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Flavor-conserving CP phases in supersymmetry and implications for exclusiveB decays
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We study rare exclusiveB decays based on the quark-level transitionb→s(d) l 1l 2, wherel 5e or m, in the
context of supersymmetric theories with minimal flavor violation. We present analytic expressions for various
mixing matrices in the presence of newCP-violating phases, and examine their impact on observables involv-

ing B and B̄ decays. An estimate is obtained forCP-violating asymmetries inB̄→K (* )l 1l 2 and B̄
→r(p) l 1l 2 decays for the dilepton invariant mass region 1.2 GeV,Ml 1 l 2,MJ/c . As a typical result, we
find aCP-violating partial width asymmetry of about26% (25%) in the case ofB→p (B→r) in effective
supersymmetry with phases ofO(1), taking into account the measurement of the inclusiveb→sg branching
fraction. On the other hand,CP asymmetries of less than 1% are predicted in the case ofB→K (* ). We argue
that it is not sufficient to have additionalCP phases ofO(1) to observe largeCP-violating effects in exclusive
b→s(d) l 1l 2 decays.

PACS number~s!: 13.20.He, 11.30.Er, 12.60.Jv
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I. INTRODUCTION

Within the standard model~SM!, CP violation is caused
by a non-zero complex phase in the Cabibbo-Kobaya
Maskawa~CKM! quark mixing matrix@1#. While the experi-
mentally observed indirectCP violation in the neutral kaon
system,eK , can be accommodated in the SM, it is still a
open question whether the SM description ofCP violation is
consistent with the new experimental result on directCP
violation, e8/eK , since the theoretical prediction of its pre
cise value suffers from large hadronic uncertainties@2#. On
the other hand, if the baryon asymmetry of the universe
been generated via baryogenesis at the electroweak p
transition, the CKM mechanism ofCP violation cannot ac-
count for the observed amount of baryon asymmetry. T
feature could be a hint of the existence ofCP-violating
sources outside the CKM matrix@3#.

Important tests of the SM are provided by flavor-chang
neutral current~FCNC! reactions involvingB decays@4#,
thus offering an opportunity to search for supersymme
extensions of the SM@5,6#. There are at present only a fe
FCNC processes which have been observed experimen
but the situation will change considerably after the comp
tion of B factories in the near future.

In this work, we analyze the exclusive decaysB̄
→K (* )l 1l 2 and B̄→r(p) l 1l 2 in the context of supersym
metry ~SUSY! with minimal particle content andR-parity
conservation@7,8#. The inclusive reactionB̄→Xsl

1l 2 within
supersymmetric models has been extensively studied in R
@5,9–16# and, more recently, in Ref.@17#. New physics ef-
fects in the exclusive channels have been investigate
Refs.@18–20#.

*Email address: krueger@gtae3.ist.utl.pt
†Email address: fromao@alfa.ist.utl.pt
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We place particular emphasis onCP-violating effects as-

sociated with the partial rate asymmetry betweenB and B̄
decays as well as the forward-backward asymmetry of
l 2. Within the SM these effects turn out to be unobserva
small (<1023) in the decaysB̄→K (* )l 1l 2 @21#, and
amount to only a few percent inB̄→r(p) l 1l 2 @21,22#.
However, in models with newCP-violating phases in addi-
tion to the single phase of the CKM matrix, larger effec
may occur due to the interference of amplitudes with diff
ent phases. The purpose of the present analysis is to exp
CP-violating observables in the aforementioned FCNC re
tions that could provide evidence of a non-standard sourc
CP violation, and hence may be useful in analyzing sup
symmetry in future collider experiments.

The paper is organized as follows. In Sec. II, we exhi
the various mixing matrices of the minimal supersymmet
standard model~MSSM! in the presence of additiona
CP-violating phases. Within such a framework we discu
different scenarios for the SUSY parameters. In Sec. III,
are primarily concerned with the short-distance matrix e
ment and Wilson coefficients governingb→s(d) l 1l 2 in the
MSSM. We also briefly describe an approximate proced
to incorporate quark antiquark resonant intermediate state
namelyr,v, and theJ/c family—which enter through the
decay chainb→s(d)Vqq̄→s(d) l 1l 2. Section IV is devoted
to the exclusive decay modesB̄→K (* )l 1l 2 and B̄
→p(r) l 1l 2, where formulas are given to calculateCP
asymmetries which can be determined experimentally
measuring the difference ofB and B̄ events. In Sec. V, we
present our numerical results forCP-violating observables in
the non-resonant domain 1.2 GeV,Ml 1 l 2,MJ/c , taking
into account experimental bounds on rareB decays such as
b→sg. We summarize and conclude in Sec. VI. The analy
formulas describing the short-distance effects in the prese
of SUSY as well as the explicit expressions for the fo
factors are relegated to the Appendixes.
©2000 The American Physical Society20-1
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II. THE MINIMAL SUPERSYMMETRIC STANDARD
MODEL

In the MSSM, there are new sources ofCP violation. In
general, a large number ofCP-violating phases appear in th
mass matrices as well as the couplings. After an appropr
redefinition of fields one ends up with at least two ne
CP-violating phases, besides the phase of the CKM ma
and the QCD vacuum angle, which cannot be rotated aw
For instance, in the MSSM with universal boundary con
tions at some high scale only two new physical phases a
namelywm0

associated with the Higgsino mass parametem

in the superpotential andwA0
connected with the soft SUSY

breaking trilinear mass terms.
In order to fulfill the severe constraints on the elect

dipole moments~EDM’s! of electron and neutron, one gen
erally assumes that the new phases are less thanO(1022).
Since there is no underlying symmetry which would for
the phases to be small, this requires fine-tuning. Of cou
one can relax the tight constraint on these phases by ha
masses of the superpartners in the TeV region; this he
SUSY spectrum may, however, lead to an unacceptably la
contribution to the cosmological relic density.

It has recently been pointed out by several authors th
is possible to evade the EDM constraints so that phase
O(1) still remain consistent with the current experimen
upper limits. Methods that have been advocated to supp
d

e
ix

gs
re
g

03402
te

ix
y.
-
e;

e,
ng
vy
ge

it
of
l
ss

the EDM’s include cancellations among different SUSY co
tributions@23,24#, and nearly degenerate heavy sfermions
the first two generations while being consistent with natur
ness bounds. The latter can be realized within the contex
so-called ‘‘effective SUSY’’ models@25#, thereby solving
the SUSY FCNC andCP problems.

To get an idea how supersymmetry affectsCP observ-
ables in rareB decays, we will consider as illustrative ex
amples the following types of SUSY models:

~i! MSSM coupled toN51 supergravity with a universa
SUSY-breaking sector at the grand unification scale.

~ii ! Effective SUSY with near degeneracy of the hea
first and second generation sfermions.

In the present analysis, we restrict ourselves to the disc
sion of flavor-diagonal sfermion mass matrices—that is,
assume the CKM matrix to be the only source of flav
mixing.1

A. Mixing matrices and new CP-violating phases

This subsection concerns the mass and mixing matr
relevant to our analysis. In what follows, we will adopt th
conventions of Ref.@26#.

1. Charged Higgs-boson mass matrix

The mass-squared matrix of the charged Higgs bos
reads
MH6
2

5S Bm tanb1MW
2 sin2b1t1 /v1 Bm1MW

2 sinb cosb

Bm1MW
2 sinb cosb Bm cotb1MW

2 cos2b1t2 /v2
D , ~2.1!
ec-
a
n
eu-
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Bm5
1

2
sin 2b~mH1

2 1mH2

2 12umu2!, ~2.2!

umu252
1

2
MZ

21
mH2

2 sin2b2mH1

2 cos2b

cos 2b
. ~2.3!

HereB andm refer to the complex soft SUSY-breaking an
Higgsino mass parameters respectively,mH1,2

2 are the soft

SUSY breaking Higgs-boson masses at the electrow
scale, andt1,2 stand for the renormalized tadpoles. The m
ing angleb is defined as usual by tanb[v2 /v1, with v1,2
denoting the tree level vacuum expectation values~VEV’s!
of the two neutral Higgs fields. In Eq.~2.2! we have adjusted
the phase of them parameter in such a way thatBm is real at
tree level, thereby ensuring that the VEV’s of the two Hig
fields are real. Consequently, the mass matrix becomes
and can be reduced to a diagonal form through a biortho
nal transformation (MH6

diag)25OMH6
2 OT. At the tree level,

i.e. t i50 in Eq. ~2.1!, we have
ak
-

al
o-

O5S 2cosb sinb

sinb cosb D . ~2.4!

Before proceeding, we should mention that radiative corr
tions to the Higgs potential induce complex VEV’s. As
matter of fact,CP violation in the Higgs sector leads to a
additional phase which, in the presence of chargino and n
tralino contributions, cannot be rotated away by reparame
zation of fields @27#. As a result, the radiatively induce
phase modifies the squark, chargino, and neutralino m
matrices. In the present analysis, we set this phase equ
zero.

2. Squark mass matrices

We now turn to the 636 squark mass-squared matr
which can be written as

1One should keep in mind that renormalization group effects
duce flavor off-diagonal entries in the sfermion mass matrices at
weak scale~see below!.
0-2
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FLAVOR-CONSERVINGCP PHASES IN . . . PHYSICAL REVIEW D 62 034020
Mq̃
2
5S Mq̃LL

2
Mq̃LR

2
e2 iw q̃

M q̃LR

2
eiw q̃ M q̃RR

2 D , q̃5Ũ,D̃, ~2.5!

in the (q̃L ,q̃R) basis, and can be diagonalized by a unita
matrix Rq̃ such that

~Mq̃
diag

!25Rq̃Mq̃
2
Rq̃

† . ~2.6!

For subsequent discussion it is useful to define the 633
matrices

~GqL!ai5~Rq̃!ai , ~GqR!ai5~Rq̃!a,i 13 , q5U,D,
~2.7!

with U and D denoting up- and down-type quarks respe
tively. Working in the so-called ‘‘super-CKM’’ basis@6# in
which the 333 quark mass matricesMU and MD are real
and diagonal, the submatrices in Eq.~2.5! take the form

MŨLL

2
5~MŨ

2
!LL1MU

2 1
1

6
MZ

2 cos 2b~324 sin2uW!1, ~2.8a!

MŨLR

2
5MUuAU2m* cotb1u, ~2.8b!

MŨRR

2
5~MŨ

2
!RR1MU

2 1
2

3
MZ

2 cos 2b sin2uW1, ~2.8c!

w Ũ5arg~AU2m* cotb1!, ~2.8d!
03402
y

-

MD̃LL

2
5VCKM

† ~MŨ
2

!LLVCKM1MD
2

2
1

6
MZ

2 cos 2b~322 sin2uW!1, ~2.9a!

MD̃LR

2
5MDuAD2m* tanb1u, ~2.9b!

MD̃RR

2
5~MD̃

2
!RR1MD

2 2
1

3
MZ

2 cos 2b sin2uW1, ~2.9c!

w D̃5arg~AD2m* tanb1!. ~2.9d!

Here uW denotes the Weinberg angle,1 represents a 333
unit matrix, (Mq̃

2)LL and (Mq̃
2)RR are Hermitian scalar sof

mass matrices, andVCKM is the usual CKM matrix. In deriv-
ing Eq. ~2.9a!, we have used the relation (MD̃

2 )LL

5VCKM
† (MŨ

2 )LLVCKM , which is due to SU~2! gauge invari-
ance. Since we ignore flavor-mixing effects among squa
(Mq̃

2)LL and (Mq̃
2)RR in Eqs. ~2.8! and ~2.9! are diagonal—

and hence real—whereas theAq’s are given by

AU5diag~Au ,Ac ,At!, AD5diag~Ad ,As ,Ab!,

Ai[uAi ueiwAi. ~2.10!

Consequently, the squark mass-squared matrix, Eq.~2.5!, in
the up-squark sector decomposes into a series of 232 ma-
trices. As far as the scalar top quark is concerned, we h
.

t
ino mass
M t̃
2
5S mt̃ L

2
1mt

21 1
6 MZ

2 cos 2b~324 sin2uW! mtuAt2m* cotbue2 iw t̃

mtuAt2m* cotbueiw t̃ mt̃ R

2
1mt

21 2
3 MZ

2 cos 2b sin2uW
D , ~2.11!

wheremt̃ L

2 and mt̃ R

2 are diagonal elements of (MŨ
2 )LL and (MŨ

2 )RR respectively, whilew t̃ can be readily inferred from Eq

~2.8d!. Diagonalization of the stop mass-squared matrix then leads to the physical mass eigenstatest̃ 1 and t̃ 2, namely

S t̃ 1

t̃ 2
D 5S cosu t̃ sinu t̃e

2 iw t̃

2sinu t̃e
iw t̃ cosu t̃

D S t̃ L

t̃ R
D [S G33

UL G33
UR

G63
UL G63

URD S t̃ L

t̃ R
D , ~2.12!

where the mixing angleu t̃ is given by the expression (2p/2<u t̃<p/2)

tan 2u t̃5
2mtuAt2m* cotbu

~mt̃ L

2
2mt̃ R

2
!1 1

6 MZ
2 cos 2b~328 sin2uW!

. ~2.13!

3. Chargino mass matrix

The chargino mass matrix can be written as

M x̃65S M2 A2MW sinb

A2MW cosb umueiwm
D , ~2.14!

where we have adopted a phase convention in which the mass term of the W-ino field,M2, is real and positive. Note tha
without loss of generality, we can always perform a global rotation to remove one of the three phases from the gaug
parametersMi ( i 51,2,3).
0-3



of fixing
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The mass matrix can be cast in diagonal form by means of a biunitary transformation, namely

M x̃6
diag

5U* M x̃6V†, ~2.15!

whereM x̃6
diag is diagonal with positive eigenvalues, andU, V are unitary matrices. Solving the eigenvalue problem

~M x̃6
diag

!25U* M x̃6M x̃6
†

UT5VM x̃6
†

M x̃6V†, ~2.16!

we find

U5S cosuU sinuUe2 iwU

2sinuUeiwU cosuU
D , ~2.17!

V5S cosuVe2 if1 sinuVe2 i (wV1f1)

2sinuVei (wV2f2) cosuVe2 if2
D , ~2.18!

with the mixing angles

tan 2uU5
2A2MW@M2

2 cos2b1umu2 sin2b1umuM2 sin 2b coswm#1/2

M2
22umu222MW

2 cos 2b
, ~2.19!

tan 2uV5
2A2MW@M2

2 sin2b1umu2 cos2b1umuM2 sin 2b coswm#1/2

M2
22umu212MW

2 cos 2b
, ~2.20!

tanwU52
umusinwm sinb

M2 cosb1umusinb coswm
, ~2.21!

tanwV52
umusinwm cosb

M2 sinb1umucosb coswm
, ~2.22!

tanf15
umusinwmMW

2 sin 2b

M2~mx̃
1
6

2
2umu2!1umuMW

2 sin 2b coswm

, ~2.23!

tanf252

umusinwm~mx̃
2
6

2
2M2

2!

M2MW
2 sin 2b1umu~mx̃

2
6

2
2M2

2!coswm

. ~2.24!

Here we have chosen2p/2<u i<p/2, 2p<w i ,f i<p, wherei 5U,V, and the chargino mass eigenvalues read

mx̃
1,2
6

2
5

1

2
†M2

21umu212MW
2 7$~M2

22umu2!214MW
4 cos22b14MW

2 @M2
21umu212umuM2 sin 2b coswm#%1/2

‡. ~2.25!

B. SUSY particles and FCNC interactions

We present here the SUSY Lagrangian relevant to the FCNC processes of interest which will also serve as a means
our notation. The interactions of charged Higgs bosons, charginos, neutralinos, and gluinos in the presence of newCP phases
can be written as@11,26#

LSUSY5
g

A2MW

@cotb~ ūMUVCKMPLd!1tanb~ ūVCKMMDPRd!#H11(
j 51

2

x̃ j
2̄@ ũ†~Xj

ULPL1Xj
URPR!d1 ñ†~Xj

LLPL1Xj
LRPR!l #

1 (
k51

4

x̃k
0̄@ d̃†~Zk

DLPL1Zk
DRPR!d1 l̃ †~Zk

LLPL1Zk
LRPR!l #2A2gs(

b51

8

g̃b̄d̃†~GDLPL2GDRPR!Tbd1H.c., ~2.26!
034020-4
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FLAVOR-CONSERVINGCP PHASES IN . . . PHYSICAL REVIEW D 62 034020
where generation indices have been suppressed, andPL,R
5(17g5)/2. The mixing matrices in the super-CKM bas
are given by

Xj
UL5gF2Vj 1* GUL1Vj 2* GUR

MU

A2MW sinb
GVCKM ,

~2.27a!

Xj
UR5gUj 2GULVCKM

MD

A2MW cosb
, ~2.27b!

Xj
LL52gVj 1* Rñ , Xj

LR5gUj 2Rñ

ME

A2MW cosb
,

~2.27c!

Zk
DL52

g

A2
F S 2Nk2* 1

1

3
tanuWNk1* DGDL

1Nk3* GDR
MD

MW cosbG , ~2.27d!

Zk
DR52

g

A2
F2

3
tanuWNk1GDR1Nk3GDL

MD

MW cosbG ,
~2.27e!

Zk
LL5

g

A2
F ~Nk2* 1tanuWNk1* !GLL2Nk3* GLR

ME

MW cosb G ,
~2.27f!

Zk
LR52

g

A2
F2 tanuWNk1GLR1Nk3GLL

ME

MW cosb G ,
~2.27g!

GDL5e2 iw3/2GDL, GDR5eiw3/2GDR, ~2.27h!

w3 being the phase of the gluino mass termM3. ~For scalar
lepton as well as neutralino mass and mixing matrices,
refer the reader to Ref.@26#.! In the remainder of this section
we briefly discuss two SUSY models with quite distinct sc
narios for theCP-violating phases.

C. Different scenarios for the SUSY parameters

1. Constrained MSSM

In order to solve the FCNC problem in the MSSM and
further reduce the number of unknown parameters,
MSSM is generally embedded in a grand unified the
~GUT!. This leads to the minimal supergravity~MSUGRA!
inspired model, commonly referred to as the constrain
MSSM @7#. In this model one assumes universality of t
soft terms at some high scale, which we take to be the s
of gauge coupling unification,MGUT, implying that ~i! all
gaugino mass parameters are equal to a common massM1/2;
~ii ! all the scalar mass parameters share a common valuem0;
and~iii ! all the soft trilinear couplings are equal toA0. As a
result, the MSUGRA model has only two new independ
03402
e
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phases which are associated with them0 andA0 parameters.
After all, we have at the GUT scale

tanb, M1/2, m0 , uA0u, um0u, wA0
, wm0

, ~2.28!

with M1/2 and m0 being real. The parameters at the ele
troweak scale are then obtained by solving the renormal
tion group equations~RGE’s!.

A few remarks are in order here. First, the phases of
gaugino mass termsMi are not affected by the renormaliza
tion group evolution, and therefore the low energy gaug
mass parameters are real. Second, the phase that appea
gether with them parameter does not run at one-loop level
that wm5wm0

. Moreover, to satisfy the constraints on th
EDM’s of electron and neutron,wm has to be ofO(1022)
unless strong cancellations between different contributi
occur. Third, solving the RGE’s for the evolution of th
CP-violating phase of theAt-term yields a small value for
wAt

, and thus is not constrained by the EDM’s@13,28#.
Lastly, off-diagonal entries occur in the squark mass ma
ces due to renormalization group evolution of the parame
even in the absence of flavor mixing at the GUT scale. Ho
ever, these effects are found to be small and therefore
squark mass matrix is essentially flavor diagonal at the e
troweak scale~see also Refs.@11,29#!.

2. Effective supersymmetry

As an example of SUSY models with largeCP phases,
we consider the effective supersymmetry picture@25# with-
out assuming universality of sfermion masses at a high sc
Within such a framework, the first and second generat
sfermions are almost degenerate and have masses abov
TeV scale, while third generation sfermions can be lig
enough to be accessible at future hadron colliders. Con
quently, FCNC reactions as well as one-loop contributions
the EDM’s of electron and neutron are well below the cu
rent experimental bounds.

However, it should be noted that the EDM’s also rece
contributions at two-loop level involving scalar bottom an
top quarks that may become important for phases of or
unity in the large tanb regime@30#. In our numerical work,
tanb is assumed to be in the interval 2<tanb<30.

III. RARE B DECAYS AND NEW PHYSICS

A. Short-distance matrix element

Let us start with the QCD-corrected matrix element d
scribing the short-distance interactions inb→s(d) l 1l 2

within the SM. It is given by

MSD5
GFa

A2p
VtbVt f* H F ~c9

eff2c10!^H~k!u f̄ gmPLbuB̄~p!&

2
2c7

eff

q2
^H~k!u f̄ ismnqn~mbPR

1mf PL!buB̄~p!&G l̄ gmPLl 1~c10→2c10! l̄ gmPRl J ,

~3.1!
0-5



in

d

or
of

es
ho
Eq
r

o
s

u-

x
s

s,

as

ts
to
lino

on-

ls

ter-
take

to

lar-

r-

ce-

se

- fac-

F. KRÜGER AND J. C. ROMÃO PHYSICAL REVIEW D 62 034020
where q is the four-momentum of the lepton pair, andH
5K,K* (p,r) in the case off 5s ( f 5d). In the SM, the
Wilson coefficientsc7

eff and c10 are real with values of
20.314 and24.582 respectively, and the leading term
c9

eff has the form@31,32#

c9
eff5c91~3c11c2!$g~mc ,q2!

1lu@g~mc ,q2!2g~mu ,q2!#%1•••, ~3.2!

wherec954.216. The Wilson coefficients will be discusse
in detail in Appendix B. In the above expression

lu[
VubVu f*

VtbVt f*
'H 2l2~r2 ih! for f 5s,

r~12r!2h2

~12r!21h2
2

ih

~12r!21h2
for f 5d,

~3.3!

with r andh being the Wolfenstein parameters@33#, where
the latter reflects the presence ofCP violation in the SM. For
definiteness, we will assumer50.19 andh50.35 @34#.

Finally, the one-loop functiong(mi ,q2) at the scalemR
5mb is given by2

g~mi ,q2!52
8

9
ln~mi /mb!1

8

27
1

4

9
yi2

2

9
~21yi !Au12yi u

3H Q~12yi !F lnS 11A12yi

12A12yi
D 2 ipG

1Q~yi21!2arctan
1

Ayi21
J , ~3.4!

where yi54mi
2/q2. Observe thatcc̄ and uū loops provide

absorptive parts that are mandatory, as we show below, f
non-zero partial width asymmetry besides the presence
CP-violating phase.

B. Wilson coefficients and new physics

Throughout this paper, we will assume that in the pr
ence of new physics there are no new operators beyond t
that correspond to the Wilson coefficients appearing in
~3.1!. ~For a discussion of the implications of new operato
for rare B decays, see, e.g., Ref.@35#.! Thus, the effect of
new physics is simply to modify the matching conditions
the Wilson coefficients, i.e. their absolute values and pha
at the electroweak scale.

As a result, we are left with additional SUSY contrib
tions at one-loop level to the Wilson coefficientsc7

eff , c9
eff ,

andc10 in Eq. ~3.1!. In fact, they arise from penguin and bo
diagrams with~i! charged Higgs boson up-type quark loop
~ii ! chargino up-type squark loops;~iii ! neutralino down-type
squark loops; and~iv! gluino down-type squark loops. Thu

2In order to avoid confusion with them parameter of the super
potential, we use the notationmR for the renormalization scale.
03402
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the short-distance coefficients can be conveniently written

ci~MW!5ci
SM~MW!1ci

H6

~MW!1ci
x̃6

~MW!

1ci
x̃0

~MW!1ci
g̃~MW! ~ i 57, . . . ,10!.

~3.5!

The explicit expressions for the various Wilson coefficien
are given in Appendix B. Since we limit our attention
flavor-conserving effects in the squark sector, the neutra
and gluino exchange contributions in Eq.~3.5! will be omit-
ted in our numerical calculations.

For future reference, we parametrize the new physics c
tributions as follows:

Ri5
ci~MW!

ci
SM~MW!

[uRi ueif i, x5
R821

R721
, ~3.6!

wherex is real to a good approximation within the mode
under study.

C. Resonant intermediate states

We have considered so far only the short-distance in
actions. A more complete analysis, however, has also to
into account resonance contributions due touū, dd̄, andcc̄
intermediate states, i.e.r,v,J/c,c8, and so forth. A detailed
discussion of the various theoretical suggestions of how
describe these effects is given in Ref.@36#.

We employ here the approach proposed in Ref.@37#
which makes use of the renormalized photon vacuum po
ization,Phad

g (s), related to cross-section data3

Rhad~s![
s tot~e1e2→hadrons!

s~e1e2→m1m2!
, ~3.7!

with s[q2. In fact, the absorptive part of the vacuum pola
ization is given by

Im Phad
g ~s!5

a

3
Rhad~s!, ~3.8!

whereas the dispersive part may be obtained via a on
subtracted dispersion relation@38#

RePhad
g ~s!5

as

3p
PE

4Mp
2

` Rhad~s8!

s8~s82s!
ds8, ~3.9!

with P denoting the principal value. For example, in the ca
of theJ/c family ~i.e. J/c,c8, . . . ) theimaginary part of the
one-loop functiong(mc ,s), Eq. ~3.4!, can be expressed as

3This method assumes quark-hadron duality and rests on the
torization assumption.
0-6
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Im g~mc ,s!5
p

3
Rhad

J/c~s!, Rhad
J/c~s![Rcont

cc̄ ~s!1Rres
J/c~s!,

~3.10!

where the subscripts ‘‘cont’’ and ‘‘res’’ stand for continuu
and resonance contributions respectively, while the real
is given by

Reg~mc ,s!52
8

9
ln~mc /mb!2

4

9

1
s

3
PE

4Mp
2

` Rhad
J/c~s8!

s8~s82s!
ds8. ~3.11!

The contributions from the continuum can be determined
means of experimental data given in Ref.@39#, whereas the
narrow resonances are well described by a relativistic Br
Wigner distribution.

However, in order to reproduce correctly the branch
ratio for direct J/c production via the relation (Vcc̄
5J/c,c8, . . . )

B~B→HVcc̄→Hl 1l 2!5B~B→HVcc̄!B~Vcc̄→ l 1l 2!,
~3.12!

whereH stands for pseudoscalar and scalar mesons, one
to multiply Rres

J/c in Eqs.~3.10! and ~3.11! by a phenomeno-
logical factork, regardless of which method one uses for t
description of the resonances@40,41#.4 Using the form fac-
tors of Ref.@43# ~see next section! together with experimen
tal data onB(B→K (* )J/c), B(B→K (* )c8), and B(B2

→p2J/c) @44#, we find a magnitude fork of 1.7 to 3.3. At
this point two remarks are in order. First, the branching ra
for directJ/c andc8 production is enhanced by a factork2,
while it is essentially independent ofk outside the resonanc
region. Second, the numerical results for averageCP asym-
metries in the non-resonant continuum 1.2 GeV,As
,2.9 GeV are not affected by the uncertainty ink.

Similar considerations also hold foruū and dd̄ systems
except that ther resonance is described through

Rres
r ~s!5

1

4 S 12
4Mp

2

s D 3/2

uFp~s!u2, ~3.13!

where the pion form factor is given by a modified Gounar
Sakurai formula@45#.
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IV. THE DECAYS B̄\K „* …l¿lÀ AND B̄\p„r… l¿lÀ

The hadronic matrix elements in exclusiveB decays can
be written in terms ofq2-dependent form factors, whereq2 is
the invariant mass of the lepton pair. In the work describ
here, we employ heavy-to-lightB→K (* ) andB→p(r) form
factors determined by Melikhov and Nikitin@43# within a
relativistic quark model. To get an estimate of the theoreti
uncertainty that is inherent to any model for the form facto
we also utilize the parametrization of Colangeloet al. @46#,
which makes use of QCD sum rule predictions.

For simplicity of presentation, we do not display corre
tions due to a non-zero lepton mass, which can be foun
Refs. @22,47#. ~The same remark applies to the light qua
massesms,d .) Henceforth we shall denote pseudoscalar a
vector mesons byP5K,p andV5K* ,r respectively.

A. B\P transitions

1. Form factors

The hadronic matrix elements for the decaysB→P can be
parametrized in terms of three Lorentz-invariant form fact
~see Appendix D for details!, namely

^P~k!u f̄ gmPLbuB̄~p!&5
1

2
@~2p2q!m f 1~q2!1qm f 2~q2!#,

~4.1a!

^P~k!u f̄ ismnqnPL,RbuB̄~p!&52
1

2
@~2p2q!mq22~MB

2

2M P
2 !qm#s~q2!, ~4.1b!

with q5p2k. Here we assume that the form factors are re
in the absence of final-state interactions. Note that the te
proportional toqm may be dropped in the case of massle
leptons.

2. Differential decay spectrum and forward-backward asymmet

Introducing the shorthand notation

l~a,b,c!5a21b21c222~ab1bc1ac!, ~4.2!

Xi5
1

2
l1/2~MB

2 ,Mi
2 ,s!, ~4.3!

and recallings[q2, the differential decay rate can be writte
as ~neglectingml andmf)
nts are
dG~B̄→Pl1l 2!

dsdcosu l
5

GF
2a2

28p5MB
3

uVtbVt f* u2XP
3 @ uc9

efff 1~s!12c7
effmbs~s!u21uc10f 1~s!u2#sin2u l . ~4.4!

Hereu l is the angle betweenl 2 and the outgoing hadron in the dilepton center-of-mass system, and the Wilson coefficie
collected in Appendix B. Defining the forward-backward~FB! asymmetry as

4Strictly speaking, it is the term (3c11c2)Rres
J/c—in the approximation of Eq.~3.2!—which has to be corrected tok(3c11c2)Rres

J/c , taking
into account non-factorizable contributions in two-bodyB decays~see, e.g., Ref.@42#!.
0-7
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AFB~s!5

E
0

1

d cosu l

dG

dsdcosu l
2E

21

0

d cosu l

dG

dsdcosu l

E
0

1

d cosu l

dG

dsdcosu l
1E

21

0

d cosu l

dG

dsdcosu l

, ~4.5!

which is equivalent to the energy asymmetry discussed in Ref.@11#, it follows directly from the distribution in Eq.~4.4! that
AFB vanishes in the case ofB̄→Pl1l 2 transitions. We note in passing that, given an extended operator basis~e.g. in models
with neutral Higgs-boson exchange!, new Dirac structuresl̄ l and l̄ g5l may occur in Eq.~3.1!, giving rise to a non-zero FB
asymmetry inB̄→Pl1l 2.

B. B\V transitions

1. Form factors

The hadronic matrix elements describing the decaysB→V are characterized by seven independent form factors, which
present in Appendix D, defined through (e0123511)

^V~k!u f̄ gmPLbuB̄~p!&5 i emnaben* paqbg~q2!2
1

2
$em* f ~q2!1~e* •q!@~2p2q!ma1~q2!1qma2~q2!#%, ~4.6a!

^V~k!u f̄ ismnqnPR,LbuB̄~p!&5 i emnaben* paqbg1~q2!7
1

2
em* @g1~q2!~MB

22MV
2 !1q2g2~q2!#

6
1

2
~e* •q!H ~2p2q!mFg1~q2!1

1

2
q2h~q2!G1qmFg2~q2!2

1

2
~MB

22MV
2 !h~q2!G J ,

~4.6b!

em being the polarization vector of the final-state meson, andq5p2k.

2. Differential decay spectrum and forward-backward asymmetry

The differential decay rate forB̄→Vl1l 2 in the case of massless leptons and light quarks takes the form (f 5s or d)

dG~B̄→Vl1l 2!

dsdcosu l
5

GF
2a2

29p5MB
3

uVtbVt f* u2XV@A~s!1B~s!cosu l1C~s!cos2u l #, ~4.7!

with XV as in Eq.~4.3!. The quantitiesA, B, andC are

A~s!5
2XV

2

MV
2 F sMV

2a1~s!1
1

4 S 11
2sMV

2

XV
2 D a2~s!1XV

2a3~s!1~k•q!a4~s!G , ~4.8!

B~s!58XV Re$c10* @c9
effsAxAy2c7

effmb~AxBy1AyBx!#%, ~4.9!

C~s!5
2XV

2

MV
2 FsMV

2a1~s!2
1

4
a2~s!2XV

2a3~s!2~k•q!a4~s!G , ~4.10!

wherek•q5(MB
22MV

22s)/2, and

a1~s!5~ uc9
effu21uc10u2!Ax

21
4uc7

effu2mb
2

s2
Bx

22
4 Re~c7

effc9
eff* !mb

s
AxBx , ~4.11a!

a2~s!5a1~s!x→y , a3~s!5a1~s!x→z , ~4.11b!

a4~s!5~ uc9
effu21uc10u2!AyAz1

4uc7
effu2mb

2

s2
ByBz2

2 Re~c7
effc9

eff* !mb

s
~AyBz1AzBy!, ~4.11c!
034020-8



FLAVOR-CONSERVINGCP PHASES IN . . . PHYSICAL REVIEW D 62 034020
in which theAi ’s andBi ’s are defined as

Ax5g~s!, Ay5 f ~s!, Az5a1~s!, ~4.12a!

Bx5g1~s!, By5g1~s!~MB
22MV

2 !1sg2~s!,

Bz52Fg1~s!1
1

2
sh~s!G . ~4.12b!

The complex Wilson coefficientsc7
eff , c9

eff , andc10 are given in Appendix B.
Finally, using Eqs.~4.5! and ~4.7!, we derive the forward-backward asymmetry

AFB~s!512XV

Re$c10* @c9
effsAxAy2c7

effmb~AxBy1AyBx!#%

@3A~s!1C~s!#
. ~4.13!
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C. CP-violating observables

To discussCP-violating asymmetries, let us first reca
the necessary ingredients. Suppose the decay amplitud
B̄→F has the general form

A~B̄→F !5eif1A1eid11eif2A2eid2, ~4.14!

whered i andf i denote strong phases (CP-conserving! and
weak phases (CP-violating! respectively (A1 and A2 being
real!. Together with the decay amplitude for the conjuga
process

Ā~B→F̄ !5e2 if1A1eid11e2 if2A2eid2, ~4.15!

which can be obtained from Eq.~4.14! by means ofCPT
invariance, we may define theCP asymmetry as

ACP[
uAu22uĀu2

uAu21uĀu2
5

22r sinf sind

112r cosf cosd1r 2
, ~4.16!

with r 5A2 /A1 , f5f12f2, andd5d12d2. As can be eas-
ily seen from Eq.~4.16!, a non-zero partial rate asymmet
requires the simultaneous presence of aCP-violating phase
f as well as aCP-conserving dynamical phased, the latter
being provided by the one-loop functionsg(mc ,s) and
g(mu ,s) present in the Wilson coefficientc9

eff @Eq. ~3.2!#.
Notice that in the limit in which the charm quark mass equ
the up quark mass there is noCP violation in the SM.

Given the differential decay distribution in the variabless
and cosul , we can construct the followingCP-violating ob-
servables:

ACP
D,S~s!5

E
D,S

d cosu l

dGdiff

dsdcosu l

E
S
d cosu l

dGsum

dsdcosu l

, E
D,S

[E
0

1

7E
21

0

,

~4.17a!

where we have introduced

Gdiff5G~B̄→Hl 1l 2!2Ḡ~B→H̄l 1l 2!, ~4.17b!
03402
for
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s

Gsum5G~B̄→Hl 1l 2!1Ḡ~B→H̄l 1l 2!, ~4.17c!

with H5K (* ),p,r. It should be noted that the asymmet
ACP

D represents aCP-violating effect in the angular distribu

tion of l 2 in B andB̄ decays whileACP
S is the asymmetry in

the partial widths of these decays. As can be seen from E
~4.4!, ~4.7!, and~4.13!, the latter involves the phases ofc7

eff

andc9
eff while the former is also sensitive to the phase of t

Wilson coefficientc10.

V. NUMERICAL ANALYSIS

Given the SUSY contributions presented in the preced
sections, we now proceed to study the implications of sup
symmetry for exclusiveB decays.

A. Experimental constraints

In our numerical analysis, we scan the SUSY parame
space as given in Ref.@15# and take as input the paramete
displayed in Appendix A. In addition, we take into accou
the following experimental constraints:

~i! From the measurement of the inclusive branching ra
B(B̄→Xsg), which probesuc7

effu, one can derive upper an
lower limits @48#:

2.031024,B~B̄→Xsg!,4.531024 ~95% C.L.!.
~5.1!

This is specially useful to constrain extensions of the S
Indeed, following the model-independent analysis perform
in Ref. @49#, and taking the Wilson coefficientc7

eff in leading-
log approximation@see Eq.~B2! of the Appendix#, we obtain

B~B̄→Xsg!'@0.80110.444uR7u210.002uR8u2

11.192 ReR710.083 ReR8

10.061 Re~R7R8* !#31024, ~5.2!
0-9
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F. KRÜGER AND J. C. ROMÃO PHYSICAL REVIEW D 62 034020
FIG. 1. Allowed region foruR7u and the correspondingCP-violating phasef7 as determined from the inclusive measurement ob
→sg rate, using the leading-log expression forc7

eff . Diagrams~a! and ~b! correspond to different values ofx @Eq. ~3.6!#.
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whereR7 and R8 are as in Eq.~3.6!. From Fig. 1 we infer
that the presentb→sg measurement already excludes ma
solutions forR7.

~ii ! A CDF search for the exclusive decays of intere
yields the upper limitsB(B0→K* 0m1m2),4.031026 and
B(B1→K1m1m2),5.231026 at the 90% C.L.@50#. Note
that theK* 0m1m2 upper limit is close to the SM predictio
@19,51#. As for the modesB→p l 1l 2 andB→r l 1l 2, we are
not aware of any such limits.

~iii ! Non-observation of any SUSY signals at CER
e1e2 collider LEP 2 and the Fermilab Tevatron imposes
following lower bounds@44#:

mx̃6.86 GeV, mñ.43 GeV, mt̃ 1
.86 GeV,

mq̃.260 GeV, mH6.90 GeV. ~5.3!

B. CP asymmetries

As mentioned earlier, we investigateCP asymmetries in
the low dilepton invariant mass region, i.e. 1.2 GeV,As
,(MJ/c2200 MeV), which is of particular interest becau
the low-s region is sensitive to the Wilson coefficientc7

eff ~in
the case ofB→Vl1l 2). In fact, it can receive large SUSY
contributions and be complex, as well as change sign, w
being consistent with the experimental measurement ob
→sg. On the other hand, the new-physics effects are kno
to alter the remaining Wilson coefficientsc9

eff and c10 only
03402
t
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le

n

slightly within MSUGRA and effective SUSY with no addi
tional flavor structure beyond the usual CKM mechani
@5,12,19#. Moreover,CP asymmetries above theJ/c reso-
nance are dominated bycc̄ resonant intermediate state
whereas below 1 GeV ther resonance has a strong influen
on the asymmetry. This can be seen from Fig. 2, where
show theCP asymmetryACP

S @Eq. ~4.17a!# betweenB2

→p2l 1l 2 and B1→p1l 1l 2 as a function of the dilepton
invariant mass within the SM and in the presence of SU
contributions with newCP-violating phases. It is eviden
that the predictions forCP asymmetries suffer from large
theoretical uncertainties in the neighborhood of ther reso-
nance and above theJ/c, as discussed in Sec. III.

Using Eqs.~4.4! and~4.7! together with the definition for
CP-violating asymmetries, Eqs.~4.17!, we can summarize
our main findings as follows.

1. CP violation in B\Pl¿lÀ

TheCP-violating asymmetry in thel 2 spectra ofB andB̄
decays,ACP

D , vanishes in the case ofB→P transitions.
Within the framework of the constrained MSSM with phas
of O(1022) numerical values for the average asymme
^ACP

S & in the low-s region are comparable to the SM predi
tions with asymmetries of 0.1% and25% for b→s and b
→d transitions respectively.

Our results forACP
S between the decaysB̄→Pl1l 2 and

B→ P̄l 1l 2 in the context of effective SUSY with a light sto
0-10
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FIG. 2. CP-violating partial width asymmetryACP
S in the decaysB2→p2l 1l 2 andB1→p1l 1l 2 vsAŝ, ŝ[s/MB

2 , includingr, v, and
J/c, c8, etc. resonances, and employing the form factors of Ref.@43#. ~a! Within the SM and~b! in the presence of newCP phases and a
real CKM matrix. For the sake of illustration, we have chosenuR7u51.6, uR9,10u51, x51.5, f75p/2, andf9,1050.01.
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t̃ 1 and phases ofO(1) are shown in Figs. 3 and 4 for low
and large tanb solutions which correspond to ReR7.0 and
ReR7,0 respectively. Observe that theCP-violating asym-
metry ACP

S in B→P depends only weakly on the sign an
phase ofc7

eff . This is due to the fact thatc7
eff , which is

constrained by theb→sg measurement and not enhanced
a factor of 1/s in the low-s region, is nearly one order o
magnitude smaller than the leading term inc9

eff @cf. Eq.
~3.2!#.

The CP asymmetry in the partial widths ofB̄→Kl 1l 2

and B→K̄l 1l 2 changes sign for large values off9, while
uACP

S u<1% ~see Fig. 3!. However, non-standard contribu
tions to f9 are found to be small and henceACP

S

;O(1023). On the other hand, average asymmetries
2(5 –6)% are predicted for̂ACP

S & in the case ofB→p,
even for values off9 as small as 1022 ~see Fig. 4!. Given a
typical branching ratio of 1028 and a nominal asymmetry o
6%, a measurement at 3s level requires 331011 bb̄ pairs.
@This rather challenging task might be feasible at the CE
Large Hadron Collider~LHC! and the Tevatron.#

The small magnitude of theCP asymmetry is also due to
a suppression factor multiplying the indispensable absorp
part in c9

eff , which is only slightly affected by new-physic
contributions. Indeed, it follows from Eqs.~3.2! and ~4.16!
that
03402
f
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e

ACP}r sinf sind;
~3c11c2!

uc9u
sinf sind;1022 sinf sind,

~5.4!

where the weak and strong phasesf andd can be of order
unity.

Numerical estimates for averageCP asymmetries are
mildly affected by the parametrization of form factors~see
also Refs.@22,52#!.

2. CP violation in B\Vl¿lÀ

The contribution of the Wilson coefficientc7
eff ~or equiva-

lently R7) to the decay rate inB→V modes is enhanced by
factor of 1/s in the low-s region. As seen from Fig. 5, in the
case ofB→r, theCP-violating asymmetryACP

S can change
sign for tanb52 ~i.e. ReR7.0), while for large tanb it is
always negative. For small values off9 an averageCP
asymmetry of about25% is predicted for both tanb52 and
tanb530 solutions. Since the distributions ofACP

S for B
→K* are very similar to the ones obtained forB→K, we
refrain from showing the corresponding plots.

As we have already mentioned, theCP-violating asym-
metry in the angular distribution ofl 2 in B and B̄ decays
can, in principle, probe the phase of the Wilson coefficie
c10. This is shown in Fig. 6, where we have plotted theCP
asymmetry as a function off9 andf10 for large tanb ~i.e.
0-11
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F. KRÜGER AND J. C. ROMÃO PHYSICAL REVIEW D 62 034020
ReR7,0). Unfortunately, the MSUGRA and effectiv
SUSY predictions for the average asymmetry^ACP

D & turn out
to be unobservably small.

FIG. 3. CP-violating partial width asymmetryACP
S in the de-

caysB̄→Kl 1l 2 andB→K̄l 1l 2 as a function off9 and uR7u for a
dilepton invariant mass ofs54 GeV2 within effective SUSY.~a!
tanb52 with f750.4, uR9u50.96, uR10u50.8. ~b! tanb530 with
f752.5, uR9u50.99, uR10u50.9.
03402
VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the consequences of
CP-violating phases for exclusiveB decays within the
framework of supersymmetric extensions of the SM, ign
ing intergenerational mixing in the squark sector. We ha

FIG. 4. CP-violating partial width asymmetryACP
S between

B2→p2l 1l 2 andB1→p1l 1l 2 as a function off9 and uR7u for
s54 GeV2 within effective SUSY.~a! tanb52 with f750.4,
uR9u50.96, uR10u50.8. ~b! tanb530 with f752.5, uR9u50.99,
uR10u50.9.
0-12
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examinedCP-violating asymmetries in the partial widths a
well as angular distribution ofl 2 between the exclusive
channelsb→s(d) l 1l 2 and b̄→ s̄(d̄) l 1l 2 in the invariant
mass region 1.2 GeV,Ml 1 l 2,2.9 GeV. The essentia
conclusion of our analysis is that it is not sufficient to ha

FIG. 5. CP asymmetryACP
S in the decaysB2→r2l 1l 2 and

B1→r1l 1l 2 as a function off9 and uR7u for a dilepton invariant
mass ofs54 GeV2 within effective SUSY.~a! tanb52 with f7

50.4, uR9u50.96, uR10u50.8. ~b! tanb530 with f752.5, uR9u
50.99, uR10u50.9. Note that~a! and ~b! correspond to ReR7.0
and ReR7,0, respectively.
03402
additional CP phases ofO(1) in order to obtain large
CP-violating effects.

Within the constrained MSSM and effective SUSY with
complex CKM matrix and additionalCP phases, we obtain

FIG. 6. CP-violating asymmetry ACP
D between ~a! B̄

→K* l 1l 2 and B→K̄* l 1l 2, and ~b! B2→r2l 1l 2 and B1

→r1l 1l 2 for large tanb as in Fig. 3.
0-13
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F. KRÜGER AND J. C. ROMÃO PHYSICAL REVIEW D 62 034020
values for the average asymmetry^ACP
S & of about 26%

(25%) in the decaysB̄→p(r) l 1l 2 and B→p̄( r̄) l 1l 2,
taking into account experimental constraints on EDM’s
electron and neutron, as well as rareB decays such asb
→sg. As for the asymmetry in the angular distributio
^ACP

D &, it probes the phase of the Wilson coefficientc10, but
will be unobservable at future colliders. Numerical estima
of the CP asymmetries in the decaysB̄→K (* )l 1l 2 and B

→K̄ (* )l 1l 2 turn out to be small~less than 1%! and are
comparable to the SM result.

Our analysis shows that the smallness inCP asymmetries
is mainly due to the coefficient (3c11c2)/uc9u which multi-
plies the requisite absorptive part inc9

eff @Eq. ~3.2!#, and
which is only slightly affected by the new-physics contrib
tions discussed in Sec. III. Therefore, any siza
CP-violating effect in the low-s region requires large non
standard contributions to the short-distance coefficientc9

eff

and/orc10, as well as additionalCP phases ofO(1). By the
same token, any largeCP-violating effect would provide a
clue to physics beyond the SM. A detailed discussion of t
point will be given elsewhere.

One could argue, however, that the inclusion of flav
off-diagonal contributions~i.e. gluino and neutralino dia
grams! to the Wilson coefficients might lead to higherCP
asymmetries. In fact, it has been pointed out in Refs.@29,53#
that even in the presence of large supersymmetricCP
phases, a non-trivial flavor structure in the soft-break
terms is necessary in order to obtain sizable contribution
CP violation in the K system and toCP asymmetries in
two-body neutralB decays~see also Ref.@24#!. Using the
mass insertion approximation, such effects have rece
been studied in Ref.@20# which predicts a partial width
asymmetry forb→sl1l 2 of a few percent in the low-s do-
main.

Finally, we would like to recall that, nevertheless, lar
CP asymmetries may occur in rareB decays like the ob-
servedb→sg modes, whereACP can be substantial~up to
645%) in some part of the parameter space@14,54#.
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APPENDIX A: NUMERICAL INPUTS

Unless otherwise specified, we use the experimental
ues as compiled by the Particle Data Group@44# and the
parameters displayed in Eq.~A1!.

mt5175 GeV, mb54.8 GeV, mc51.4 GeV,

ms5170 MeV, md510 MeV,

mu55 MeV, a51/129, LQCD5225 MeV. ~A1!
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APPENDIX B: WILSON COEFFICIENTS AND SUSY

For the sake of convenience, we provide in this appen
formulas for the Wilson coefficientsc7

eff , c9
eff , andc10 in the

presence of SUSY, using the results derived in Re
@9,11,31,55#. Since we study the case of massless leptons,
retain only those contributions that do not vanish in the lim
ml→0. As for t leptons in the final state, there are furth
charged and neutral Higgs-boson contributions@see also Eqs.
~2.27!#.

Introducing the shorthand notation

hs5
as~MW!

as~mb!
, r W5

mt
2

MW
2

, r H65
mt

2

mH6
2 , r B

A5
mA

2

mB
2

,

~B1!

the Wilson coefficientc7
eff evaluated atmR5mb has the form

~in leading-log approximation!

c7
eff5hs

16/23c7~MW!1
8

3
~hs

14/232hs
16/23!c8~MW!1(

i 51

8

hihs
ai ,

~B2!

with the coefficientsai , hi tabulated in Ref.@31#. Recalling
Eqs. ~2.27! and ~3.5!, and using the one-loop functionsf i
listed in Appendix C, the various contributions toc7,8(MW)
can be written as follows:

Standard model:

c7
SM~MW!5

1

4
r Wf 1~r W!. ~B3!

Charged Higgs boson:

c7
H6

~MW!5
1

12
@r H6 f 1~r H6!cot2b12 f 2~r H6!#. ~B4!

Chargino:5

c7
x̃6

~MW!52
1

6g2VtbVt f*
(
a51

6

(
j 51

2 MW
2

mx̃
j
6

2

3F ~Xj
UL†

!na~Xj
UL!a3f 1~r

x̃
j
6

ũa !

22~Xj
UL†

!na~Xj
UR!a3

mx̃
j
6

mb
f 2~r

x̃
j
6

ũa !G , ~B5!

where we have defined

n5H 1 for f 5d,

2 for f 5s.
~B6!

5Notice that the one-loop function appearing in the last term
Eq. ~B5! is actually f 215/2. However, using the explicit form fo
the squark mixing matrices@Eqs. ~2.27!#, the constant term
vanishes—reflecting the unitarity of the mixing matrices.
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For completeness, we also give the expressions for the neutralino and gluino contributions which vanish in the
flavor-diagonal squark mass matrices.

Neutralino:

c7
x̃0

~MW!52
1

6g2VtbVt f*
(
a51

6

(
k51

4 MW
2

mx̃
k
0

2 F ~Zk
DL†

!na~Zk
DL!a3f 3~r

x̃
k
0

d̃a!12~Zk
DL†

!na~Zk
DR!a3

mx̃
k
0

mb
f 4~r

x̃
k
0

d̃a!G . ~B7!

Gluino:

c7
g̃~MW!52

4gs
2

9g2VtbVt f*
(
a51

6 MW
2

mg̃
2 F ~GDL†!na~GDL!a3f 3~r

g̃

d̃a!22~GDL†!na~GDR!a3

mg̃

mb
f 4~r

g̃

d̃a!G . ~B8!

The corresponding expressionsc8
SM(MW), . . . ,c8

x̃0
(MW) are obtained changingf i→gi in Eqs.~B3!–~B7!, with gi collected in

Appendix C, while the gluino contribution reads

c8
g̃~MW!52

4gs
2

9g2VtbVt f*
(
a51

6 MW
2

mg̃
2 F ~GDL†!na~GDL!a3g5~r

g̃

d̃a!22~GDL†!na~GDR!a3

mg̃

mb
g6~r

g̃

d̃a!G . ~B9!

The Wilson coefficientc9
eff at mR5mb in next-to-leading approximation is given by

c9
eff5c9F11

as~mb!

p
v~s/mb

2!G1g~mc ,s!~3c11c213c31c413c51c6!1lu@g~mc ,s!2g~mu ,s!#~3c11c2!

2
1

2
g~mf ,s!~c313c4!2

1

2
g~mb ,s!~4c314c413c51c6!1

2

9
~3c31c413c51c6!, ~B10!

wherelu andg(mi ,s) are defined in Eqs.~3.3! and~3.4! respectively, withs[q2. As far as the Wilson coefficientsc1–c6 are
concerned, we have numerically

c1520.249, c251.108, c350.011, c4520.026, c550.007, c6520.031, ~B11!

using the values given in Appendix A. Further,

c95c9~MW!2
4

9
1P01PE(

i
Ei , ~B12!

with i 5SM,H6,x̃6,x̃0,g̃, and

c9~MW!5(
i

S Yi

sin2uW

24Zi D 1
4

9
, ~B13!

where the analytic expressions forP0 , PE , and ESM are given in Ref.@31#. Since PE!P0, we shall keep only the SM
contribution in the last term of Eq.~B12!. Moreover, as discussed in Ref.@41#, the orderas correction in Eq.~B10! due to
one-gluon exchange may be regarded as a contribution to the form factors, and hence we setv50 in Eq. ~B10!

Turning to the Wilson coefficientc10, it has the simple form

c10~MW!52(
i

Yi

sin2uW

. ~B14!

Note that the corresponding operator does not renormalize and thusc10(MW)5c10(mR).
The expressions for the various contributions toY andZ read as follows:6

Standard model:

6Regarding the expressions for the chargino and neutralino box-diagram contributions, and the sign discrepancy between Ref.@9# and Ref.
@11#, we confirm the results of the latter.
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YSM5
1

8
f 9~r W!, ZSM5

1

72
f 10~r W!. ~B15!

Charged Higgs boson:

YH6
[YZ

H6
, ZH6

[Zg
H6

1ZZ
H6

, ~B16a!

Zg
H6

52
1

72
f 6~r H6!cot2b, YZ

H6
5ZZ

H6
52

1

8
r Wf 5~r H6!cot2b. ~B16b!

Chargino:

Yx̃6
[YZ

x̃6
1Ybox

x̃6
, Zx̃6

[Zg
x̃6

1ZZ
x̃6

, ~B17a!

Zg
x̃6

5
1

36g2VtbVt f*
(
a51

6

(
j 51

2 MW
2

mũa

2 @~Xj
UL†

!na~Xj
UL!a3f 7~r

ũa

x̃ j
6

!#, ~B17b!

YZ
x̃6

5ZZ
x̃6

5
1

2g2VtbVt f*
(

a,b51

6

(
i , j 51

2 H ~Xi
UL†

!na~Xj
UL!b3Fc2~mx̃

i
6

2
,mũa

2 ,mũb

2
!~GULGUL†!abd i j

2c2~mũa

2 ,mx̃
i
6

2
,mx̃

j
6

2
!dabVi1* Vj 11

1

2
mx̃

i
6mx̃

j
6c0~mũa

2 ,mx̃
i
6

2
,mx̃

j
6

2
!dabUi1U j 1* G J , ~B17c!

Ybox
x̃6

5
MW

2

g2VtbVt f*
(
a51

6

(
i , j 51

2

@~Xi
UL†

!na~Xj
UL!a3d2~mx̃

i
6

2
,mx̃

j
6

2
,mũa

2 ,mñ1,2

2
!Vi1* Vj 1#, ~B17d!

with mñ1
(mñ2

) in the case ofe1e2(m1m2) in the final state.
Neutralino:

Yx̃0
[YZ

x̃0
1Ybox

x̃0
, Zx̃0

[Zg
x̃0

1ZZ
x̃0

1Zbox
x̃0

, ~B18a!

Zg
x̃0

52
1

216g2VtbVt f*
(
a51

6

(
k51

4 MW
2

md̃a

2 @~Zk
DL†

!na~Zk
DL!a3f 8~r

d̃a

x̃k
0

!#, ~B18b!

YZ
x̃0

5ZZ
x̃0

5
1

2g2VtbVt f*
(

a,b51

6

(
k,l 51

4 H ~Zk
DL†

!na~Zl
DL!b3Fc2~mx̃

k
0

2
,md̃a

2 ,md̃b

2
!~GDRGDR†!abdkl

2c2~md̃a

2 ,mx̃
k
0

2
,mx̃

l
0

2
!dab~Nk3* Nl32Nk4* Nl4!2

1

2
mx̃

k
0mx̃

l
0c0~md̃a

2 ,mx̃
k
0

2
,mx̃

l
0

2
!dab~Nk3Nl3* 2Nk4Nl4* !G J , ~B18c!

Ybox
x̃0

52 sin2uWZbox
x̃0

1
MW

2

2g2VtbVt f*
(
a51

6

(
k,l 51

4 H ~Zk
DL†

!na~Zl
DL!a3Fd2~mx̃

k
0

2
,mx̃

l
0

2
,md̃a

2 ,ml̃ 1,2

2
!~Nk2* 1tanuWNk1* !~Nl2

1tanuWNl1!1
1

2
mx̃

k
0mx̃

l
0d0~mx̃

k
0

2
,mx̃

l
0

2
,md̃a

2 ,ml̃ 1,2

2
!~Nk21tanuWNk1!~Nl2* 1tanuWNl1* !G J , ~B18d!

Zbox
x̃0

5
MW

2

g2VtbVt f*
(
a51

6

(
k,l 51

4 H ~Zk
DL†

!na~Zl
DL!a3sec2uWFd2~mx̃

k
0

2
,mx̃

l
0

2
,md̃a

2 ,ml̃ 4,5

2
!Nk1* Nl1

1
1

2
mx̃

k
0mx̃

l
0d0~mx̃

k
0

2
,mx̃

l
0

2
,md̃a

2 ,ml̃ 4,5

2
!Nk1Nl1* G J , ~B18e!
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with ml̃ 1,4
(ml̃ 2,5

) for e1e2(m1m2) in the final state.
Gluino:

Yg̃[YZ
g̃ , Zg̃[Zg

g̃1ZZ
g̃ , ~B19a!

Zg
g̃52

gs
2

81g2VtbVt f*
(
a51

6 MW
2

md̃a

2 @~GDL†!na~GDL!a3f 8~r d̃a

g̃
!#, ~B19b!

YZ
g̃5ZZ

g̃5
4gs

2

3g2VtbVt f*
(

a,b51

6

@~GDL†!na~GDL!b3c2~mg̃
2 ,md̃a

2 ,md̃b

2
!~GDRGDR†!ab#. ~B19c!

The functionsf i , ci , anddi are given in Eqs.~C1!–~C4! below.

TABLE I. The B→K (* ) andB→p(r) form factors of Melikhov and Nikitin@43#.

Form factor B→K B2→p2

f 1(q2)
0.36S 12

q2

6.882D 22.32

0.29S 12
q2

6.712D 22.35

f 2(q2)
20.30S 12

q2

6.712D 22.27

20.26S 12
q2

6.552D 22.30

s(q2)
0.06 GeV21S 12

q2

6.852D 22.28

0.05 GeV21S 12
q2

6.682D 22.31

Form factor B→K* B2→r2

g(q2)
0.048 GeV21S 12

q2

6.672D 22.61

0.036 GeV21S 12
q2

6.552D 22.75

f (q2)
1.61 GeVS 12

q2

5.862
1

q4

7.664D 21

1.10 GeVS 12
q2

5.592
1

q4

7.104D 21

a1(q2)
20.036 GeV21S 12

q2

7.332D 22.85

20.026 GeV21S 12
q2

7.292D 23.04

a2(q2)
0.041 GeV21S 12

q2

6.982D 22.72

0.03 GeV21S 12
q2

6.882D 22.85

h(q2)
0.0037 GeV22S 12

q2

6.572D 23.28

0.003 GeV22S 12
q2

6.432D 23.42

g1(q2)
20.28S 12

q2

6.672D 22.62

20.20S 12
q2

6.572D 22.76

g2(q2)
0.24S 12

q2

6.592D 22.58

0.18S 12
q2

6.502D 22.73
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F. KRÜGER AND J. C. ROMÃO PHYSICAL REVIEW D 62 034020
APPENDIX C: AUXILIARY FUNCTIONS

Here we list the functionsf i , gi , ci , anddi introduced in
the previous section:

f 1~x!5
2715x18x2

6~12x!3
2

x~223x!

~12x!4
ln x, ~C1a!

f 2~x!5
x~325x!

2~12x!2
1

x~223x!

~12x!3
ln x, ~C1b!

f 3~x!5
215x2x2

6~12x!3
1

x

~12x!4
ln x, ~C1c!

f 4~x!5
11x

2~12x!2
1

x

~12x!3
ln x, ~C1d!

f 5~x!5
x

12x
1

x

~12x!2
ln x, ~C1e!

f 6~x!5
x~38279x147x2!

6~12x!3
1

x~426x13x3!

~12x!4
ln x,

~C1f!

f 7~x!5
522101x143x2

6~12x!3
1

629x12x3

~12x!4
ln x,

~C1g!

f 8~x!5
227x111x2

~12x!3
1

6x3

~12x!4
ln x,

~C1h!

f 9~x!5
x~42x!

12x
1

3x2

~12x!2
ln x, ~C1i!

f 10~x!5
x~1082259x1163x2218x3!

2~12x!3

2
8250x163x216x3224x4

~12x!4
ln x, ~C1j!

g1~x!523 f 3~x!, g2~x!53@ f 4~x!21/2#,

g3~x!523 f 3~x!, g4~x!523 f 4~x!,
~C2a!

g5~x!5
1

8 F11240x219x2

2~12x!3
1

3x~129x!

~12x!4
ln xG ,

~C2b!

g6~x!5
3

8 F 5213x

~12x!2
1

x~129x!

~12x!3
ln xG , ~C2c!
03402
c0~m1
2 ,m2

2 ,m3
2!52F m1

2 ln~m1
2/mR

2 !

~m1
22m2

2!~m1
22m3

2!
1~m1↔m2!

1~m1↔m3!G , ~C3a!

c2~m1
2 ,m2

2 ,m3
2!5

3

8
2

1

4 F m1
4 ln~m1

2/mR
2 !

~m1
22m2

2!~m1
22m3

2!

1~m1↔m2!1~m1↔m3!G , ~C3b!

d0~m1
2 ,m2

2 ,m3
2 ,m4

2!52F m1
2 ln~m1

2/mR
2 !

~m1
22m2

2!~m1
22m3

2!~m1
22m4

2!

1~m1↔m2!1~m1↔m3!

1~m1↔m4!G , ~C4a!

d2~m1
2 ,m2

2 ,m3
2 ,m4

2!52
1

4 F m1
4 ln~m1

2/mR
2 !

~m1
22m2

2!~m1
22m3

2!~m1
22m4

2!

1~m1↔m2!1~m1↔m3!

1~m1↔m4!G . ~C4b!

TABLE II. The B→K (* ) form factors of Colangeloet al. @46#,
with M55 GeV. As for theB→p(r) transition, we use the form
factors listed below withM55.3 GeV inF1 andFT .

Form factor B→K

F1(q2)
0.25S 12

q2

M2D 21

F0(q2)
0.25S 12

q2

49D
21

FT(q2)
20.14S 12

q2

M2D 21S 12
q2

49D
21

Form factor B→K*

V(q2)
0.47S 12

q2

25D
21

A1(q2) 0.37~120.023q2!

A2(q2) 0.40(110.034q2)
A0(q2)

0.30S 12
q2

4.82D 21

T1(q2)
0.19S 12

q2

5.32D 21

T2(q2) 0.19(120.02q2)
T3(q2) 0.30(110.01q2)
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APPENDIX D: FORM FACTORS

In Tables I and II we summarize the two different sets
form factors discussed in Sec. IV, which are related via

F1~q2!5 f 1~q2!, ~D1a!

F0~q2!5 f 1~q2!1
q2

MB
22M P

2
f 2~q2!, ~D1b!

FT~q2!52~MB1M P!s~q2!, ~D1c!

V~q2!5~MB1MV!g~q2!, ~D1d!

A1~q2!5
f ~q2!

MB1MV
, ~D1e!
ab
ra
o

v.
;

,

R

l.

. D

,

03402
f

A2~q2!52~MB1MV!a1~q2!, ~D1f!

A0~q2!5
q2a2~q2!1 f ~q2!1~MB

22MV
2 !a1~q2!

2MV
,

~D1g!

T1~q2!52
1

2
g1~q2!, ~D1h!

T2~q2!52
1

2 Fg1~q2!1
q2g2~q2!

MB
22MV

2 G , ~D1i!

T3~q2!5
1

2 Fg2~q2!2
~MB

22MV
2 !h~q2!

2 G . ~D1j!
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@21# F. Krüger, L. M. Sehgal, N. Sinha, and R. Sinha, Phys. Rev

61, 114028~2000!.
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