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We show that the low energy limit of the minimal supersymmetric left-right models is the supersymmetric
standard model with an exactR parity. The theory predicts a number of light Higgs scalars and fermions with
masses much below theB2L and SU(2)R breaking scales. The nonrenormalizable version of the theory has a
striking prediction of light doubly charged supermultiplets which may be accessible to experiment. Whereas in
the renormalizable case the scale of parity breaking is undetermined, in the nonrenormalizable one it must be
bigger than about 1010– 1012 GeV. The precise nature of the seesaw mechanism differs in the two versions, and
has important implications for neutrino masses.@S0556-2821~98!08119-3#

PACS number~s!: 12.60.Jv, 11.30.Fs

I. INTRODUCTION

One of the central issues, if not the main one, in the mini-
mal supersymmetric standard model~MSSM! is what con-
trols the strength ofR-parity breaking. The suppression of
~some or all! R-parity violating couplings in the MSSM is
essential to avoid catastrophic proton decay rates, and deter-
mines the fate of the lightest supersymmetric particle~LSP!.
The most appealing rationale for an otherwisead hocdis-
crete symmetry would be to have it as an automatic conse-
quence of a gauge principle@1#.

This is more than an aesthetic issue, for only gauge sym-
metries are protected against possible high scale violations
such as, for example, those arising from quantum gravita-
tional effects. Since in the MSSM the action ofR parity on
the superfields may be written asR5(21)3(B2L) @2#, theo-
ries with gaugedB2L may be regarded as the minimal
framework to implement this idea@1,3,4#. B2L symmetry is
naturally, indeed ineluctably, incorporated in left-right sym-
metric theories, which provide an understanding of parity
violation in nature@5–8#. A construction of a consistent su-
persymmetric left-right theory for generic values of the par-
ity breaking scale (MR) thus becomes essential. A consider-
able amount of work has been done on theories with lowMR
@that is,MR;(1 – 10)MW# regarding the construction of the
theory @9,10#. On the other hand, only recently have there
been attempts to study the more realistic case ofMR@MW
@11,12#. In this paper we provide a systematic study of mini-
mal supersymmetric left-right theories~MSLRM! with an
arbitrarily large scale of parity breaking and controllable
R-parity violation.

This forces us to focus on the version of the theory with
the conventional implementation of the seesaw mechanism
@13–15#. By this we mean that the right handed neutrino
Majorana mass arises at the renormalizable level. However,
the following problem arises here: such a renormalizable
theory with minimal Higgs content simply does not allow for
any spontaneous symmetry breaking whatsoever@16#. There
are two possible ways out of this impasse: one can either

extend the Higgs sector@16,10,11# or allow for nonrenormal-
izable terms in the superpotential@17,12#.

We first concentrate on the renormalizable version of the
theory, which is both more conventional and simpler to ana-
lyze from the point of view of vacuum structure. We then
apply the same techniques to the nonrenormalizable version,
and compare the physical implications of both models. This
should not imply that we take the nonrenormalizable version
less seriously; this is the minimal theory in terms of the
particle spectrum, and it provides the supersymmetric ver-
sion of the minimal left-right theory.

Although in @11,12# the vacuum structure of these theo-
ries was studied, in this paper we present for the first time a
complete and correct analysis of the lifting of the dangerous
D-flat directions. Among other things, we learned that unless
the sign of various soft mass terms is positive many of the
flat directions would not be lifted. This is discussed at length.

Our main conclusion is that unless electromagnetic charge
invariance is violated,R parity remains unbroken. More pre-
cisely, the effective low-energy theory becomes the MSSM
with exact R parity. This is true in both versions of the
theory. On the other hand, the precise nature of the seesaw
mechanism does depend on whether the symmetry breaking
is achieved through a renormalizable or nonrenormalizable
superpotential.

BesidesR-parity conservation, another important experi-
mental signature of these theories is the presence of a num-
ber of charged Higgs supermultiplets whose masses are
much belowMR . For a reasonable choice of parameters,
they are expected to lie near the electroweak scale. In the
nonrenormalizable version, these light supermultiplets in-
clude doubly charged ones@12#, which makes this model
especially interesting from the point of view of experiment.
We present in this paper the complete particle spectrum for
both models.

Another important consequence of our work lies in the
possible grand unified or superstring extension of left-right
symmetry. Namely, in the literature, one often assumes the
extended survival principle for Higgs supermultiplets. By
this one means that the particles which by symmetries are
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allowed to be heavy do indeed become so. The essential
lesson of our paper is that this is completely wrong, since we
find a plethora of light Higgs states which evade the above
principle. This conclusion is not new; it was noticed already
in the early papers on the supersymmetric SO~10! grand uni-
fied theory@18,19#. Unfortunately this fact is usually over-
looked in the literature.

In the next section, we introduce the left-right supersym-
metric model and discuss possible minimal choices for the
Higgs sector. We also summarize the standard method for
studying the structure of supersymmetric vacua, namely, the
one based on the characterization of the flat directions of the
supersymmetric potential by holomorphic gauge invariants
of the chiral superfields. In Sec. III we apply this method to
analyze the structure of the vacuum of the renormalizable
model. In Sec. IV we use these results to prove thatR parity
~and therefore both baryon and lepton number! remains an
exact symmetry of the low energy effective theory. We de-
vote Sec. V to the study of the spectrum of the theory, pay-
ing special attention to the light sector. Section VI is where
the nonrenormalizable model is taken up, and compared to
the renormalizable version. Finally, we present our conclu-
sions and outlook in Sec. VII.

II. SUPERSYMMETRIC LEFT-RIGHT THEORIES

The left-right symmetric model of gauge interactions
treats fermions of opposite chiralities in a symmetric way by
extending the standard model gauge group to SU(3)c
3SU(2)L3SU(2)R3U(1)B2L . Thus the anomaly-free glo-
bal B2L symmetry of the standard model is inescapably
promoted to a gauge symmetry in this picture. To obtain
left-right symmetric Yukawa interactions that can give rise
to the fermion masses it is necessary to promote the standard
model Higgs boson to a bidoublet, and realistic fermion mass
matrices require at least two bidoublets in the supersymmet-
ric case.

In the supersymmetric version of this theory we thus su-
persymmetrize the gauge sector in the standard way and in-
troduce three generations of quark and leptonic chiral super-
fields with the following transformation properties:

Q5~3,2,1,1/3!, Qc5~3* ,1,2,21/3!,

L5~1,2,1,21!, Lc5~1,1,2,1!, ~1!

F i5~1,2,2* ,0!, ~ i 51,2!, ~2!

where the numbers in the brackets denote the quantum num-
bers under SU(3)c , SU(2)L , SU(2)R , and U(1)B2L , re-
spectively~generation indices are understood!. In our con-
vention,

L5 S n
eD , Lc5S nc

ec
D , ~3!

so that L→ULL under SU(2)L , but Lc→UR* Lc under
SU(2)R , and similarly for quarks. Also,F→ULFUR

† .
The nontrivial question that now arises concerns the

mechanism for the spontaneous violation of left-right~LR!

symmetry, namely, the selection of a suitable minimal set of
Higgs fields to break this symmetry. Furthermore, since the
model necessarily includes a right handed neutrino, a mecha-
nism to explain the observed suppression of neutrino mass~if
any! is also necessary. Indeed one of the most appealing
features of these models is precisely that they provide a natu-
ral ~‘‘seesaw’’! mechanism to explain this suppression. In
the nonsupersymmetric case, of the two simplest choices for
the Higgs fields, namely, doublets or triplets with respect to
SU(2)L,R , only the latter allows one to realize the above
scenario. However, the inclusion of nonrenormalizable op-
erators in the action can be used to introduce small masses
for the neutrino even in the doublet case@20#.

In the supersymmetric case for simplicity we will not con-
sider doublets. Since they carry one unit ofB2L charge,
they are odd underR parity and thus the scales ofR parity
and LR symmetry breaking must coincide. Thus the small-
ness ofR-parity violation in the doublet case can only be
achievedad hocas in the MSSM. Therefore in this paper we
choose to work with triplets. In the concluding section we
will discuss the doublet alternative at greater length. The
cancellation ofB2L anomalies requires the usual doubling
of supermultiplets and thus the minimal choice of Higgs for
LR breaking must include the multiplets below:

D5~1,3,1,2!, D̄5~1,3,1,22!,

Dc5~1,1,3,22!, D̄c5~1,1,3,2!, ~4!

where D→ULDUL
† , but again Dc→UR* DcUR

T . Left-right
symmetry can be implemented in these theories either as a
parity transformation

Q↔Qc* , L↔Lc* , F i↔F i
†,

D↔Dc* , D̄↔D̄c* , ~5!

or as a charge conjugation

Q↔Qc , L↔Lc , F i↔F i
T ,

D↔Dc , D̄↔D̄c . ~6!

The latter definition has an advantage from the point of
view of grand unification, since it is an automatic gauge
symmetry in SO~10!. If one is not interested in the nature of
CP violation, it makes no difference whatsoever which of
the two definitions one uses. Strictly speaking, we do not
even need this discrete symmetry in what follows, since in
the supersymmetric limit all the minima are degenerate.
However, the central challenge in left-right theories is the
breaking of parity; so we include it in order to show that it
can be done consistently and in accordance with experiment.
For the sake of possible grand unification and transparency
of our formula we choose the latter one.

With this set of multiplets, however, the most general
renormalizable superpotential that one can write for the trip-
lets which are to accomplish the breaking of parity is merely
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WLR5 i f~LTt2DL1Lc
Tt2DcLc!1mD~Tr DD̄1Tr DcD̄c!.

~7!

Since we are considering the case whereMR@MS , the
supersymmetry~SUSY! breaking scale, the minimization of
the potential is to be accomplished by setting theF terms for
the chiral superfields and theD terms for the gauge fields to
zero. Of course one must make sure that the soft supersym-
metry breaking terms do not spoil the obtained hierarchy.
This is not automatic for arbitrary soft terms but works in the
case of gravity or gauge-mediated supersymmetry breaking.
In these cases it is known that the soft terms imply a small
perturbation of the SUSY preserving vacua. In what follows
we assume the usual supergravity scenario of soft terms of
orderm3/2.MW . Thus we have a small perturbation param-
eterMW /MR which in the leading approximation can be set
to zero. Then it immediately follows that the vacuum expec-
tation values~VEVs! of D,Dc must vanish identically while
those ofD̄,D̄c are determined in terms of the VEVs ofL,Lc
respectively. Since the participation of squark VEVs in the
symmetry breaking would lead to charge and color breaking
~CCB! minima, we shall assume that their vanishing is en-
sured by suitable soft mass terms. Given that the squark
VEVs vanish, the form of the theD term for theB2L gauge
field is then

DB2L52L†L22 Tr D̄†D̄1Lc
†Lc12 Tr Dc

†D̄c . ~8!

It is clear that vanishing of thisD term requires that sym-
metry breaking in the left and right sectors must occur at the
same scale.

To evade this difficulty we introduce an additional set of
triplets,

V5~1,3,1,0!, Vc5~1,1,3,0!, ~9!

where under left-right symmetryV↔Vc .
The inclusion of this set of multiplets has the additional

attraction of allowing a separation of the scales where parity
andB2L symmetry are broken.

III. SYMMETRY BREAKING

We next turn to the minimization of the potential of the
supersymmetric gauge theory introduced in Sec. II. The most
general gauge-invariant superpotential that leads to a renor-
malizable action is

WLR5hl
~ i !LTt2F it2Lc1hq

~ i !QTt2F it2Qc1 i f~LTt2DL

1LcTt2DcLc!1mD~Tr DD̄1Tr DcD̄c!

1
mV

2
~Tr V21Tr Vc

2!1
m i j

2
Tr t2F i

Tt2F j

1a~Tr DVD̄1Tr DcVcD̄c!

1a i j ~Tr VF it2F j
Tt21Tr VcF i

Tt2F jt2!, ~10!

with m i j 5m j i , a i j 52a j i , f andh are symmetric matrices,
and generation and color indices are understood.

Typically in the minimization of the potential of a SUSY
gauge theory one finds that the space of vacua~the ‘‘moduli
space’’! may consist of several sectors corresponding to ‘‘flat
directions’’ running out of various minima that would be
isolated if a suitably smaller set of chiral multiplets had been
used. For example in a SU~5! SUSY gauge theory with a24
of SU~5! as its only chiral multiplet one finds that the per-
missible vacua with a renormalizable potential are discrete
@namely, the ones corresponding to the two maximal little
groups of SU~5! besides the trivial one with the full SU~5!
unbroken#. On the other hand, the introduction of additional
matter multiplets such as a5̄110 anomaly-free pair quickly
leads to a proliferation of flat directions emerging from these
discrete minima.

In what follows we shall use an elegant and powerful
method for characterizing the vacua of supersymmetric
gauge theories@21–24#. The essence of this method is sim-
ply the following general result: ~a! the space of field
VEVs satisfying theD-flatness conditionsDa50 in a super-
symmetric gauge theory is coordinatized by the independent
holomorphic gauge invariants that may be formed from the
chiral gauge multiplets in the theory. Further,~b! the space
of field VEVs satisfying theD and F-flatness conditions is
coordinatized by the holomorphic invariants left undeter-
mined by the imposition of the conditionsF50 for each of
the chiral multiplets in the theory.

The following simple example will serve to clarify the
method. Consider a U~1! gauge theory with two chiral mul-
tiplets f6 with gauge charges61. Then the conditionD
50 requires onlyuf1u5uf2u. Since gauge invariance can
be used to rotate away one field phase, we are left with a
magnitude and a phase, i.e., one complex degree of freedom
left undetermined. Result~a! above predicts this since the
only independent holomorphic gauge invariant in this case is
simply f1f2 . Now consider the effects of a superpotential
W5mf1f2 . The F-flatness condition now ensures that
both VEVs vanish so that theD-flat manifold shrinks from
the complex line parametrized byc5f1f2 to the single
point c50.

Thus, in principle, one should proceed by building all the
holomorphic gauge invariants, establish which ones are left
undetermined by theF-flatness conditions, and then discuss
how the soft SUSY breaking terms may be used to lift those
that are phenomenologically unacceptable—such as CCB di-
rections. The analysis with the complete set of fields is, how-
ever, sufficiently complex to motivate a simplified approach
to the problem.

On phenomenological grounds it is clear that the bidou-
blet and squark fields cannot obtain VEVs at the large scale.
Therefore we omit them from our analysis of the symmetry
breaking at the right handed scale. Even if they participate in
flat directions running out of the parity breaking minimum,
as long as their soft mass terms are taken~as usual! to be
positive their VEVs at the high scale will vanish. On the
other hand, since large VEVs for the sneutrinos in the right
handed sector area priori admissible, theL and Lc fields
should be retained in the analysis.

The F-flatness conditions that follow from the the super-
potential~10! are as follows:
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F D̄5mDD1a~DV2 1
2 Tr DV!50,

F D̄c
5mDDc1a~DcVc2 1

2 Tr DcVc!50,

FD5mDD̄1 i fLLTt21a~VD̄2 1
2 Tr VD̄!50,

FDc
5mDD̄c1 i fLcLc

Tt21a~VcD̄c2 1
2 Tr VcD̄c!50,

FV5mVV1a~D̄D2 1
2 Tr D̄D!50,

FVc
5mVVc1a~D̄cDc2 1

2 Tr D̄cDc!50,

FL52i ft2DL50,

FLc
52i ft2DcLc50. ~11!

In the above we have self-consistently set the bidoublet
and squark fields, which must have zero VEVs at scales
@MR , to zero.

Multiplying the triplet equations by triplet fields and tak-
ing traces it immediately follows that

Tr D25Tr DV5Tr D̄V50,

mD Tr DD̄5mV Tr V25a Tr DD̄V,

Tr DD̄~a2 Tr V222mD
2 !50, ~12!

with corresponding equationsmutatis mutandisin the right
handed sector. Thus it is clear that in either sector all three
triplets are zero or nonzero together. By choosing the branch
where TrVc

252mD
2 /a2 but Tr V250 we ensure that the

triplet VEVs break SU(2)R but not SU(2)L . The field con-
tent of the triplets is

Dc5S dc
2/& dc

22

dc
0 2dc

2/&
D , D̄c5S d̄c

1/& d̄c
0

d̄c
11 2 d̄c

1/&
D ,

Vc5S vc
0/& vc1

2

vc2
1 2vc

0/&
D , ~13!

where superscripts denote electromagnetic charges

Qem5T3L1T3R1
B2L

2
. ~14!

One can use the three parameters of the SU(2)R gauge
freedom to set the diagonal elements ofDc to zero so that it
takes the form

^Dc&5S 0 ^dc
22&

^dc
0& 0

D . ~15!

Now Eq. ~12! gives ^dc
22&^dc

0&50, which implies the elec-
tromagnetic charge preserving form for^Dc&. Next it is clear
that the Majorana coupling matrixf ab must be nonsingular if

the seesaw mechanism which keeps the sneutrino light is to
operate. Then it immediately follows from the condition
FLc

50, namely,

2i fabS 0 0

^dc
0& 0D S nc

ec
D b

50, ~16!

that the sneutrino VEVs in the right handed sector must van-
ish. Thus any VEV ofLc that appears at the high scale must
necessarily break charge. We ensure that it~together withL)
vanishes by suitably positive soft masses, just as for the
squarks. In the Appendix we shall exhibit the flat directions
out of the parity breaking triplet sector vacua associated with
the slepton fields and show that charge is broken in both the
left and right handed lepton sectors along these flat direc-
tions.

In the case with triplets alone we first list the SU(2)L,R
invariants with theirB2L charges. The gauge invariants can
then be generated from these by multiplying invariants
whose charges sum to zero. The invariants are

B2L charge Invariant

4 x15Tr D2

2 x25Tr VD
0 x35Tr DD̄, x45Tr V2, x55Tr VDD̄

22 x65Tr VD̄
24 x75Tr D̄2

~17!

plus the corresponding invariantsxi
c , with opposite charges,

built from the right handed fields. Without the leptons, be-
sides conditions~12! we have also

Tr D̄25Tr D̄c
250. ~18!

Notice that this fixes the values of all thexi
(c) and hence, in

fact, all the values of all the gauge invariants that one can
form from the triplet fields. Any flat directions running out of
the vacua allowed by minimizing the potential of the triplets
alone~i.e., the trivial and equal left-right VEVs vacua which
preserve parity and the two asymmetric vacua that violate it!
must involve the fields we have omitted from the analysis. If
these fields have zero VEVs at the high scale due to positive
soft mass terms, then the vacua at the high scale are isolated
and, in particular, the parity breaking vacuum described
above is phenomenologically viable.

It is easy to use Eqs.~12! and~15! to see that the VEVs of
Vc ,Dc are also fixed to have the charge preserving form

^Vc&5S w 0

0 2wD , ^Lc&50,

^Dc&5S 0 0

d 0D , ^D̄c&5S 0 d̄

0 0
D . ~19!
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115007-4



In fact using theB2L gauge invariance to fix the relative
phase ofd and d̄ one obtains

w52
mD

a
[2MR , d5d̄5S 2mDmV

a2 D 1/2

[MBL .

~20!

Notice an interesting property of Eqs.~20!. If we wish to
have MR@MBL , we needmD@mV , i.e., a sort of inverse
hierarchy of the mass scales. Furthermore, this hierarchy has
a highly suggestive geometric formmV.MBL

2 /MR . One
cannot help speculating thatmV could be originated by soft
supersymmetry breaking terms. Namely, in the absence of
mV the superpotential~10! has a global U(1)R symmetry
with the following R charges:

D,D̄,Dc ,D̄c 1

V 0

L,Lc ,Q,Qc 1/2. ~21!

The idea is very simple. We assume the above U(1)R
symmetry which impliesmV50 and which will be broken
by the soft breaking terms.1 In the gravity-mediated scenario
of supersymmetry breaking, it is easy to see thatmV can be
substituted by soft supersymmetry breaking terms. In other
words

mV;m3/2;MW . ~22!

This impliesMBL
2 .MWMR and thus we have only one new

scale MBL or MR . Of course, for MR@MI[AM PlMW
~where M Pl is the Planck scale!, nonrenormalizable terms
could in principle induce a bigger value formV;MR

2/M Pl .
We should stress, though, that neutrino physics strongly sug-
gestsMR to be smaller or of orderMI .

IV. R-PARITY BREAKING

As discussed in the Introduction, at scales where super-
symmetry is valid, the invariance of the action in minimal
left-right symmetric theories underR parity is enforced by
B2L gauge symmetry and supersymmetry. Thus the only
possible source ofR-parity violation at scales@mS
;1 TeV is spontaneous: when a field with odd 3(B2L)
develops a VEV. In the natural and minimal versions of the
left-right supersymmetric theory that we have considered
here the only electrically neutral fields that can violateR
parity spontaneously without breaking charge are the sneutri-
nos in the two sectors. On the other hand, we have seen that
the right handed sneutrino VEV is strictly zero at the parity
breaking minimum when working to leading order in the
ratio mS /MBL;MW /MBL . What happens when the soft
terms are switched on? As we said before, we assume the
supergravity scenario of spontaneous supersymmetry break-

ing and the resulting soft terms. These terms are known to
induce only small shifts of the orderMW /MBL . Since the
right handed sneutrino mass is large, i.e., of the order of
MBL@MW , small corrections clearly cannot shift its VEV at
all, and it will remain at the origin. This, however, is not
necessarily true of the left handed sneutrino, whose mass is
at most of the order ofMW . We discuss its case carefully
below.

Any R-parity breaking in the right handed sector thus
necessarily involves breaking of charge, at least at high
scalesO(MR). In fact, in the Appendix we show that the
leptonic flat directions running out from the parity breaking
vacuum necessarily violate charge in both left and right sec-
tors. Thus we regard it as physically well motivated to as-
sume that soft SUSY breaking mass terms must be such as to
forbid excursions along theR-parity and charge violating flat
directions, just as they must protect color.

Thus the effective theory below the scalesMR ,MBL will
simply be the MSSM~with the addition of some new particle
states: see next section! with R parity operative. It will there-
fore also possess an effective global lepton and baryon num-
ber symmetry.

Nevertheless, one may worry that the effects of the run-
ning of the coupling constants and masses may be such as to
induce VEVs for the sneutrino fields. Such a thing happens
in the MSSM when the Higgs bidoublet mass squared, al-
though positive at high scales, suffers large negative correc-
tions due to its strong Yukawa coupling to the top quark,
developing a VEV at scalesO(MW) @4,26#. The situation
with sneutrino fields is, however, quite different since none
of the leptonic Yukawa couplings are large. Moreover, even
if the leptonic soft masses were small enough to be over-
come by renormalization effects in going fromMBL down to
the electroweak~EW! scale, a sneutrino VEV could develop
only in the left handed sector since the right handed sneutri-
nos have superheavy masses. The global lepton number sym-
metry of the effective theory belowMBL then implies that a
left handed sneutrino VEV would in fact lead to a Goldstone
boson: the~doublet! Majoron @27#. Such a massless doublet
Majoron is coupled strongly to theZ boson and leads to a
large contribution to its width which is ruled out by experi-
ment.

The one remaining possibility is that the violation of lep-
ton number by the left sneutrino VEV, in combination with
the electroweak VEVs, may trigger a VEV for the right
handed sneutrino. Such explicit violation of the effective glo-
bal Lepton number symmetry would in turn give a mass to
the Majoron. If this mass were sufficiently large (.MZ/2),
then the contribution of this state to theZ width would be
suppressed. To see hownc might get a VEV consider the
allowed trilinear soft term in the potential

DVsoft5¯1mSLTt2F it2Lc1¯ . ~23!

Oncen and F develop VEVs, this implies a linear term in
the potential for the right handed sneutrino which will thus
get an expectation value

1We thank Gia Dvali for bringing up this point. For an original
application of this idea, see@25#.

SUPERSYMMETRY AND LARGE SCALE LEFT-RIGHT SYMMETRY PHYSICAL REVIEW D58 115007

115007-5



^nc&5
mSMW^n&

MBL
2 . ~24!

This would lead to effectiveR-parity and global lepton num-
ber violating terms of the formme

2LH where

me
25

mS
2MW^n&

MBL
2 . ~25!

Then the ‘‘Majoron’’ would get a mass squared of order

mJ
2.me

2 mS

^n&
.

mS
3MW

MBL
2 . ~26!

Thus in order thatmJ be large enough to evade the width
bound, the scaleMBL would have to beO(mS), which is a
corner of parameter space we do not consider in this paper.
We conclude that within the present scenario the bounds on
theZ width rule out the possibility ofR-parity violation due
to sneutrino VEVs. In sum,the low energy effective theory of
the minimal supersymmetric left-right model is the MSSM
(with some additional particle states) with strictly unbroken
R parity, and the LSP is stable.

V. MASS SPECTRUM

As we have seen, the symmetry breaking takes place in
two stages. At a large scaleMR5mD /a, SU(2)R is broken
down to U(1)R by the VEV of Vc . Later the VEVs of
Dc ,D̄c are turned on atMBL5A2mDmV/a, breaking
U(1)R3U(1)B2L to U(1)Y . However, a third scale appears

in the superpotential,mV5MBL
2 /MR . Let us now examine

the mass spectrum, and see which scales are involved.

A. Higgs sector

We begin with the masses of the triplets. The results~for
MR@MBL) are summarized in Table I.

As could be expected, almost all the particles get a mass
at the scaleMR . In the right handed sector, the doubly
charged particlesdc

11 ,d̄c
11 do so, simply through their ex-

plicit mD terms in the superpotential. The VEV ofVc will
contribute with mass terms for the rest of the charged par-
ticles, giving to all of them a large massMR . However, the
neutral particle masses correspond to the~in principle! lower
scaleMBL . The reader can check the manifestation of the
super-Higgs mechanism: we have states with masses equal to
the charged (WR) and neutral (ZR) gauge boson masses:

M2~WR!54g2MR
212g2MBL

2 ,

M2~ZR!54~g21g82!MBL
2 . ~27!

In the left handed sector, on the other hand, masses come
directly through the explicit terms in the superpotential.D

andD̄ have a large mass of orderMR . But the mass ofV is
related to the third mass scale we mentioned above,
MBL

2 /MR . This is the most interesting prediction of the
model: a complete SU(2)L triplet of scalars and fermions, at
a relatively low mass scale, which could be accessible to
future experiments. Notice that for the analysis in the previ-
ous section to be valid,mV.MBL

2 /MR should not be below
the scale of the soft supersymmetry breaking terms. In fact,
as we have argued in Sec. III, the natural scale formV is of
orderm3/2;MW , at least in the physically motivated picture
with the ratioMBL

2 /MR generated dynamically. The depen-
dence of these new light states onMR is noteworthy. Both
MBL and MR are likely to be large enough to be out of a
direct experimental search. However,MBL can be indirectly
probed through the usual seesaw-induced neutrino mass~see
below!, and thus improving the experimental limits on new
non-MSSM states will actually setupper limits on MR . Fi-
nally, this indirect probe and the direct search forV may
provide a crucial test of the consistency of the theory.

Once SU(2)R is broken, the bidoubletsF1 ,F2 get split
into four SU(2)L doublets, and as usual one fine-tuning is
necessary to keep one pair of them light. Namely, whenVc
gets a VEV the mass terms for the bidoublets in the super-
potential become

W~mF!5
m i j

2
Tr t2F i

Tt2F j1MRa i j Tr t3F i
Tt2F jt2 .

~28!

Now, writing the bidoublets in terms of SU(2)L doublets
Hi ,H̄ i as

F i5~Hi ,H̄ i ![S f i
0 f̄ i

1

2f i
2 f̄ i

0 D , ~29!

TABLE I. Mass spectrum for the Higgs supermultiplets in the
renormalizable model.

State Mass

dc
11 , d̄c

11 2aMR

dc
12

MBL

&MR

vc1
1 aMRF11

1

2 SMBL

MR
D2G

d̄c
12

MBL

&MR

vc2
1 aMRF11

1

2 SMBL

MR
D2G

Svc1
11

MBL

&MR

dc
1D2Svc2

11
MBL

&MR

d̄c
1D 2gMRF11

1

4 SMBL

MR
D2G

Svc
01

~dc
01d̄c

0!

&
D aMBLS11

MBL

4MR
D

Svc
02

~dc
01d̄c

0!

&
D aMBLS12

MBL

4MR
D

Re(dc
02d̄c

0) 2Ag21g82MBL

D, D̄ aMR

V aMBL
2 /2MR

H, H̄ ;0

H8, H̄8 ;MR
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the mass terms are seen to correspond to

W~mH,H̄!5m i j HiH̄ j1a i j MR~HiH̄ j2H̄ iH j !. ~30!

With the fine-tuning condition

m11m222~m12
2 2a12

2 MR!.0, ~31!

the bidoublets get split into two heavy left handed doublets
H8,H̄8 with masses;MR , and two MSSM Higgs doublets
H,H̄. A comment is in order. The fine-tuning of Higgsino
masses does not automatically guarantee the same for the
Higgs scalar masses. However, in the context of the super-
gravity scenario~and gauge mediation! it is well known that
corrections are at most of orderm3/2.MW .

B. Neutrino mass

Another distinct prediction of this model is that the see-
saw mechanism takes its canonical form. By canonical form
we mean~in the single-generation case!

S 0 mD

mD M D , ~32!

where mD is the usual Dirac neutrino mass andM is the
large Majorana mass of the right handed neutrino. The mass
M is induced through the VEV ofDc , and thusM;MR .
Interestingly enough, the form~32! is hard to achieve in
nonsupersymmetric theories, forD in general acquires a

small VEV after electroweak breaking. Its origin is a term in
the potential linear inD, i.e., of the formDF2Dc @28#. In
other words, the~1,1! mass element in general is not zero,
and this has important implications for light neutrino mass
spectrum. Namely, the light neutrino mass is given by

mn5
mD

2

MR
. ~33!

In the supersymmetric version we are considering,
though, the form~32! is exact up to order 1/M Pl . Simply, at
the renormalizable level there are no terms linear inD in the
potential. If one admits nonrenormalizable terms cut off by
the Planck scale, along the lines of@28#, one finds that at
electroweak breaking D gets a VEV of order
(MW

2 MBL)/(MRM Pl). The ~1,1! element in Eq.~32! is thus
suppressed with respect to the usual seesaw mechanism by
MBL

2 /(MRM Pl), and is completely negligible for physics
much below the Planck scale.

VI. NONRENORMALIZABLE MODEL

As has been pointed out in@12#, it is possible to break
parity even with just the minimal field content given in Eqs.
~1!–~4!, if one allows for nonrenormalizable interactions,
suppressed by inverse powers of a large scaleM . Including
dimension-4 operators, the most general superpotential be-
comes

Wnr5m~Tr DD̄1Tr DcD̄c!1 i f~LTt2DL1Lc
Tt2DcLc!1

a

2M
@~Tr DD̄!21~Tr DcD̄c!

2#1
c

M
Tr DD̄ Tr DcD̄c

1
b

2M
@Tr D2 Tr D̄21Tr Dc

2 Tr D̄c
2#1

1

M
@d1 Tr D2 Tr Dc

21d2 Tr D̄2 Tr D̄c
2#

1hl
iLTt2F it2Lc1hq

i QTt2F it2Qc1m i j Tr t2F i
Tt2F j1

l i jkl

M
Tr t2F i

Tt2F j Tr t2Fk
Tt2F l

1
a i j

M
~Tr D̄DF it2F j

Tt21Tr D̄cDcF i
Tt2F jt2!1

b i j

M
Tr t2F i

Tt2F j@Tr DD̄1Tr DcD̄c#

1
h i j

M
Tr F it2DcF j

Tt2D1
h̄ i j

M
Tr F it2D̄cF j

Tt2D̄1
kql

M
QTt2LQc

Tt2Lc1
kqq

M
QTt2QQc

Tt2Qc

1
k l l

M
LTt2LLc

Tt2Lc1
j

M
@QTt2QQTt2L1Qc

Tt2QcQc
Tt2Lc#. ~34!

Of course, not all of the terms above play an equally
important role. If a certain renormalizable interaction is al-
ready present in the potential@as is the case, for example,
with the term (Lc

†Lc)
2#, one can safely neglect small correc-

tions of order 1/M . It is only when there are no cubic or
quartic couplings that wemustkeep the nonrenormalizable
ones.

As in the renormalizable case, we assume that the soft
terms are such as to drive the VEVs of the squark and bid-
oublet fields to zero. With this assumption it follows, exactly
as in the renormalizable case, that for a parity breaking but
charge preserving VEV ofDc the VEV of the right handed
sneutrinos is necessarily zero. Thus anyR-parity breaking
due toLc getting a VEV at scales@MS would necessarily
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break charge. Therefore we assume that the soft terms forbid
any VEVs for theLc fields. We are therefore left with the
problem of analyzing theF-flatness conditions for the four
tripletsD,D̄,Dc ,D̄c to determine whether or not they admit a
charge preserving but parity breaking isolated minimum.

The F terms for the triplets now read

FD5S m1
a

M
Tr DD̄1

c

M
Tr DcD̄cD D̄

1S b

M
Tr D̄21

d1

M
Tr Dc

2DD50, ~35!

F D̄5S m1
a

M
Tr DD̄1

c

M
Tr DcD̄cDD

1S b

M
Tr D21

d2

M
Tr D̄c

2D D̄50,

F D̄c
5S m1

a

M
Tr DcD̄c1

c

M
Tr DD̄ DDc

1S b*

M
Tr Dc

21
d2

M
Tr D̄2D D̄c50,

FDc
5S m1

a

M
Tr DcD̄c1

c

M
Tr DD̄ D D̄c

1S b

M
Tr D̄c

21
d1

M
Tr D2DDc50.

In the renormalizable model with an extra tripletV, the
left and right handed sectors are completely decoupled, and
the potential admits two discrete minima in each sector. The
trivial one is chosen by the left handed sector, while the right
handed triplets reside in the nontrivial one, which is charge
and color preserving. In the nonrenormalizable case, on the
contrary, the two sectors are coupled in theF equations. As
we now show, the physically relevant minimum, for which
the VEV of the left handed triplets vanish and that of the
right handed triplets respects charge, does not involve any
flat direction. This guarantees the stability of the vacuum
against the presence of soft terms.

The SU(2)L,R invariants are now just

B2L charge Invariant

4 y15Tr D2

0 y25Tr DD̄
24 y35Tr D̄2 ~36!

together with their right handed counterparts with opposite
B2L charges. Now, the equations forFD andF D̄ give

F S m1
a

M
Tr DD̄1

c

M
Tr DcD̄cD 2

2S b

M
Tr D̄21

d1

M
Tr Dc

2D
3S b

M
Tr D21

d2

M
Tr D̄c

2D GTr DD̄50 ~37!

and the corresponding equation for the right handed sector.
Out of the two branches allowed by Eq.~37! we focus on

the one specified byy250. With this choice the conditions

~by31d1y1
c!y150; ~by11d2y3

c!y350 ~38!

follow from FD5F D̄50. These equations are both satisfied
on the branch specified byy15y25y350 and it then fol-
lows that the only gauge invariants which might remain un-
determined, and therefore allow a flat direction out of this
branch, arey2

c andy1
cy3

c . We emphasize we have not chosen
a point on a flat direction but a branch of solutions of the
field equations specified by the conditionsyi50. The equa-
tions in the right handed sector are now simply

„mM1~a1b!y2
c
…y1

c50, ~39!

~mM1ay2
c!y2

c1by1
cy3

c50. ~40!

The two branches of solutions of Eq.~39! are ~i! y1
c50

and~ii ! y2
c52(mM)/(a1b). It easily follows from Eq.~40!

that apart from the trivial solution where all invariants vanish
the other possibilities are

~a! y1
c5y3

c50, y2
c52

mM

a
, ~41!

~b! y2
c52~mM!/~a1b!, y1

cy3
c5

M2m2

~a1b!2 . ~42!

Solution ~a! is equivalent to the one found in the renor-
malizable case: it is charge preserving and breaks parity. On
the other hand, using SU(2)R invariance to put the diagonal
elements ofDc to zero it immediately follows that solution
~b! implies breaking of charge.

Thus in this model the triplets get a VEV just as in the
renormalizable one, Eq.~19!, where

d5d̄5A2
mM

a
. ~43!

A. Mass spectrum

It can be seen that the nonrenormalizable model has dis-
tinct features. Symmetry breaking occurs in one stage, at a
scale

MR[A2
Mm

a
. ~44!

In the analysis, it has been fundamental to assumem not to
be smaller than the supersymmetry breaking scale. With the
large scaleM of order M Pl , and m*1 TeV, the parity
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breaking scale becomesMR*1011 GeV. However, the mass
spectrum of the theory in fact involves two scales. Some of
the particles in the Higgs multiplets will remain ‘‘light’’ after
SU(2)R breaking, with masses of orderm;MR

2/M . Thus as
in the renormalizable case we have a very interesting phe-
nomenology involving light charged, doubly charged, and
neutral supermultiplets as shown in Table II. It is appealing
also here to invoke soft supersymmetry breaking terms to
dynamically generatem, in which case it would be of the
order of the electroweak scale.

Notice again the super-Higgs mechanism being operative,
since supersymmetry is not broken. In this case, only the
states that belong to super-Higgs multiplets get a mass of
order MR ; the rest of the states can only get a Planck-
suppressed mass. Of particular interest is the presence of two
sets of light doubly charged scalars and fermions
(d11,d̄11), and two full SU(2)L triplets ~D and D̄). They
could have masses as low as the supersymmetry breaking
scale. In contrast to the renormalizable case, the search for
these particles sets alower limit on MR .

On the other hand, the bidoublet splitting proceeds in an
equivalent way as in the renormalizable model, with the
higher order interactions effectively playing the role of theV
field. The mass terms forF i come from

W~mF!5
m i j

2
Tr t2F i

Tt2F j1
a i j

M
Tr^D̄cDc&F i

Tt2F jt2

1
b i j

M
Tr t2F i

Tt2F j Tr^D̄cDc& ~45!

or

W~mF!5S m i j

2
1

MR
2

M
b i j DTr t2F i

Tt2F j

1
MR

2

2M
a i j Tr~11t3!F i

Tt2F jt2 . ~46!

In terms of the SU~2! doubletsHi ,H̄ i we have now

W~mH,H̄!5m i j8 HiH̄ j1
MR

2

2M
a i j ~HiH̄ j2H̄ iH j !, ~47!

wherem i j8 5m i j 1MR
2(2b i j 1a i j )/M . The crucial difference

with the previous model can be seen immediately: one will
now fine-tune

m118 m228 2S m128
22

MR
2

2M
a12

2 D .0, ~48!

so that the two heavy doublets will not have masses at the
large scaleMR but at m5MR

2/M*1 TeV. Just as in the
renormalizable case, it is appealing to have a small scalem
generated softly of orderMW . In that case, one could imag-
ine them terms being large and being fine-tuned among each
other. However, this does not work, since there would be no
splitting of the doublets within the bidoublets, but rather just
splitting of the two bidoublets in theL-R symmetric manner
~one complete bidoublet would remain light, and the other
one heavy!. This in the usual manner would imply the van-
ishing of quark mixing angles. In other wordsm i j .m, and
both generated by the soft supersymmetry breaking terms.
The dynamical generation of mass terms of the theory is a
rather appealing and long pursued scenario, and furthermore
in this case there is then no need for the fine-tuning of large
and independent mass scales. The clear phenomenological
test of this idea is the necessary existence of two more weak
doublet supermultiplets at the experimentally accessible en-
ergy scale.

Therefore, although parity is broken atMR , the model
does not reduce to the MSSM until much later, at the lower
scalem. This has important consequences for the solution of
the strongCP problem. With four Higgs doublets with
masses much belowMR , the running of the Yukawa matri-
ces quickly generates a sizable strongCP phase@29#. This
forces any viable solution to the strongCP problem based
on parity in supersymmetric models to haveMR of the order
of the weak scale@30#.

B. Neutrino mass

Another important difference has to do with neutrino
mass. We have seen that in the renormalizable case the see-
saw mechanism takes its canonical form~33!. Now the situ-
ation is completely different, and resembles the nonsuper-
symmetric case. The nonrenormalizable terms now are
essential, since they provide the interaction terms and deter-
mine the scaleMR . One finds in the potential the relevant
terms~written schematically!

m

M
F2D̄cD1m2D2, ~49!

which gives a VEV forD,

^D&5
^F2&

AmM
;

MW
2

MR
, ~50!

exactly as in the nonsupersymmetric case@28#. Once again,
the two models lead to different phenomenological implica-
tions.

TABLE II. Mass spectrum for the Higgs supermultiplets in the
nonrenormalizable model.

State Mass

dc
12 d̄c

1 &gMR

Re(dc
02d̄c

0) 2Ag21g82MR

dc
01 d̄c

0 2aMR
2/M

dc
11 , d̄c

11 2bMR
2/M

D, D̄ (a2c)MR
2/M

H, H̄ ;0

H8, H̄8 ;MR
2/M
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VII. DISCUSSION AND OUTLOOK

In this paper we have offered a complete analysis of sym-
metry breaking in minimal supersymmetric left-right models
with a scaleMR much above the electroweak scale. We were
led by the requirement thatR parity not be introducedad hoc
and that its breaking be controlled without fine-tuning. This
rules out the possibility of using doublet Higgs fields to
break parity, and leads naturally to triplets, further motivated
by the seesaw mechanism. By minimal, then, we mean theo-
ries with the minimal Higgs sector needed to achieve the
complete symmetry breaking down to SU(3)C3U(1)em.
This in practice means the following.

~i! At the renormalizable level, one needs to introduce a
new physical scale associated withB2L breaking. This is
achieved through the introduction of an additional pair of
B2L neutral triplets. The alternative possibility of utilizing
parity-odd singlets does not work@10#.

~ii ! If one accepts nonrenormalizable terms, the Higgs
sector consists just of the supersymmetric extension of the
usual states needed to generate consistent fermion and gauge
boson masses.

In both cases, the requirement of minimality meant the
exclusion of further singlet states. The central theoretical re-
sult of our analysis is the proof that the physically acceptable
minimum does not lie on a flat direction. Being an isolated
point, with a large barrier separating it from other~nonphysi-
cal! minima, there is no danger that it will not be stable on a
cosmological scale.

The two versions of the theory have in common two ex-
tremely important characteristics:~a! R parity never gets
broken, and~b! the low-energy effective theory, besides the
usual MSSM states, necessarily contains light charged or
doubly charged superfield multiplets.

What is different is the nature of the seesaw mechanism
and of the precise spectrum of light states. Whereas in the
renormalizable version the seesaw mechanism takes its ca-
nonical form, in the nonrenormalizable case, the situation
parallels the one in the nonsupersymmetric left-right models.
This in general leads to different neutrino mass spectra, and
is experimentally distinguishable.

Other important differences arise in the Higgs boson mass
spectrum, as displayed in Tables I and II. In both cases there
are two relevant physical mass scales aboveMW . In the
renormalizable case they areMBL and MR ~and we discuss
the physically interesting caseMBL!MR). The new light
supermultiplet is the left handed Higgs tripletV, with a mass
of order MBL

2 /MR which could naturally lie near the weak
scale@11#. In particular it does so in the case of a dynami-
cally generated ratio of the two new physical scalesMBL and
MR . In other words,mV is the result of soft terms, which
break both supersymmetry and an otherwise automatic con-
tinuousR symmetry. The light particles comprise both neu-
tral and single-charged scalars and fermions.

In the nonrenormalizable model, the scalesMBL andMR
coincide, but there is a new high scaleM Pl . In this case
there is a plethora of new light states with a massMR

2/M Pl ,
which among other fields include the experimentally very
interesting doubly charged scalars and fermions@12#. This is

the crucial difference between the two theories. The doubly
charged states are of utmost interest due to their spectacular
experimental signatures. In the past there have been a num-
ber of papers devoted to the phenomenological implications
of supersymmetric left-right theories with lowMR @31–36#,
in which the doubly charged states are discussed. Most of
this analysis carries on to our case.

Light doubly charged particles continue to exist even if
one adds an arbitrary number of gauge singlets@37#. In this
paper, however, we do not include singlets, for the whole
point of our work has been minimality. The nonrenormaliz-
able version is obviously the minimal supersymmetric left-
right theory. However, since renormalizability provides the
cornerstone of field theories, the version with an intermediate
B2L scale can also be considered minimal.

Another, equally important, implication of the existence
of the new light supermultiplets is its impact on the running
of the gauge couplings. The analysis done in the past often
relied on the survival principle, assuming that all states
which by symmetry are allowed to be heavy become so. This
is manifestly wrong, for, as we have shown, there are a num-
ber of light scalars and fermions whose existence defies this
principle. Clearly, a new analysis of unification is required. It
is not enough to take the result of our paper, for there may be
additional light states which survive the large scale breaking
of the underlying grand unified theory. This has already been
noted in the early works on the SO~10! grand unification of
this theory@18,19#, but no running has been performed in
these papers. In view of this, it is not clear at all that these
models can be successfully unified, but we reserve the final
judgment for the future.
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APPENDIX

In this appendix we analyze the flat directions of the su-
perpotential when the slepton fields in both sectors are re-
tained in the analysis. Since doublets must occur bilinearly in
all invariants it is convenient to define composite singlet
(sab52sba) and triplet fields (D̄ab8 5D̄ba8 ) by

LaL̃b5
1

2
sab1

1

2
D̄ab8 ~A1!

and similarly in the right handed sector. They obey Fierzing
constraints like
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sabscd5
1

2
sadsbc1

1

4
Tr~D̄ad8 D̄bc8 !. ~A2!

Then in addition to the SU(2)L,R invariants listed in Eq.
~17! one can form the additional invariants~not all indepen-
dent!

B2L charge Invariant

24 x8
abcd5Tr D̄ab8 D̄cd8

24 x9
ab5Tr DDab8

0 x10
ab5Tr DD̄ab8

22 x11
ab5Tr VD̄ab8

22 x12
ab5Tr DDDab8

0 x13
ab5Tr DVD̄ab8

24 x14
ab5Tr D̄VD̄ab8

22 x15
abcd5Tr DDab8 D̄cd8

26 x16
abcde f5Tr D̄ab8 D̄cd8 D̄e f8

22 x17
ab5sab

~A3!

and a similar set in the right handed sector. It is easy to show
that Eq.~12! continue to hold in the present case. Thus one
can again choose the parity breaking vacuum by selecting the
solution where all~unprimed! left handed triplets exceptD̄
and x1

c ,x2
c ,x6

c vanish while the VEVs ofx3
c ,x5

c are fixed by
the solutionx452mD

2 /a2. This leaves us with the invariants
x7

(c) –x17
(c) to consider. In the right handed sector, as we saw

in Sec. III, the equation forFLc
ensures that the right handed

sneutrino VEVs necessarily vanish. Sincex17
(c)52 in [a

c eb]
c , it

vanishes. Because of the Fierz relations, Eq.~A1! ~and a
similar one relating thex16

(c) to products ofx17
(c) andx8

(c)), x8
(c)

andx16
(c) all vanish while

D̄~c!ab8 5ea
ceb

ct1 . ~A4!

Then using theF equations in the right handed sector it is
easy to convince oneself that all invariants are fixed in terms
of x9

(c)ab . However, because of Eq.~A4!, only three are of
these are independent and these can be taken to bex9

(c)aa .

In the left handed sector one finds thatD̄ is determined in
terms of D̄ab8 by the equation forFD ; thus only invariants

involving sab or D̄ (c)ab8 are left. But since all of these may be
written in terms of products ofx17

[ab] , its is clear that these
are the only independent SU(2)L invariants left undeter-
mined in the left sector and are 3 in number. Sincex17

ab car-
ries B2L charge (22) andx9

(c)aa carries (24), it is clear
that one can form nine independent gauge invariants which
are left undetermined after imposition of theF constraints:

z[ab]d5x17
ab@x9

~c!dd#1/2. ~A5!

Thus the manifold of flat directions running out of the
parity breaking vacuum is parametrized by these nine com-
plex coordinates. From Eq.~A4! and sab52 in [aeb] , it is
thus clear that the coordinatesz[ab]d all involve a product of
selectron and antiselectron VEVs, and hence these flat direc-
tions violate charge.
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