satisfy the
condition in equation (4.6). In hierarchical mass matrix models, it is natural to order the right-
handed neutrinos so that the heaviest right-handed neutrino is the third one, the intermediate
right-handed neutrino is the second one and the lightest right-handed neutrino is the first one.
It is also natural to assume that the 33 Yukawa coupling is of order unity due to the large top
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Table 2. Types of sequential dominance (SD), classified according to the mass ordering of the right-
handed neutrinos. Light sequential dominance (LSD) corresponds to the dominant right-handed
neutrino of mass Y being the lightest. Intermediate sequential dominance (ISD) corresponds to the
dominant right-handed neutrino of mass Y being the intermediate one. Heavy sequential dominance
(HSD) corresponds to the dominant right-handed neutrino of mass Y being the heaviest.

Type of SD MRR Yν Leading Yν

LSDa
Y < X < X′


Y 0 0

0 X 0
0 0 X′





d a a′

e b b′

f c c′





0 0 0

0 0 0
0 0 1




LSDb
Y < X′ < X


Y 0 0

0 X′ 0
0 0 X





d a′ a

e b′ b

f c′ c





0 0 1

0 0 1
0 0 1




ISDa
X < Y < X′


X 0 0

0 Y 0
0 0 X′





a d a′

b e b′

c f c′





0 0 0

0 0 0
0 0 1




ISDb
X′ < Y < X


X′ 0 0

0 Y 0
0 0 X





a′ d a

b′ e b

c′ f c





0 0 1

0 0 1
0 0 1




HSDa
X′ < X < Y


X′ 0 0

0 X 0
0 0 Y





a′ a d

b′ b e

c′ c f





0 0 0

0 0 1
0 0 1




HSDb
X < X′ < Y


X 0 0

0 X′ 0
0 0 Y





a a′ d

b b′ e

c c′ f





0 0 0

0 0 1
0 0 1




quark mass. It is therefore possible that the dominant right-handed neutrino is the heaviest
(called heavy sequential dominance or HSD), the lightest (called light sequential dominance
or LSD) or the intermediate one (called intermediate sequential dominance or ISD) (table 2).
This leads to the six possible types of SD corresponding to the six possible mass orderings
of the right-handed neutrinos as shown in table 1. In each case, the dominant right-handed
neutrino is the one with mass Y , and the leading sub-dominant right-handed neutrino is the
one with mass X. The resulting see-saw matrix, mLL, is invariant under re-orderings of the
right-handed neutrino columns, but the leading order form of the neutrino Yukawa matrix, Yν ,
is not.

It is worth emphasizing that since all the forms above give the same light effective see-
saw neutrino matrix, mLL, in equation (4.7), under the SD assumption in equation (4.6), this
implies that the analytic results for neutrino masses and mixing angles applies to all these forms.
They are distinguished theoretically by different preferred leading order forms of the neutrino
Yukawa matrix, Yν , shown in the table. These leading order forms follow from the LMA
requirements e ∼ f and a ∼ b − c 3. Thus we see that LSDa and ISDa are consistent with a
form of Yukawa matrix with small Dirac mixing angles, while HSDa and HSDb correspond
to the so-called ‘lopsided’ forms. LSDb and ISDb correspond to the D-brane inspired ‘single
right-handed democracy’ form studied in [44]. They are also distinguished by leptogenesis
and lepton flavour violation, as we shall see.

For example, suppose that we impose the theoretical requirement that the neutrino Yukawa
matrix resemble hierarchical quark matrices and have a large 33 element of order unity but no
other large off-diagonal entries. Then the LMA requirements e ∼ f and a ∼ b−c immediately

3 Note that the leading order Yν in the table only gives the independent order unity entries in the matrix, so that,
for example, in LSDb we would expect b − c ∼ 1 in general and not zero.
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exclude HSDa, HSDb, LSDb and ISDb. We are left with LSDa and ISDa as the remaining
possibilities. If we further impose the requirement of a 11 texture zero, as motivated by the
GST relation [45], then a ∼ b − c excludes ISDa, and we are left uniquely with LSDa. We
shall later discuss an example of a realistic model of all quark and lepton masses and mixing
angles based on LSDa. For now, we note that for LSDa, in order to satisfy the SD condition
in equation (4.6), the heavy Majorana masses must be necessarily strongly hierarchical,

Y � X � X′. (4.19)

The reason is that the heavy right-handed neutrino of mass X′ has order unity Yukawa couplings
to left-handed neutrinos, which implies that the lightest right-handed neutrino of mass Y must
be significantly lighter in order to dominate.

4.4. Leptogenesis link

It is interesting to note that in LSDa, assuming a 11 texture zero, there is a link between the CP
violation required for leptogenesis and the phase δ measurable in accurate neutrino oscillation
experiments. This can be seen from equation (4.18), which may be expressed as

tan φCOSMO ≈ |b|s23s2 + |c|c23s3

|b|s23c2 + |c|c23c3
. (4.20)

From equations (4.17), (4.15) and (4.16),

tan(φCOSMO + δ) ≈ |b|c23s2 − |c|s23s3

−|b|c23c2 + |c|s23c3
, (4.21)

where we have written si = sin ηi, ci = cos ηi , where

η2 ≡ φb − φe, η3 ≡ φc − φf (4.22)

are invariant under a charged lepton phase transformation. The reason that the see-saw
parameters only involve two invariant phases, η2 and η3, rather than the usual six is due
to the LSD assumption, which has the effect of decoupling the heaviest right-handed neutrino,
which removes three phases, together with the assumption of a 11 texture zero, which removes
another phase.

Equation (4.21) shows that δ is a function of the two see-saw phases, η2 and η3, that
also determine φCOSMO in equation (4.20). If both the phases η2 and η3 are zero, then both
φCOSMO and δ are necessarily zero. This feature is absolutely crucial. It means that, barring
cancellations, measurement of a non-zero value for the phase δ at a neutrino factory will be
a signal of a non-zero value of the leptogenesis phase, φCOSMO. We also find the remarkable
result

|φCOSMO| = |φββ0ν |, (4.23)

where φββ0ν is the phase that enters the rate for neutrinoless double beta decay [46].

4.5. Comparison with the Smirnov approach

An early approach to obtaining LMAs from the see-saw mechanism was proposed by [47],
which is sometimes confused with SD. The purpose of this subsection is to briefly review the
Smirnov approach and explain how it differs from SD. The Smirnov approach for obtaining
LMAs from the see-saw mechanism is based on the theoretical assumption of having no LMAs
in the Yukawa sector [47].
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We shall briefly discuss the two family case considered in [47]. For this case the physical
lepton mixing angle is written as

θ ≡ θ
eLR

L − θ
νLR

L + θSS, (4.24)

where θ
eLR

L is the left-handed mixing angle that diagonalizes the charge lepton Yukawa matrix,
θ

νLR

L is the left-handed mixing angle that diagonalizes the neutrino Yukawa matrix and θSS is
defined to be the additional angle that results from the presence of the see-saw mechanism.
The basic idea [47] was that a LMA, θ , could originate from the see-saw mechanism via θSS

with θ
eLR

L and θ
νLR

L being small4. Smirnov obtains an approximate analytic expression for θSS

in the two family case,

tan θSS ≈ −2εD tan(θ
νLR

R − θ
νRR

R )

tan2(θ
νLR

R − θ
νRR

R ) + εM
, (4.25)

where θ
νLR

R is the mixing angle that diagonalizes the neutrino Yukawa Y ν
LR matrix on the right,

θ
νRR

R is the mixing angle that diagonalizes the heavy Majorana neutrino matrix, MRR , εD is the
ratio of neutrino Yukawa (Dirac) matrix eigenvalues and εM is the ratio of heavy Majorana
matrix eigenvalues. The conditions that θSS is large are

tan(θ
νLR

R − θ
νRR

R ) � εD, (4.26)

εM � (εD)2, (4.27)

which, for a typical quark-like hierarchy, εD � 1, imply both a very accurate equality of
mixing angles, θ

νLR

R = θ
νRR

R , and very strongly hierarchical heavy Majorana masses (much
stronger than the Dirac mass hierarchy).

The conditions in equations (4.26) and (4.27) are clearly nothing to do with SD in general.
For one thing since some versions of SD involve large neutrino Yukawa mixing angles, θ

νLR

L ,
and do not require θSS to be large, which is the basic assumption of this approach. However,
there are classes of SD model such as LSDa where θ

νLR

L is small and θSS is large. Furthermore,
in this class of model there is a strong hierarchy of Majorana masses. One might be tempted to
think that LSDa is the same as the Smirnov approach, and this has led to some confusion in the
literature, which we would like to clear up here. The important point to emphasize is that [47]
never talks about one of the right-handed neutrinos giving the dominant contribution to the
heaviest physical neutrino via the see-saw mechanism or indeed about the relative contribution
of the right-handed neutrinos to the see-saw mechanism in general. Thus, there is no natural
mechanism present for generating a neutrino mass hierarchy in [47], which is concerned only
with the condition for generating LMAs. The point about SD is that it can naturally generate
a neutrino mass hierarchy and LMAs as simple ratios of Yukawa couplings of dominant and
sub-dominant right-handed neutrinos.

A simple counter-example will illustrate this point. Consider the following matrices,

MRR =
(

A11ε
2
D A12εD

A12εD A22

)
M, YνLR =

(
a11εD a12εD

a21εD a22

)
, (4.28)

where Aij and aij are order unity coefficients. These matrices clearly satisfy the conditions in
equations (4.26) and (4.27), since θ

νLR

R ∼ θ
νRR

R ∼ εD and εM ∼ ε2
D . However, these matrices

do not satisfy the dominance conditions. Both right-handed neutrinos will contribute equally
at O(1/M) via the see-saw mechanism to the heaviest physical neutrino mass. Without the
dominance of a single right-handed neutrino, the neutrino mass hierarchy will require some
tuning. The tuning required for the atmospheric mixing angle involving second and third
families will be rather mild since m2/m3 is not so small; however, when this scheme is

4 Note that this is not a requirement of SD, although it may be satisfied by LSDa or ISDa, as discussed previously.
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extended to all three families, further tuning will be required to obtain a large solar mixing
angle in a natural way. In actual examples given in [47], even more tuning is likely to be
required since the angles θ

νLR

R and θ
νRR

R were both independently supposed to be larger than εD .
The conclusion is that Smirnov’s approach did not recognize right-handed neutrino

dominance, contrary to some recent claims in the literature, but it does provide a complementary
approach to LMAs from the see-saw mechanism. At first sight, it appears to have some
similarities to LSDa; however, without the missing ingredient of SD, to achieve two LMAs
together with a neutrino mass hierarchy will require some degree of fine-tuning. The conditions
proposed by Smirnov are therefore neither necessary nor sufficient for right-handed neutrino
dominance.

5. See-saw Standard Models

In this section, we show how the see-saw mechanism can be accomodated in the Standard
Model and its supersymmetric extension, where it leads to lepton flavour violation.

5.1. Minimal see-saw Standard Model

We now briefly discuss what the Standard Model looks like, assuming a minimal see-saw
extension. In the Standard Model, Dirac mass terms for charged leptons and quarks are
generated from Yukawa couplings to Higgs doublets whose vacuum expectation values give
the Dirac mass term. Neutrino masses are zero in the Standard Model because right-handed
neutrinos are not present and also because the Majorana mass terms in equation (3.1) require
Higgs triplets in order to be generated at the renormalizable level. The simplest way to generate
neutrino masses from a renormalizable theory is to introduce right-handed neutrinos, as in the
Type I see-saw mechanism, which we assume here. The Lagrangian for the lepton sector of
the Standard Model containing three right-handed neutrinos with heavy Majorana masses is5

Lmass = −εab[Ỹ e
ijH

a
d Lb

i e
c
j − Ỹ ν

ijH
a
u Lb

i ν
c
j + 1

2νc
i M̃

ij

RRνc
j ] + H.c., (5.1)

where εab = −εba , ε12 = 1, and the remaining notation is standard except that the three right-
handed neutrinos ν

p

R have been replaced by their CP conjugates νc
i , and M̃

ij

RR is a complex
symmetric Majorana matrix. When the two Higgs doublets get their VEVs 〈H 2

u 〉 = v2,
〈H 1

d 〉 = v1, where the ratio of VEVs is defined to be tan β ≡ v2/v1, we find the terms

Lmass = −v1Ỹ
e
ij eie

c
j − v2Ỹ

ν
ij νiν

c
j − 1

2M̃
ij

RRνc
i ν

c
j + H.c. (5.2)

Replacing CP conjugate fields, we can write in a matrix notation

Lmass = −ēLv1Ỹ e
∗
eR − ν̄Lv2Ỹ ν

∗
νR − 1

2νT
RM̃∗

RRνR + H.c. (5.3)

It is convenient to work in the diagonal charged lepton basis,

diag(me, mµ, mτ ) = VEL
v1Ỹ e

∗
V

†
ER

(5.4)

and the diagonal right-handed neutrino basis,

diag(M1, M2, M3) = VνR
M̃∗

RRV T
νR

, (5.5)

5 We introduce two Higgs doublets to pave the way for the Supersymmetric Standard Model. For the same reason,
we express the Standard Model Lagrangian in terms of left-handed fields, replacing right-handed fields by their CP
conjugates. In the case of the minimal standard see-saw model with one Higgs doublet, one of the two Higgs doublets
by the charge conjugate of the other, Hd ≡ Hc

u .
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where VeL, VeR and VνR
are unitary transformations. In this basis, the neutrino Yukawa

couplings are given by

Y ν = VEL
Ỹ ν∗

V T
νR

(5.6)

and the Lagrangian in this basis is

Lmass = −(ēLµ̄Lτ̄L)diag(me, mµ, mτ )(eRµRτR)T − (ν̄eLν̄µL
ν̄τ L)Y νv2(νR1νR2νR3)

T

−(νR1νR2νR3)diag(M1, M2, M3)(νR1νR2νR3)
T + H.c. (5.7)

After integrating out the right-handed neutrinos (the see-saw mechanism), we find

Lmass = −(ēLµ̄Lτ̄L)diag(me, mµ, mτ )(eRµRτR)T − 1
2 (ν̄eLν̄µL

ν̄τ L)mLL(νe
c
Lνµ

c
L
ντ

c
L)T + H.c.,

(5.8)

where the light effective left-handed Majorana neutrino mass matrix in the above basis is given
by the following see-saw formula, which is equivalent to equation (3.5):

mLL = −v2
2Y

ν diag(M−1
1 , M−1

2 , M−1
3 )Y νT

. (5.9)

Equation (5.8) is equivalent to equation (2.22) when expressed in the charged lepton mass
basis, which we have derived starting from the Standard Model Lagrangian using the see-saw
mechanism.

5.2. Minimal Supersymmetric see-saw Standard Model

It is well known that large mass scales such as are required in the see-saw mechanism can
be stabilized by assuming a TeV scale N = 1 supersymmetry that cancels the quadratic
divergences of the Higgs mass. Thus it is natural to generalize the see-saw Standard Model to
include supersymmetry. When this is done, the leptonic part of the superpotential with three
right-handed neutrinos is given by

W = εab[Ĥ a
d L̂b

i Ỹ
ij
e êc

j − Ĥ a
u L̂b

i Ỹ
ij
ν ν̂c

j + 1
2 ν̂c

i M̃
ij

RRν̂c
j ], (5.10)

where εab = −εba and ε12 = 1. The SU(2) representations of the lepton superfield doublets
can be expressed as follows (suppressing family indices for simplicity):

L̂i =
(

ν̂i

êi

)
. (5.11)

The superfields are defined in the standard way as follows (suppressing gauge indices):

ν̂i = (ν̃Li
, νLi

), êi = (ẽLi
, eLi

), êc
i = (ẽc

Li
, ec

Li
),

ν̂c
i = (ν̃c

Li
, νc

Li
), Ĥu = (Hu, H̃u), Ĥd = (Hd, H̃d)

(5.12)

with i, j = 1, . . . , 3 labelling family indices. The soft breaking Lagrangian Lsoft in the lepton
sector takes the form (dropping ‘helicity’ indices)

−Lsoft = εab[Ha
d L̃b

i Ã
e
ij ẽ

c
j + Ha

u L̃b
i Ã

ν
ij ν̃

c
j + 1

2 ν̃c
i b

ν
i ν̃

c
i + H.c.]

+L̃a
i m

2
Lij L̃

a∗
j + ẽc∗

i m2
Eij ẽ

c
j + ν̃c∗

i m2
Nij ν̃

c
j . (5.13)

The Yukawa terms in the Lagrangian are given from the superpotential by replacing
two of the superfields by their fermion components, and one of the superfields by its scalar
component, and including an overall minus sign. Then the leptonic part of the superpotential in
equation (5.10) reduces to the Standard Model Lagrangian in equation (5.1), and the discussion
then follows that of the previous section. For the charged leptons, we have as before,

diag(me, mµ, mτ ) = VEL
v∗

1 Ỹ
∗
e V

†
ER

, (5.14)
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in which 
eR

µR

τR


 = VER


eR1

eR2

eR3


 ,


eL

µL

τL


 = VEL


eL1

eL2

eL3


 . (5.15)

The important new feature provided by SUSY is the existence of scalar partners to the
leptons (sleptons) that can give lepton flavour violating (LFV) effects, which arise as discussed
in the following. To discuss these effects, we first need to express the sleptons in terms of
their mass eigenstates. It is usually convenient, however, to begin by rotating the sleptons in
exactly the same way as the lepton. In this basis, which we call the MNS basis, the photino
interactions conserve flavour, while the wino (and higgsino) interactions violate flavour by U ,
in analogy to the gauge boson interactions in the SM. Therefore, the diagonalization of the
scalar mass matrices proceeds in two steps. First, the sleptons are rotated ‘parallel’ to their
fermionic superpartners, i.e. we do unto sleptons as we do unto leptons:

 ẽR

µ̃R

τ̃R


 = VER


ẽR1

ẽR2

ẽR3


 ,


 ẽL

µ̃L

τ̃L


 = VEL


ẽL1

ẽL2

ẽL3


 , (5.16)

where in the MNS basis the slepton fields (ẽL, µ̃L, τ̃L) are SUSY partners of the physical mass
eigenstate quarks (eL, µL, τL), respectively (i.e. (ẽL, eL) share the same superfield where both
components of the superfield have been subject to the same rotation, thereby preserving the
superfield structure), and similarly for the other terms.

The slepton fields expressed in the MNS basis are often more convenient to work with,
even though they are not mass eigenstates. Their 6 × 6 mass matrices are obtained by adding
the electroweak symmetry breaking contributions and then rotating to the MNS basis. They
have the following form:

m2MNS

Ẽ
=


(m2

Ẽ
)LL + m2

e − cos 2β

6
(M2

Z + 2M2
W)1̂ (m2

Ẽ
)LR − tan βµme

(m2
Ẽ
)

†
LR − tan βµ�me (m2

Ẽ
)RR + m2

e − cos 2β

3
M2

Z sin2 θW 1̂


 ,

(5.17)

in which θW is the electroweak mixing angle, 1̂ stands for the 3 × 3 unit matrix, and we have
written me = diag(me, mµ, mτ ). The flavour-changing entries responsible for lepton flavour
violation are contained in the off-diagonal entries of the soft slepton mass matrices above,
which are given by

(m2
Ẽ
)LL = VEL

m2∗
L V

†
EL

, (m2
Ẽ
)RR = VER

m2∗
E V

†
ER

, (m2
Ẽ
)LR = v∗

1VEL
Ãe∗

V
†
ER

.

(5.18)

5.3. Lepton flavour violation

The re-normalization group equations (RGEs) contain additional terms relative to the MSSM.
The additional terms imply that even if the soft slepton masses are diagonal at the GUT
scale, then we would find that three separate lepton numbers, Le, Lµ and Lτ , are not conserved
at low energies since the new RGE terms do not preserve these symmetries in general if there
are right-handed neutrinos below the GUT scale. Below the mass scale of the right-handed
neutrinos, we must decouple the heavy right-handed neutrinos from the RGEs, and then the
RGEs return to those of the MSSM. Thus, the lepton number violating additional terms are only
effective in the region between the GUT scale and the mass scale of the lightest right-handed
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neutrino, and all the effects of lepton number violation are generated by RGE effects over this
range. The effect of RGE running over this range will lead to off-diagonal slepton masses at
high energy, which result in off-diagonal slepton masses at low energy and hence observable
lepton flavour violation in experiments.

Assuming universal soft parameters at MGUT, m2
L(0) = m2

N(0) = m2
0I , where I is the

unit matrix, and Ãν(0) = AYν , the RGE for the soft slepton doublet mass may be written as

dm2
L

dt
=

(
dm2

L

dt

)
Yν=0

− (3m2
0 + A2)

16π2
[YνY

†
ν ], (5.19)

where in the basis in which the charged lepton Yukawa couplings are diagonal, the first term
on the right-hand side is diagonal. In running the RGEs between MGUT and a right-handed
neutrino mass, Mi , the neutrino Yukawa couplings lead to an approximate contribution to the
slepton mass squared matrix of

δm2
L ≈ − 1

16π2
ln

(
M2

GUT

M2
i

)
(3m2

0 + A2)[YνY
†
ν ]. (5.20)

This shows that, to leading log approximation (LLA), off-diagonal slepton masses may be
generated depending on the form of the neutrino Yukawa matrix. The off-diagonal slepton
masses give rise to LFV processes such as µ → eγ , τ → µγ and τ → eγ . From a future
observation of these processes, one may infer information about the slepton mass matrix and
then use this information to make inferences about the neutrino Yukawa matrix and heavy right-
handed neutrino masses. This procedure would be impossible in the SM and is an example of
how supersymmetry may in the future provide a window into the Yukawa matrices that would
not otherwise be possible. This was originally discussed in [48–51] and has been discussed
recently in [52–58].

At leading order in a mass insertion approximation the branching fractions of LFV
processes are given by

BR(li → lj γ ) ≈ α3

G2
F

f (M2, µ, mν̃)|m2
L̃ij

|2 tan2 β, (5.21)

where l1 = e, l2 = µ, l3 = τ and where the off-diagonal slepton doublet mass squared is given
in the LLA by

m
2(LLA)

L̃ij

≈ − (3m2
0 + A2

0)

8π2
Cij , (5.22)

where in SD, in the notation of equations (4.4) and (4.5), the leading log coefficients relevant
for µ → eγ and τ → µγ are given approximately as

C21 = ab ln
MU

X
+ de ln

MU

Y
,

C32 = bc ln
MU

X
+ ef ln

MU

Y
.

(5.23)

A global analysis of LFV has been performed in the constrained minimal supersymmetric
Standard Model (CMSSM) for the case of SD, focusing on the two cases of HSD and LSD [57].
The results for HSD show a large rate for τ → µγ , which is the characteristic expectation
of lopsided models in general [53] and HSD in particular. The results are based on an exact
calculation, and the error incurred if the LLA were used can be as much as 100% [57]. For LSD,
τ → µγ is well below observable values. Therefore τ → µγ provides a good discriminator
between the HSD and LSD types of dominance. The rate for µ → eγ can be large or small in
each case.
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Figure 4. The fermion masses are here represented by a lego plot. We have multiplied the masses
of the bottom, charm and tau by 10, the strange and muon by 102, the up and down by 103 and the
electron by 104 to make the lego blocks visible. It is natural to assume a normal neutrino hierarchy.
We have multiplied the third neutrino mass by 1011 and the second neutrino mass by 1012 to make
the lego blocks visible. This underlines how incredibly light the neutrinos are. The symmetry
groups GGUT and GFamily act in the directions indicated.

6. GUTs and family symmetry

We have seen that atmospheric neutrino masses would seem to require a right-handed neutrino
with a mass below the GUT scale. Such a mass scale demands an explanation, and in fact one
must then explain why the right-handed neutrinos are so light compared with the Planck scale.
In order to explain this, one clearly needs a theory of right-handed neutrino masses capable of
protecting the right-handed neutrino masses by some symmetry that is subsequently broken at
some scale. Suitable symmetries can correspond to either unification or family symmetries,
as we now discuss.

6.1. Models based on GUTs and family symmetry

One of the exciting things about the discovery of neutrino masses and mixing angles is that this
provides additional information about the flavour problem—the problem of understanding the
origin of three families of quarks and leptons and their masses and mixing angles (figure 4).
Early approaches to the problem of quark masses and mixing angles included the postulate that
some entries in the Yukawa matrices were equal to zero (the so-called ‘texture zeros’), thereby
reducing the number of free parameters [59]. In this approach, the quark and lepton Yukawa
matrices are assumed to be hierarchical in nature with an order unity entry in the 33 entry.
Another complementary approach is to assume that the Yukawa matrices are democratic with
order unity entry everywhere [60], and both approaches have been followed for neutrino masses
and mixings [61–65]. A specific model of the neutrino mass matrix with texture zeros but with
a texture zero in the 33 position was proposed by Zee [66], and this has been developed recently
by a number of authors [67–70]. Unfortunately, the simplest Zee texture is now excluded by
experiment, although a non-minimal Zee type model remains viable [71].

To understand the origin of the postulated forms of Yukawa matrices, one must appeal to
some sort of family symmetry, GFamily, which acts in the direction shown in figure 4. In the
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Table 3. Some candidate GUT and family symmetry groups, and the papers that use these
symmetries to describe the LMA MSW solar solution and the atmospheric neutrino data
successfully.

GFamily

GGUT SU(3) SU(2) U(1) ZN SO(3) S(3) None

E6 [81] [98] [73]
SO(10) [107, 96] [85, 84] [72] [78]

[106] [74, 108] [104, 105]
SU(5) [76] [75, 97] [82]
51 [87]
422 [96] [94, 123] [105]
(321)3 [98] [89]
3221 [101]
321 [95] [99] [86] [91] [88, 90] [80, 102] [111]

[92, 100] [93, 112]

framework of the see-saw mechanism, new physics beyond the Standard Model is required
to violate lepton number and generate right-handed neutrino masses that are typically around
the GUT scale. This is also exciting since it implies that the origin of neutrino masses is also
related to some GUT symmetry group GGUT, which unifies the fermions within each family
as shown in figure 4.

Putting these ideas together, we are suggestively led to a framework of new physics beyond
the Standard Model based on N = 1 SUSY6 with commuting GUT and family symmetry
groups,

GGUT × GFamily. (6.1)

There are many possible candidate GUT and family symmetry groups, some of which
are listed in table 3. Unfortunately, the model dependence does not end there since the
details of the symmetry breaking vacuum plays a crucial role in specifying the model and
determining the masses and mixing angles, resulting in many models as given in [72–112]
(listed alphabetically). These models may be classified according to the particular GUT and
family symmetry they assume as shown in table 3.

We have used the notation that

51 ≡ SU(5) × U(1), (6.2)

422 ≡ SU(4)PS × SU(2)L × SU(2)R, (6.3)

3221 ≡ SU(3)C × SU(2)L × SU(2)R × U(1)B−L, (6.4)

321 ≡ SU(3)C × SU(2)L × U(1)Y , (6.5)

where 422 is the Pati–Salam gauge group, 3221 is the left–right symmetric gauge extension
and 321 is the Standard Model gauge group.

Another complication is that the masses and mixing angles determined in some high
energy theory must be run down to low energies using the RGEs [113, 114, 117, 115, 119].
Large radiative corrections are seen when the see-saw parameters [104] are tuned since the
spectrum is sensitive to small changes in the parameters, and this effect is sometimes used to
magnify small mixing angles into large ones [113, 35, 116, 118]. This idea has however been
criticised in [120]. In natural models based on SRHND, the parameters are not tuned since the
hierarchy and large atmospheric and solar angles arise naturally as discussed in the previous

6 Supersymmetry enables the gauge couplings to meet at the GUT scale to give a self-consistent unification picture.
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section. Therefore, in SRHND models, the radiative corrections to neutrino masses and mixing
angles are only expected to be a few per cent, and this has been verified numerically [121].

6.2. SO(10) × U(1)

As an example, we shall here consider a model based on a GUT group SO(10) and a family
symmetry U(1). We shall suppose that the GUT symmetry is broken via a Pati–Salam group
and define the model in terms of the subgroup 422 [94]. This model provides an example of
the use of both the U(1) family symmetry to generate interfamily hierarchies and the use of
Clebsch–Gordon coefficients from the GUT group to generate intrafamily structure.

The left-handed quarks and leptons are accommodated in the following 422
representations,

ψi = (4, 2, 1) =
(

uR uB uG ν

dR dB dG e−

)i

, (6.6)

ψ̄ i = (4̄, 1, 2̄) =
(

d̄R d̄B d̄G e+

ūR ūB ūG ν̄

)i

, (6.7)

where i = 1, . . . , 3 is a family index. The Higgs fields are contained in the following
representations,

h = (1, 2̄, 2) =
(

h2
+ h1

0

h2
0 h1

−

)
, (6.8)

where h1 and h2 are the low energy Higgs superfields associated with the MSSM.
The two heavy Higgs representations are

Hαb = (4, 1, 2) =
(

uR
H uB

H uG
H νH

dR
H dB

H dG
H e−

H

)
(6.9)

and

H̄αx = (4̄, 1, 2̄) =
(

d̄R
H d̄B

H d̄G
H e+

H

ūR
H ūB

H ūG
H ν̄H

)
. (6.10)

The Higgs fields are assumed to develop VEVs,

〈H 〉 ≡ 〈νH 〉 ∼ MGUT, 〈H̄ 〉 ≡ 〈ν̄H 〉 ∼ MGUT, (6.11)

leading to the symmetry breaking at MGUT,

SU(4) ⊗ SU(2)L ⊗ SU(2)R −→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (6.12)

in the usual notation. Under the symmetry breaking in equation (6.12), the Higgs field
h in equation (6.8) splits into two Higgs doublets, h1 and h2, whose neutral components
subsequently develop weak scale VEVs,

〈h0
1〉 = v1, 〈h0

2〉 = v2 (6.13)

with tan β ≡ v2/v1.
To construct the quark and lepton mass matrices, we make use of non-renormalizable

operators [122] of the form

(i) (ψiψ̄j )h

(
HH̄

M2

)n (
θ

M

)pij

, (6.14)

(ii) (ψ̄ iψ̄j )

(
HH

M2

) (
HH̄

M2

)m (
θ

M

)qij

. (6.15)
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The θ fields are Pati–Salam singlets that carry U(1) family charge and develop VEVs that
break the U(1) family symmetry. They are required to be present in the operators above
to balance the charge of the invariant operators. After the H and θ fields acquire VEVs,
they generate a hierarchy in (i) effective Yukawa couplings and (ii) Majorana masses. These
operators are assumed to originate from additional interactions at the scale M > MGUT. The
value of the powers pij and qij are determined by the assignment of U(1) charges, with
Xθ = −1; then pij = (Xψi + Xψ̄j + Xh) and qij = (Xψ̄i + Xψ̄j + Xh).

The contribution to the third family Yukawa coupling is assumed to be only from the
renormalizable operator with n = p = 0 leading to Yukawa unification. The contribution
of an operator with a given power n to the matrices Yf =u,d,ν,e and MRR is determined by the
relevant Clebsch factors coming from the gauge contractions within that operator. A list of
Clebsch factors for all n = 1 operators can be found in the appendix of [94]. These Clebsch
factors give zeros for some matrices and not for others, and hence a choice of operators can be
made such that a large 23 entry can be given to Yν and not Yu,d,e. We shall write

δ = 〈H 〉〈H̄ 〉
M2

= 0.22, ε = 〈θ〉
M2

= 0.22, (6.16)

then we can identify δ with mass splitting within generations and ε with splitting between
generations.

The choice of U(1) charges are as in [94] and can be summarized as Xψi = (1, 0, 0),
Xψ̄i = (4, 2, 0), Xh = 0, XH = 0 and XH̄ = 0. This fixes the powers of ε in each entry
of the Yukawa matrix but does not specify the complete operator. The Yukawa couplings are
specified by a particular choice of operators, [123, 94] with the property

O ∼ (HH̄ ) ∼ δ, O′ ∼ (HH̄ )2 ∼ δ2, O′′ ∼ (HH̄ )3 ∼ δ3. (6.17)

The Clebsch factors play an important part in determining the form of the Yukawa matrices.
The particular operator choice in [94] leads to the quark and lepton mass matrices below. For
example, the Clebsch coefficients from the leading operator in the 22 position gives the ratio
0 : 1 : 3 in the YU,D,E matrices. This ratio, along with sub-leading corrections, provides the
correct mc : ms : mµ ratio [124].

The final form of the Yukawa matrices is [123]

Yu ≈




√
2δ3ε5

√
2δ2ε3 2√

5
δ2ε

0
8

5
√

5
δ2ε2 0

0
8

5
δ2ε2 rt




, (6.18)

Y d ≈




8

5
δε5 −√

2δ2ε3 4√
5
δ2ε

2√
5
δε4

[√
2

5
δε2 +

16

5
√

5
δ2ε2

] √
2

5
δ2

8

5
δε5

√
2δε2 rb




, (6.19)
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Y e ≈




6

5
δε5 0 0

4√
5
δε4

[
−3

√
2

5
δε2 +

12

5
√

5
δ2ε2

]
−3

√
2

5
δ2

6

5
δε5

√
2δε2 1




, (6.20)

Y ν ≈




√
2δ3ε5 2δε3 0

0
6

5
√

5
δ2ε2 2δ

0
6

5
δ2ε2 rν


 , (6.21)

where the numerical Clebsch factors are displayed explicitly, and rt , rb and rν are order unity
parameters that quantify the deviations from exact Yukawa unification [123], but all other order
unity coefficients have been dropped.

The Majorana operators are assumed to arise from an m = 0 operator in the 33 position
and m = 1 operators elsewhere, resulting in

MRR ≈

δε8 δε6 δε4

δε6 δε4 δε2

δε4 δε2 1


 M3. (6.22)

In the neutrino sector, the matrices above satisfy the condition of SD in which a neutrino
mass hierarchy naturally results with the heaviest (third) right-handed neutrino being mainly
responsible for the atmospheric neutrino mass and the second heaviest right-handed neutrino
being mainly responsible for the solar neutrino mass. Thus this model corresponds to HSDa in
table 2. Using the HSDa ordering in table 2 with the matrices in equations (6.21) and (6.22),
we can use the analytic results in equations (4.9)–(4.14) to give estimates of neutrino masses

m1 ∼ δ5ε2 v2
2

M3
, (6.23)

m2 ≈ 4δε2

s2
12

v2
2

M3
, (6.24)

m3 ≈ (4δ2 + r2
ν )

v2
2

M3
(6.25)

and neutrino mixing angles

tan θν
23 ≈ 2δ

rν

, (6.26)

tan θν
12 ≈ 2

(c23(6/5
√

2) − s23(6/5))

ε

δ
, (6.27)

θν
13 ≈ (12/5)δ2ε((2δ/

√
5) + rν)

((2δ)2 + r2
ν )3/2

(6.28)

that are a good fit to the LMA MSW solution for ε and δ as in equation (6.16).

6.3. SO(10) × SU(3)

As an example of a model based on a non-Abelian family symmetry, we briefly review the
model proposed in [96]. The model uses the largest family symmetry, SU(3), consistent
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with SO(10) GUTs. An important further motivation for SU(3) family symmetry is, in the
framework of SD, to relate the second and third entries of the Yukawa matrix, as required to
obtain an almost maximal 23 mixing in the atmospheric neutrino sector [95]. In this framework,
we already saw that the theoretical requirements that the neutrino Yukawa matrix resemble
the quark Yukawa matrices and therefore have a large 33 element with no large off-diagonal
elements and a texture zero in the 11 position [45], lead uniquely to LSDa in table 2, where the
dominant right-handed neutrino is the first (lightest) one. Assuming this then, the atmospheric
neutrino mixing angle is given by tan θν

23 ≈ Y ν
21/Y ν

31 ≈ 1. The SD conditions that were
assumed in equation (4.6) will here be derived from the symmetries of the model. Thus, this
model provides an example of the application of SD to realistic models of flavour and shows
how the conditions of SD that were simply assumed earlier can motivate models based on
GUTs and family symmetry that are capable of explaining these conditions. In other words,
the conditions for SD can provide clues to the nature of the underlying flavour theory.

The starting point of the model is the observation that an excellent fit to all quark data is
given by the approximately symmetric form of quark Yukawa matrices [65],

Yu ∝

0 ε3 O(ε3)

· ε2 O(ε2)

· · 1


 , Y d ∝


0 1.5ε̄3 0.4ε̄3

· ε̄2 1.3ε̄2

· · 1


 , (6.29)

where the expansion parameters ε and ε̄ are given by

ε ≈ 0.05, ε̄ ≈ 0.15. (6.30)

This motivates a particular model in which the three families are unified as triplets under
an SU(3) family symmetry and 16s under an SO(10) GUT [95, 107, 96],

ψi = (3, 16), (6.31)

where as before the SO(10) is broken via the Pati–Salam group giving the equivalent
422 representations in equations (6.6) and (6.7),

ψi = (3, 4, 2, 1), ψ̄i = (3, 4̄, 1, 2̄). (6.32)

Further symmetries, R × Z2 × U(1), are assumed to ensure that the vacuum alignment leads
to a universal form of Dirac mass matrices for the neutrinos, charged leptons and quarks [96].
To build a viable model, we also need spontaneous breaking of the family symmetry,

SU(3) −→ SU(2) −→ Nothing. (6.33)

To achieve this symmetry breaking additional Higgs fields, φ3, φ̄3, φ23 and φ̄23, are required.
The largeness of the third family fermion masses implies that SU(3) must be strongly broken
by new Higgs antitriplet fields, φ3, which develop a VEV in the third SU(3) component,
〈φ3〉T = (0, 0, a3), as in [95]. φi

3 transforms under SU(2)R as 3 ⊕ 1 rather than being SU(2)R
singlets as assumed in [95] and develops VEVs in the SU(3) × SU(2)R directions:

〈φ3〉 = 〈φ̄3〉 =

0

0
1


 ⊗

(
au

3 0
0 ad

3

)
. (6.34)

The symmetry breaking also involves the SU(3) antitriplets φ23, which develop VEVs [95]

〈φ23〉 =

0

1
1


 b, (6.35)



140 S F King

where, as in [95], vacuum alignment ensures that the VEVs are aligned in the 23 direction.
Due to D-flatness, there must also be accompanying Higgs triplets such as φ̄23 that develop
VEVs [95]

〈φ̄23〉 =

0

1
1


 b. (6.36)

We also introduce an adjoint � field that develops VEVs in the SU(4)PS × SU(2)R direction,
which preserves the hypercharge generator Y = T3R +(B−L)/2 and implies that any coupling
of the � to a fermion and a messenger such as �aα

bβ ψc
aαχbβ , where the SU(2)R and SU(4)PS

indices have been displayed explicitly, is proportional to the hypercharge, Y , of the particular
fermion component of ψc times the VEV σ . In addition, a θ field is required for the construction
of Majorana neutrino masses.

The leading operators allowed by the symmetries are

PYuk ∼ 1

M2
ψiφ

i
3ψ̄jφ

j

3 h, (6.37)

+
�

M3
ψiφ

i
23ψ̄jφ

j

23h, (6.38)

PMaj ∼ 1

M
ψ̄iθ

iθj ψ̄j , (6.39)

where the operator mass scales, generically denoted by M , may differ, and we have suppressed
couplings of O(1).

The final form of the Yukawa matrices and heavy Majorana matrix after inserting a
particular choice of order unity coefficients is [96]

Yu ≈




0 1.2ε3 0.9ε3

−1.2ε3 − 2
3ε2 − 2

3ε2

−0.9ε3 − 2
3ε2 1


 ε̄, (6.40)

Y d ≈

 0 1.6ε̄3 0.7ε̄3

−1.6ε̄3 ε̄2 ε̄2 + ε̄5/2

−0.7ε̄3 ε̄2 1


 ε̄, (6.41)

Y e ≈

 0 1.6ε̄3 0.7ε̄3

−1.6ε̄3 3ε̄2 3ε̄2

−0.7ε̄3 3ε̄2 1


 ε̄, (6.42)

Y ν ≈

 0 1.2ε3 0.9ε3

−1.2ε3 −αε2 −αε2

−0.9ε3 −αε2 − ε3 1


 ε̄, (6.43)

MRR ≈

ε6ε̄3 0 0

0 ε6ε̄2 0
0 0 1


 M3. (6.44)

The model gives excellent agreement with the quark and lepton masses and mixing angles.
For the up and down quarks, the form of Yu and Y d given in equations (6.40) and (6.41) is
consistent with the phenomenological fit in equation (6.29). The charged lepton mass matrix
is of the Georgi–Jarslkog [124] form, which, after including radiative corrections, gives an
excellent description of the charged lepton masses. In the neutrino sector, the parameters
satisfy the conditions of SD (4.6), with the lightest right-handed neutrino giving the dominant
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contribution to the heaviest physical neutrino mass and the second right-handed neutrino giving
the leading sub-dominant contribution, providing that α ∼ ε. It thus falls into the category of
LSDa in table 2.

Analytic estimates of neutrino masses and mixing angles for SD were derived in [26], and
for the special case here of LSDa, with the 11 neutrino Yukawa coupling equal to zero, they
are given in equations (4.9)–(4.14), from which the analytic estimates below for the neutrino
masses are obtained,

m1 ∼ ε̄2 v2
2

M3
, (6.45)

m2 ≈ 5.8
v2

2

M3
, (6.46)

m3 ≈ 15
v2

2

M3
(6.47)

and neutrino mixing angles,

tan θν
23 ≈ 1.3, (6.48)

tan θν
12 ≈ 0.66, (6.49)

θν
13 ≈ 1.6ε̄. (6.50)

Note that the physical lepton mixing angle θ13 receives a large contribution from the neutrino
sector θν

13 ∼ 0.3 at the high energy scale for this choice of parameters, compared with the
current CHOOZ limit, θ13 � 0.2 [14]. However, the physical mixing angles will receive
charged lepton contributions [26], and all the parameters are subject to radiative corrections in
running from the high energy scale to low energies, although in SD models these corrections are
only a few per cent [121]. Thus, the model predicts that θ13 is close to the current CHOOZ limit
and could be observed by the next generation of LBL experiments such as MINOS or OPERA.

7. Conclusions

The focus of this review has been on ‘mainstream’ neutrino mass models, defined as see-saw
models involving three active neutrinos that are capable of describing both the atmospheric
neutrino oscillation data and the LMA MSW solar solution, which is now uniquely specified
by recent data. We have briefly reviewed the current experimental status, showed how to
parametrize and construct the neutrino mixing matrix and presented the leading order neutrino
Majorana mass matrices. We then introduced the see-saw mechanism and discussed a natural
application of it to current data using the SD mechanism, which we compared with an early
proposal for obtaining LMAs. We showed how both the Standard Model and the Minimal
Supersymmetric Standard Model may be extended to incorporate the see-saw mechanism and
showed how the latter case leads to the expectation of lepton flavour violation. The see-
saw mechanism motivates models with additional symmetries such as unification and family
symmetry models, and we tabulated some possible models before focusing on two particular
models based on SO(10) grand unification and either U(1) or SU(3) family symmetry
as specific examples. We have provided extensive appendices that include techniques for
analytically diagonalizing different types of mass matrices involving two LMAs and one small
mixing angle to leading order in the small mixing angle.

Neutrino physics has witnessed a renaissance period with the watershed provided by Super-
Kamiokande in 1998. Before then, we did not know whether atmospheric and solar neutrino
oscillations were fact or fancy. Now we know they are fact whose explanation requires two
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LMAs. We have seen in this review that there is no shortage of theoretical models that can
account for these data. Even discounting those theoretical models that predicted a small solar
angle, or vacuum oscillation mass splittings, there are many models that can describe the current
data. In this review, we have tried to emphasize useful approaches and techniques rather than
giving a detailed catalogue of all possible models. We make no apology for emphasizing the
see-saw mechanism, which is probably the most elegant way of accounting for small neutrino
masses. We have further shown that the see-saw mechanism may be successfully applied to the
atmospheric and solar data to yield a neutrino mass hierarchy and two LMAs in a technically
natural and elegant way using the idea of SD. SD requires certain mild conditions to apply,
and we have seen that these conditions may in turn arise from the symmetries of realistic
models.

The problem of neutrino masses and mixings should be addressed in the wider context of
the problem of all quark and lepton masses and mixing angles, and in this wider context we
have emphasized ideas such as unification and family symmetry that will surely play a role in
the ultimate solution to the problem of flavour. In table 3, we have classified successful models
according to the different unification and family symmetries upon which they are based. It
remains to be seen if any of these models will turn out to provide the solution to the problem of
flavour. If this turns out to be not the case, then the effort will not have been in vain since it is
quite likely that some of the ideas on which these models are based will survive. Here, we have
emphasized particularly promising ideas such as the see-saw mechanism, SD, supersymmetry,
unification and family symmetry, which when combined with the neutrino data could help to
unlock the whole mystery of flavour.
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Appendices

A. Equivalence of different parametrizations

In this appendix, we exhibit the equivalence of different parametrizations of the lepton mixing
matrix. A 3 × 3 unitary matrix may be parametrized by three angles and six phases. We shall
find it convenient to parametrize a unitary matrix V † by7

V † = P2R23R13P1R12P3, (A.1)

where Rij are a sequence of real rotations corresponding to the Euler angles θij , and Pi are
diagonal phase matrices. The Euler matrices are given by

R23 =

1 0 0

0 c23 s23

0 −s23 c23


 , (A.2)

R13 =

 c13 0 s13

0 1 0
−s13 0 c13


 , (A.3)

7 It is convenient to define the parametrization of V † rather than V because the lepton mixing matrix involves V νL †

and the neutrino mixing angles will play a central role.
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R12 =

 c12 s12 0

−s12 c12 0
0 0 1


 , (A.4)

where cij = cos θij and sij = sin θij . The phase matrices are given by

P1 =

1 0 0

0 eiχ 0
0 0 1


 , (A.5)

P2 =

1 0 0

0 eiφ2 0
0 0 eiφ3


 , (A.6)

P3 =

eiω1 0 0

0 eiω2 0
0 0 eiω3


 . (A.7)

By commuting the phase matrices to the left, it is not difficult to show that the
parametrization in equation (A.1) is equivalent to

V † = PU23U13U12, (A.8)

where P = P1P2P3 and

U23 =

1 0 0

0 c23 s23 e−iδ23

0 −s23 eiδ23 c23


 , (A.9)

U13 =

 c13 0 s13 e−iδ13

0 1 0
−s13 eiδ13 0 c13


 , (A.10)

U12 =

 c12 s12 e−iδ12 0

−s12 eiδ12 c12 0
0 0 1


 , (A.11)

where

δ23 = χ + ω2 − ω3, (A.12)

δ13 = ω1 − ω3, (A.13)

δ12 = ω1 − ω2. (A.14)

The matrix U is an example of a unitary matrix, and as such it may be parametrized by either
of the equivalent forms in equations (A.1) or (A.8). If we use the form in equation (A.8),
then the phase matrix, P , on the left may always be removed by an additional charged lepton
phase rotation, �V EL = P †, which is always possible since right-handed charged lepton
phase rotations can always make the charged lepton masses real. Therefore U can always
be parametrized by

U = U23U13U12, (A.15)

which involves just three irremovable physical phases δij . In this parametrization, the Dirac
phase δ that enters the CP odd part of neutrino oscillation probabilities is given by

δ = δ13 − δ23 − δ12. (A.16)
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Another common parametrization of the lepton mixing matrix is

U = R23U13R12P0, (A.17)

where

P0 =

eiβ1 0 0

0 eiβ2 0
0 0 1


 (A.18)

and in equation (A.17) U13 is of the form in equation (A.10) but with δ13 replaced by the Dirac
phase δ. The parametrization in equation (A.17) can be transformed into the parametrization
in equation (A.15) by commuting the phase matrix P0 in equation (A.17) to the left and
then removing the phases on the left-hand side by charged lepton phase rotations. The two
parametrizations are then related by the phase relations

δ23 = β2, (A.19)

δ13 = δ + β1, (A.20)

δ12 = β1 − β2. (A.21)

The use of the parametrization in equation (A.17) is widespread in the literature; however,
for the reasons discussed in the next subsection, we prefer to use the parametrization in
equation (A.15), which is trivially related to equation (A.17) by the above phase relations.

B. Three family oscillation formulae

At a Neutrino Factory, it is relatively straightforward to measure the angle θ13 using the Golden
Signature of ‘wrong sign’ muons. The effect relies on the full three family oscillation formulae
that we discuss in this appendix. For example, suppose there are positive muons circulating in
the storage ring; then these decay as µ+ → e+νeν̄µ, giving a mixed beam of electron neutrinos
and muon antineutrinos. The muon antineutrinos will interact in the far detector to produce
positive muons. Any ‘wrong sign’ negative muons that may be observed can only arise from
the neutrino oscillation of electron neutrinos into muon neutrinos with probability given by a
CP conserving part P + and a CP violating part P −. The exact formulae in vacuum are given by

P(νe → νµ) = P +(νe → νµ) + P −(νe → νµ), (B.1)

P(ν̄e → ν̄µ) = P +(ν̄e → ν̄µ) + P −(ν̄e → ν̄µ), (B.2)

where the CP conserving parts are

P +(νe → νµ) = P +(ν̄e → ν̄µ) = −4Re(Ue1U
∗
µ1U

∗
e2Uµ2) sin2

(
1.27�m2

21
L

E

)

−4Re(Ue1U
∗
µ1U

∗
e3Uµ3) sin2

(
1.27�m2

31
L

E

)

−4Re(Ue2U
∗
µ2U

∗
e3Uµ3) sin2

(
1.27�m2

32
L

E

)
(B.3)

and the CP violating parts are

P −(νe → νµ) = −P −(ν̄e → ν̄µ) = −c13 sin 2θ13 sin 2θ12 sin 2θ23 sin δ

× sin

(
1.27�m2

21
L

E

)
sin

(
1.27�m2

31
L

E

)
sin

(
1.27�m2

32
L

E

)
. (B.4)
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Note that P − requires all three families to contribute, and it vanishes if any mixing angle or
mass splitting is zero. The angle θ13 may easily be extracted from Ue3 in the dominant CP
conserving term P +.

In order to determine the CP violating phase, sin δ, it is necessary to measure the CP
violating term P −. In order to do this, one must compare the result for P(νe → νµ) with
the result for the case where the positive muons in the storage ring are replaced by negative
muons and the analogous experiment is performed to measure P(ν̄e → ν̄µ). The CP violating
asymmetry due to the CP violating phase δ is given by

Aδ = P(νe → νµ) − P(ν̄e → ν̄µ)

P (νe → νµ) + P(ν̄e → ν̄µ)
, (B.5)

from which we obtain

Aδ = P −(νe → νµ)

P +(νe → νµ)
≈ sin 2θ12 sin δ

sin θ13
sin

(
1.27�m2

21
L

E

)
. (B.6)

It is clear that in order to measure the CP asymmetry we require large θ12 and large �m2
21

and this corresponds to the LMA MSW solution. In addition, we require large sin δ. Also,
it would seem that having small θ13 enhances the CP asymmetry. However, it should be
remembered that the CP asymmetric rate, P −, in equation (B.4) is proportional to sin 2θ13,
and so θ13 should not be too small. Otherwise, the number of events will be too small.

Unfortunately, life is not quite as simple as the above discussion portrays. The Earth
is made from matter and not antimatter and so CP will be violated by matter effects as the
neutrino beam passes through the Earth from the muon storage ring to the far detector. For
example, the matter effects will modify the formulae for P(νe → νµ) involving θ13 and �m2

31
as follows:

sin 2θ13 → sin 2θ13

((A/�m2
31) − cos 2θ13)2 + sin2 2θ13

,

�m2
31 → �m2

31

√(
A

�m2
31

− cos 2θ13

)2

+ sin2 2θ13,

(B.7)

where

A = 7.6 × 10−5ρE, (B.8)

where ρ is the density of the Earth in g cm−3 and E is the beam energy in GeV. The point is
that for P(ν̄e → ν̄µ) the sign of A is reversed. From one point of view, this is good news
since unlike the vacuum oscillation formulae, �m2

31 enters linearly, not quadratically, and
so matter effects enable the sign of the mass squared splitting to be determined in a rather
straightforward way.

However, from the point of view of measuring sin δ, it leads to complications since the
asymmetry in the rate in equation (B.5) can get contributions from both intrinsic CP violation
and from matter induced CP violation, and the measured asymmetry is a sum of the two effects:

ACP = Aδ + Amatter. (B.9)

Since both effects are by themselves rather small, it will be a very difficult job to disentangle
them, and the optimal strategy continues to be studied [19]. The optimal place to sit in order
to observe CP violation seems to be at the peak of sin(1.27�m2

32L/E) in order to maximize
P − according to equation (B.4) (certainly we should avoid being at its node; otherwise CP
violation vanishes). In order to do this efficiently, it may be desirable to have energy-tunable
beams, and it is certainly necessary to have a good understanding of the density profile of the
Earth. Assuming the LMA solution, the prospects for measuring CP violation at a Neutrino
Factory are good.
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C. Charged lepton contributions to the lepton mixing matrix

In this appendix, we discuss the contribution of the charged lepton mixing angles to the lepton
mixing matrix. The lepton mixing matrix is constructed in equation (2.17) as a product of
a unitary matrix from the charged lepton sector V EL and a unitary matrix from the neutrino
sector, V νL †. Each of these unitary matrices may be parametrized by the parametrization of
V † in equation (A.1). Thus, we write

V νL † = P
νL

2 R
νL

23R
νL

13P
νL

1 R
νL

12P
νL

3 , (C.1)

V EL
† = P

EL

2 R
EL

23 R
EL

13 P
EL

1 R
EL

12 P
EL

3 , (C.2)

where the Euler angles and phases are defined as in equations (A.2)–(A.7), but now there
are independent angles and phases for the left-handed neutrino and charged lepton sectors
distinguished by the superscripts νL and EL. The lepton mixing matrix from equations (2.17),
(C.1) and (C.2) is then

U = P
EL

3
†
R

EL

12
†
P

EL

1
†
R

EL

13
†
R

EL

23
†
P

EL

2
†
P

νL

2 R
νL

23R
νL

13P
νL

1 R
νL

12P
νL

3 . (C.3)

As before, we commute all the phase matrices to the left and then choose P
EL

3
†

to cancel all
the phases on the left-hand side, to leave just

U = U
EL

12
†
U

EL

13
†
U

EL

23
†
U

νL

23 U
νL

13 U
νL

12 (C.4)

with independent phases and angles for the left-handed neutrino and charged lepton sectors,
in the convention of equations (A.9)–(A.11). The phases in equation (C.4) are given in terms
of the phases in equations (C.1) and (C.2) by

δ
νL

12 = ω
νL

1 − ω
νL

2 , (C.5)

δ
νL

13 = ω
νL

1 − ω
νL

3 , (C.6)

δ
νL

23 = χνL + ω
νL

2 − ω
νL

3 , (C.7)

δ
EL

23 = −φ
EL

2 + φ
EL

3 + φ
νL

2 − φ
νL

3 + χνL + ω
νL

2 − ω
νL

3 , (C.8)

δ
EL

13 = φ
EL

3 − φ
νL

3 + ω
νL

1 − ω
νL

3 , (C.9)

δ
EL

12 = χEL + φ
EL

2 − φ
νL

2 − χνL + ω
νL

1 − ω
νL

2 . (C.10)

The form of U in equation (C.4) is similar to the parametrization in equation (2.25), which is
the practical reason why we prefer that form rather than that in equation (A.17).

We now discuss the lepton mixing matrix to leading order in θ13. From equations (A.15)
and (A.9)–(A.11), we find to leading order in θ13 that U may be expanded as

U ≈

 c12 s12 e−iδ12 θ13 e−iδ13

−s12c23 eiδ12 − c12s23θ13 ei(δ13−δ23) c12c23 − s12s23θ13 ei(−δ23+δ13−δ12) s23 e−iδ23

s12s23 ei(δ23+δ12) − c12c23θ13 eiδ13 −c12s23 eiδ23 − s12c23θ13 ei(δ13−δ12) c23


 .

(C.11)

For θ13 = 0.1, close to the CHOOZ limit, the approximate form in equation (C.11) is accurate
to 1%.

We now wish to expand the MNS matrix in terms of neutrino and charged lepton mixing
angles and phases to leading order in small angles, using equation (C.4). In technically natural
theories, based on right-handed neutrino dominance, the contribution to θ23 comes mainly
from the neutrino sector, θ23 ≈ θ

νL

23 . Furthermore, in natural theories we expect that the
contributions to θ13 are all separately small, so that the smallness of this angle does not rely
on accidental cancellations. Clearly, this implies that θ

νL

13 and θ
EL

13 must both be �θ13. Since
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the 13 element of U also receives a contribution from the charged lepton sector proportional
to s

EL

12 s
νL

23 , the same argument also implies that θ
EL

12 � θ13. Therefore, the natural expectation
is that all the charged lepton mixing angles are small! Expanding equation (C.4) to leading
order in small angles θ

EL

12 , θ
EL

23 , θ
EL

13 and θ
νL

13 , we find

U ≈




c
νL

12 s
νL

12 e−iδ
νL
12 θ

νL

13 e−iδ
νL
13

−s
νL

12 c
νL

23 eiδ
νL
12 − c

νL

12s
νL

23 θ
νL

13 ei(δ
νL
13 −δ

νL
23 ) c

νL

12c
νL

23 − s
νL

12 s
νL

23 θ
νL

13 ei(−δ
νL
23 +δ

νL
13 −δ

νL
12 ) s

νL

23 e−iδ
νL
23

s
νL

12 s
νL

23 ei(δ
νL
23 +δ

νL
12 ) − c

νL

12c
νL

23θ
νL

13 eiδ
νL
13 −c

νL

12s
νL

23 eiδ
νL
23 − s

νL

12 c
νL

23θ
νL

13 ei(δ
νL
13 −δ

νL
12 ) c

νL

23




+θ
EL

23




c
νL

12 s
νL

12 e−iδ
νL
12 0

−s
νL

23 s
νL

12 ei(δ
νL
23 −δ

EL
23 +δ

νL
12 ) s

νL

23 c
νL

12 ei(δ
νL
23 −δ

EL
23 ) −c

νL

23 e−iδ
EL
23

−c
νL

23s
νL

12 ei(δ
EL
23 +δ

νL
12 ) c

νL

23c
νL

12 eiδ
EL
23 s

νL

23 ei(δ
EL
23 −δ

νL
23 )




+θ
EL

13


−s

νL

12 s
νL

23 ei(δ
νL
12 +δ

νL
23 −δ

EL
13 ) c

νL

12s
νL

23 ei(δ
νL
23 −δ

EL
13 ) −c

νL

23 e−iδ
EL
13

0 0 0

c
νL

12 eiδ
EL
13 s

νL

12 ei(−δ
νL
12 +δ

EL
13 ) 0




+θ
EL

12




c
νL

23s
νL

12 ei(δ
νL
12 −δ

EL
12 ) −c

νL

23c
νL

12 e−iδ
EL
12 s

νL

23 ei(−δ
νL
23 −δ

EL
12 )

c
νL

12 eiδ
EL
12 s

νL

12 ei(−δ
νL
12 +δ

EL
12 ) 0

0 0 0


 , (C.12)

where we have dropped terms of order θ
EL

23 θ13. The first matrix on the right-hand side of
equation (C.12) gives the contribution to the lepton mixing matrix from the neutrino mixing
angles and phases and is of the same form as equation (C.11). The subsequent matrices give
the corrections to the lepton mixing matrix from the charged lepton mixing angles θ

EL

23 , θ
EL

13

and θ
EL

12 .

D. Analytic approach to diagonalizing mass matrices

D.1. Procedure for diagonalizing hierarchical mass matrices

In this appendix, we discuss the diagonalization of a general complex hierarchical matrix m,
assuming two LMAs and one small mixing angle, to leading order in the small mixing angle,
where

m =

m11 m12 m13

m21 m22 m23

m31 m32 m33


 . (D.1)

The matrix m is diagonalized by a sequence of tranformations:

P L
3

∗
RL

12
T
P L

1
∗
RL

13
T
RL

23
T
P L

2
∗
mP R

2 RR
23R

R
13P

R
1 RR

12P
R
3 =


m1 0 0

0 m2 0
0 0 m3


 . (D.2)

In the case of the charged lepton mass matrix, all the rotation angles are small, while in the
case of the neutrino mass matrix it is symmetric. The results for the general complex matrix
m will be sufficiently general to allow us to apply them to both the physical cases of interest
as limiting cases.

The procedure for diagonalizing a general hierarchical matrix m involves the following
steps.
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1. The first step involves multiplying the mass matrix m by the inner phase matrices P2

defined in equation (A.6):

P L
2

∗
mP R

2 =


 m11 m12 eiφR

2 m13 eiφR
3

m21 e−iφL
2 m22 ei(φR

2 −φL
2 ) m23 ei(φR

3 −φL
2 )

m31 e−iφL
3 m32 ei(φR

2 −φL
3 ) m33 ei(φR

3 −φL
3 )


 ≡


m11 m′

12 m′
13

m′
21 m′

22 m′
23

m′
31 m′

32 m′
33


 . (D.3)

The purpose of this re-phasing is to facilitate steps 2 and 3 using real rotation angles θ23 and
θ13, as we shall see.

2. The second step is to perform the real rotations R23 defined in equation (A.2) on the
re-phased matrix from step 1. The purpose is to put zeros in the 23 and 32 elements of the
resulting matrix:

RL
23

T


m11 m′

12 m′
13

m′
21 m′

22 m′
23

m′
31 m′

32 m′
33


 RR

23 ≡

m11 m̃12 m̃13

m̃21 m̃22 0
m̃31 0 m′

3


 . (D.4)

The zeros in the 23 and 32 positions are achieved by diagonalizing the lower 23 block, using
the reduced matrix R23 obtained by striking out the row and column in which the unit element
appears, to leave a 2 × 2 rotation,

RL
23

T
(

m′
22 m′

23

m′
32 m′

33

)
RR

23 ≡
(

m̃22 0
0 m′

3

)
, (D.5)

which implies

tan 2θL
23 = 2[m′

33m
′
23 + m′

22m
′
32]

[(m′
33)

2 − (m′
22)

2 + (m′
32)

2 − (m′
23)

2]
, (D.6)

tan 2θR
23 = 2[m′

33m
′
32 + m′

22m
′
23]

[(m′
33)

2 − (m′
22)

2 + (m′
23)

2 − (m′
32)

2]
. (D.7)

The requirement that the angles θL
23 and θR

23 are real means that the numerators and denominators
must have equal phases, and this is achieved by adjusting the relative phases, φR

i − φL
j , that

appear in the lower block of equation (D.3). The remaining elements are then given by the
reduced rotations

(m̃12 m̃13) = (m′
12 m′

13)R
R
23, (D.8)(

m̃21

m̃31

)
= RL

23
T
(

m′
21

m′
31

)
. (D.9)

3. The third step is to perform the real small angle rotations, R13, defined in equation (A.3)
on the matrix from step 2. The purpose is to put zeros in the 13 and 31 elements of the resulting
matrix:

RL
13

T


m11 m̃12 m̃13

m̃21 m̃22 0
m̃31 0 m′

3


 RR

13 ≈

m̃11 m̃12 0

m̃21 m̃22 0
0 0 m′

3


 . (D.10)

The zeros in the 13 and 31 positions are achieved by diagonalizing the outer 13 block, using
the reduced matrix, R13, obtained by striking out the row and column in which the unit element
appears, to leave a 2 × 2 rotation,

RL
13

T
(

m11 m̃13

m̃31 m′
3

)
RR

13 ≈
(

m̃11 0
0 m′

3

)
, (D.11)
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which implies

θL
13 ≈ m̃13

m′
3

+
m̃31m11

(m′
3)

2
, (D.12)

θR
13 ≈ m̃31

m′
3

+
m̃13m11

(m′
3)

2
. (D.13)

The requirement that the angles θL
13 and θR

31 are real fixes the absolute value of the phases
φR

i + φL
j since only the relative phases were fixed previously. This uses up all the phase

freedom, and thus all the resulting mass matrix elements in equation (D.10) remain complex.
Note that equation (D.10) is written to leading order in the small angles θ13, and as discussed
previously the 23 and 32 elements remain zero to this order. The large complex element m′

3
is approximately unchanged to this order. Due to the zeros in the 23 and 32 positions of the
matrix, the elements m̃12 and m̃21 are also unchanged to leading order. The element m̃22 is
also unchanged of course since it is not present in the reduced matrix. The only new element
is therefore

m̃11 ≈ m11 − m̃13m̃31

m′
3

. (D.14)

4. The fourth step involves multiplying the mass matrix resulting from equation (D.10)
by the phase matrices P1 defined in equation (A.5):

P L
1

∗

m̃11 m̃12 0

m̃21 m̃22 0
0 0 m′

3


 P R

1 =


 m̃11 m̃12 eiχR

0

m̃21 e−iχL

m̃22 ei(χR−χL) 0
0 0 m′

3


 ≡


m̃11 m̃′

12 0
m̃′

21 m̃′
22 0

0 0 m′
3


 .

(D.15)

The purpose of this re-phasing is to facilitate step 5 using real rotation angle θ12.
5. The fifth step is to perform the real rotations R12 defined in equation (A.4) on the

re-phased matrix from step 4. The purpose is to put zeros in the 12 and 21 elements of the
resulting matrix:

RL
12

T


m̃11 m̃′

12 0
m̃′

21 m̃′
22 0

0 0 m′
3


 RR

12 ≡

m′

1 0 0
0 m′

2 0
0 0 m′

3


 . (D.16)

The zeros in the 12 and 21 positions are achieved by diagonalizing the upper 12 block, using
the reduced matrix, R12, obtained by striking out the row and column in which the unit element
appears, to leave a 2 × 2 rotation,

RL
12

T
(

m̃11 m̃′
12

m̃′
21 m̃′

22

)
RR

12 ≡
(

m′
1 0

0 m′
2

)
, (D.17)

which implies

tan 2θL
12 = 2

[
m̃′

22m̃
′
12 + m̃11m̃

′
21

]
[(m̃′

22)
2 − (m̃11)2 + (m̃′

21)
2 − (m̃′

12)
2]

, (D.18)

tan 2θR
12 = 2

[
m̃′

22m̃
′
21 + m̃11m̃

′
12

]
[(m̃′

22)
2 − (m̃11)2 + (m̃′

12)
2 − (m̃′

21)
2]

. (D.19)

The requirement that the angles θL
12 and θR

21 are real means that the numerators and denominators
must have equal phases, and this is achieved by adjusting the phases χL and χR .
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6. The sixth step involves multiplying the complex diagonal mass matrix resulting from
equation (D.16) by the phase matrices P3 defined in equation (A.7):

P L
3

∗

m′

1 0 0
0 m′

2 0
0 0 m′

3


 P R

3 =

m1 0 0

0 m2 0
0 0 m3


 . (D.20)

The result of this re-phasing is a diagonal matrix with real eigenvalues. In the case of charged
leptons, this last step can be achieved by a suitable P R

3 for any choice of P L
3 . This freedom in

P L
3 enables three phases to be removed from the lepton mixing matrix.

D.2. Diagonalizing the hierarchical neutrino mass matrix

In this appendix, we shall apply the results of appendix D.1 to the case of the complex symmetric
hierarchical neutrino mass matrix of the leading order form of Type IA as shown in table 1,
which will be written in full generality as

mν
LL =


mν

11 mν
12 mν

13

mν
12 mν

22 mν
23

mν
13 mν

23 mν
33


 ≡


|mν

11|eiφν
11 |mν

12|eiφν
12 |mν

13|eiφν
13

|mν
12|eiφν

12 |mν
22|eiφν

22 |mν
23|eiφν

23

|mν
13|eiφν

13 |mν
23|eiφν

23 |mν
33|eiφν

33


 , (D.21)

where it should be remembered that for a Type IA matrix the elements in the lower 23 block
are larger than the other elements.

The procedure outlined in appendix D.2 for diagonalizing mν
LL is to work our way from

the inner transformations to the outer transformations as follows.

1. Re-phase mν
LL using P

νL

2 .
2. Put zeros in the 23 = 32 positions using R

νL

23 .
3. Put zeros in the 13 = 31 positions using R

νL

13 .
4. Re-phase the mass matrix using P

νL

1 .
5. Put zeros in the 12 = 21 positions using R

νL

12 .
6. Make the diagonal elements real using P

νL

3 .

If θ
νL

13 is small, then for the hierarchical case m3 � m2, this procedure will result in an
approximately diagonal matrix to leading order in θ

νL

13 . One might object that after step 3
the R

νL

13 rotations will ‘fill-in’ the zeros in the 23 and 32 positions with terms of order θ
νL

13
multiplied by m

νL

12 and m
νL

13. However, in the hierarchical case, m
νL

12 and m
νL

13 are smaller than
m

νL

33 by a factor of θ
νL

13 , which means that the ‘filled-in’ 23 and 32 entries are suppressed by a
total factor of (θ

νL

13 )2 compared with the 33 element. This means that after the five steps above,
a hierarchical matrix will be diagonal to leading order in θ

νL

13 , as claimed. For the inverted
hierarchical neutrino case, a different procedure must be followed, as discussed in the next
subsection. Here we shall systematically diagonalize the hierarchical neutrino mass matrix in
equation (D.21) by following the above procedure as follows.

The first step is to re-phase the matrix in equation (D.21) using P
νL

2
∗, so that the neutrino

mass matrix becomes
 |mν

11|eiφν
11 |mν

12|ei(φν
12−φ

νL
2 ) |mν

13|ei(φν
13−φ

νL
3 )

|mν
12|ei(φν

12−φ
νL
2 ) |mν

22|ei(φν
22−2φ

νL
2 ) |mν

23|ei(φν
23−φ

νL
2 −φ

νL
3 )

|mν
13|ei(φν

13−φ
νL
3 ) |mν

23|ei(φν
23−φ

νL
2 −φ

νL
3 ) |mν

33|ei(φν
33−2φ

νL
3 )


 . (D.22)

To determine the 23 neutrino mixing angle θ
νL

23 , we perform a 23 rotation that diagonalizes the
lower 23 block of equation (D.22). From equation (D.6), we find the 23 neutrino mixing angle
θ

νL

23 as

tan 2θ
νL

23 = 2[|mν
23|ei(φν

23−φ
νL
2 −φ

νL
3 )]

[|mν
33|ei(φν

33−2φ
νL
3 ) − |mν

22|ei(φν
22−2φ

νL
2 )]

. (D.23)
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The relative phase, φνL

2 −φ
νL

3 , is fixed by the requirement that the angle θ
νL

23 in equation (D.23)
be real,

|mν
33| sin(φν

33 − φν
23 + φ

νL

2 − φ
νL

3 ) = |mν
22| sin(φν

22 − φν
23 + φ

νL

3 − φ
νL

2 ). (D.24)

After the 23 rotation in equation (D.4), the neutrino mass matrix in equation (D.22) becomes
mν

11 m̃ν
12 m̃ν

13

m̃ν
12 m̃ν

22 0
m̃ν

13 0 m′
3


 . (D.25)

The lower block elements are given by(
m̃ν

22 0
0 m′

3

)
≡ R

νL

23
T

(
|mν

22|ei(φν
22−2φ

νL
2 ) |mν

23|ei(φν
23−φ

νL
2 −φ

νL
3 )

|mν
23|ei(φν

23−φ
νL
2 −φ

νL
3 ) |mν

33|ei(φν
33−2φ

νL
3 )

)
R

νL

23 , (D.26)

which implies

m̃ν
22 = (c

νL

23)
2|mν

22|ei(φν
22−2φ

νL
2 ) − 2s

νL

23 c
νL

23 |mν
23|ei(φν

23−φ
νL
2 −φ

νL
3 ) + (s

νL

23 )2|mν
33|ei(φν

33−2φ
νL
3 ), (D.27)

m′
3 = (s

νL

23 )2|mν
22|ei(φν

22−2φ
νL
2 ) + 2s

νL

23 c
νL

23 |mν
23|ei(φν

23−φ
νL
2 −φ

νL
3 ) + (c

νL

23)
2|mν

33|ei(φν
33−2φ

νL
3 ) (D.28)

and from equation (D.9),(
m̃ν

12

m̃ν
13

)
= R

νL

23
T

(
|mν

12|ei(φν
12−φ

νL
2 )

|mν
13|ei(φν

13−φ
νL
3 )

)
. (D.29)

We now perform a 13 rotation on the neutrino matrix in equation (D.25) that diagonalizes
the outer 13 block of equation (D.25) and determines the 13 neutrino mixing angle θ

νL

13 . From
equation (D.12), we find the 13 neutrino mixing angle θ

νL

13 as

θ
νL

13 ≈ m̃ν
13

m′
3

. (D.30)

The absolute phases φ
νL

2 and φ
νL

3 are fixed by the requirement that the angle θ
νL

13 in
equation (D.30) be real,

s
νL

23 |mν
12| sin(φν

12 − φ
νL

2 − φ′
3) + c

νL

23 |mν
13| sin(φν

13 − φ
νL

3 − φ′
3) = 0. (D.31)

After the 13 rotation in equation (D.10), equation (D.25) becomes
m̃ν

11 m̃ν
12 0

m̃ν
12 m̃ν

22 0
0 0 m′

3


 ≡


|m̃ν

11|eiφ̃ν
11 |m̃ν

12|eiφ̃ν
12 0

|m̃ν
12|eiφ̃ν

12 |m̃ν
22|eiφ̃ν

22 0
0 0 |m′

3|eiφ′
3


 . (D.32)

To leading order in θ
νL

13 , the only new element in equation (D.32) is

m̃
νL

11 ≈ m
νL

11 − (m̃
νL

13)
2

m′
3

. (D.33)

It only remains to determine the 12 neutrino mixing angle, θνL

12 , by diagonalizing the upper
12 block of equation (D.32). From equation (D.18), we find the 12 neutrino mixing angle,
θ

νL

12 , as

tan 2θ
νL

12 = 2[|m̃ν
12|ei(φ̃ν

12−χνL )]

[|m̃ν
22|ei(φ̃ν

22−2χνL ) − |m̃ν
11|eiφ̃ν

11 ]
. (D.34)

The phase χνL is fixed by the requirement that the angle θ
νL

12 in equation (D.34) be real,

|m̃ν
22| sin(φ̃ν

22 − φ̃ν
12 − χνL) = |m̃ν

11| sin(φ̃ν
11 − φ̃ν

12 + χνL). (D.35)
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After the 12 rotation, the upper block of the matrix in equation (D.32) is diagonal and the
resulting matrix is

m′
1 0 0

0 m′
2 0

0 0 m′
3


 ≡


m1 eiφ′

1 0 0
0 m2 eiφ′

2 0
0 0 m3 eiφ′

3


 , (D.36)

where from equation (D.17)

m′
1 = (c

νL

12)
2|m̃ν

11|eiφ̃ν
11 − 2s

νL

12 c
νL

12 |m̃ν
12|ei(φ̃ν

12−χνL ) + (s
νL

12 )2|m̃ν
22|ei(φ̃ν

22−2χνL ), (D.37)

m′
2 = (s

νL

12 )2|m̃ν
11|eiφ̃ν

11 + 2s
νL

12 c
νL

12 |m̃ν
12|ei(φ̃ν

12−χνL ) + (c
νL

12)
2|m̃ν

22|ei(φ̃ν
22−2χνL ). (D.38)

It is a simple matter to adjust the phases ω
νL

i in P
νL

3 to remove the phases in equation (D.36)
and make the neutrino masses real, as in equation (D.20),

ω
νL

i = φ′
i

2
. (D.39)

This completes the diagonalization. In the case of neutrino masses, unlike the case of the
charged fermions, there is no leftover phase freedom. This is the reason why the lepton mixing
matrix has three more physical phases than the CKM matrix.

D.3. Diagonalizing the inverted hierarchical neutrino mass matrix

In this appendix, we shall consider the case of the complex symmetric inverted hierarchical
neutrino mass matrix of the leading order form of Type IB in table 1. In this case, the procedure
is as follows.

1. Re-phase mν
LL using P

νL

2 .
2. Put zeros in the 13 = 31 positions using R

νL

23 .
3. Put zeros in the 23 = 32 positions using R

νL

13 .
4. Re-phase the mass matrix using P

νL

1 .
5. Put zeros in the 12 = 21 positions using R

νL

12 .
6. Make the diagonal elements real using P

νL

3 .

We continue to write the neutrino mass matrix as in equation (D.21), but now it should be
remembered that for a Type IB matrix the 12 and 13 elements are now larger than the other
elements. This is the reason why the above procedure differs from that for the case of the
hierarchical neutrino mass matrix.

We first perform the re-phasing as in equation (D.22). Then we determine the 23 neutrino
mixing angle, θ

νL

23 , by performing a 23 rotation such that
mν

11 m̃ν
12 0

m̃ν
12 m̃ν

22 m̃ν
23

0 m̃ν
23 m′

3




≡ R
νL

23
T


 |mν

11|eiφν
11 |mν

12|ei(φν
12−φ

νL
2 ) |mν

13|ei(φν
13−φ

νL
3 )

|mν
12|ei(φν

12−φ
νL
2 ) |mν

22|ei(φν
22−2φ

νL
2 ) |mν

23|ei(φν
23−φ

νL
2 −φ

νL
3 )

|mν
13|ei(φν

13−φ
νL
3 ) |mν

23|ei(φν
23−φ

νL
2 −φ

νL
3 ) |mν

33|ei(φν
33−2φ

νL
3 )


 R

νL

23 ,

(D.40)

where (
m̃ν

12

0

)
= R

νL

23
T

(
|mν

12|ei(φν
12−φ

νL
2 )

|mν
13|ei(φν

13−φ
νL
3 )

)
, (D.41)
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which gives the 23 neutrino mixing angle, θ
νL

23 , in this case to be

tan θ
νL

23 = −|mν
13|ei(φν

13−φ
νL
3 )

|mν
12|ei(φν

12−φ
νL
2 )

. (D.42)

Since the Euler angles are constrained to satisfy θij � π/2, we must have tan θ
νL

23 ≈ +1, and
this then fixes

φν
13 − φν

12 + φ
νL

2 − φ
νL

3 = π. (D.43)

This fixes φ
νL

2 − φ
νL

3 and gives

tan θ
νL

23 = |mν
13|

|mν
12|

(D.44)

and

m̃ν
12 = c

νL

23 |mν
12|ei(φν

12−φ
νL
2 ) − s

νL

23 |mν
13|ei(φν

13−φ
νL
3 ). (D.45)

The lower block elements are given by(
m̃ν

22 m̃ν
23

m̃ν
23 m′

3

)
≡ R

νL

23
T

(
|mν

22|ei(φν
22−2φ

νL
2 ) |mν

23|ei(φν
23−φ

νL
2 −φ

νL
3 )

|mν
23|ei(φν

23−φ
νL
2 −φ

νL
3 ) |mν

33|ei(φν
33−2φ

νL
3 )

)
R

νL

23 , (D.46)

which implies

m̃ν
23 = s

νL

23 c
νL

23(|mν
22|ei(φν

22−2φ
νL
2 ) − |mν

33|ei(φν
33−2φ

νL
3 )) + ((c

νL

23)
2 − (s

νL

23 )2)|mν
23|ei(φν

23−φ
νL
2 −φ

νL
3 )

(D.47)

and the remaining diagonal elements are given as before in equations (D.27) and (D.28).
We next perform a small angle 13 rotation such that

mν
11 m̃ν

12 0
m̃ν

12 m̃ν
22 0

0 0 m′
3


 ≈ R

νL

13
T


mν

11 m̃ν
12 0

m̃ν
12 m̃ν

22 m̃ν
23

0 m̃ν
23 m′

3


 R

νL

13 , (D.48)

where (
m̃ν

12

0

)
≈ R

νL

13
T
(

m̃ν
12

m̃ν
23

)
. (D.49)

Note that to leading order in θ
νL

13 the large element m̃ν
12 is unchanged. The remaining elements

in equation (D.48) are also unchanged to leading order in θ
νL

13 . The 13 = 31 elements in
equation (D.48) get filled in by a term, θνL

13 (mν
11 −m′

3), which is of order (θ
νL

13 )2 compared with
m̃ν

12 and does not appear to leading order in θ
νL

13 . From equation (D.49), the 13 neutrino mixing
angle, θ

νL

13 , is

θ
νL

13 ≈ −m̃ν
23

m̃ν
12

. (D.50)

The requirement that θ
νL

13 be real fixes the absolute value of the phases φ
νL

2 and φ
νL

3 .
The left-hand side of equation (D.48) now resembles the left-hand side of equation (D.32),

except that here mν
11 is unchanged due to the zero 13 = 31 elements after the 23 rotation.

Therefore the rest of the diagonalization process follows that of the previous hierarchical case
from equation (D.34) onwards, where now

tan 2θ
νL

12 = 2[|m̃ν
12|ei(φ̃ν

12−χνL )]

[|m̃ν
22|ei(φ̃ν

22−2χνL ) − |mν
11|eiφν

11 ]
. (D.51)

Note that in the inverted hierarchy case here we have

|m̃ν
12| � |m̃ν

22|, |mν
11| (D.52)

which implies an almost degenerate pair of pseudo-Dirac neutrino masses (with opposite sign
eigenvalues) and an almost maximal 12 mixing angle from equation (D.51).
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