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Abstract. At one-loop level the decay f1 → f2γ, where f1 and f2 are two spin-1/2 particles with the same
electric charge, is mediated by a boson B and a spin-1/2 fermion F . The boson B may have either spin 0
– interacting with the fermions through the Dirac matrices 1 and γ5 – or spin 1 – with V + A and V − A
couplings to the fermions. I give general formulae for the one-loop electroweak amplitude of f1 → f2γ in
all these cases.

1 Introduction

Radiative decays like µ → eγ and b → sγ provide an im-
portant testing ground for many models in particle
physics. In particular, the experimental bounds on flavor-
changing leptonic radiative decays [1] are planned to im-
prove, in some cases by a few orders of magnitude [2], and
the relevance of those decays in tests of new physics will
certainly increase.

It is important for model builders to be able to com-
pute expeditiously the predictions of their models for ra-
diative decays. Unfortunately, QCD effects are important
and blur the picture in hadronic decays like b → sγ. On
the other hand, in flavor-changing leptonic decays only the
electroweak theory is relevant, and simple, closed formulae
may be produced.

The amplitude for µ → eγ in the standard electroweak
theory with lepton mixing (either light or heavy neutri-
nos) has been given by Cheng and Li [3]. However, that
amplitude has been computed for gauge bosons with ex-
clusively left-handed interactions. Recently, the same au-
thors together with He [4] have computed the amplitude
for µ → eγ following from a general Yukawa interaction,
confirming earlier results by Hisano et al. [5].

In this paper I give simple formulae for the amplitude
of f1 → f2γ following from either a general (axial-)vector
interaction or a general Yukawa interaction. My formulae
are more general than the ones given in the references
above, since
(1) I allow for arbitrary electric charges of the fermions
f1 and f2, and of the internal fields – a fermion F and
a boson B – in the one-loop diagram responsible for the
decay;
(2) I do not neglect the masses of f1 and f2 in the loop
integrals;
(3) I allow for a general gauge interaction, with both V −A
and V + A components. The last point is important since

gauge bosons displaying V +A interactions are present in
many theories. In particular,

(1) In the left–right-symmetric model [6] there is a charged
gauge boson W±

R coupling to the fermions like V +A and,
as a matter of fact, the observed W± is supposed to have
a small W±

R component;

(2) In models with vector-like fermions [7] – like for in-
stance the E6 grand unified theory, which has both vector-
like charge-−1/3 quarks and vector-like charge-−1 leptons
– the neutral gauge bosons couple to flavor-changing cur-
rents while retaining both V − A and V + A couplings;

(3) In the 3-3-1 model [8], based on the electroweak gauge
group SU(3)×U(1), both singly and doubly charged vec-
tor bosons exist, and they have both V − A and V + A
couplings to the fermions.

The one-loop computation of f1 → f2γ is non-trivial
since there are both vertex-type diagrams – in which the
photon attaches to either the internal boson B or the inter-
nal fermion F – and self-energy-type diagrams – in which
the photon attaches to either f1 or f2. One must write
the (divergent) two-point integrals in terms of three-point
integrals in order to be able to add the diagrams of both
types. When one does that one finds that the full vertex
is both gauge-invariant and finite, as it ought to be.

The plan of this paper is as follows. In Sect. 2 I give
the notation for the gauge-invariant amplitude. In Sect. 3
I define the relevant three-point finite loop integrals in
terms of which the amplitude will be written. In Sect. 4 I
give the amplitude resulting from the Yukawa couplings
to a spin-0 boson. In Sect. 5 I give the amplitude follow-
ing from the couplings of the fermions to an intermediate
vector boson. The results of this work are summarized in
Sect. 6.
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2 Notation for the vertex

I want to compute the process f1 (p1) → f2 (p2) γ (q),
where q = p1 − p2. The fermion f1 has mass m1 while
f2 has mass m2. The fermions are on mass shell: p2

1 = m2
1

and p2
2 = m2

2. The fermions f1 and f2 are represented by
spinors u1 and ū2, respectively, which satisfy p1/ u1 = m1u1
and ū2 p2/ = m2ū2.

The amplitude for the decay is eε∗
µ (q) Mµ, where ε∗

µ (q)
is the polarization vector of the outgoing photon and e
is the electric charge of the positron. Gauge invariance
implies that qµM

µ must be zero; therefore Mµ must be of
the form

Mµ = ū2 (σLΣµ
L + σRΣµ

R + δL∆µ
L + δR∆µ

R) u1 , (1)

where σL, σR, δL, and δR are numerical coefficients with
the dimension of inverse mass, and

Σµ
L = (pµ1 + pµ2 ) γL − γµ (m2γL + m1γR) , (2)

Σµ
R = (pµ1 + pµ2 ) γR − γµ (m2γR + m1γL) , (3)

∆µ
L = qµγL +

q2

m2
2 − m2

1
γµ (m2γL + m1γR) , (4)

∆µ
R = qµγR +

q2

m2
2 − m2

1
γµ (m2γR + m1γL) . (5)

The matrices γL = (1 − γ5)/ 2 and γR = (1 + γ5)/ 2 are
the projectors of chirality. If we define σµν = (i/2) [γµ, γν ],
then Mµ may alternatively be written as

Mµ = ū2

[
iσµνqν (σLγL + σRγR)

+ δL∆µ
L + δR∆µ

R

]
u1 . (6)

Only the coefficients σL and σR are relevant to the
physical decay f1 → f2γ, because ε∗

µ (q) qµ = 0 and q2 = 0
for an on-shell photon. The coefficients δL and δR are im-
portant when f1 (p1) → f2 (p2) γ (q) is just a sub-process
of a more complex decay, like for instance f1 (p1) →
f2 (p2) e+e−. In this paper I shall only give σL and σR

1.
The partial width for f1 → f2γ is

Γ =

(
m2

1 − m2
2
)3

(
|σL|2 + |σR|2

)
16πm3

1
. (7)

3 The basic integrals

The expressions for the coefficients σL and σR will be given
in terms of a few loop integrals. Denote

DB = k2 − m2
B , (8)

D1F = (k + p1)
2 − m2

F , (9)

D2F = (k + p2)
2 − m2

F . (10)

1 Hisano et al. give partial results for δL and δR in (15) and
(18) of their paper [5]

Then, I define

a =
∫

d4k

(2π)4
1

DBD1FD2F
, (11)

c1p
θ
1 + c2p

θ
2 =

∫
d4k

(2π)4
kθ

DBD1FD2F
, (12)

d1p
θ
1p
ψ
1 + d2p

θ
2p
ψ
2 + f

(
pθ1p

ψ
2 + pθ2p

ψ
1

)
+ xgθψ

=
∫

d4k

(2π)4
kθkψ

DBD1FD2F
. (13)

In the formulae for σL,R only the finite coefficients a, c1,
c2, d1, d2, and f occur; the divergent x cancels out with
the two-point integrals.

Conversely, let

D1B = (k − p1)
2 − m2

B , (14)

D2B = (k − p2)
2 − m2

B , (15)
DF = k2 − m2

F . (16)

Then,

ā =
∫

d4k

(2π)4
1

D1BD2BDF
, (17)

c̄1p
θ
1 + c̄2p

θ
2 =

∫
d4k

(2π)4
kθ

D1BD2BDF
, (18)

d̄1p
θ
1p
ψ
1 + d̄2p

θ
2p
ψ
2 + f̄

(
pθ1p

ψ
2 + pθ2p

ψ
1

)
+ x̄gθψ

=
∫

d4k

(2π)4
kθkψ

D1BD2BDF
. (19)

The functions a, c1, c2, and so on are just a variant
of the well-known Passarino–Veltman [9] decomposition of
tensor integrals. In the standard notation of those authors,
one has, in particular,

a =
i

16π2 C0
(
m2

1, q
2, m2

2, m
2
B , m2

F , m2
F

)
, (20)

c1 =
i

16π2 C1
(
m2

1, q
2, m2

2, m
2
B , m2

F , m2
F

)
, (21)

c2 =
i

16π2 C2
(
m2

1, q
2, m2

2, m
2
B , m2

F , m2
F

)
, (22)

d1 =
i

16π2 C11
(
m2

1, q
2, m2

2, m
2
B , m2

F , m2
F

)
, (23)

d2 =
i

16π2 C22
(
m2

1, q
2, m2

2, m
2
B , m2

F , m2
F

)
, (24)

f =
i

16π2 C12
(
m2

1, q
2, m2

2, m
2
B , m2

F , m2
F

)
. (25)

These functions may be numerically computed, for (al-
most) all values of their arguments, using packages [10]
which have been developed following work by van Olden-
borgh [11].

When one uses the approximation m2
1 = m2

2 = 0 to-
gether with q2 = 0 the integrals may be computed easily.
Defining t = m2

F /m2
B , one obtains
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a =
i

16π2m2
B

[
−1

t − 1
+

ln t

(t − 1)2

]
, (26)

c1 = c2 ≡ c

=
i

16π2m2
B

[
t − 3

4 (t − 1)2
+

ln t

2 (t − 1)3

]
, (27)

d1 = d2 = 2f ≡ d

=
i

16π2m2
B

[
−2t2 + 7t − 11

18 (t − 1)3
+

ln t

3 (t − 1)4

]
, (28)

ā =
i

16π2m2
B

[
1

t − 1
− t ln t

(t − 1)2

]
, (29)

c̄1 = c̄2 ≡ c̄

=
i

16π2m2
B

[
3t − 1

4 (t − 1)2
− t2 ln t

2 (t − 1)3

]
, (30)

d̄1 = d̄2 = 2f̄ ≡ d̄

=
i

16π2m2
B

[
11t2 − 7t + 2
18 (t − 1)3

− t3 ln t

3 (t − 1)4

]
. (31)

4 Results for a Yukawa interaction

The fermions f1 and f2 may have an Yukawa interaction
with a spin-0 boson B and with another spin-1/2 fermion
F , assumed to be distinct from both f1 and f2. Let us
write that interaction as

LYukawa (32)

=
2∑
i=1

[
BF̄ (LiγL + RiγR) fi + B∗f̄i (L∗

i γR + R∗
i γL) F

]
,

with arbitrary dimensionless numerical coefficients L1, L2,
R1, and R2. I denote

λ = L∗
2L1 , (33)

ρ = R∗
2R1 , (34)

ζ = L∗
2R1 , (35)

υ = R∗
2L1 . (36)

The electric charges of f1 and f2, in units of e, are Qf ;
the electric charge of F is QF and the electric charge of
B is QB . Obviously, from (32),

Qf = QF − QB . (37)

Otherwise I allow for arbitrary Qf , QF , and QB .
Let us consider the consequences of the Yukawa inter-

action in (32) for the vertex f1 (p1) → f2 (p2) γ (q). There
will in general be four diagrams for that vertex: two self-
energy diagrams in which the photon attaches either to f1
or to f2; one diagram in which the photon attaches to F ;
and another diagram in which the photon attaches to B.
The self-energy diagrams are proportional to Qf , and the
other two diagrams are proportional to QF and QB , re-
spectively. One uses (37) to write the vertex as the sum of

two terms, one of them proportional to QF and the other
one proportional to QB .

The mass of the scalar boson B is denoted mB and
the mass of the fermion F is denoted mF . With the loop
integrals defined in the previous section I construct

k1 = m1 (c1 + d1 + f) , (38)
k2 = m2 (c2 + d2 + f) , (39)
k3 = mF (c1 + c2) , (40)

and

k̄1 = m1
(−c̄1 + d̄1 + f̄

)
, (41)

k̄2 = m2
(−c̄2 + d̄2 + f̄

)
, (42)

k̄3 = mF (−ā + c̄1 + c̄2) . (43)

The results for σL and σR are written in terms of these
functions:

σL = QF (ρk1 + λk2 + υk3)
+QB

(
ρk̄1 + λk̄2 + υk̄3

)
, (44)

σR = QF (λk1 + ρk2 + ζk3)
+QB

(
λk̄1 + ρk̄2 + ζk̄3

)
. (45)

The results in (38)–(45) do not involve any approxi-
mations and they are fully general – they hold even when
the photon is off-shell, q2 �= 0. One may want to keep the
mass prefactors in the k1, k2, . . . , k̄3 of (38)–(43), while
computing c1 + d1 + f, c2 + d2 + f, . . . ,−ā + c̄1 + c̄2 in
the approximation m2

1 = m2
2 = 0 (and q2 = 0). One uses

(26)–(31) and obtains

(−i) 16π2m2
B

(
c +

3
2

d

)
=

t2 − 5t − 2
12 (t − 1)3

+
t ln t

2 (t − 1)4
, (46)

(−i) 16π2m2
B

(
−c̄ +

3
2

d̄

)
=

2t2 + 5t − 1
12 (t − 1)3

− t2 ln t

2 (t − 1)4
, (47)

(−i) 16π2m2
B (2c) =

t − 3
2 (t − 1)2

+
ln t

(t − 1)3
, (48)

(−i) 16π2m2
B (−ā + 2c̄) =

t + 1
2 (t − 1)2

− t ln t

(t − 1)3
. (49)

The functions in the right-hand sides of (46)–(49) have
been given in (16) and (19) of [5], and then again in [4],
where they were called H(r), G(r), K(r), and I(r), re-
spectively (with r = t − 1 and apart from a common fac-
tor 2). They are all positive definite, decreasing functions,
which start at t = 0 with a value smaller than 1 and tend
to 0 as t−1 when t → ∞. The exception is the function
in the right-hand side of (48), which tends to infinity as
−3/2 − ln t in the limit t → 0.
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5 Results for a gauge interaction

Now suppose that the fermions f1 and f2 interact with a
(neutral or charged) vector boson Bα and with another
fermion F 2, assumed to be distinct from both f1 and f2,
the interaction Lagrangian being

Lgauge =
2∑
i=1

[
BαF̄ γα (L′

iγL + R′
iγR) fi

+ B∗
αf̄iγ

α
(
L′
i
∗
γL + R′

i
∗
γR

)
F

]
, (50)

with arbitrary dimensionless numerical coefficients L′
1, L′

2,
R′

1, and R′
2. I use the notation

λ′ = L′
2
∗
L′

1 , (51)

ρ′ = R′
2
∗
R′

1 , (52)

ζ ′ = L′
2
∗
R′

1 , (53)

υ′ = R′
2
∗
L′

1 . (54)

The electric charge of F is QF , in units of e, and the
electric charge of Bα is QB . Again, (37) holds. The mass
of Bα is mB and the mass of F is mF .

The massive gauge field Bα has associated with it a
scalar “would-be Goldstone boson” ϕ, while ϕ∗ is associ-
ated with B∗

α. The Yukawa interaction of f1 and f2 with
F and with the “would-be Goldstone bosons” ϕ and ϕ∗ is
given by3

Lϕ = ϕ
i

mB

2∑
i=1

F̄

[
(R′

imi − L′
imF ) γL

+ (L′
imi − R′

imF ) γR

]
fi

+ ϕ∗ i
mB

2∑
i=1

f̄i

[(
L′
i
∗
mF − R′

i
∗
mi

)
γR

+
(
R′
i
∗
mF − L′

i
∗
mi

)
γL

]
F . (55)

I assume that, just as in the standard model (SM), the
three-gauge-boson vertex of a photon Aµ with outgoing
momentum q, an incoming Bα with incoming momentum
p, and an incoming B∗

β with incoming momentum p̄ (ob-
viously p + p̄ = q) has the following Feynman rule:

ieQB

[
gαβ (p − p̄)µ − gµα (q + p)β + gµβ (q + p̄)α

]
. (56)

Furthermore, I assume that the vertex of Aµ with (incom-
ing) B∗

α and ϕ has Feynman rule eQBmBgµα, while the
2 I use the same notation F as in the previous section for the

fermion with which f1 and f2 interact, although the fermion
F will not in general be the same in the Yukawa interaction
and in the gauge interaction. In the same vein, I use identical
notations mB,F and QB,F for the masses and electric charges,
respectively, of the intermediate boson and fermion

3 The phases of ϕ and ϕ∗ are implicitly defined through (55)
in a convenient way

vertex of Aµ with Bα and ϕ∗ is −eQBmBgµα. This is,
once again, analogous to what happens in the SM.

One adds the contributions from diagrams with Bα

with those from diagrams with ϕ and with those from di-
agrams with both Bα and ϕ. All diagrams must be com-
puted in the same gauge – I have used the Feynman–’t
Hooft gauge, in which the propagators of both Bα and
ϕ have poles exclusively at the physical mass mB . One
obtains

σL = QF (ρ′y1 + λ′y2 + υ′y3 + ζ ′y4)
+ QB (ρ′ȳ1 + λ′ȳ2 + υ′ȳ3 + ζ ′ȳ4) , (57)

σR = QF (λ′y1 + ρ′y2 + ζ ′y3 + υ′y4)
+ QB (λ′ȳ1 + ρ′ȳ2 + ζ ′ȳ3 + υ′ȳ4) , (58)

with

y1 = m1

[
2a + 4c1 + 2c2 + 2d1 + 2f (59)

+
m2
F

m2
B

(−c2 + d1 + f) +
m2

2

m2
B

(c2 + d2 + f)
]

,

y2 = m2

[
2a + 2c1 + 4c2 + 2d2 + 2f (60)

+
m2
F

m2
B

(−c1 + d2 + f) +
m2

1

m2
B

(c1 + d1 + f)
]

,

y3 = mF

[
−4a − 4c1 − 4c2 +

m2
F

m2
B

(c1 + c2)

− m2
1

m2
B

(c1 + d1 + f) − m2
2

m2
B

(c2 + d2 + f)
]

, (61)

y4 = −m1m2mF

m2
B

(d1 + d2 + 2f) , (62)

and

ȳ1 = m1

[
2c̄2 + 2d̄1 + 2f̄ +

m2
F

m2
B

(
ā − 2c̄1 − c̄2 + d̄1 + f̄

)
+

m2
2

m2
B

(−c̄2 + d̄2 + f̄
)]

, (63)

ȳ2 = m2

[
2c̄1 + 2d̄2 + 2f̄ +

m2
F

m2
B

(
ā − c̄1 − 2c̄2 + d̄2 + f̄

)
+

m2
1

m2
B

(−c̄1 + d̄1 + f̄
)]

, (64)

ȳ3 = mF

[
−4c̄1 − 4c̄2 +

m2
F

m2
B

(−ā + c̄1 + c̄2)

+
m2

1

m2
B

(
c̄1 − d̄1 − f̄

)
+

m2
2

m2
B

(
c̄2 − d̄2 − f̄

)]
, (65)

ȳ4 =
m1m2mF

m2
B

(−ā + 2c̄1 + 2c̄2 − d̄1 − d̄2 − 2f̄
)
. (66)

Just as in the previous section, the results in (57)–(66)
are completely general – they hold even when q2 �= 0.
One may want to keep the mass prefactors in y1–y3 and
in ȳ1–ȳ3 while computing the functions inside the square
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brackets in the limit m2
1 = m2

2 = 0 (and q2 = 0). With
t = m2

F /m2
B as before, one obtains

(−i) 16π2m2
B

[
2a + 6c + 3d + t

(
−c +

3
2

d

)]

=
−5t3 + 9t2 − 30t + 8

12 (t − 1)3
+

3t2 ln t

2 (t − 1)4
, (67)

(−i) 16π2m2
B

[
2c̄ + 3d̄ + t

(
ā − 3c̄ +

3
2

d̄

)]

=
−4t3 + 45t2 − 33t + 10

12 (t − 1)3
− 3t3 ln t

2 (t − 1)4
, (68)

(−i) 16π2m2
B (−4a − 8c + 2tc)

=
t2 + t + 4
2 (t − 1)2

− 3t ln t

(t − 1)3
, (69)

(−i) 16π2m2
B [−8c̄ + t (−ā + 2c̄)]

=
t2 − 11t + 4
2 (t − 1)2

+
3t2 ln t

(t − 1)3
. (70)

The function in the right-hand side of (68) has been given
in [3]; the functions in the right-hand sides of (67), (69),
and (70) are new. The functions in (69) and (70) are pos-
itive definite and decrease continuously from 2 at t = 0 to
1/2 at t → ∞; the functions in (67) and (68) are negative
definite and increase from a value larger than −1 at t = 0
to a value smaller than 0 at t → ∞.

6 Conclusions

The amplitude for the decay f1 → f2γ involves two rele-
vant operators, Σµ

L and Σµ
R given in (2) and (3). When f1

and f2 interact with a scalar boson B and with a fermion
F (F �= f1 and F �= f2) as in (32), the coefficients of
those operators in the amplitude, σL and σR, receive con-
tributions as in (38)–(45). When f1 and f2 interact with
a vector boson Bα and with a fermion F through (50), σL
and σR receive the contributions in (57)–(66). All these
results are completely general – they do not depend on
the values of the kinematical variables p2

1 = m2
1, p2

2 = m2
2,

and q2. The finite loop integrals a, c1, c2, d1 and so on in
the general expressions for σL and σR are defined through
(8)–(19).
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