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Abstract 

We show that the minimal R-parity breaking model characterized by an effective bilinear vio- 
lation of R-parity in the superpotential is consistent with minimal N = 1 supergravity unification 
with radiative breaking of the electroweak symmetry and universal scalar and gaugino masses. 
This one-parameter extension of the MSSM-SUGRA model provides therefore the simplest ref- 
erence model for the breaking of R-parity and constitutes a consistent truncation of the complete 
dynamical models with spontaneous R-parity breaking proposed previously. We comment on the 
lowest-lying CP-even Higgs boson mass and discuss its minimal N = 1 supergravity limit, deter- 
mine the ranges of tan/3 and bottom quark Yukawa couplings allowed in the model, as well as 
the relation between the tau neutrino mass and the bilinear R-parity violating parameter. (~) 1998 
Elsevier Science B.V. 

1. Introduct ion  

Supersymmetry apart from being attractive from the point of  view of providing a 

solution to the hierarchy problem and the unification of  the gauge couplings, pro- 

vides an elegant mechanism for the breaking of  the electroweak symmetry via radiative 

corrections [ 1]. So far most attention to the study of  supersymmetric phenomenol- 

ogy has been made in the framework of  the Minimal Supersymmetric Standard Model 

(MSSM) [2] with conserved R-parity [3] .  R-parity is a discrete symmetry assigned as 
R p  = ( - l ) (3B+L+2S), where L is the lepton number, B is the baryon number and S is the 

spin of  the state. I f  R-parity is conserved all supersymmetric particles must always be 

pair-produced, while the lightest of  them must be stable. Whether or not supersymmetry 
is realized with a conserved R-parity is an open dynamical question, sensitive to physics 

at a more fundamental scale. 
The study of  alternative supersymmetric scenarios where the effective low energy 

theory violates R-parity [4] has received recently a lot of attention [5 -7 ] .  As is well 
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known, the simplest supersymmetric extension of the Standard Model violates R-parity 
through a set of cubic superpotential terms involving a very large number of arbitrary 
Yukawa couplings. Although highly constrained by proton stability, one cannot exclude 
that a large number of such scenarios could be viable. Nevertheless their systematic study 

at a phenomenological level is hardly possible, due to the large number of parameters 

(almost fifty) characterizing these models, in addition to those of the MSSM. 

As other fundamental symmetries, it could well be that R-parity is a symmetry 

at the Lagrangian level but is broken by the ground state. Such scenarios provide a 

very systematic way to include R-parity violating effects, automatically consistent with 

low energy baryon number conservation. They have many added virtues, such as the 
possibility of having a dynamical origin for the breaking of R-parity, through radiative 

corrections, similar to the electroweak symmetry [ 8]. 
In this paper we focus on the simplest truncated version of such a model, in which the 

violation of R-parity is effectively parametrized by a bilinear superpotential term eiL~H2 b. 
In this effective truncated model the superfield content is exactly the standard one of the 

MSSM. In this case there is no physical Goldstone boson, the Majoron, associated to 
the spontaneous breaking of R-parity. Formulated at the weak scale, the model contains 

only two new parameters in addition to those of the MSSM. Alternatively, the unified 
version of the model, contains exactly a single additional parameter when compared to 

the unified version of the MSSM, which we will from now on call MSSM-SUGRA. 
Therefore our model is the simplest way to break R-parity and can thus be regarded as 
a reference model for R-parity breaking. In contrast to models with trilinear R-parity 
breaking couplings, it leads to a very restrictive and systematic pattern of R-parity 

violating interactions. 
Here we show that this simplest truncated version of the R-parity breaking model 

of Ref. [8], characterized by a bilinear violation of R-parity in the superpotential, is 

consistent with minimal N = 1 supergravity models with radiative electroweak symmetry 

breaking and universal scalar and gaugino masses at the unification scale. In particular, 
we perform a thorough study of the minimization of the scalar boson potential using the 
tadpole method needed for an accurate determination of the Higgs boson mass spectrum. 
We comment on the lowest-lying CP-even Higgs boson mass and discuss its minimal 
N = 1 supergravity limit, determining also the ranges of tan/3 and bottom quark Yukawa 

couplings allowed at unification, as well as the relation between the tau neutrino mass 
and the effective bilinear R-parity violating parameter. Our results encourage further 
theoretical work on this and on more complete versions of the model, like that of 
Ref. [8], as well as phenomenological studies of the related signals. 

2. The model 

The supersymmetric Lagrangian is specified by the superpotential W given by ' 

J We are using here the notation of Refs. 12,91. 
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W t3ab [hiJuOaOj~lb i j A b A  Aa hijf 'bD Lra ].L~I~I b ..t_ , i ~ 7 / ~ 2  b] ( l )  = + hDQi D j H I  + nEL i ,'.jH 1 -- , 

where i , j  = 1,2,3 are generation indices, a,b = 1,2 are SU(2) indices, and s is a 
completely antisymmetric 2 x 2 matrix, with el2 = 1. The symbol "hat" over each letter 
indicates a superfield, with Qi, Li, HI, and H2 being SU(2) doublets with hyper-charges 

3' - I ,  - 1 ,  and 1 respectively, and U, D, and/~ being SU(2) singlets with hyper-charges 
4 2 - 3 ,  3, and 2 respectively. The couplings hu, hD and he are 3 × 3 Yukawa matrices, and 

/z and ei are parameters with units of mass. The first four terms in the superpotential 
are common to the MSSM, and the last one is the only R-parity violating term. From 
now on, we work only with the third generation of quarks and leptons. 

Experimental evidence indicate that supersymmetry must be broken. The actual super- 

gravity mechanism is unknown, but can be parametrized with a set of soft supersymme- 

try breaking terms which do not introduce quadratic divergences to the unrenormalized 

theory [ 10] 

Vsoft . . . .  Q ~ 3  ~ 3  q" MuU3U3 q- MDD3D3 -1- ' " L ~ 3  ~3 -l- 

a* a 2 . a * , , a _  lM2a2a2+ lM1A1al+h.c.] +m2,H1 HI + m H : ' ' 2  112 [1M3A3A3 + 

[ ..h ~ ~b ~ a ~b ~ a -]-eab [AthtQ~U3H~ + AbhbQ3D3H1 + Arh~.L3R3H 1 

- B IzH~ Hb2 + B2e3L~ Hb2] , (2) 

where we are already using a one-generation notation. 
Note that in the effective low-energy supergravity model the bilinear R-parity violating 

term cannot be eliminated by superfield redefinition even though it appears to be so at 

high scales, before electroweak and supersymmetry breaking take place [4]. The reason 
is that the bottom Yukawa coupling, usually neglected in the renormalization group 
evolution, plays a crucial role in splitting the soft-breaking parameters B and B2 as well 
as the scalar masses m 2, and M 2, assumed to be equal at the unification scale. This can 

be seen explicitly from Eqs. (A.17) and (A.18) as well as Eqs, (A.10) and (A.13) 
in Appendix A. This ensures that R-parity violating effects can not be rotated away by 
going to a new basis 2 [ 11,12], even if the starting RGE boundary conditions for the 
soft-breaking terms are universal. 

It goes without saying that, in a supergravity model where soft-breaking terms are 

not universal at the GUT scale, such as string models, the bilinear violation of R-parity 
is also not removable. However, in this case its effects are not calculable, in contrast to 

our case. The same is true for the case of the most general low-energy supersymmetric 
model [13]. 

The electroweak symmetry is broken when the two Higgs doublets HI and H2,  and 
the tau-sneutrino acquire vacuum expectation values (VEVS): 

2 Obviously physics does not depend on the choice of basis [ 111. In this paper we choose to work with the 
unrotated fields. 
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~ X _ + v = + @ ° ]  , 

L3: (3) 

Note that the gauge bosons W and Z acquire masses given by m~, = J e e ~g v and m~ = 
1 2 ~(g  + g'e)t,2, where v a - v 2 ÷ v 2 + t'~ = (246 GeV) 2. We introduce the following 

notation in spherical coordinates: 

t:l = v sin 0 cos /3, v2 = vsin 0 sin/3, t'3 = vcos0 ,  (4)  

which preserves the MSSM definition tanf l  = t:e/vl. The angle 0 is equal to 7r/2 in the 

MSSM limit. 

The lull scalar potential may be written as 

ow= 
Vtota I : ~ c~Zi ÷ V D ÷Wsof t  ÷ VRC, ( 5 )  

I 

where zi denotes any one of the scalar fields in the theory, Vo are the usual D-terms, 

~oft the SUSY soft breaking terms given in Eq. (2) ,  and VRc are the one-loop radiative 

corrections. It is popular to treat radiative corrections with the effective potential. In 

this case, VRc corresponds to the one-loop contributions to the effective potential. Here 

we prefer to use the diagrammatic method and find the minimization conditions by 

correcting to one loop the tadpole equations. At  the level of  finding the minima, the 

two methods are equivalent [ 14]. Nevertheless, the diagrammatic ( tadpole)  method 

has advantages with respect to the effective potential when we calculate the one-loop 

corrected scalar masses [ 15 ]. 

The scalar potential contains linear terms 

Vlinea r 0 0 0 0 0~R = t l ) ( l  ÷ t2A/2 ÷ t3P r , (6)  

where 

,o = (m~,, ÷ #2)v ,  -- O/zu2 - / ze3v3  ÷ ~(g-  ÷ g'2)v, (v 2 - v 2 ÷ v2) , 

t o (m~2 ÷ tz 2 ÷ e~)vv - B # v ,  ÷ B2•3L'3 I 2 = _ - g (g  ÷ gt2)U2(Vl 2 -- V2 2 ÷ O2) ,  

t o = , 9 1 9 3 (m~3 + e~)v3 - / z e 3 v l  ÷ B2e3v2 ÷ g(g-  + g'2)v3(v2 - v 2 + v2) .  (7)  

These t °, i = 1,2, 3 are the tree-level tadpoles, and are equal to zero at the minimum of  

the potential. 

3. Squark sector and radiative corrections 

To find the correct electroweak symmetry breaking radiatively, we need to relate 

parameters at the GUT scale with parameters at the weak scale. This means that we are 
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promoting the parameters in the tree-level tadpoles in Eq. (7) to running parameters. 

Therefore, in order to find the correct minima of the scalar potential it is essential to 
include the one-loop contributions to the tadpoles, otherwise our tadpoles would be 

extremely scale dependent, i.e. unphysical. 
The main one-loop contributions to the tadpoles come from loops involving top and 

bottom quarks and squarks. Therefore, we need to study the scalar quark sector, and in 

particular, the spectrum and couplings to CP-even neutral scalars. 

The term e3L,~/~ in the superpotential induce F-terms in the scalar potential, leading 
to squark mass terms of the form t'Li',~ proportional to e3. In addition, the non-zero 
value of the vacuum expectation value of the tau-sneutrino generates, from the D-terms, 

squark mass terms of the form ?iff and bib~', i = L, R. The new squark mass matrices 

are 

M~ = [ M~ 1 1 ~12"~ ( V~ V 2 ) + m  2 + g ( g 2 _ ~ g  ~ _ v  2 +  

mr(at - IZVl /V2 + ff31)3/V2) 

for the top squarks, and 

[ - g ( g  + s g  )(vl  - v 2 + v 2 )  M 2- = MZQ + m 2 1 2 1 ¢2 2 

h L mr,( At, - txva/vl ) 

mr(At - IZVl/V2 + e3v3/v2) ] 
2 2 1 t2 2 2 2 J M U + m  t + g g  (v - v  2 + c  3) 

(8) 

mb(  1 -- t2/I'LU2/UI 1 
M2 + nit, - T~g [ 'Vl  - -  v 2  + U2) 

(9) 

for the bottom squarks. The reader can recover the MSSM squark mass matrices by 

taking e3 = v3 = 0 in the above two equations. The quark masses are related to the quark 

Yukawa couplings in the same way as in the MSSM: mt = htvz/x/~ and mb = hbVl/'¢~. 
Nevertheless, the numerical value of the quark Yukawas is higher in comparison with 
the MSSM to compensate with smaller vacuum expectation values 

gmt gmh 
h t -  v~mws/3so'  hh = v/-~mwc~s ° , (10) 

and this is represented by the term sin 0 _= so in the denominators in the above equations. 

Squark mass matrices M~ and M-~ are diagonalized by two rotation matrices such 
that: 

R ~ M ~ R T  2 r = ' , R b M b R  b = ' , ( l l ) 
m5 mT, 2 

where m0, < m#2 by convention. These rotation matrices play an important role in the 

determination of the scalar couplings to a pair of squarks. 
We introduce the notation for the CP-even neutral scalars ~ = -o . 0 ~e for i X I ,  X 2 ,  t"r = 

1,2, 3 respectively. In this way, the Feynman rules of the type ~ q ~  are 

1 1 
x°b-b ----+ -- i --~hb,  x ° t i  , - i ~ h t .  (12) 

as in the MSSM, but with the quark Yukawa couplings given by Eq. (10). Feynman 
rules of the type Sy/q~ not listed in Eq. (12) vanish. 



28 M.A. Dfaz et aL/Nuclear Physics B 524 (1998) 23-40 

In a similar way, we find Feynman rules of  the type ~c~g/*, i.e. CP-even neutral 

scalars couplings to a pair of  squarks. We start with X ° couplings to top squarks: 

X°~ff --+ iMxo~ , M x ~  = RgM'x,q~R~ , 

Mtx,~fi = [ - - l  (g2 - -1g  '2)vl ~2h' l  "z ] 
-'~htl.Z I ,2 (13) - 3 g  Ul 

and to bottom squarks: 

R ~*' o f  X °[~b* ' iMx¢~bb, Mx°bb = b"* x','bb"h' 

-h~v,  + a(g + ½g'2)tq ~_2hhAb 
M'x°'~ = ~ h t ,  At, -h~vl + ~g i 1 ,2 v " (14) 

These couplings have the same form in the MSSM but, as it was said before, the Yukawa 

couplings are different and given by Eq. (10).  In addition, vacuum expectation values 

v3 and v2 are different with respect to the MSSM and given by t.,~ = 2mwc/3so/g and 

v2 = 2mws~so/g and again, the deviation l'rom the MSSM is parametrized by the angle 

0. 
Now we turn to the neutral CP-even Higgs X ° that comes from the second Higgs 

doublet. Its couplings to top squarks are 

C) - ~ *  l 7 

1 ~ I t2 .1~  i ] - h 2 v 2 + a ( g -  - > V  ~'~ ,~ , ,A ,  ] 

M'¢:~, : ,~h ,A,  h~v~ + {g'~-,,, J (15) 

a n d  to  b o t t o m  s q u a r k s  

= R- A.~ R "r yO{~>, , iM ~i,i; , M r_l,i, / , "  JJJ' i, ~ 

M'  -- [ ¼(g'- + ~g'2)uz ~ h , , #  ] 
x>,, : L , ~ h b ~  _.~V,2 . j  . ~ 16) 

Finally, we turn to the real part of the tau-sneutrino field, which mixes with X ° and 

X ° l t s  couplings to top squarks are 2" 

t T b~[[* , iM~f~.  Mp(~7 = R~M ~u~R~ , 
r I .  2 I t 2 ~  ~ ] , i-a~g - ~g )t._~ - ~ h , e 3  

M ~Ue = L __~hte3  _ _~gl "2,L3 J (17) 

and to bottom squarks 

R ~*' R T ~,~bb* - -~  iM~,~iff,, Mr,~i,i , = b,,l r,~-~,i, ~,, 

[ p ] M' - -  ¼(g2 + _~g )~.~ 0 
,~'v,~, = 0 ' '~ " (18) " gg -v3 

These couplings b(0O* vanish in the MSSM limit v3 = e3 = 0, as it should. 
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We are now ready to include the effect of the one-loop tadpoles in Eq. (7). The first 

step towards the calculation of radiative corrections is the introduction of counter-terms. 
All parameters in the Lagrangian are shifted from bare parameters to renormalized 
parameters minus a counter-term: 

A , A - 6A,  A = g, g, ,  ht ,  hb, hr,  

m 2 m 2 ~ m  z, m 2 m 2 1 , m 2 2 , 2  2 
) -- = mL3,mR3, lZ ,~:3 ,  

vi , vi - 6vi ,  i = 1 , 2 ,  3, ( 1 9 )  

A ~ A - r~A, A = At ,  Ab,  Ar ,  

B , B - 6B, B = B, B2, (20) 

for couplings, masses, vacuum expectation values, trilinear soft parameters, and bilinear 

soft parameters respectively. If we make this shift in the tadpole equations given in 
Eq. (7),  the tadpole themselves get a counter-term 6ti for i = 1,2, 3. Therefore, the 
one-loop tadpole equations are 

t i = t ° - & i + T i ( Q ) ,  i=  1,2,3,  (21) 

where ti are the one-loop renormalized tadpoles and Ti(Q) are the one-loop contribu- 
tions to the tadpoles, with Q being the arbitrary mass scale introduced by dimensional 
reduction. 

The renormalization scheme we choose to work with is the MS scheme, where by 
definition the tadpole counter-terms are taken such that they cancel the divergent pieces 
of Ti(Q) proportional to A: 

2 
d - + ln47r - Ye, (22) 

4 - n 

where A is the regulator of dimensional regularization, n is the number of space-time 

dimensions, and YE is the Euler's constant. The MS counter-terms chosen in this way 
make the tadpoles finite. We introduce the notation 

~MS(Q) = _ s t M s  + T i ( Q ) ,  (23) 

for the finite one-loop contribution to the tadpoles. These finite one-loop tadpoles depend 
explicitly on the arbitrary scale Q. 

The one-loop tadpoles ti must be scale independent (at least in the one-loop approx- 
imation), therefore the renormalized parameters are promoted to running parameters, 
i.e. they evolve with the scale Q according to their renormalization group equations 
(RGE). The explicit Q dependence on T i ~ ( Q )  is cancelled at one-loop by the implicit 
Q dependence on the parameters of the tree-level tadpoles. Renormalized tadpoles must 
be zero at the minimum of the potential ti = 0, thus the generalization of the tadpole 
equations is 

i(n121 q- /.~2)U 1 B > v ,  /~t53u 3 q_ ~(g2  q_ g t2)v  I .+. 

+~Fps (Q) = 0 ,  
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' : " : +  ': ' .  ( 4  .2 + 4 > ]  (o)  [(m-H2 q_ # 2  ~_ ~.3)U2 _ B I z u  1 q_ B2E3L, 3 _ g i g  g ) 2 --  

+TzNS(Q) = 0, 

[(m~,+e~)l '3- -1ze3vi+Bze3t '2+l(g2+g )v3(t;i - v2 + (Q) 

+]FMS(Q) = 0,  (24) 

and these are the minimization condition we impose. 3 We choose to work at the scale 

Q = mz. The RGE's for each parameter are given in Appendix A, and the boundary 
condition at the GUT scale are described later. 

Now we find the one-loop contributions to the tadpoles. Quarks contribute to X ° and 
.go one-loop tadpoles only. On the contrary, squarks contribute to all three tadpoles. 
Using the notation for the Feynman rules introduced in the previous section, the quark 

and squark one-loop contribution to the tadpoles can be written as 

] ;I,;i, Nc 2 
T,'v',l 3 = 1677- 2 Z [M~','"A°(rn~, ) ÷ M~'l'bbA°(m~;) ] q- 

i=1 

] t/'i~D Nc v ii 2 M Tb[,Zo(m~)] + : Z IMp,A0(,,, ,)+ " : 2 16r r  2 
i=1 

2 
• tbi2, N<. ii -- . 2 ii 2 ) ]  , 

T~:] - Z [M~ettAo(,,;) + M~,evbAo(mg f 677 .2 
i=1 

Negro 2 
8,n.2 mwc ~s ° Ao ( mT,) , 

Ncgm~ Ao(m~), 
8 ~ 2 r n w  s/3 So 

(25) 

where A0 is the first Veltman's function defined by 

A o ( m 2 ) = m 2 ( A - l n ~ + l ) .  (26) 

The finite tadpoles Tffg(Q) are found simply by setting A = 0 in the previous expres- 
sions. 

4 .  U n i f i c a t i o n  

We now discuss the corresponding boundary conditions at unification. We assume that 
at the unification scale the model is characterized by one universal soft supersymmetry- 
breaking mass m0 for all the scalars (the gravitino mass), and a universal gaugino mass 
Ml/-,. Moreover we assume that there is a single trifinear soft breaking scalar mass 

parameter A and that the bilinear soft breaking parameter B is related to A through 
B = A - 1. In other words, we make the standard minimal supergravity assumptions: 

At= AI,= AT ~ A, (27) 

~To see the effect one-loop tadpoles have on the determination of MSSM-SUGRA parameters, see Ref. [ 161. 
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B = B 2  = A - 1, 

m2H, = m~2 = M2L = M2R = m 2 , 

M2Q = M 2 = g2D = m 2, 

M3 = M2 = M1 = MU2 

31 

(28) 

(29) 

(30) 

(31) 

at Q = MGUT. At energies below MGUT these conditions do not hold, due to the 

renormalization group evolution from the unification scale down to the relevant scale. 

In order to determine the values of the Yukawa couplings and of the soft breaking 

scalar masses at low energies we first run the RGE's from the unification scale MGUT 
l016 GeV down to the weak scale. In doing this we randomly give values at the 

unification scale for the parameters of the theory. The range of variation of the MSSM- 

SUGRA parameters at the unification scale is as follows: 

2 
10 -2  ~ htGUT/4~ ~ 1, 

l0  -5  ~< h2GuT/47r <. 1, 

- 3  <~ A / m o  ~< 3, (32) 
2 2 

0 ~ ~GUT/m0 ~ 10, 

0 <~ M u z / m o  <~ 5, 

while the range of variation of e3 is 

2 2 10 -2 ~< e3GUT/m0 ~< 10 (33) 

and the value of h2¢GOT/47r is defined in such a way that we get the ~- mass correctly. 

After running the RGE we have a complete set of parameters, Yukawa couplings and 
soft-breaking masses mZ(RGE) to study the minimization. 

Similar to what happens in the MSSM-SUGRA (see Appendix B) the number of 

independent parameters of this model is actually less than given above, as one must take 

into account the W mass constraint as well as the minimization conditions. In the end 

there is a single new parameter characterizing our model, namely e3. 

5. Results and phenomenology 

The main parameters characterizing electroweak breaking are the SU(2) doublet 

VEVs vl, t'2 and v3. In our model these are obtained as explained in Appendix B. 
Basically we assign random values for the top and bottom quark Yukawa couplings 

hi and hi, at the GUT scale and evolve them down to the weak scale through the 
renormalization group equations, given in Appendix A. Using the measured top and 

bottom quark masses we determine the corresponding running masses at the weak scale. 
Combining this with the values of ht and hh at the weak scale, obtained through the use 

of the RGE's, we calculate the standard MSSM VEVS vl and v2. The third VEV v3, 
which breaks R-parity, is determined through the W mass formula. The resulting VEVs 
may not be consistent with the minimization conditions. In Appendix B we present a 
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Fig. 1. Lightest CP-even Higgs boson mass mh as a function of v3 in our model. 

procedure to ensure a consistent solution. Note that due to the contribution of  v3 to the 

intermediate gauge boson masses, v 2 + v 2 is smaller than in the MSSM. The first check 

of we can do to verify the consistency of  the model is to study the allowed values of 

the lightest CP-even Higgs boson mass mh as a function of  the third VEV v3. This is 

displayed in Fig. 1 The unrotated neutral CP-even Higgs bosons ,go and X ° mix with 

the real part of  the tau sneutrino r,~.-k These are the CP-even scalars ~ ,  i = 1,2, 3, 

introduced in Section 3. The mass matrix can be written as 

M~, 2 2 2 
= MSO,MSS M + Mso~ + MS~,,R C 

2 where M v,.Mss M is the MSSM mass matrix given by 

(34) 

i ~'~ 1 2 ..2 i 2 , -] Btx~,, + ~gzvl --B# ~gzt,lV2 0 J 2 I 2 , , B / . , ~ +  t 2 2  
Ms. Mss M= - B # - a g z c ] t 2  agzv2 0 , (35)  

1 9 7, 9 0 0 rn}. 3 + gg2(v~ - v~) 

where we have defined g~ ~ g2 + g,2. As expected, this mass matrix has no mixing 

between the Higgs and stau sectors. The extra terms that appear in our e3-model are 

/ Z e 3 ~  0 --J.ZE 3 + ~gzUIU3 
M ~ , ~  2 _ B 2 6 3  ~ 1 2 _ = ' B263 - agzv2V3 , (36) 

1 9 1 9 
L- - /~63  -~- ggTZvlv3 B2Ea. -- gg2v2t'3 623 q- ggzV33 2 2 

which introduce a Higgs-Stau  mixing. Finally, in M 2 S0,RC we introduce the largest term 
in the one-loop radiative corrections, i.e. the term proportional to m4: 
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Fig. 2. Lightest CP-even Higgs boson mass mh versus tan/3 

M ~ , R  C = A t , 

0 

At - 3gem4 In ,n~, m~2 
2 9 2 16¢r m~vs~s ~ m 4 

(37) 

This formula gives good results in first approximation, nevertheless, already in the 

MSSM can give wrong results in certain regions of parameter space [ 17], and should 

be improved. 

As one can see in Fig. 1, in the limit v,~ ~ 0 our model reproduces exactly the 

expected minimal SUGRA limit for the lightest CP-even Higgs boson mass. Another 

view of  the Higgs boson mass spectrum allowed in our model is obtained by plotting 

mh as a function of  tan/3, as illustrated in Fig. 2. One sees that all values of  tan./3 in 
the range 2 to 60 or so are possible in our model. As in the MSSM-SUGRA, tan/3 

smaller than 2 is not possible because the top Yukawa coupling diverges as we approach 

the unification scale. This is related to the fact that in that region we are close to the 

infrared quasi-fixed point. Note that the range of  tan/3 values obtained in our model is 

consistent with the unification hypothesis for a large range of  the bottom quark Yukawa 
coupling at unification, as illustrated in Fig. 3. 

Another important feature of  our broken R-parity model is that the tau neutrino ~'r 
acquires a mass, due to the fact that e3 and u3 are non-zero. Consider the basis (g ,0)r  = 

,--lh2, Hl,~-I~,v,) ,  where A1 is the U ( I )  gaugino introduced in Eq. (2) ,  ,~3 is 
the neutral SU(2)  gaugino, /7~, i = 1,2 are the neutral Higgsinos, and ~,~ is the SM 
tau neutrino. In this base, the mass terms in the Lagrangian for the neutralino-neutrino 
sector are 

E,,, = --½(qt°)r  MNqt° + h.c., (38) 
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Fig. 3. tan fl versus bottom quark Yukawa coupling at unification 

where the mass matrix is 4 

l I r, lgtc2 J t ,  Ml 0 - ~ g  cl - s g  c3 
0 M2 1 - ~gL~2 1 , ggt'l _ ~gc3 

1 t 1 M ~  = - ~ g  vj 5gc'l 0 -IX 0 
i t - ~ gt:2 0 E 3 ~g v2 _ - #  

1 t , I - 5g c3 ~gv3 0 e3 0 

(39) 

The only new terms appear in the mixing between neutralinos and the tau neutrino, 

determined by the parameters e3 and v3. If  we stick to the simplest unified supergravity 

version of  the model with bilinear breaking of  R-parity and universal boundary conditions 

for the soft breaking parameters, then the effective neutralino mixing parameter ( - 

(e3vl +/xv3)  2 characterizing the violation of  R-parity, either through v3 or e3 will be 

small since contributions arising from gaugino mixing will cancel, to a large extent, those 

from Higgsino mixing. This cancellation will happen automatically in these models if 

the soft breaking parameters are universal [ l l ] so that in this case m~, will be naturally 
small and radiatively calculable in terms of the bottom Yukawa coupling hb. This will 

explain naturally the smallness of  the neutrino mass in this model. The above scenario 

is therefore a hybrid of the see-saw and radiative schemes of  neutrino mass generation. 

The r61e of  the right-handed mass which appears in the see-saw model is played by the 

neutralino mass (which lies at the SUSY scale) while the r61e of  the seesaw-scheme 
Dirac mass is played by the effective neutralino mixing ( which is induced radiatively. 
The ~,~ mass induced this way is directly correlated with the magnitude of the effective 

4 More complete forms of this matrix have been given in many places. See, e.g., Ref. [ 18]. 



M.A. Dfaz et al./Nuclear Physics B 524 (1998) 23-40 

> 
mlO 

E 1 

-1 
10 

-2 
10 

10 

10 

10 

10 

-3-  i 
F . . . . . . . . . . . .  

-4 ° '~ 
-,~.'t,~.. 

~5 
I 

Ct." °6  • 

-9 
10 10 

• i 

-7 -5 
10 

-3 -1 
10 10 .1 

/ (100 GeV) ~ 

Fig. 4. Tau neutrino mass versus e3. 

35 

parameter ~ so that R-parity violation acts as the origin for neutrino mass. In Fig. 4 we 

display the allowed values of  m~,. Notice that m~, values can cover a very wide range, 

from eV to values in the MeV range, comparable to the present LEP limit [ 19]. Note 

that the individual values of  v3 and e3 can be rather large (see, for example, Fig. 1 ). 

Now a word about cosmology. Clearly our model leads to a tau neutrino which can 

be much heavier than the limits that follow from the cosmological critical density as 

well as primordial nucleosynthesis would allow [20].  However, in this model the v7 is 

unstable and decays via neutral current into three lighter neutrinos [21].  In order for 

this mode to be efficient we estimate that m~, must exceed 100 keV or so. On the other 

hand, in order to avoid problems with primordial nucleosynthesis it is safer to consider 

m~ masses below 1 MeV or so. In order to sharpen these estimates (which are not 

strict bounds) a detailed investigation is required. 

One should bear in mind, however, that m~, can be as large as the present laboratory 

bound [ 19] in the more complete versions of  the model in which R-parity is broken 

spontaneously due to sneutrino expectation values [5,6]. This is so because such models 

contain a majoron, denoted as J, which opens new decay channels v7 --+ v + J where 

v is a lighter neutrino [22] as well as new annihilation channels Vr Vr --+ J + J. It has 
been shown explicitly that the lifetimes that can be achieved in the spontaneous broken 

R-parity versions of  the model can be sufficiently short to obey the critical density 
limit [ 18]. Moreover, it has been shown that the annihilation channel is efficient enough 

in order to comply the primordial nucleosynthesis bound [23],  while decays may also 

play an important r61e [24].  
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6. Discussion and conclusions 

Here we have shown that this simplest truncated version of the R-parity breaking 

model of Ref. [5], characterized by a bilinear violation of R-parity in the superpoten- 
tial, is consistent with minimal N = 1 supergravity models with radiative electroweak 

symmetry breaking and universal scalar and gaugino masses at the unification scale. We 

have performed a thorough study of the minimization of the scalar boson potential of 
the model. We have determined the lowest-lying CP-even Higgs boson mass spectrum. 
We have discussed how the minimal N = 1 supergravity limit of this theory is obtained 

and verified that it works as expected. We have determined also the ranges of tan/3 
and bottom quark Yukawa couplings allowed at unification, as well as the relation be- 

tween the tau neutrino mass and the effective bilinear R-parity violating parameter. We 

showed that in the case of universal soft breaking terms this model leads to radiatively 
induced R-parity violation and, as a result, to a model with naturally small neutrino 

mass determined by the bottom quark Yukawa coupling. 
Our results should encourage further theoretical work on this model, as well as more 

complete versions of the model, like that of Ref. [8]. Phenomenological studies of the 

related signals should also be desirable, given the fact that the production and decay 

patterns of Higgs bosons and supersymmetric particles in this model are substantially 
different than expected in the MSSM or MSSM-SUGRA. For example, Higgs bosons 
may have sizeable R-parity violating decays [13]. Similarly, sneutrinos and staus can 

be the LSP and can have unsuppressed decays into standard model states, thus violating 
R-parity. Finally, chargino and neutralino production can lead to totally different signals 

as, for example, the lightest neutralino can decay [25]. These features could play an 
important role in designing strategies for searching for supersymmetric particles at future 
accelerators. One should bear in mind that (i) the effects of R-parity violation can be 

large even in the case where the neutrino mass is naturally small. This applies for 
example to branching ratios into R-parity breaking modes and (ii) there are striking 
effects of R-parity violation which do not require it to have a large strength. The 
obvious example is the fact that, unless the violation is really tiny as in [26], the lightest 
neutralino decay will typically decay inside the detector. This would, for example, lead to 
high multiplicity lepton events at the LHC from gluino and squark cascade decays [27]. 
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Appendix A. The renormalization group equations 

Here we give the renormalization group equations for the model described by the 
superpotential in Eq. (1),  but including only the third generation, and by the soft 
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supersymmetry breaking terms given in Eq. (2). First we write the equations for the 
Yukawa couplings of the trilinear terms, 

2dhu ( 16 2 13 2"~ 16rr ~ =hu 6h 2 + h 2 - -~-g3 - 3g 2 - - ~ g , ) ,  (A. 1) 

9dhD ( 6 h 2 + h 2 +  2 16 2 7 , )  1 6 7 r - - ~ - = h o  h r -  ~-g3 - 3 g ~ -  ~g~ , (A.2) 

16rr2@7 = h~ (4h2~ + 3h2D -- 3g~ -- 3g~) (A.3) 

now the corresponding cubic soft supersymmetry breaking parameters 

¢rzdAu =6h2uA U + hZDA D + 16 2M 13 2M 8 - - ~  -~-g3 3 + 3g~M2 + -~gl l, (A.4) 

1 6 2 M  {g~Ml, (A.5) 8¢r2dA°--dT-- =6h2 A° + h2 Zu + h2rAr + T g3 3 + 3g2M2 + 

8rr 2dA~ =4h2A~ + 3h2 Ao + 3g2M2 + 3gZMl. (A.6) 

For the soft supersymmetry breaking mass parameters we have 

8rr 2dM2Q~ = h2u, tm2H2 + M2Q + M2 + Z 2) + hD(mH,2 2 + M2Q + M 2 + a 2) 

1 2M 2 f g 2 S  ' (a.7") 16g2M23 _ 3 g 2 M  2 _ "9gl 1 -}- 
3 " " 6 

8r r2-~ t  2v =2h2(m2= + M20 + M2 + A2)-16g~M~-16g~M2-2-g2S'3 " 9 3 (a.8) 

87"r2 dM2 =2h2(  m2, + M2Q + M2 + A 2 ) -  l~63 g~M~-4~gl 2M21 -1- ~g~S, (a .9)  

877.2@/2L_h2t.m 2 Z 2) 2 2 2 2 
- -  r ~- H ,  q ' -  M 2  + M 2  + - - gl M1 - - • 3g2M 2 gZS, ( A. 10) 

2 dm2 2 2 A 2) 2 2 4giM 1 g~S, (A.I 1) 8rr - - ~  =2hr(mn, + M 2 + M 2 + - + 

dm2H2 3hZ(m22 + M2Q + M2u + a 2) 2 2 2 2 1 2 8rr2 dt = - 3 g 2 M 2 - g l M  1 + ~ g l S ,  (A.12) 

2 2 9 dm2Hl _ 3hZ (m 2, + M2Q + M2D + A2D) + h~(mH, + M 2 + M-I¢ + a2~) 8rr2 dt 

2 2 2 2 _ 1 g 2  S (A.13) -3g2M2 - gl Mj 2 ' 

where 

S = m22 -- m21 --b M S -- 2M 2 + M 2 - M 2 + M 2. (A.14) 

For the bilinear terms in the superpotential we get 

16¢r2-~- t =/z (3h 2 + 3h 2 + h2r - 3g22 - g2), (A.15) 
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16~r2@t3 = e3 (3h~j + h~ - 3g~ - g~) (A.16 

and for the corresponding soft breaking terms 

87r *dB'~-~ = 3h2 A• + 3h2 Ao + h2~Ar + 3g~M2 + g~M, , (A. 17 

dB2 
87"r----d~- =3hbau + hzar + 3gZM2 + g~M,. (A.18) 

The gi are the SU(3)  × SU(2)  × U( 1 ) gauge couplings and the Mi a r e  the corresponding 
the soft breaking gaugino masses. 

Appendix B. Minimization procedure 

To minimize the scalar potential we use the procedure developed in Refs. [8,28]. We 

solve the tadpole equations, Eq. (24),  for the soft mass-squared parameters in terms 

of the VEVs and of  the other parameters at the weak scale. This is particularly simple 

because those equations are linear in the soft masses squared. To do this we need to 

know the values for the VEVs. These are obtained in the following way. 

( 1 ) We start with random values for ht and hb at M~trr in the range given in Eq. (32).  

The value of  h~ at MGuT is fixed in order to get the correct 7- mass. 

(2) The value of  t,~ is determined from mh = hbVl/X/2 tbr mh = 3 GeV (running b 

mass at mz) .  

(3) The value of  v2 is determined from mr = hrv2/v~ for mr = 176 ± 5 GeV. If  

~ 4 
t,] + t~ > v 2 = ~-~m~v = (246 GeV) 2 (B . I )  

we go back and choose another starting point. 

(4) The value of  v3 is then obtained from v3 = + V/(4/g2)m~v - v~ - @ 
We see that the freedom in ht and hb at MOUT can be translated into the freedom in the 
mixing angles /3 and 0. Comparing, at this point, with the MSSM we have one extra 

parameter 0. We will discuss this in more detail below. In the MSSM we would have 
0 = 7r/2. 

After doing this, for each point in parameter space, we solve the extremum equations, 

Eq. (24),  for the soft breaking masses, which we now call m] (i = Ht ,  H2, L). Then 
we calculate numerically the eigenvalues for the real and imaginary part of  the neutral 

scalar mass-squared matrix. If  they are all positive, except for the Goldstone boson, the 

point is a good one. If  not, we go back to the next random value. After doing this we 
end up with a set of  solutions for which the following holds. 

(1) The Yukawa couplings are determined by the procedure described above. 

(2) The other parameters are given by the RGE evolution once the values at MOOT are 
fixed. Notice, however, that these parameters may not satisfy the tadpole equations. 
We will come back to this later. 
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Table B. 1 
Counting of free parameters in minimal N = 1 supergravity 
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Parameters Conditions Free parameters 

lit, hb, h~-, u I, v2 row, mr, rob, m¢ tan B 
A, too, MI/2, l,z ti = 0, i = 1,2 Two extra free parameters 
Total = 9 Total = 6 Total = 3 

Table B.2 
Counting of free parameters in our model 

Parameters Conditions Free parameters 

ht,  hb, hr, Ul, c2, u3 roW, mr, rob, mr tan/3, cos 0 
A, too, MI/2, I ~, ~3 ti = 0, i = 1,2, 3 Two extra free parameters 
Total = I 1 Total = 7 Total = 4 

(3) For a given set of m/2 (i = Hi ,  H2, L) each point is also a solution of the mini- 

mization of the potential. 

(4) However, the m/2 obtained from the minimization of the potential differ from those 

obtained from the RGE, which we call m2(RGE).  

Our next goal is to find which solutions, for the m/2 that minimize the effective low- 

energy potential, have the property that they coincide with the m/2(RGE) obtained, for 

a given unified theory, from the RGE, namely 

9 
m T = mZ(RGE),  i = Hi ,  H2, L. (B.2) 

Following Ref. [8] we define a function 

( m/2 m/2 (RGE) "~ 
r /=  max \ m ~ ( R G E )  ' m 2 J Vi. (B.3) 

Defined in this way it is easy to see that we always have r/ ~> 1, the equality being what 

we are looking for. 

We are then all set for a minimization procedure. We want, by varying the parameters 

at the GUT scale, to get r/ as close to 1 as possible. With these conditions we used the 

HINUIT package in order to find the minimum of r/. We considered a point in parameter 

space to be a good solution if r 1 < 1.001. 

Before we end this appendix, let us discuss the counting of free parameters in this 

model and in the minimal N = 1 supergravity unified version of the MSSM. As we 

explained above, after requiring the correct masses for the W, t, b and ~" we get one free 

parameter in the MSSM, tan/3, and two in our model, tan/3 and cos 0 or, equivalently, 

t'3. As for the other parameters we have at the GUT scale one extra parameter, e3. But 

we also have an extra equation for the tadpoles. So in the end our model has just one 

more free parameter. This has been summarized in Tables 1 and 2. 

Finally, we note that in either case the sign of the mixing parameter tz is physical 

and has to be taken into account. 
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