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I. INTRODUCTION

When the LEP accelerator at CERN enters the second
phase of its program, the SU~2!^ U ~1! standard model does
not need any more praise. The theory has been successfully
scrutinized and the agreement between its predictions and
the experimental results is impressive~e.g., Ref.@1#!. Be-
sides the effort of large teams of devoted experimenters, this
endeavor also required a number of detailed calculations be-
yond the lowest order of perturbation theory. Hence, one can
say that the renormalization of the SU~2!^ U~1! theory has
passed from the formal stage of its establishment@2# into the
world of practical calculations. For this purpose it is very
useful to have the review article of Aokiet al. @3# which can
be considered as a good SU~2!^ U~1! practitioner guide. So
far, it seems that such a guide does not exist for the two-
Higgs-doublet models~2HDM’s!. This is the aim of this ar-
ticle.

Several reasons can be given to justify the study of the
standard model with two doublets. In our opinion, the best
reason is the fact that there is no information about the Higgs
sector. Hence, given the crucial role that the scalar sector
plays in the theory, it is at least prudent to explore reasonable
extensions of the minimal Higgs sector.

Over the last few years, a great deal of work has been
invested in the study of several production and decay mecha-
nisms associated with the Higgs bosons of the 2HDM. For-
tunately, this large amount of work is beautifully and sys-
tematically presented in theHiggs Hunter’s Guide@4#, which
we shall consider as our basic reference for the work done
until the end of 1989.

Several authors have performed one-loop calculations in
the 2HDM. After the experimental evidence for a top quark
mass@5#, Méndez and Pomarol@6# have computed, in the
unitary gauge, theO(mt

2/MW
2 ) corrections to the hadronic

width of the Higgs bosons. In the minimal supersymmetric
standard model~MSSM! several authors@7# have estimated
the processH1→W1g which is forbidden to occur at the
tree level. Because of this fact, the calculation can be done,
including all reducible and irreducible three-point functions,
which do not require the specification of the renormalization
scheme and the calculation of the counterterms. Another rel-
evant work with a great deal of details about the renormal-
ization of the MSSM is the article by Pierce and Papadopou-

los @8# where they have considered one-loop corrections to
the decayH→ZZ. However, to preserve the mass sum rule
for the renormalized masses of the neutral Higgs bosons,
they introduce a modified minimal subtraction (MS̄) scheme
to renormalize the angleb. Clearly, this is not entirely con-
sistent with the on-shell scheme and furthermore it is not
valid in the general 2HDM. A systematic on-shell renormal-
ization study for the Higgs and gauge boson sectors of the
MSSM was carried out by Chankowski, Pokorski, and
Rosiek @9#. Here we present a similar work for a general
2HDM. The potential depends on seven real parameters
rather than three as is the case for the MSSM. On the other
hand, instead of renormalizing the parameters of the poten-
tial, as was done by Chankowskiet al. @9#, we renormalize
the massesmH , mh , mA , and mH

1 and the angles
b5tan(v2 /v1) anda.

II. HIGGS POTENTIAL

To define our notation we start with a brief review of the
two-Higgs-doublet potential. Letf i , with i 51,2, denote two
complex scalar doublets with hyperchargeY51. Introducing
the complete set of invariantsx15f1

†f1, x25f2
†f2,

x35Re$f1
†f2%, andx45Im$f1

†f2%, it is clear that the most
general SU~2!^ U~1!-invariant renormalizable potential de-
pends on 14 real parameters and can be written in the form

V52(
i 51

4

m i
2xi1 (

i< j 51

4

bi j xixj . ~1!

UnderCP the fields transform as

f i→eia if i* , ~2!

with arbitrary phasea i . Choosing these phases to be zero, it
is immediate to conclude that an explicitCP-conserving po-
tentialVCP hasm4

25b145b245 b3450. Hence,VCP depends
on ten real arbitrary parameters. However, such a potential
could still breakCP spontaneously@10#. In a previous paper
@11# we have shown that there are two possibilities to impose
in a natural way that the potential has onlyCP-invariant
minima. These requireb135b2350 and eitherm3

250 and
b33Þb44 or m3

2Þ0 andb335b44. Here we shall use the first
version of the potential which we rewrite in the form

V52m1
2x12m2

2x21l1x1
21l2x2

21l3x3
21l4x4

21l5x1x2 .
~3!*Electronic address: fsantos@skull.cc.fc.ul.pt

PHYSICAL REVIEW D 1 NOVEMBER 1997VOLUME 56, NUMBER 9

560556-2821/97/56~9!/5366~20!/$10.00 5366 © 1997 The American Physical Society



Notice that this seven-parameter potential obeys the discrete
symmetryf1→2f1 which is usually introduced to guaran-
tee the absence of flavor-changing neutral currents~FCNC’s!
in the tree-level Yukawa couplings. It is interesting to point
out @11# that potentials with onlyCP-invariant minima are
consistent with the absence of FCNC’s in the fermionic sec-
tor. Now, denoting byv i /A2 the vacuum expectation value
of each of the two doublets, we can writef i in the form

f i5F ai
1

~v i1bi1 ic i !/A2
G , ~4!

whereai
1 are complex fields, andbi and ci are real fields.

This, in turn, enables us to rewrite the potential~3! as

V52
1

2
l3@a1

1 a2
1#MbFa1

2

a2
2G1

1

4
~l42l3!@c1 c2#MbFc1

c2
G1

1

2@b1 b2#MaFb1

b2
G1@a1

1 a2
1#TFa1

2

a2
2G

1
1

2@c1 c2#TFc1

c2
G1

1

2@b1 b2#TFb1

b2
G1T1b11T2b21cubic and quartic terms , ~5!

with the matricesMb , Ma , andT defined as

Mb5F v2
2 2v1v2

2v1v2 v1
2 G , ~6a!

Ma5F 2v1
2l1 v1v2~l31l5!

v1v2~l31l5! 2v2
2l2

G , ~6b!

T5F T1

v1
0

0
T2

v2

G , ~6c!

with

T15v1S 2m1
21l1v1

21
l31l5

2
v2

2D , ~7a!

T25v2S 2m2
21l2v2

21
l31l5

2
v1

2D . ~7b!

The conditions for a local extreme of the potential are
T15T250. Diagonalizing the quadratic terms ofV one ob-
tains the mass eigenstates: two neutralCP-even scalar par-
ticles H andh, a neutralCP-odd scalar particleA, and the
would-be Goldstone boson partner of theZ, G0, a charged
Higgs field H1, and the Goldstone associated with theW
boson,G1. The relations between the mass eigenstates and
the SU~2!^ U~1! eigenstates are

FH

h G5RaFb1

b2
G , ~8a!

FH1

G1G5RbFa1
1

a2
1G , ~8b!

F A

G0
G5RbFc1

c2
G , ~8c!

with

Ra5F cosa sina

2sina cosaG , ~9a!

Rb5F2sinb cosb

cosb sinb G , ~9b!

tanb5
v2

v1
, tan2a5

v1v2~l31l5!

l2v2
22l1v1

2
. ~9c!

For the renormalization program it is convenient to re-
write V in terms of the mass eigenstates. After some straight-
forward algebra one obtains

L52THH2Thh2H2H MH
2

2
1

THH

2 J 2h2H Mh
2

2
1

Thh

2 J 2Hh$THh%2A2H MA
2

2
1

TAA

2 J 2G0
2H TG0G0

2 J 2AG0$TAG0
%

2H1H2$MH1
2

1TH1H2%2~H1G21G1H2!$TH1G2%2G1G2$TG1G2%1cubic and quartic terms , ~10!
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with

THH5
g

MW

Tab1Tdsin2a

sin2b
, ~11a!

Thh5
g

MW

Tab1Tdcos2a

sin2b
, ~11b!

THh5
g

2MW

Tdsin2a

sin2b
, ~11c!

TH1H25TAA5
g

MW

Tab1Tdcos2b

sin2b
, ~12a!

TG1G25TG0G0
5

g

MW

Tab1Tdsin2b

sin2b
, ~12b!

TH1G25TAG0
5

g

2MW
Td , ~12c!

FTH

Th
G5RaFT1

T2
G , ~13a!

Td5THsind1Thcosd, ~13b!

Tab5sinb~THcosa2Thsina!, ~13c!

and d5a2b. As we have already pointed out, at the tree
level, all T terms are zero. So, at the tree level, the linear
terms and the mixed terms vanish and the coefficients of the
terms with quadratic fields are, as they should be, their mass
squared. However, at one-loop order these statements are no
longer true, and this particular form of writingV will be
useful in the derivation of the counterterms to renormalize
some scalar particles Green’s functions.

III. LAGRANGIAN

A. Classical Lagrangian

For completeness let us write the classical Lagrangian of
the standard model in the form

LC5LYM1LF1LS1LY , ~14!

whereLYM is the gauge boson sector of the model,LF de-
notes the fermionic kinetic term and their couplings to the
gauge bosons,LS stands for the scalar sector of the theory,
andLY denotes the Yukawa couplings of fermion and scalar
particles. The first two terms of Eq.~14! are the same for the
standard model and for the 2HDM and so there is no need to
write them explicitly here. The scalar Lagrangian is given by

LS5(
i 51

2

~Dmf i !
†Dmf i2V~f1 ,f2!, ~15!

where

Dm5]m2 ig1I aWm
a 1 ig2

Y

2
Bm ~16!

is the covariant derivative andV(f1 ,f2) is the potential that
we have discussed in the previous paragraph. The Yukawa
Lagrangian is, again, a straightforward generalization of the
similar form in the standard model. In principle we could
write all terms inLY in the form

gi j
k @u d#L

i fkdR
j , ~17!

where thegi j
k are arbitrary Yukawa constants andi and j are

quark generation indices. However, to avoid the existence of
tree-level FCNC’s, one should impose the condition that the
same scalar doubletfk does not couple to both up and down
quarks. There are essentially four ways of doing this and so
there are four variations of the model. A further discussion of
this point, which is not relevant for the renormalization dis-
cussion, can be found in theHiggs Hunter’s Guide@4#. The
four different models will be presented in Appendix A.

B. Gauge fixing and ghost Lagrangians

At the quantum level the action involves another contri-
bution to the Lagrangian called the gauge-fixing termLGF.
The existence of such a term is by now a textbook subject.
So we can simply state that calculations are easily done in
the so-called linearRj gauges given by

LGF52
1

2jA
~]•A!22

1

2jZ
~]•Z2jZMZG0!2

2
1

jW
u]•W11 i jWMWG1u2, ~18!

wherejW , jA , jZ are arbitrary parameters and theZ and the
photon fieldA are expressed in terms of the original gauge
fields by the equations

Zm5cosuWWm
3 1sinuWBm , ~19a!

Am52sinuWWm
3 1cosuWBm . ~19b!

Just for completeness let us recall that

MW5
1

2
vg1 , ~20a!

MZ5
1

2
vAg1

21g2
2, ~20b!

and the electric chargee is given in terms of the SU~2! and
U~1! gauge couplingsg1 andg2, respectively, by the relation

e5
g1g2

Ag1
21g2

2
. ~20c!

We perform our calculations in the on-shell renormalization
scheme and the physical parameters of the theory are the
fermion masses, the Higgs masses, the gauge bosons masses,
the angles a and b, the Cabibbo-Kobayashi-Maskawa
~CKM! matrix elements, and the electric chargee. In this
scheme, the Weinberg angle is not an independent parameter
but just a shorthand notation for the ratio of theW and Z
masses, i.e., cosuW5MW/MZ . As was stated and explained
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by several authors@12# an alternative scheme, which takes
advantage of the good precision of the measurements of the
Fermi coupling constantGF , is obtained replacingMW by
GF .

The introduction ofLGF, which essentially removes the
contribution of equivalent orbits in the Feynman path inte-
gral, induces the existence of ghost fields. After Becchi-
Rouet-Stora-Tyutin~BRST! @13# symmetry was discovered
the best way to introduce the ghost contribution is to follow
the method advocated by Baulieu@14#, where this symmetry
is promoted to the role of replacing at the quantum level the
classical gauge symmetry. In this way, one can be sure to
obtain all ghost interaction terms and in particular the four-
point interactions.1 However, with our choice of gauge fix-
ings, one could also use the better known Faddeev-Popov
prescription@15#. In any way we obtain

LFP52C̄1@]21MW
2 #C22C̄2@]21MW

2 #C1

2C̄Z@]21MZ
2#C̄Z2CA]2CA

1cubic and quartic terms. ~21!

The cubic and quartic terms are similar to the ones in the
standard model with the replacementH(SM)→Hcosd
2hsind.

IV. RENORMALIZATION PROGRAM

A. Renormalization of the fields and parameters

So far, the fields and parameters in the quantum Lagrang-
ian are bare. When this Lagrangian is used to calculate the
Green’s functions in perturbation theory, renormalized fields
and couplings have to be introduced. In fact, the calculations
of some Feynman diagrams give divergent results. The use
of a regularization prescription, in our case dimensional
regularization, isolates the divergences in a well prescribed
way. Furthermore, the proof of renormalizability, already ob-
tained in 1971@2#, shows that these ultraviolet divergences
can be absorbed by a suitable scaling of the fields and pa-
rameters of the theory. Deciding on a renormalization
scheme, in our case the on-shell scheme, fixes the relation
between renormalized and unrenormalized Green’s func-
tions. This is the general framework for the renormalization
of the 2HDM that we use. However, even in the simpler
standard one-Higgs-doublet model, the same on-shell renor-
malization scheme can be implemented essentially in two
ways. In the first one, followed by Bo¨hm et al. @16#, the
gauge boson field renormalization respects the original gauge
symmetry; i.e., the scaling is

Wm
a→ZW

1/2Wm
a ,

Bm→ZB
1/2Bm .

The second alternative followed by Aokiet al. @3# introduces
the scaling at the level of the physical fieldsW, Z, andA.
Then, sinceZ andA have the same quantum numbers, they
get mixed under renormalization, i.e.,

F Zm

Am
G

0

5FZZZ
1/2 ZZA

1/2

ZAZ
1/2 ZAA

1/2G F Zm

Am
G ~22a!

and

Wm0
6 5ZW

1/2Wm
6 , ~22b!

where the bare fields are denoted by a zero subscript. At first
glance it looks as though the first alternative is more eco-
nomical. However, this is misleading since in this scheme
the gauge fixing involves 6 renormalization parameters,
whereas in the second, theLGF is, essentially, unrenormal-
ized. Leaving aside the fermionic sector, the comparison be-
tween the renormalization parameters in the two schemes is
shown in Table I.

In our extension to the 2HDM we found that the second
scheme turned out to be the most convenient one. This we
will explain in the following paragraph. To close this section
let us define some of the entries in Table I, in particular the
ones that will be used later. The mass counterterms are in-
troduced in the renormalized Lagrangian via the scaling

MW
2→MW

2 1dMW
2 , ~23a!

MZ
2→MZ

21dMZ
2 , ~23b!

MH
2→MH

2 1dMH
2 . ~23c!

The scaling of the Higgs field and of the would-be Goldstone
bosons, i.e.,

H→ZH
1/2H, ~24a!

G0→ZG0

1/2G0 , ~24b!

G1→ZG1
1/2 G1, ~24c!

introduces the remaining wave function renormalization pa-
rameters. The countertermT, which stands for tadpoles, is
needed to cancel the one-particle irreducible Green’s func-
tions. Later on we will come back to this point.

B. Renormalization of the gauge fixing

We start this discussion with the standard one-Higgs-
doublet model. In the scalar part of the Lagrangian,LS , after
symmetry breaking, two-particle mixed terms of the form1See Ref.@14# for a further discussion of this point.

TABLE I. Renormalization schemes of Bo¨hm et al. and Aoki
et al.

Böhm et al. Aoki et al.

LY M ZW ,ZB ,de
ZW ,ZZZ ,ZZA ,ZAZ ,ZAA

dMW
2 ,dMZ

2 ,de

LGF dj i
W ,dj i

3 ,dj i
B ,i 51,2 0

LS Zf ,dv,dm2,dl ZH ,ZG0
,ZG1,dMH

2 ,T

Total 13 13
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iM W]mWm
2G1 are generated. To define the propagators of

the theory those terms have to be eliminated. This is obvious
in the unitary gauge where the would-be Goldstone bosons
disappear, but it is also true in theRj gauges where the last
term in Eq.~18! gives a contribution with the opposite sign
to the term that we have considered. Clearly, if the gauge
fixing is renormalized, the introduction of the same relations
between bare and renormalized fields both inLS and LGF
makes this cancellation true to all orders in perturbation
theory. Then one is left with no counterterm to renormalize
the mixed Wm

2G1 two-particle Green’s functions, repre-
sented in Fig. 1.

For illustrative purpose let us write a linearLGF in the
general form

LGF52
1

j
~]mWm

11jX1G1!~]mWm
22jX2G2!1•••,

~25!

whereX1G1 is defined by the integral

X1G15E d4yX1~x2y!G1~y! ~26!

andX1(x2y) is a distribution.
The renormalization implies

jW→ZjjW , ~27a!

Wm→ZW
1/2Wm , ~27b!

G1→ZG1
1/2 G1. ~27c!

Thus, if one renormalizes the functionX1 such that

X15ZW
21/2ZG1

21/2XR
1 , ~27d!

it is clear that the mixed terms remain unrenormalized. Fur-
thermore, with the conditionZj5ZW , all the terms in the
Lagrangian given by Eq.~25! remain unchanged. However,
if one tries to apply the same recipe for the 2HDM, we end
up with the following counterterms generated byLGF:

LGF
ct 5•••1~ iM WZG

21/2ZGH
1/2 ]mWm

1H21H.c.!. ~28!

Such a counterterm with opposite sign is generated by the
scalar piece of the classical Lagrangian,LS , which means
that, now, the two-particleWH Green’s function is left with-
out a counterterm. Fortunately, Baulieu@14# has proved
within the BRST framework that a linear gauge-fixing term
is not affected by radiative corrections. So rather than strug-
gling with gauge-fixing Lagrangians with extraj parameters,
we will follow Ross and Taylor@17# in their celebrated paper
and do not renormalizeLGF given by Eq. ~18!. In other
words, the fields and parameters in this equation are already
assumed to be the renormalized ones. Furthermore, in the

calculation we choosejA5jZ5jW51, which corresponds to
the usual Feynman–’t Hooft gauge.

C. One-particle irreducible Green’s functions

After the discovery of BRST symmetry, the renormaliza-
tion of gauge theories is proved using BRST Ward identities.
In the one-doublet standard model, these identities are inde-
pendent of the sign of them2 term in the Higgs potential.
Then, the proof of the renormalizability of the spontaneously
broken standard theory follows immediately.

Recently@18#, Schilling and van Nieuwenhuizen have ex-
plicitly proved the multiplicative renormalization of an
SU~2! gauge model. In this case, both the vacuum expecta-
tion valuev and the scalar field are multiplicatively renor-
malized by a differentZ factor. Hence, it is clear that, in this
case, the tree-level condition2m21lv250 is not man-
tained in higher orders. In the potential,2m21lv2 is the
coefficient of the term linear in the Higgs field. So, in this
multiplicative renormalization scheme, there will be renor-
malized linear terms inH.

An alternative is to introduce an additive renormalization
scheme for the scalar fields. In other words, we shift the
fields by an additive constant such that their vacuum expec-
tation value vanishes order by order. This is the scheme that
we follow here.

In Fig. 2 we show these so-called tadpole diagrams to-
gether with their counterterms chosen in such a way that the
renormalized Green’s functions vanish. These conditions,
namely,

SH1THZHH
1/2 1ThZhH

1/250, ~29a!

Sh1ThZhh
1/21THZHh

1/250, ~29b!

fix, order by order, the values ofTH,h . Notice that, because
of CP conservation, there is no tadpole diagram for the pseu-
doscalar field. Furthermore, beyond one loop the tadpoles are
mixed by the wave function renormalization.

Naively one could assume that this corresponds simply to
forgetting about the tadpole diagrams. Indeed, this is the
case, for any diagram that differs from a lower order one by
a simple addition of a tadpole subgraph. However, we still
have to evaluate the counterterms given by Eqs.~29a! and
~29b! because those counterterms are going to influence the
results for two-point renormalized Green’s functions. This is
already seen in Eq.~10! and it will be shown in the next
paragraph.

FIG. 1. WG andWH mixing.

FIG. 2. The tadpole condition.
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D. Two-particle irreducible Green’s functions

In this section we discuss the renormalization of the two-
point Green’s functions. The only differences from the stan-
dard model are in the scalar sector and in the mixing between
the scalar and gauge boson sectors. Hence, we only discuss
those cases and refer to Aokiet al. @3# for the remaining
two-point functions.

We can start the renormalization program from the tree-
level Lagrangian. The renormalized fields and masses are
defined by the relations

FH6

G6G
0

5FZH1H1
1/2 ZH1G1

1/2

ZG1H1
1/2 ZG1G1

1/2 G FH6

G6G ,
MH10

2
5MH1

2
1dMH1

2 . ~30!

We also define the renormalized angles and the renormalized
SU~2! gauge coupling by the relationsa05a1da,
b05b1db and g05g1dg. The renormalization of the
angles will be discussed in a later section. The renormalized
tadpole functions can be written as

TH1H25
g1dg

~MW
2 1dMW

2 !1/2

Tab1Tdcos2~b1db!

sin@2~b1db!#
,

~31a!

TG1G25
g1dg

~MW
2 1dMW

2 !1/2

Tab1Tdsin2~b1db!

sin@2~b1db!#
,

~31b!

TH1G25
g1dg

2~MW
2 1dMW

2 !1/2
Td , ~31c!

with

Td5THsin@a1da2~b1db!#1Thcos@a1da2~b1db!#,
~32a!

Tab5sin~b1db!@THcos~a1da!2Thsin~a1da!#.
~32b!

Now we have to find the counterterms for the two-point
functions. The bilinear terms in the Lagrangian for the
charged Higgs sector are

L52H1@ZH1H1~]21MH1
2

1dMH1
2

!1ZG1H1]21ZH1H1TH1H21ZG1H1TG1G212ZH1H1
1/2 ZG1H1

1/2 TH1G2#H2

2G1@ZH1G1~]21MH1
2

1dMH1
2

!1ZG1G1]21ZG1G1TG1G21ZH1G1TH1H212ZG1G1
1/2 ZH1G1

1/2 TH1G2#G2

2H1@ZH1H1
1/2 ZH1G1

1/2
~]21MH1

2
1dMH1

2
!1ZG1G1

1/2 ZG1H1
1/2 ]21ZH1H1

1/2 ZH1G1
1/2 TH1H21ZG1G1

1/2 ZG1H1
1/2 TG1G2

1~ZG1G1
1/2 ZH1H1

1/2
1ZG1H1

1/2 ZH1G1
1/2

!TH1G2#G21H.c. ~33!

Using the usual recipe for on-shell renormalization, that is,
demanding that the pole stay at the physical mass and that
the residue be one, we arrive at the following set of renor-
malization conditions:

SH1H1~MH1
2

!2ZH1H1dMH1
2

1ZG1H1MH1
2

2ZH1H1TH1H22ZG1H1TG1G2

22ZH1H1
1/2 ZG1H1

1/2 TH1G250, ~34a!

d

dq2
SH1H1~MH1

2
!1ZH1H11ZG1H150, ~34b!

SG1G1~0!2ZH1G1~MH1
2

1dMH1
2

!2ZG1G1TG1G2

2ZH1G1TH1H222ZG1G1
1/2 ZH1G1

1/2 TH1G250,

~35a!

d

dq2
SG1G1~0!1ZG1G11ZH1G150, ~35b!

SH1G1~0!2ZH1H1
1/2 ZH1G1

1/2
~MH1

2
1dMH1

2
!

2ZH1H1
1/2 ZH1G1

1/2 TH1H22ZG1G1
1/2 ZG1H1

1/2 TG1G2

2~ZG1G1
1/2 ZH1H1

1/2
1ZG1H1

1/2 ZH1G1
1/2

!TH1G250,

~36a!

SG1H1~MH1
2

!2ZH1H1
1/2 ZH1G1

1/2 dMH1
2

1ZG1G1
1/2 ZG1H1

1/2 MH1
2

2ZH1H1
1/2 ZH1G1

1/2 TH1H22ZG1G1
1/2 ZG1H1

1/2 TG1G2

2~ZG1G1
1/2 ZH1H1

1/2
1ZG1H1

1/2 ZH1G1
1/2

!TH1G250. ~36b!

With these six equations we can determine the five renormal-
ization constants. Notice the explicit appearance of the tad-
pole counterterms. There is one dependent equation due to a
Ward identity in the charged sector, which is

^0uT]mWm
1]nWn

2u0&2 iM W^0uTG1]nWn
2u0&

1 iM W^0uT]mWm
1G2u0&1MW

2 ^0uTG1G2u0&50.

~37!

Finally let us discuss the mixed terms in the charged sector.
Bearing in mind the discussion about the gauge-fixing La-
grangian in the previous section, the counterterms can be
taken from
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L5 i ~MW
2 1dMW

2 !1/2ZW
1/2ZG1G1

1/2 Wm
2]mG11H.c.

1 i ~MW
2 1dMW

2 !1/2ZW
1/2ZG1H1

1/2 Wm
2]mH11H.c.

~38!

The gauge-fixing Lagrangian~25! will cancel the tree-level
terms in Eq.~38! and so the final mixed Lagrangian is, in
fact, a counterterm Lagrangian for the self-energiesWG and
WH. Notice that we did not explicitly introduce any coun-
terterms for the Green’s functionsWG andWH. So we end
up this section by writing simbolicallyZW1G1 andZW1H1 as

ZW1G1
1/2

5 ikm~MW
2 1dMW

2 !1/2ZW
1/2ZG1G1

1/2 , ~39!

ZW1H1
1/2

5 ikm~MW
2 1dMW

2 !1/2ZW
1/2ZG1H1

1/2 . ~40!

The complete set of counterterms for the scalar and mixed
sectors can be found in Appendix B.

E. Three-particle irreducible Green’s functions

In the on-shell renormalization scheme that we have
adopted, the gauge couplingsg1 andg2 are not independent
parameters. In fact, they are both related to the gauge boson
masses and to the electric chargee, i.e.,

g15e
MZ

MW
,

g25e
MZ

~MW
2 2MZ

2!1/2
.

Then, in the one-Higgs-doublet model, only one further
renormalization constantY5de/e remains to be fixed. This
is simply done by imposing the condition

ū~mf !GR
mu~mf !ukm→05 ūgmu ~41!

for any charged fermion, whereGR
m is the renormalized three-

point photon fermion vertex. Usually, following the tradi-
tional QED prescription, where the Thompson limit was in-
troduced to definea5e2/(4p), one uses the electron as the
charged fermion. However, the universality of the on-shell
charge guarantees that one can use any charged fermion.
Since the theory is by itself well defined, one could alterna-
tively fix Y by using the renormalizedW1W2g three-point
function, namely,

@eb~p!eg~q!GR
bgm#km→0p25q25M

W
2

5 lim
km→0

@e~q!•~k2p!em~p!1~p2q!me~p!•e~q!

1~q2k!.pem~q!#50. ~42!

Besides the gauge-coupling renormalization, fixed by the
photon coupling, theW quark-quark vertex requires the ad-
ditional renormalization of the Cabibbo-Kobayashi-
Maskawa ~CKM! matrix. For the standard one-Higgs-
doublet model this renormalization of the CKM matrix was

evaluated by Denner and Sack@19#. In this article we sketch
their analysis in order to point out its extensions to the
2HDM.

Let us consider the decayW1→uI d̄ j , whereI , j 51, 2, 3
are the generation indices~upper case for up quarks!. At the
tree level the decay amplitude is

T5VI j T0 , ~43!

with

T052
g

A2
ū I~mI !e”gLv~mj !. ~44!

At one loop, in the on-shell renormalization scheme the self-
energy corrections to the external legs vanish and the proper
vertex diagrams give an amplitudeT1

v that can be written in
the form

T1
v5VI j T0D, ~45!

where D stands for the result of the loop calculation. To
obtain the full one-loop amplitude one has to add the coun-
terterms, i.e.,

T15T1
v1T1

c , ~46!

with

T1
c5VI j T0Fdg

g
2

1

2
dZWG1

1

2
T0F(

J
dZJI*

LVJ j1(
i

VIi dZi j
L G

1T0dVI j . ~47!

Now we have to face the problem of imposing some condi-
tions to fix the CKM countertermsdVI j . Denner and Sack
@19# have split the quark wave function renormalization pa-
rametersdZL into their Hermitian and antihermitian contri-
butions, namely,

dZL5
1

2
~dZL1dZ* L!1

1

2
~dZL2dZ* L!, ~48!

and then they have fixeddVI j by the condition

dVI j 52
1

4F(
J

~dZIJ*
L2dZJI

L !VJ j1(
i

VIi ~dZi j
L 2dZji*

L!G .
~49!

It is possible to prove@19# that dVI j is needed precisely to
cancel the divergent contribution to the right-hand side of
Eq. ~49!. Hence, the use of Eq.~49! to fix also the finite piece
of dVI j is the choice made by Denner and Sack. Alterna-
tively, one could select four physicalWq q̄ decay processes
and impose the vanishing ofT1 for these decays. In this case,
the transitionsW1→u d̄, W1→u s̄, W1→u b̄, andt→bW1
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could form an interesting set. However, this process has the
disavantage of shifting all one-loop correction to some am-
plitudes.

Since the renormalization of the CKM matrix vanishes in
the limit of degenerate down quark2 masses, most loop cor-
rections to theW decay process are done in this approxima-
tion. This is equivalent to dropping the last term in Eq.~47!
and, in the same term, to replace the sum overJ andi simply
by the J5I and j 5 i contributions. Hence, in this approxi-
mationT1 is directly proportional to a single CKM element
VI j . As far as we know all standard model analyses of the
values of the CKM matrix elements are done in this approxi-
mation. In fact, the work of Denner and Sack has shown that
the error of this approximation is of the order 1026, far
smaller than any other theoretical and experimental uncer-
tainties.

In the 2HDM, one can do a similar analysis with the
difference that there are further contributions to the irreduc-
ible vertex and todZL coming from diagrams with neutral
and charged Higgs bosons. Because some of these vertices
could be enhanced by the factor tanb(cotb), one could ex-
pect to see such enhancement in the result.

In the 2HDM there are two further couplingsa andb that
need to be renormalized. This can be done imposing some
physical conditions on the renormalized three-point or four-
point scalar vertex functions. There are in this model 8 cubic
and 14 quartic vertices among the neutral and charged Higgs
bosons and any two of those can be selected. However, most
of these vertices have a complicated dependence on the
angles and, furthermore, without knowing the Higgs boson
masses it is difficult to select a physical process such as, for
instance,H→hh. Luckily, the vertices ēeh and H6en,
which induce the tree-level decaysh→e1e2 and
H2→e2 n̄ , have a simple dependence on the angles~see
Table II! and, at the same time, we already know that the
present bounds on the Higgs boson masses allow these de-
cays to occur.

In a recent calculation@20# of the top-loop contribution to
the decayH1→hW1, where the vertex depends only on the
combinationb2a, we renormalize (b2a) using the corre-

sponding processH1→HW1. In the absence of any infor-
mation on Higgs boson scattering and Higgs leptonic decays
this is perhaps the only consistent way to proceed.

V. CONCLUSION

In this article we discuss the renormalization program of
the CP-conserving 2HDM. We summarize our main points
as follows.

~1! In a general 2HDM, the condition that the potential
has onlyCP-invariant minima leads to a seven-parameter
potential @11# which is consistent with the absence of
FCNC’s in the fermionic sector.

~2! The scalar part of the Lagrangian, written in terms of
the mass eigenstates, shows the existence of linear terms in
the neutral scalar fieldsH andh @cf. Eq. ~10!#. Clearly, those
terms are zero at the tree level due to the minimum condi-
tions. However, at one loop, the requirement of vanishing
renormalized linear terms induces, by itself, bilinear mixed
terms of the typeHh. Furthermore, the renormalization con-
dition for the tadpoles@cf. Eqs.~29a! and~29b!# will induce
an additional mixing of the same type. Hence, in general, the
renormalization of the one-, two-, and three-particle irreduc-
ible Green’s functions cannot be implemented sequentially.
So one is faced with the task of solving a coupled system of
equations. Fortunetely, for one-loop calculations, the equa-
tions decouple.

~3! In Sec. IV B we discuss the problems connected with
the renormalization of the gauge fixing. Working with a
gauge-fixing Lagrangian where all parameters are already
renormalized@17#, we have shown that the counterterms for
the mixed two-point functions with one gauge boson and one
scalar arise naturally without any further conditions@cf. Eqs.
~B22!–~B27!#.

~4! In Sec. IV E we discuss the renormalization of the
anglesa and b. Contrary to the MSSM, these angles are
now physically independent parameters of the model. Hence,

we propose to use the decaysh→e1e2 and H2→e2 n̄ to
renormalizea andb.

~5! Finally, in a set of appendixes we list the vertices and
the renormalization constants of the 2HDM in order to make
this information readily available to other users.
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APPENDIX A: FEYNMAN RULES

In this appendix we present the Feynman rules for the
interactions involving scalar fields. All other interactions are
standard and can be found in@3#. We have chosen the
Feynman–t Hooft gauge and followed the convention that all
the momenta in the vertices are incoming.

We start by defining the quantities

2Obviously, the same is true in the limit of degenerate up quark
mass althought this case is less realistic.

TABLE II. Coupling constants for the fermion-scalar interac-
tions.

Model I Model II Model III Model IV

aeh 2
cosa
sinb

sina

cosb
2

cosa
sinb

sina

cosb

adh 2
cosa
sinb

2
cosa
sinb

sina

cosb
sina

cosb

aeH 2
sina

sinb
2

cosa
cosb

2
sina

sinb
2

cosa
cosb

adH 2
sina

sinb
2

sina

sinb
2

cosa
cosb

2
cosa
cosb

be 2cotb tanb 2cotb tanb
bd 2cotb 2cotb tanb tanb
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Aab[cos3bsina1sin3bcosa,

Bab[cos3bcosa1sin3bsina,

Cab[sin3acosb1cos3asinb,

Dab[cos3acosb2sin3asinb.

In the Yukawa Lagrangian, the fermions can couple with the
scalars in four different and independent ways, with no fla-
vor changing. The couplings for those models are shown in
Table II. In model I onlyf2 couples to all fermions; in
model II f2 couples to the quarks andf1 coulpes to the
leptons; in model IIIf2 couples to the up quarks and to the
leptons andf1 couples to the down quarks; finally in Model
IV f2 couples to the up quarks andf1 couples to the down
quarks and the leptons. The two Higgs doubletsf1 andf2
are defined in the expression~4!. These couplings will be
used in Appendix A 3.

1. Triple scalar vertices

H1H2h 2
ig

MW
S Mh

2

sin2b
Bab2MH1

2 sind D ,

H1H2H 2
ig

MW
S MH

2

sin2b
Aab1MH1

2 cosd D ,

AAh 2
ig

MW
S Mh

2

sin2b
Bab2MA

2sind D ,

AAH 2
ig

MW
S MH

2

sin2b
Aab1MA

2cosd D ,

hhh
3ig

MW

Mh
2

sin2b
Dab ,

HHH 2
3ig

MW

MH
2

sin2b
Cab ,

hHH
ig

2MW

sin2asind~2MH
2 1Mh

2!

sin2b
,

hhH 2
ig

2MW

sin2acosd~MH
2 12Mh

2!

sin2b
,

hH7G6 2
ig

2MW
cosd~Mh

22MH1
2

!,

HH7G6
ig

2MW
sind~MH

2 2MH1
2

!,

hAG0 2
ig

2MW
cosd~Mh

22MA
2 !,

HAG0

ig

2MW
sind~MH

2 2MA
2 !,

hG0G0

ig

2MW
sindMh

2 ,

hG1G1
ig

2MW
sindMh

2 ,

HG0G0 2
ig

2MW
cosdMH

2 ,

HG1G1 2
ig

2MW
cosdMH

2 ,

AH7G6 6
g

2MW
~MA

22MH1
2

!.

2. Quartic scalar vertices

H1H2H1H2 2
ig2

sin22bMW
2 ~MH

2 Aab
2 1Mh

2Bab
2 !,

AAAA 2
3ig2

sin22bMW
2 ~MH

2 Aab
2 1Mh

2Bab
2 !,

AAH1H2 2
ig

sin22bMW
2 ~MH

2 Aab
2 1Mh

2Bab
2 !,

H1H2hh 2
ig2

2MW
2 F 1

sin22b
~MH

2 Aabsin2acosd

22Mh
2BabDab!12MH1

2 sin2dG ,

H1H2HH 2
ig2

2MW
2 F 1

sin22b
~2MH

2 AabCab

1Mh
2Babsin2asind!12MH1

2 cos2dG ,

AAhh 2
ig2

2MW
2 F 1

sin22b
~MH

2 Aabsin2acosd

22Mh
2BabDab!12MA

2sin2dG ,

AAHH 2
ig2

2MW
2 F 1

sin22b
~2MH

2 AabCab1Mh
2Babsin2asind!

12MA
2cos2dG ,

H1H2Hh 2
ig2

2MW
2 F 1

sin22b
~MH

2 Aabsin2asind

1Mh
2Babsin2acosd!2MH1

2 sin2dG ,
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AAHh 2
ig2

2MW
2 F 1

sin22b
(MH

2 Aabsin2asind

1Mh
2Babsin2acosd!2MA

2sin2d G ,

hhhh 2
3ig2

4sin22bMw
2 ~4Mh

2Dab
2 1MH

2 sin22acos2d!,

HHHH 2
3ig2

4sin22bMW
2 ~Mh

2sin22asin2d14MH
2 Cab

2 !,

hhhH 2
3ig2

8sin22bMW
2 ~4Mh

2Dabsin2acosd

1MH
2 sin22asin2d),

HHHh 2
3ig2

8sin22bMW
2 ~Mh

2sin22asin2d

14MH
2 Cabsin2asind),

hhHH 2
ig2sin2a

4sin2bMW
2 FMH

2 2Mh
21

3sin2a

sin2b
~sin2dMH

2

1cos2dMh
2!G ,

AAG0G0 2
ig2

4MW
2 Fsin2a

sin2b
~MH

2 2Mh
2!13~sin2dMH

2

1cos2dMh
2!G ,

H1H2G1G2 2
ig2

4MW
2 FMA

21
sin2a

sin2b
~MH

2 2Mh
2!

13~sin2dMH
2 1cos2dMh

2!G ,
H6H6G7G7 2

ig2

2MW
2 ~2MA

21sin2dMH
2 1cos2dMh

2!,

H7H6AG0 2
ig2

4MW
2 ~2MH1

2
1sin2dMH

2 1cos2dMh
2!,

G1G2AA 2
ig2

2MW
2 FMH1

2
1

1

sin2b
~cosdAabMH

2

2sindBabMh
2!G ,

H1H2G0G0 2
ig2

2MW
2 FMH1

2
1

1

sin2b
~cosdAabMH

2

2sindBabMh
2!G ,

H1H2H7G6 2
ig2

MW
2 F sind

sin2b
~AabMH

2 1BabMh
2!G ,

H1H2G0A 2
ig2

2MW
2 F sind

sin2b
~AabMH

2 1BabMh
2!G ,

AAAG0 2
3ig2

2MW
2 F sind

sin2b
~AabMH

2 1BabMh
2!G ,

AAH7G6 2
ig2

2MW
2 F sind

sin2b
~AabMH

2 1BabMh
2!G ,

G1G2G0A 2
ig2

8MW
2

sin2d~MH
2 2Mh

2!,

G1G2H7G6 2
ig2

4MW
2

sin2d~MH
2 2Mh

2!,

G0G0G0A 2
3ig2

8MW
2

sin2d~MH
2 2Mh

2!,

G0G0H7G6 2
ig2

8MW
2

sin2d~MH
2 2Mh

2!,

G1G2hh 2
ig2

4MW
2 F 1

sin2b
~sin2acos2dMH

2

22sindDabMh
2!12cos2dMH1

2 G ,
G0G0hh 2

ig2

4MW
2 F 1

sin2b
~sin2acos2dMH

2 22sindDabMh
2!

12cos2dMA
2 G ,

G1G2HH 2
ig2

4MW
2 F 1

sin2b
~2cosdCabMH

2

2sin2dsin2aMh
2!12sin2dMH1

2 G ,
G0G0HH 2

ig2

4MW
2 F 1

sin2b
~2cosdCabMH

2

2sin2dsin2aMh
2!12sin2dMA

2 G ,
H7G6HH 2

ig2

8MW
2 F 1

sin2b
~4cosdCabMH

2

1sin2dsin2aMh
2!22sin2dMH1

2 G ,
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H7G6hh 2
ig2

8MW
2 F 1

sin2b
~sin2dsin2aMH

2

14cosdDabMh
2!12sin2dMH1

2 G ,
AG0HH 2

ig2

8MW
2 F 1

sin2b
~4cosdCabMH

2 1sin2dsin2aMh
2!

22sin2dMA
2 G ,

AG0hh 2
ig2

8MW
2 F 1

sin2b
~sin2asin2dMH

2 14cosdDabMh
2!

12sin2dMA
2 G ,

G7H6hA 6
g2

4MW
2

sind~MA
22MH1

2
!,

G7H6HG0 6
g2

4MW
2

sind~MA
22MH1

2
!,

G7H6hG0 6
g2

4MW
2

cosd~MA
22MH1

2
!,

G7H6HA 7
g2

4MW
2

cosd~MA
22MH1

2
!,

G1G2hH 2
ig2

8MW
2 Fsin2a

sin2b
~MH

2 2Mh
2!12sin2dMH1

2 G ,
G0G0hH 2

ig2

8MW
2 Fsin2a

sin2b
~MH

2 2Mh
2!12sin2dMA

2 G ,
G7H6hH 2

ig2

4MW
2 Fsin2a

sin2b
~sin2dMH

2 1cos2dMh
2!

2cos2dMH1
2 G ,

AG0hH 2
ig2

4MW
2 Fsin2a

sin2b
~sin2dMH

2 1cos2dMh
2!

2cos2dMA
2 G ,

G1G2G1G2 2
ig2

4MW
2 ~sin2dMh

21cos2dMH
2 !,

G0G0G0G0 2
3ig2

4MW
2 ~sin2dMh

21cos2dMH
2 !,

G1G2G0G0 2
ig2

4MW
2 ~sin2dMh

21cos2dMH
2 !.

3. Fermion-scalar vertices

ē ieih
ig

2MW
aehmei

,

ū iuih 2
ig

2MW

cosa

sinb
mui

,

d̄ idih
ig

2MW
adhmdi

,

ē ieiH
ig

2MW
aeHmei

,

ū iuiH 2
ig

2MW

sina

sinb
mui

,

d̄ idiH
ig

2MW
adHmdi

,

ē ieiA 2
g

2MW
bemei

g5 ,

ū iuiA 2
g

2MW
cotbmui

g5 ,

d̄ idiA 2
g

2MW
bdmdi

g5 ,

ē ieiG0

g

2MW
mei

g5 ,

ū iuiG0 2
g

2MW
mui

g5 ,

d̄ idiG0

g

2MW
mdi

g5 ,

ē in iH
1

ig

2A2MW

bemei
~11g5!,

ū idjH
1

ig

2A2MW

Vi j @bdmdj
~11g5!1cotbmui

~12g5!#,

n̄ ieiH
2

ig

2A2MW

bemei
~12g5!,

d̄ iujH
2

ig

2A2MW

Vi j* @bdmdi
~12g5!1cotbmuj

~11g5!#,

ē in iG
1 2

ig

2A2MW

mei
~11g5!,

ū idjG
1

ig

2A2MW

Vi j @2mdj
~11g5!1mui

~12g5!#,
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n̄ ieiG
2 2

ig

2A2MW

mei
~12g5!,

d̄ iujG
2

ig

2A2MW

Vi j* @2mdi
~12g5!1muj

~11g5!#.

4. Gauge-boson–scalar vertices

hZmZn2 ig
MZ

cosuW
sindgmn ,

hWm
1Wn

2 2 igMWsindgmn ,

HZmZnig
MZ

cosuW
cosdgmn ,

HWm
1Wn

2 igMWcosdgmn ,

hhZmZn

ig2

2cos2uW

gmn ,

hhWm
1Wn

2
ig2

2
gmn ,

HHZmZn

ig2

2cos2uW

gmn ,

HHWm
1Wn

2
ig2

2
gmn ,

AAZmZn

ig2

2cos2uW

gmn ,

AAWm
1Wn

2
ig2

2
gmn ,

G0G0ZmZn

ig2

2cos2uW

gmn ,

G0G0Wm
1Wn

2
ig2

2
gmn ,

H1H2ZmZn 2ie2cot2~2uW!gmn ,

H1H2Wm
1Wn

2
ig2

2
gmn ,

G1G2ZmZn2ie2cot2~2uW!gmn ,

G1G2Wm
1Wn

2
ig2

2
gmn ,

H1H2AmAn 2ie2gmn ,

G1G2AmAn 2ie2gmn ,

H1H2AmZn 22ie2cot~2uW!gmn ,

G1G2AmZn 22ie2cot~2uW!gmn ,

H6AWm
7An 6

g2sin~uW!

2
gmn ,

H6AWm
7Zn 6

g2sin~uW!

2
tan~uW!gmn ,

G6G0Wm
7An 6

g2sin~uW!

2
gmn ,

G6G0Wm
7Zn 6

g2sin~uW!

2
tan~uW!gmn ,

H6hWm
7An cosd

ig2sin~uW!

2
gmn ,

H6hWm
7Zn cosd

ig2sin~uW!

2
tan~uW!gmn ,

G6HWm
7An cosd

ig2sin~uW!

2
gmn ,

G6HWm
7Zn cosd

ig2sin~uW!

2
tan~uW!gmn ,

H6HWm
7An sind

ig2sin~uW!

2
gmn ,

H6HWm
7Zn sind

ig2sin~uW!

2
tan~uW!gmn ,

G6hWm
7An 2sind

ig2sin~uW!

2
gmn ,

G6hWm
7Zn 2sind

ig2sin~uW!

2
tan~uW!gmn ,

G6Wm
7An iM Wegmn ,

G6Wm
7Zn iM WetanuWgmn ,

AmH1H2 ie~pH12pH2!m ,

ZmH1H2 2 iecot~2uW!~pH12pH2!m ,

AmG1G2 ie~pG12pG2!m ,

ZmG1G2 2 iecot~2uW!~pG12pG2!m ,

ZmHG0

gMZ

2MW
cosd~pH2pG0

!m ,

ZmhA
gMZ

2MW
cosd~ph2pA!m ,
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ZmHA
gMZ

2MW
sind~pH2pA!m ,

ZmhG0

gMZ

2MW
sind~pG0

2ph!m ,

Wm
7H6A

g

2
~pH62pA!m ,

Wm
7G6G0

g

2
~pG62pG0

!m ,

Wm
7H6h6 icosd

g

2
~pH62ph!m ,

Wm
7G6H icosd

g

2
~pG62pH!m ,

Wm
7H6H 6 isind

g

2
~pH62pH!m ,

Wm
7G6h 7 isind

g

2
~pG62ph!m .

5. Ghost-scalar vertices

C̄6C7H 2
igMW

2
cosd,

C̄6C7h
igMW

2
sind,

C̄6C7G0 6
igMW

2
,

C̄ZCZH 2
igMZ

2cosuW
cosd,

C̄ZCZh
igMZ

2cosuW
sind,

C̄6CZG7 6
igMZ

2
cos~2uW!,

C̄6CAG7 7 ieMW ,

C̄ZC6G7 2
igMZ

2
.

APPENDIX B: RENORMALIZATION CONSTANTS

1. Two-point functions

a. Scalar counterterms

In theCP-even scalar sector the six renormalization con-
stantsZHH , Zhh , ZHh , ZhH , dMH

2 , anddMh
2 are determined

by solving the set of equations

SHH~MH
2 !2ZHHdMH

2 2ZhH~Mh
22MH

2 1dMh
2!2THHZHH

2ThhZhH22THhZHH
1/2 ZhH

1/250, ~B1!

d

dq2
SHH~MH

2 !1ZHH1ZhH50, ~B2!

Shh~Mh
2!2ZhhdMh

22ZHh~MH
2 2Mh

21dMH
2 !2ThhZhh

2THHZHh22THhZhh
1/2ZHh

1/250, ~B3!

d

dq2
Shh~Mh

2!1Zhh1ZHh50, ~B4!

SHh~MH
2 !2ZHH

1/2 ZHh
1/2dMH

2 2Zhh
1/2ZhH

1/2~Mh
22MH

2 1dMh
2!

2THHZHH
1/2 ZHh

1/22ThhZhh
1/2ZhH

1/22THh~ZHH
1/2 Zhh

1/21ZHh
1/2ZhH

1/2!

50, ~B5!

SHh~Mh
2!2Zhh

1/2ZhH
1/2dMh

22ZHH
1/2 ZHh

1/2~MH
2 2Mh

21dMH
2 !

2THHZHH
1/2 ZHh

1/22ThhZhh
1/2ZhH

1/22THh~ZHH
1/2 Zhh

1/21ZHh
1/2ZhH

1/2!

50, ~B6!

with the renormalized tadpole functions defined as

THH5
g1dg

~MW
2 1dMW

2 !1/2

Tab1Tdsin2~a1da!

sin@2~b1db!#
, ~B7!

Thh5
g1dg

~MW
2 1dMW

2 !1/2

Tab1Tdcos2~a1da!

sin@2~b1db!#
, ~B8!

THh5
g1dg

2~MW
2 1dMW

2 !1/2

Tdsin@2~a1da!#

sin@2~b1db!#
. ~B9!

The CP-odd scalar sector has five renormalization con-
stants to be determined,ZAA , ZG0G0

, ZAG0
, ZG0A , anddMA

2 ,

because the Goldstone bosonG0 is massless. Because of the
tree-level relations TAA5TH1H2, TG0G0

5TG1G2, and

TAG0
5TH1G2, the renormalized tadpole functions for this

sector are defined in Eqs.~31! and~32!. From the following
set of six equations only five are independent due to the
Ward identity equivalent to Eq.~37! but for the neutral sec-
tor:

SAA~MA
2 !2ZAAdMA

22ZG0AMA
22TAAZAA2TG0G0

ZG0A

22TAG0
ZAA

1/2ZG0A
1/2 50, ~B10!

d

dq2
SAA~MA

2 !1ZAA1ZG0A50, ~B11!

SG0G0
~0!2ZAG0

~MA
21dMA

2 !2TG0G0
ZG0G0

2TAAZAG0

22TAG0
ZG0G0

1/2 ZAG0

1/2 50, ~B12!
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d

dq2
SG0G0

~0!1ZG0G0
1ZAG0

50, ~B13!

SAG0
~MA

2 !2ZAA
1/2ZAG0

1/2 dMA
21ZG0G0

1/2 ZG0A
1/2 MA

22TAAZAA
1/2ZAG0

1/2

2TG0G0
ZG0G0

1/2 ZG0A
1/2 2TAG0

~ZAA
1/2ZG0G0

1/2 1ZAG0

1/2 ZG0A
1/2 !50,

~B14!

SAG0
~0!2ZAA

1/2ZAG0

1/2 ~MA
21dMA

2 !2TAAZAA
1/2ZAG0

1/2

2TG0G0
ZG0G0

1/2 ZG0A
1/2 2TAG0

~ZAA
1/2ZG0G0

1/2 1ZAG0

1/2 ZG0A
1/2 !50.

~B15!

Finally, the charged sector behaves like theCP-even one.
The five renormalization constants to be determined are, in
this case,ZH1H1, ZG1G1, ZH1G1, ZG1H1, anddMH1

2 . The
equations are

SH1H1~MH1
2

!2ZH1H1dMH1
2

2ZG1H1MH1
2

2TH1H2ZH1H12TG1G2ZG1H1

22TH1G2ZH1H1
1/2 ZG1H1

1/2
50, ~B16!

d

dq2
SH1H1~MH1

2
!1ZH1H11ZG1H150, ~B17!

SG1G1~0!2ZH1G1~MH1
2

1dMH1
2

!2TG1G2ZG1G1

2TH1H2ZH1G122TH1G2ZG1G1
1/2 ZH1G1

1/2
50,

~B18!

d

dq2
SG1G1~0!1ZG1G11ZH1G150, ~B19!

SH1G1~MH1
2

!2ZH1H1
1/2 ZH1G1

1/2 dMH1
2

1ZG1G1
1/2 ZG1H1

1/2 MH1
2

2TH1H2ZH1H1
1/2 ZH1G1

1/2
2TG1G2ZG1G1

1/2 ZG1H1
1/2

2TH1G2~ZH1H1
1/2 ZG1G1

1/2
1ZH1G1

1/2 ZG1H1
1/2

!50, ~B20!

SH1G1~0!2ZH1H1
1/2 ZH1G1

1/2
~MH1

2
1dMH1

2
!

2TH1H2ZH1H1
1/2 ZH1G1

1/2
2TG1G2ZG1G1

1/2 ZG1H1
1/2

2TH1G2~ZH1H1
1/2 ZG1G1

1/2
1ZH1G1

1/2 ZG1H1
1/2

!50.

~B21!

The renormalized quantitiesTd andTab are defined in Eqs.
~32a! and ~32b!. The renormalized tadpole functions for the
charged sector are defined in Eqs.~31a!, ~31b!, and~31c!.

b. Mixed counterterms

The complete set of counterterms for the mixed gauge-
scalar sector can be written as

ZW1G1
1/2

5 ikm~MW
2 1dMW

2 !1/2ZW
1/2ZG1G1

1/2 , ~B22!

ZW1H1
1/2

5 ikm~MW
2 1dMW

2 !1/2ZW
1/2ZG1H1

1/2 , ~B23!

ZZG0

1/2 5 ikm~MZ
21dMZ

2!1/2ZZZ
1/2ZG0G0

1/2 , ~B24!

ZZA
1/25 ikm~MZ

21dMZ
2!1/2ZZZ

1/2ZG0A
1/2 , ~B25!

ZgG0

1/2 5 ikm~MZ
21dMZ

2!1/2ZZg
1/2ZG0G0

1/2 , ~B26!

ZgA
1/25 ikm~MZ

21dMZ
2!1/2ZZg

1/2ZG0A
1/2 . ~B27!

2. Three- and four-point functions

In this section we present the counterterms for the three-
and four-point functions involving scalar and other fields.
The scalar-scalar couterterms will not be shown since Higgs
boson scattering and Higgs boson decay involving scalar
particles only, in both initial and final states, are already
calculated at the tree level and were never observed experi-
mentally. So there is no point in doing loop corrections to
processes not yet observed. However, it is staightforward to
deduce any of those counterterms: First rewritte the scalar
Lagrangian as a function of the renormalized fields; then
group all terms with the same number and type of fields; the
factor that multipies those fields is the field renormalization
factor; finally renormalize the coupling.

All along this section we concentrate on the field renor-
malization. We usegm instead ofAm to represent the photon
field so that it will not be confused with the pseudoscalar
field A. The parameter renormalization is written symboli-
cally asdgi jk anddgi jkl wherei , j , k, andl are the fields in
the vertex. These quantities are determined by a simple
variation of the independent parameters in the vertex. We
have chosen as free parameters the particle masses, the elec-
tric charge, the two angles in the scalar sector (a andb), and
the four independent angles in the CKM matrix. We use
several constants as a bookeeping to make the vertex expres-
sions simpler. Among them are the SU~2! gauge constantg,
the Weinberg angleuW , the angled5a2b, and the cou-
plings expressed in Table II. The first three can be written in
terms of the independent parameters as

dg

g
5

de

e
1

MW
2

2~MZ
22MW

2 !
F dMW

2

MW
2

2
dMZ

2

MZ
2 G , ~B28!

duW52
dMW

~MZ
22MW

2 !1/2
1

MWdMZ

MZ~MZ
22MW

2 !1/2
, ~B29!

d~d!5da2db. ~B30!

The parameter renormalization in the vertices is easily
calculated and so we will just give an example of how it is
done. In the example we will use the vertexgēieih

, for mod-
els I and III,
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dgēieih
5dg

iaehmei

2MW
2dMW

igaehmei

2MW
2

1~daehmei

1dmei
aeh!

ig

2MW
, ~B31!

with

daeh5
sina

sinb
da2

cosacosb

sin2b
db. ~B32!

a. 1 scalar1 2 gauge

hZmZn ghZZZhh
1/2ZZZ1gHZZZHh

1/2ZZZ1dghZZ ,

HZmZn gHZZZHH
1/2 ZZZ1ghZZZhH

1/2ZZZ1dgHZZ ,

hgmgn ghZZZhh
1/2ZZg1gHZZZHh

1/2ZZg ,

Hgmgn gHZZZHH
1/2 ZZg1ghZZZhH

1/2ZZg ,

hZmgn 2ghZZZhh
1/2ZZZ

1/2ZZg
1/212gHZZZHh

1/2ZZZ
1/2ZZg

1/2,

HZmgn 2gHZZZHH
1/2 ZZZ

1/2ZZg
1/212ghZZZhH

1/2ZZZ
1/2ZZg

1/2,

hWm
1Wn

2 ghWWZhh
1/2ZW1gHWWZHh

1/2ZW1dghWW,

HWm
1Wn

2 gHWWZHH
1/2 ZW1ghWWZhH

1/2ZW1dgHWW,

G6Wm
7gn gG1WgZG1G1

1/2 ZW
1/2Zgg

1/21gG1WZZG1G1
1/2 ZW

1/2ZZg
1/21dgG1Wg ,

G6Wm
7Zn gG1WZZG1G1

1/2 ZW
1/2ZZZ

1/21gG1WgZG1G1
1/2 ZW

1/2ZgZ
1/21dgG1WZ ,

H6Wm
7gn gG1WgZG1H1

1/2 ZW
1/2Zgg

1/21gG1WZZG1H1
1/2 ZW

1/2ZZg
1/2,

H6Wm
7Zn gG1WZZG1H1

1/2 ZW
1/2ZZZ

1/21gG1WgZG1H1
1/2 ZW

1/2ZgZ
1/2.

b. 2 scalar1 2 gauge

hhZmZn ghhZZZhhZZZ1gHHZZZHhZZZ1dghhZZ,

HHZmZn gHHZZZHHZZZ1ghhZZZhHZZZ1dgHHZZ ,

hhgmgn ghhZZZhhZZg1gHHZZZHhZZg ,

HHgmgn gHHZZZHHZZg1ghhZZZhHZZg ,

hhZmgn 2ghhZZZhhZZZ
1/2ZZg

1/212gHHZZZHhZZZ
1/2ZZg

1/2,

HHZmgn 2gHHZZZHHZZZ
1/2ZZg

1/212ghhZZZhHZZZ
1/2ZZg

1/2,

hHZmZn 2gHHZZZHH
1/2 ZHh

1/2ZZZ12ghhZZZhh
1/2ZhH

1/2ZZZ ,

hHgmgn 2ghhZZZhh
1/2ZhH

1/2ZZg12gHHZZZHH
1/2 ZHh

1/2ZZg ,

hHZmgn4 ghhZZZhh
1/2ZhH

1/2ZZZ
1/2ZZg

1/214gHHZZZHH
1/2 ZHh

1/2ZZZ
1/2ZZg

1/2,

hhWm
1Wn

2 ghhWWZhhZW1gHHWWZHhZW1dghhWW,

HHWm
1Wn

2 gHHWWZHHZW1ghhWWZhHZW1dgHHWW,

hHWm
1Wn

2 2ghhWWZhh
1/2ZhH

1/2ZW12gHHWWZHH
1/2 ZHh

1/2ZW ,

AAZmZn gAAZZZAAZZZ1gG0G0ZZZG0AZZZ1dgAAZZ,
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G0G0ZmZn gG0G0ZZZG0G0
ZZZ1gAAZZZAG0

ZZZ1dgG0G0ZZ ,

AAgmgn gAAZZZAAZZg1gG0G0ZZZG0AZZg ,

G0G0gmgn gG0G0ZZZG0G0
ZZg1gAAZZZAG0

ZZg ,

AAZmgn 2gAAZZZAAZZZ
1/2ZZg

1/212gG0G0ZZZG0AZZZ
1/2ZZg

1/2,

G0G0Zmgn 2gAAZZZAG0
ZZZ

1/2ZZg
1/212gG0G0ZZZG0G0

ZZZ
1/2ZZg

1/2,

AG0ZmZn 2gAAZZZAA
1/2ZAG0

1/2 ZZZ12gG0G0ZZZG0G0

1/2 ZG0A
1/2 ZZZ ,

AG0gmgn 2gAAZZZAA
1/2ZAG0

1/2 ZZg12gG0G0ZZZG0G0

1/2 ZG0A
1/2 ZZg ,

AG0Zmgn4 gAAZZZAA
1/2ZAG0

1/2 ZZZ
1/2ZZg

1/214gG0G0ZZZG0G0

1/2 ZG0A
1/2 ZZZ

1/2ZZg
1/2,

AAWm
1Wn

2 gAAWWZAAZW1gG0G0WWZG0AZW1dgAAWW,

G0G0Wm
1Wn

2 gG0G0WWZG0G0
ZW1gAAWWZAG0

ZW1dgG0G0WW,

AG0Wm
1Wn

2 2gAAWWZAA
1/2ZAG0

1/2 ZW12gG0G0WWZG0G0

1/2 ZG0A
1/2 ZW ,

H1H2ZmZn gH1H2ZZZH1H2ZZZ1gG1G2ZZZG1H2ZZZ1gH1H2ggZH1H2ZgZ1gG1G2ggZG1H2ZgZ

1gH1H2gZZH1H2ZgZ
1/2ZZZ

1/21gG1G2gZZG1H2ZgZ
1/2ZZZ

1/21dgH1H2ZZ ,

G1G2ZmZn gG1G2ZZZG1G2ZZZ1gH1H2ZZZH1G2ZZZ1gH1H2ggZH1G2ZgZ1gG1G2ggZG1G2ZgZ

1gH1H2gZZH1G2ZgZ
1/2ZZZ

1/21gG1G2gZZG1G2ZgZ
1/2ZZZ

1/21dgG1G2ZZ ,

H1H2gmgn gH1H2ggZH1H2Zgg1gH1H2ZZZH1H2ZZg1gG1G2ZZZG1H2ZZg1gG1G2ggZG1H2Zgg

1gH1H2gZZH1H2Zgg
1/2ZZg

1/21gG1G2gZZG1H2Zgg
1/2ZZg

1/21dgH1H2gg ,

G1G2gmgn gG1G2ggZG1G2Zgg1gH1H2ZZZH1G2ZZg1gG1G2ZZZG1G2ZZg1gH1H2ggZH1G2Zgg

1gH1H2gZZH1G2Zgg
1/2ZZg

1/21gG1G2gZZG1G2Zgg
1/2ZZg

1/21dgG1G2gg ,

H1H2gmZn gH1H2gZZH1H2~Zgg
1/2ZZZ

1/21ZgZ
1/2ZZg

1/2!12gH1H2ZZZH1H2ZZZ
1/2ZZg

1/21gG1G2gZZG1H2~Zgg
1/2ZZZ

1/21ZgZ
1/2ZZg

1/2!

12gG1G2ZZZG1H2ZZZ
1/2ZZg

1/212gG1G2ggZG1H2Zgg
1/2ZgZ

1/212gH1H2ggZH1H2Zgg
1/2ZgZ

1/21dgH1H2gZ ,

G1G2gmZn gG1G2gZZG1G2~Zgg
1/2ZZZ

1/21ZgZ
1/2ZZg

1/2!12gH1H2ZZZH1G2ZZZ
1/2ZZg

1/21gH1H2gZZH1G2~Zgg
1/2ZZZ

1/21ZgZ
1/2ZZg

1/2!

12gG1G2ZZZG1G2ZZZ
1/2ZZg

1/212gH1H2ggZH1G2Zgg
1/2ZgZ

1/212gG1G2ggZG1G2Zgg
1/2ZgZ

1/21dgG1G2gZ ,

H6G7ZmZn gH1H2ZZZH1H2
1/2 ZH1G2

1/2 ZZZ1gG1G2ZZZG1G2
1/2 ZG1H2

1/2 ZZZ1gH1H2ggZH1H2
1/2 ZH1G2

1/2 ZgZ

1gG1G2ggZG1G2
1/2 ZG1H2

1/2 ZgZ1gH1H2gZZH1H2
1/2 ZH1G2

1/2 ZgZ
1/2ZZZ

1/21gG1G2gZZG1G2
1/2 ZG1H2

1/2 ZgZ
1/2ZZZ

1/2,

H6G7gmgn gH1H2ZZZH1H2
1/2 ZH1G2

1/2 ZZg1gG1G2ZZZG1G2
1/2 ZG1H2

1/2 ZZg1gH1H2ggZH1H2
1/2 ZH1G2

1/2 Zgg

1gG1G2ggZG1G2
1/2 ZG1H2

1/2 Zgg1gH1H2gZZH1H2
1/2 ZH1G2

1/2 Zgg
1/2ZZg

1/21gG1G2gZZG1G2
1/2 ZG1H2

1/2 Zgg
1/2ZZg

1/2,

H6G7gmZn 2gH1H2ZZZH1H2
1/2 ZH1G2

1/2 ZZZ
1/2ZZg

1/212gG1G2ggZG1G2
1/2 ZG1H2

1/2 Zgg
1/2ZgZ

1/212gG1G2ZZZG1G2
1/2 ZG1H2

1/2 ZZZ
1/2ZZg

1/2

12gH1H2ggZH1H2
1/2 ZH1G2

1/2 Zgg
1/2ZgZ

1/21gG1G2gZZG1G2
1/2 ZG1H2

1/2
~Zgg

1/2ZZZ
1/21ZgZ

1/2ZZg
1/2!

1gH1H2gZZH1H2
1/2 ZH1G2

1/2
~Zgg

1/2ZZZ
1/21ZgZ

1/2ZZg
1/2!,
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H1H2Wm
1Wn

2 gH1H2WWZH1H2ZW1gG1G2WWZG1H2ZW1dgH1H2WW,

G1G2Wm
1Wn

2 gG1G2WWZG1G2ZW1gH1H2WWZH1G2ZW1dgG1G2WW,

H6G7Wm
1Wn

2 gH1H2WWZH1H2
1/2 ZH1G2

1/2 ZW1gG1G2WWZG1G2
1/2 ZG1H2

1/2 ZW ,

H6AWm
7gn gH1AWgZH1H2

1/2 ZAA
1/2ZW

1/2Zgg
1/21gH1AWZZH1H2

1/2 ZAA
1/2ZW

1/2ZZg
1/21gG1G0WgZG1H2

1/2 ZG0A
1/2 ZW

1/2Zgg
1/2

1gG1G0WZZG1H2
1/2 ZG0A

1/2 ZW
1/2ZZg

1/21dgH1AWg ,

H6AWm
7Zn gH1AWZZH1H2

1/2 ZAA
1/2ZW

1/2ZZZ
1/21gH1AWgZH1H2

1/2 ZAA
1/2ZW

1/2ZgZ
1/21gG1G0WgZG1H2

1/2 ZG0A
1/2 ZW

1/2ZgZ
1/2

1gG1G0WZZG1H2
1/2 ZG0A

1/2 ZW
1/2ZZZ

1/21dgH1AWZ,

G6G0Wm
7gn gG1G0WgZG1G2

1/2 ZG0G0

1/2 ZW
1/2Zgg

1/21gH1AWgZH1G2
1/2 ZAG0

1/2 ZW
1/2Zgg

1/21gH1AWZZH1G2
1/2 ZAG0

1/2 ZW
1/2ZZg

1/2

1gG1G0WZZG1G2
1/2 ZG0G0

1/2 ZW
1/2ZZg

1/21dgG1G0Wg ,

G6G0Wm
7Zn gG1G0WZZG1G2

1/2 ZG0G0

1/2 ZW
1/2ZZZ

1/21gH1AWgZH1G2
1/2 ZAG0

1/2 ZW
1/2ZgZ

1/21gH1AWZZH1G2
1/2 ZAG0

1/2 ZW
1/2ZZZ

1/2

1gG1G0WgZG1G2
1/2 ZG0G0

1/2 ZW
1/2ZgZ

1/21dgG1G0WZ ,

H6G0Wm
7gn gG1G0WgZG1G2

1/2 ZG0G0

1/2 ZW
1/2Zgg

1/21gH1AWgZH1G2
1/2 ZAG0

1/2 ZW
1/2Zgg

1/21gH1AWZZH1G2
1/2 ZAG0

1/2 ZW
1/2ZZg

1/2

1gG1G0WZZG1G2
1/2 ZG0G0

1/2 ZW
1/2ZZg

1/2,

H6G0Wm
7Zn gH1AWgZH1H2

1/2 ZAG0

1/2 ZW
1/2ZgZ

1/21gH1AWZZH1H2
1/2 ZAG0

1/2 ZW
1/2ZZZ

1/21gG1G0WgZG1H2
1/2 ZG0G0

1/2 ZW
1/2ZgZ

1/2

1gG1G0WZZG1H2
1/2 ZG0G0

1/2 ZW
1/2ZZZ

1/2,

G6AWm
7gn gH1AWgZH1G2

1/2 ZAA
1/2ZW

1/2Zgg
1/21gH1AWZZH1G2

1/2 ZAA
1/2ZW

1/2ZZg
1/21gG1G0WgZG1G2

1/2 ZG0A
1/2 ZW

1/2Zgg
1/2

1gG1G0WZZG1G2
1/2 ZG0A

1/2 ZW
1/2ZZg

1/2,

G6AWm
7Zn gH1AWgZH1G2

1/2 ZAA
1/2ZW

1/2ZgZ
1/21gH1AWZZH1G2

1/2 ZAA
1/2ZW

1/2ZZZ
1/21gG1G0WgZG1G2

1/2 ZG0A
1/2 ZW

1/2ZgZ
1/2

1gG1G0WZZG1G2
1/2 ZG0A

1/2 ZW
1/2ZZZ

1/2,

H6hWm
7gn gH1hWgZH1H2

1/2 Zhh
1/2ZW

1/2Zgg
1/21gG1hWgZG1H2

1/2 Zhh
1/2ZW

1/2Zgg
1/21gG1hWZZG1H2

1/2 Zhh
1/2ZW

1/2ZZg
1/2

1gG1HWZZG1H2
1/2 ZHh

1/2ZW
1/2ZZg

1/2

1gG1HWgZG1H2
1/2 ZHh

1/2ZW
1/2Zgg

1/21gH1HWgZH1H2
1/2 ZHh

1/2ZW
1/2Zgg

1/21gH1HWZZH1H2
1/2 ZHh

1/2ZW
1/2ZZg

1/2

1gH1hWZZH1H2
1/2 Zhh

1/2ZW
1/2ZZg

1/21dgH1hWg ,

G6hWm
7gn gG1hWgZG1G2

1/2 Zhh
1/2ZW

1/2Zgg
1/21gH1hWgZH1G2

1/2 Zhh
1/2ZW

1/2Zgg
1/21gG1hWZZG1G2

1/2 Zhh
1/2ZW

1/2ZZg
1/2

1gG1HWZZG1G2
1/2 ZHh

1/2ZW
1/2ZZg

1/2

1gG1HWgZG1G2
1/2 ZHh

1/2ZW
1/2Zgg

1/21gH1HWgZH1G2
1/2 ZHh

1/2ZW
1/2Zgg

1/21gH1HWZZH1G2
1/2 ZHh

1/2ZW
1/2ZZg

1/2

1gH1hWZZH1G2
1/2 Zhh

1/2ZW
1/2ZZg

1/21dgG1hWg ,
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G6hWm
7Zn gG1hWZZG1G2

1/2 Zhh
1/2ZW

1/2ZZZ
1/21gH1hWgZH1G2

1/2 Zhh
1/2ZW

1/2ZgZ
1/21gG1hWgZG1G2

1/2 Zhh
1/2ZW

1/2ZgZ
1/2

1gG1HWZZG1G2
1/2 ZHh

1/2ZW
1/2ZZZ

1/2

1gG1HWgZG1G2
1/2 ZHh

1/2ZW
1/2ZgZ

1/21gH1HWZZH1G2
1/2 ZHh

1/2ZW
1/2ZZZ

1/2

1gH1hWZZH1G2
1/2 Zhh

1/2ZW
1/2ZZZ

1/21gH1HWgZH1G2
1/2 ZHh

1/2ZW
1/2ZgZ

1/21dgG1hWZ,

G6HWm
7Zn gG1HWZZG1G2

1/2 ZHH
1/2 ZW

1/2ZZZ
1/21gH1hWgZH1G2

1/2 ZhH
1/2ZW

1/2ZgZ
1/21gG1hWgZG1G2

1/2 ZhH
1/2ZW

1/2ZgZ
1/2

1gG1hWZZG1G2
1/2 ZhH

1/2ZW
1/2ZZZ

1/2

1gG1HWgZG1G2
1/2 ZHH

1/2 ZW
1/2ZgZ

1/21gH1HWgZH1G2
1/2 ZHH

1/2 ZW
1/2ZgZ

1/2

1gH1HWZZH1G2
1/2 ZHH

1/2 ZW
1/2ZZZ

1/21gH1hWZZH1G2
1/2 ZhH

1/2ZW
1/2ZZZ

1/21dgG1HWZ ,

G6HWm
7gn gG1HWgZG1G2

1/2 ZHH
1/2 ZW

1/2Zgg
1/21gH1hWgZH1G2

1/2 ZhH
1/2ZW

1/2Zgg
1/21gG1hWgZG1G2

1/2 ZhH
1/2ZW

1/2Zgg
1/2

1gG1hWZZG1G2
1/2 ZhH

1/2ZW
1/2ZZg

1/21gG1HWZZG1G2
1/2 ZHH

1/2 ZW
1/2ZZg

1/21gH1HWgZH1G2
1/2 ZHH

1/2 ZW
1/2Zgg

1/2

1gH1HWZZH1G2
1/2 ZHH

1/2 ZW
1/2ZZg

1/21gH1hWZZH1G2
1/2 ZhH

1/2ZW
1/2ZZg

1/21dgG1HWg ,

H6HWm
7gn gH1HWgZH1H2

1/2 ZHH
1/2 ZW

1/2Zgg
1/21gH1hWgZH1H2

1/2 ZhH
1/2ZW

1/2Zgg
1/21gG1hWgZG1H2

1/2 ZhH
1/2ZW

1/2Zgg
1/2

1gG1hWZZG1H2
1/2 ZhH

1/2ZW
1/2ZZg

1/2

1gG1HWZZG1H2
1/2 ZHH

1/2 ZW
1/2ZZg

1/21gG1HWgZG1H2
1/2 ZHH

1/2 ZW
1/2Zgg

1/21gH1HWZZH1H2
1/2 ZHH

1/2 ZW
1/2ZZg

1/2

1gH1hWZZH1H2
1/2 ZhH

1/2ZW
1/2ZZg

1/21dgH1HWg ,

H6HWm
7Zn gH1HWZZH1H2

1/2 ZHH
1/2 ZW

1/2ZZZ
1/21gH1hWgZH1H2

1/2 ZhH
1/2ZW

1/2ZgZ
1/21gG1hWgZG1H2

1/2 ZhH
1/2ZW

1/2ZgZ
1/2

1gG1hWZZG1H2
1/2 ZhH

1/2ZW
1/2ZZZ

1/2

1gG1HWZZG1H2
1/2 ZHH

1/2 ZW
1/2ZZZ

1/21gG1HWgZG1H2
1/2 ZHH

1/2 ZW
1/2ZgZ

1/21gH1HWgZH1H2
1/2 ZHH

1/2 ZW
1/2ZgZ

1/2

1gH1hWZZH1H2
1/2 ZhH

1/2ZW
1/2ZZZ

1/21dgH1HWZ ,

H6hWm
7Zn gH1hWZZH1H2

1/2 Zhh
1/2ZW

1/2ZZZ
1/21gH1hWgZH1H2

1/2 Zhh
1/2ZW

1/2ZgZ
1/21gG1hWgZG1H2

1/2 Zhh
1/2ZW

1/2ZgZ
1/2

1gG1hWZZG1H2
1/2 Zhh

1/2ZW
1/2ZZZ

1/2

1gG1HWZZG1H2
1/2 ZHh

1/2ZW
1/2ZZZ

1/21gG1HWgZG1H2
1/2 ZHh

1/2ZW
1/2ZgZ

1/2

1gH1HWgZH1H2
1/2 ZHh

1/2ZW
1/2ZgZ

1/21gH1HWZZH1H2
1/2 ZHh

1/2ZW
1/2ZZZ

1/21dgH1hWZ.

c. 2 scalar1 1 gauge

H1H2gm ~pH12pH2!m@gH1H2gZH1H2Zgg
1/21gH1H2ZZH1H2ZZg

1/21gG1G2gZG1H2Zgg
1/21gG1G2ZZG1H2ZZg

1/21dgH1H2g#,

H1H2Zm ~pH12pH2!m@gH1H2ZZH1H2ZZZ
1/21gH1H2gZH1H2ZgZ

1/21gG1G2gZG1H2ZgZ
1/21gG1G2ZZG1H2ZZZ

1/21dgH1H2Z#,

G1G2gm ~pG12pG2!m@gG1G2gZG1G2Zgg
1/21gH1H2ZZH1G2ZZg

1/21gH1H2gZH1G2Zgg
1/21gG1G2ZZG1G2ZZg

1/21dgG1G2g#,

G1G2Zm ~pG12pG2!m@gG1G2ZZG1G2ZZZ
1/21gH1H2ZZH1G2ZZZ

1/21gH1H2gZH1G2ZgZ
1/21gG1G2gZG1G2ZgZ

1/21dgG1G2Z#,

H6G7gm 6~pH62pG7!m@gH1H2gZH1H2
1/2 ZH1G2

1/2 Zgg
1/21gH1H2ZZH1H2

1/2 ZH1G2
1/2 ZZg

1/21gG1G2gZG1G2
1/2 ZG1H2

1/2 Zgg
1/2

1gG1G2ZZG1G2
1/2 ZG1H2

1/2 ZZg
1/2],
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H6G7Zm 6~pH62pG7!m@gH1H2gZH1H2
1/2 ZH1G2

1/2 ZgZ
1/21gH1H2ZZH1H2

1/2 ZH1G2
1/2 ZZZ

1/21gG1G2gZG1G2
1/2 ZG1H2

1/2 ZgZ
1/2

1gG1G2ZZG1G2
1/2 ZG1H2

1/2 ZZZ
1/2],

HG0Zm ~pH2pG0
!mZZZ

1/2@gHG0ZZHH
1/2 ZG0G0

1/2 1gHAZZHH
1/2 ZAG0

1/2 1ghAZZhH
1/2ZAG0

1/2 1ghG0ZZhH
1/2ZG0G0

1/2 1dgHG0Z#,

HAZm ~pH2pA!mZZZ
1/2@gHAZZHH

1/2 ZAA
1/21gHG0ZZHH

1/2 ZG0A
1/2 1ghAZZhH

1/2ZAA
1/21ghG0ZZhH

1/2ZG0A
1/2 1dgHAZ#,

hAZm ~ph2pA!mZZZ
1/2@ghAZZhh

1/2ZAA
1/21gHG0ZZHh

1/2ZG0A
1/2 1gHAZZHh

1/2ZAA
1/21ghG0ZZhh

1/2ZG0A
1/2 1dghAZ#,

hG0Zm ~ph2pG0
!mZZZ

1/2@ghG0ZZhh
1/2ZG0G0

1/2 1gHG0ZZHh
1/2ZG0G0

1/2 1gHAZZHh
1/2ZAG0

1/2 1ghAZZhh
1/2ZAG0

1/2 1dghG0Z#,

HG0gm ~pH2pG0
!mZZg

1/2@gHG0ZZHH
1/2 ZG0G0

1/2 1gHAZZHH
1/2 ZAG0

1/2 1ghAZZhH
1/2ZAG0

1/2 1ghG0ZZhH
1/2ZG0G0

1/2 #,

HAgm ~pH2pA!mZZg
1/2@gHAZZHH

1/2 ZAA
1/21gHG0ZZHH

1/2 ZG0A
1/2 1ghAZZhH

1/2ZAA
1/21ghG0ZZhH

1/2ZG0A
1/2 #,

hAgm ~ph2pA!mZZg
1/2@ghAZZhh

1/2ZAA
1/21gHG0ZZHh

1/2ZG0A
1/2 1gHAZZHh

1/2ZAA
1/21ghG0ZZhh

1/2ZG0A
1/2 #,

hG0gm ~ph2pG0
!mZZg

1/2@ghG0ZZhh
1/2ZG0G0

1/2 1gHG0ZZHh
1/2ZG0G0

1/2 1gHAZZHh
1/2ZAG0

1/2 1ghAZZhh
1/2ZAG0

1/2 #,

H6AWm
7 ~pH62pA!mZW

1/2@gH1AWZH1H2
1/2 ZAA

1/21gG1G0WZG1H2
1/2 ZG0A

1/2 1dgH1AW#,

G6G0Wm
7 ~pG62pG0

!mZW
1/2@gG1G0WZG1G2

1/2 ZG0G0

1/2 1gH1AWZH1G2
1/2 ZAG0

1/2 1dgG1G0W#,

H6G0Wm
7 ~pH62pG0

!mZW
1/2@gH1AWZH1H2

1/2 ZAG0

1/2 1gG1G0WZG1H2
1/2 ZG0G0

1/2 #,

G6AWm
7 ~pG62pA!mZW

1/2@gG1G0WZG1G2
1/2 ZG0A

1/2 1gH1AWZH1G2
1/2 ZAA

1/2#,

H6hWm
7 ~pH12ph!mZW

1/2@gH1hWZH1H2
1/2 Zhh

1/21gG1hWZG1H2
1/2 Zhh

1/21gG1HWZG1H2
1/2 ZHh

1/21gH1HWZH1H2
1/2 ZHh

1/21dgH1hW#,

G6hWm
7 ~pG12ph!mZW

1/2@gG1hWZG1G2
1/2 Zhh

1/21gH1hWZH1G2
1/2 Zhh

1/21gG1HWZG1G2
1/2 ZHh

1/21gH1HWZH1G2
1/2 ZHh

1/21dgG1hW#,

G6HWm
7 ~pG12pH!mZW

1/2@gG1HWZG1G2
1/2 ZHH

1/2 1gH1hWZH1G2
1/2 ZhH

1/21gG1hWZG1G2
1/2 ZhH

1/21gH1HWZH1G2
1/2 ZHH

1/2 1dgG1HW#,

H6HWm
7 ~pH12pH!mZW

1/2@gH1HWZH1H2
1/2 ZHH

1/2 1gG1hWZG1H2
1/2 ZhH

1/21gG1HWZG1H2
1/2 ZHH

1/2 1gH1hWZH1H2
1/2 ZhH

1/21dgH1HW#.

d. 1 scalar1 2 fermions

In this section we present the counterterms for the scalar-fermion interactions. For the interactions with the neutral particles,
c i will stand for up and down quarks, and charged leptons. For the interactions with the charged scalar particles we will use
uppercase letters for fermions withI 3521/2 and lowercase forI 351/2. To simplify the form of the counterterms@gi jk #L will
stand for the left part of the coupling~proportional togL) and@gi jk #R will stand for the right part of the same coupling. For
the leptons, one of the couplings has to be set to zero by the reader. We also define the quantities

Zc
1/25ZL

1/2gL1ZR
1/2gR , ~B33!

Zc̄
1/2

5@ZL
†#1/2gR1@ZR

† #1/2gL . ~B34!

The counterterms are

c̄ kc lh gc̄ ic i h
@Zc̄

1/2
#ki@Zc

1/2# i l Zhh
1/21gc̄ ic iH

@Zc̄
1/2

#ki@Zc
1/2# i l ZHh

1/21dgc̄ ic i h
,

c̄ kc lH gc̄ ic iH
@Zc̄

1/2
#ki@Zc

1/2# i l ZHH
1/2 1gc̄ ic i h

@Zc̄
1/2

#ki@Zc
1/2# i l ZhH

1/21dgc̄ ic iH
,

c̄ kc l Agc̄ ic iA
@Zc̄

1/2
#ki@Zc

1/2# i l ZAA
1/21gc̄ ic iG0

@Zc̄
1/2

#ki@Zc
1/2# i l ZG0A

1/2 1dgc̄ ic iA
,
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c̄ kc lG0 gc̄ ic iG0
@Zc̄

1/2
#ki@Zc

1/2# i l ZG0G0

1/2 1gc̄ ic iA
@Zc̄

1/2
#ki@Zc

1/2# i l ZAG0

1/2 1dgc̄ ic iG0
,

c̄ Ic iH
2 @ZR

† # IJ
1/2@ZL# j i

1/2$@gc̄Jc jH
2#LZH1H2

1/2
1@gc̄Jc jG

2#LZG1H2
1/2 %1@ZL

†# IJ
1/2@ZR# j i

1/2$@gc̄Jc jH
2#RZH1H2

1/2
1@gc̄Jc jG

2#RZG1H2
1/2 %

1dgc̄Jc jH
2,

c̄ ic IH
1 @ZR

† # i j
1/2@ZL#JI

1/2$@gc̄ jcJH1#LZH1H2
1/2

1@gc̄ jcJG1#LZG1H2
1/2 %1@ZL

†# i j
1/2@ZR#JI

1/2$@gc̄ jcJH1#RZH1H2
1/2

1@gc̄ jcJG1#RZG1H2
1/2 %

1dgc̄ jcJH1 ,

c̄ Ic iG
2 @ZR

† # IJ
1/2@ZL# j i

1/2$@gc̄Jc jG
2#LZG1G2

1/2
1@gc̄Jc jH

2#LZH1G2
1/2 %1@ZL

†# IJ
1/2@ZR# j i

1/2$@gc̄Jc jG
2#RZG1G2

1/2
1@gc̄Jc jH

2#RZH1G2
1/2 %

1dgc̄Jc jG
2,

c̄ ic IG
1 @ZR

† # i j
1/2@ZL#JI

1/2$@gc̄ jcJG1#LZG1G2
1/2

1@gc̄ jcJH1#LZH1G2
1/2 %1@ZL

†# i j
1/2@ZR#JI

1/2$@gc̄ jcJG1#RZG1G2
1/2

1@gc̄ jcJH1#RZH1G2
1/2 %

1dgc̄ jcJG1.
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