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Renormalization of two-Higgs-doublet models
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In this paper we perform the complete one-loop renormalization of a general two-Higgs-doublet model. We
present all the vertices for this model including the ones in the scalar sector and calculate all the counterterms
of the theory[S0556-282(197)03819-9

PACS numbgs): 11.10.Gh, 12.60.Fr, 14.80.Cp

[. INTRODUCTION los [8] where they have considered one-loop corrections to
the decayH —ZZ. However, to preserve the mass sum rule
When the LEP accelerator at CERN enters the secontbr the renormalized masses of the neutral Higgs bosons,

phase of its program, the $2J® U (1) standard model does they introduce a modified minimal subtraction (M&heme
not need any more praise. The theory has been successfuly renormalize the anglg. Clearly, this is not entirely con-
scrutinized and the agreement between its predictions anglstent with the on-shell scheme and furthermore it is not
the experimental results is impressiteg., Ref.[1]). Be-  valid in the general 2HDM. A systematic on-shell renormal-
sides the effort of large teams of devoted experimenters, thigation study for the Higgs and gauge boson sectors of the
endeavor also required a number of detailed calculations beySSM was carried out by Chankowski, Pokorski, and
yond the lowest order of perturbation theory. Hence, one carosiek [9] Here we present a similar work for a genera|
say that the renormalization of the &)®U(1) theory has 2HDM. The potential depends on seven real parameters
passed from the formal stage of its establishnj2hinto the  rather than three as is the case for the MSSM. On the other
world of practical calculations. For this purpose it is very hand, instead of renormalizing the parameters of the poten-
useful to have the review article of Aokt al.[3] which can  tjal, as was done by Chankowsét al. [9], we renormalize
be considered as a good @Yo U(1) practitioner guide. SO  the massesm,, m,, m,, and m,, and the angles
far, it seems that such a guide does not exist for the tWog—tan(,/v,) anda.
Higgs-doublet model$2HDM'’s). This is the aim of this ar-
ticle.

Several reasons can be given to justify the study of the Il HIGGS POTENTIAL
standard model with two doublets. In our opinion, the best To define our notation we start with a brief review of the
reason is the fact that there is no information about the Higgswvo-Higgs-doublet potential. Lep; , withi=1,2, denote two
sector. Hence, given the crucial role that the scalar sectaromplex scalar doublets with hyperchange 1. Introducing
plays in the theory, it is at least prudent to explore reasonablghe complete set of invariants<1=¢1¢l, x2=¢§¢2,
extensions of the minimal Higgs sector. X3:R€{¢I¢z}, andx,= Im{¢{¢2}, it is clear that the most

Over the last few years, a great deal of work has beegyeneral S(2)® U(1)-invariant renormalizable potential de-

invested in the study of several production and decay mechgends on 14 real parameters and can be written in the form
nisms associated with the Higgs bosons of the 2HDM. For-

tunately, this large amount of work is beautifully and sys- 4 4
tematically presented in tHeiggs Hunter's Guidg4], which V== ulxi+ 2 byxX;. (1)
we shall consider as our basic reference for the work done =t ==t
until the end of 1989. _.UnderCP the fields transform as
Several authors have performed one-loop calculations in
the 2HDM. After the experimental evidence for a top quark pi—e NP, 2

mass[5], Méndez and Pomard6] have computed, in the

unitary gauge, th@@(m?/M3) corrections to the hadronic Wwith arbitrary phaser; . Choosing these phases to be zero, it
width of the Higgs bosons. In the minimal supersymmetricis immediate to conclude that an expli€itP-conserving po-
standard modelMSSM) several author§7] have estimated tentialV¢p hasuj=by,=b,,= bs,=0. HenceVcp depends
the proces#H™ — W™y which is forbidden to occur at the on ten real arbitrary parameters. However, such a potential
tree level. Because of this fact, the calculation can be donegould still breakC P spontaneouslj10]. In a previous paper
including all reducible and irreducible three-point functions,[11] we have shown that there are two possibilities to impose
which do not require the specification of the renormalizationin a natural way that the potential has orBP-invariant
scheme and the calculation of the counterterms. Another reminima. These requird,;3=b,;=0 and either,u§=0 and
evant work with a great deal of details about the renormaly,,+b,, or ﬂ%;to andbgs=b,,. Here we shall use the first
ization of the MSSM is the article by Pierce and Papadopouversion of the potential which we rewrite in the form

V=-— /.L%Xl_ M%Xz‘i‘ )\1X§+ )\2X§+ )\3X§+ )\4)(121"' )\5X1X2 .
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3’

(v;+b;+ic))/\2

Notice that this seven-parameter potential obeys the discrete

symmetry¢,— — ¢, which is usually introduced to guaran- b=

tee the absence of flavor-changing neutral curréF@NC's)

in the tree-level Yukawa couplings. It is interesting to point

out [11] that potentials with onlyC P-invariant minima are

consistent with the absence of FCNC's in the fermionic sec- + . i
. . wherea;” are complex fields, antl; andc; are real fields.

tor. Now, denoting by; /2 the vacuum expectation value his. | ! | ite th |

of each of the two doublets, we can wrige in the form This, in tum, enables us to rewrite the potenf® as

; 4

1 + + a'l 1 Cl 1 bl + + a'l
V:_E)\s[al aZ]Mﬁ a +Z(?\4—>\3)[C1 Cz]MB c, +§[b1 bz]Ma b, +[a1 az]T o
1 Ci| Lo by _ :
+§[cl co|T ) +§[ 1 b2]T b, +T4b;+T,b,+cubic and quartic terms , (5)
|
with the matricesM ;, M, , andT defined as H by
vy —U1U> 2
MBZ 2 ’ (6a)
—U1U2 U1
H* a;
207N v1v2(A3+Ns5) ' ot |=Re ar| (8b)
= , 6 J
v102(N 3+ Ns) 203\, (b
Al Cy
Ty =R 8c
U_l 0 {Go_ 'B_Cz ' 683
T= , (60
0 2
v, with
with
R coxy  Sina @3
A3+ s “~| _sina cosx|’
levl( — i NIt 2 U%), (7a)
—sinB cosB
)\3"’)\5 R = 9b
T2=vz( — 5t Avi+ > U%) (7b) B~ co8  sing|’ (90
The conditions for a local extreme of the potential are
T,=T,=0. Diagonalizing the quadratic terms ¥fone ob- vy v102(N3+\5)
tains the mass eigenstates: two neu€@#l-even scalar par- tang= 0l tan2a = W (90
ticlesH andh, a neutralCP-odd scalar particlé, and the ! V2™ MUy
would-be Goldstone boson partner of the G, a charged
Higgs field H*, and the Goldstone associated with the For the renormalization program it is convenient to re-
boson,G™". The relations between the mass eigenstates andgrite V in terms of the mass eigenstates. After some straight-

the SU2)® U(1) eigenstates are forward algebra one obtains

ME  Thn MZ  Tan Tegs,
> T —Hh{Typ} —A? > T -Gp > [ ~AGolTac,)

MG T
£=—THH—Thh—H2{7H+ %}—hz

—H+H‘{Ma++TH+H_}—(H+G‘+G+H‘){TH+G-}—G*G‘{TG+G-}+cubic and quartic terms, (10
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with is the covariant derivative and( ¢4, ¢») is the potential that
we have discussed in the previous paragraph. The Yukawa

g ToptTssinta Lagrangian is, again, a straightforward generalization of the

THH:W\, sin2@ ' (113 similar form in the standard model. In principle we could
write all terms inLy in the form
g Tapt+ TsC0S . e
Thn= My, sn2g (11b gijlu  d] ¢dg, 17
) where theg!‘j are arbitrary Yukawa constants andndj are
To— g Tssin2a (119 quark generation indices. However, to avoid the existence of
Hh™2M,, sin2g tree-level FCNC'’s, one should impose the condition that the
same scalar doublet® does not couple to both up and down
9 Tt Tsco088 quarks. There are essentially four ways of doing this and so
Thon-= TAA_WV sin2B ' (128 there are four variations of the model. A further discussion of
this point, which is not relevant for the renormalization dis-
g TQB+T,gsin2,8 cussion, can be found in thdiggs Hunter's Guidd4]. The
Tore-=Tg,6,= My Sn2g (12b  four different models will be presented in Appendix A.
B. Gauge fixing and ghost Lagrangians
Th+g-=Tag.= LT (129 PR ;
H'G AG™ 2My, ? At the quantum level the action involves another contri-
bution to the Lagrangian called the gauge-fixing tefi:.
T, T, The existence of such a term is by now a textbook subject.
[ }:Ra , (138  So we can simply state that calculations are easily done in
Th T2 the so-called lineaR; gauges given by
T s=Tysind+ T,,c0S5, (13b 1 1
Ler=— E(ﬂ'A)Z_ E(ﬁ'z_szzGo)2
Top=SsiNB(Tycosy— Tysina), (130 A g
1 .
and 6=a— B. As we have already pointed out, at the tree - gv|<7'W++l§waG+|2, (18)

level, all T terms are zero. So, at the tree level, the linear
terms and the mixed terms vanish and the coefficients of th@hereé,,, é5, &, are arbitrary parameters and thend the
terms with quadratic fields are, as they should be, their masshoton fieldA are expressed in terms of the original gauge
squared. However, at one-loop order these statements are figlds by the equations
longer true, and this particular form of writing will be
useful in the derivation of the counterterms to renormalize Z#zcosﬁWWfLJrsineWBM, (19a
some scalar particles Green'’s functions.

A, = —sindy W +cosyB,, . (19b)

Ill. LAGRANGIAN
Just for completeness let us recall that

A. Classical Lagrangian
1

For completeness let us write the classical Lagrangian of Mw==00, (209
the standard model in the form 2
Lo=Lywm+Le+Lst Ly, 14 1
c=Lymt L+ Lst+ Ly (14 Mz=§vm, (20b)

where Ly is the gauge boson sector of the modét, de-
notes the fermionic kinetic term and their couplings to theand the electric charge is given in terms of the S(2) and

gauge bosons;s stands for the scalar sector of the theory,U(1) gauge couplingg; andgs,, respectively, by the relation
and Ly denotes the Yukawa couplings of fermion and scalar

particles. The first two terms of E¢L4) are the same for the 010,
standard model and for the 2HDM and so there is no need to €= == (209
VO11+95

write them explicitly here. The scalar Lagrangian is given by

2 We perform our calculations in the on-shell renormalization
£s=2 (Dﬂ¢i)TDM¢i_V(¢1’¢2), (15) sche_me and the physﬁcal parameters of the theory are the
i=1 fermion masses, the Higgs masses, the gauge bosons masses,
the anglesa and B, the Cabibbo-Kobayashi-Maskawa
where (CKM) matrix elements, and the electric chargeln this
scheme, the Weinberg angle is not an independent parameter
but just a shorthand notation for the ratio of t and Z

Y
= —1 a a I p—
D,=du~104l WM+'922 B (16) masses, i.e., cog=My/M,. As was stated and explained
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by several author§l2] an alternative scheme, which takes  TABLE I. Renormalization schemes of Bm et al. and Aoki

advantage of the good precision of the measurements of trges al.

Fermi coupling constanGg, is obtained replacingd,, by -

Ge. Bohm et al. Aoki et al.
The introduction ofLgr, which essentially removes the

contribution of equivalent orbits in the Feynman path inte-

gral, induces the existence of ghost fields. After Becchi-Lywm Zy.Zg,6e

Rouet-Stora-TyutinBRST) [13] symmetry was discovered

the best way to introduce the ghost contribution is to follow

the method advocated by Bauli€l4], where this symmetry

is promoted to the role of replacing at the quantum level thecg Z,,00,8u% 6N Zy ,ZGO,ZG+,5M§| T

classical gauge symmetry. In this way, one can be sure to

ZW vZZZ 1ZZA lZAZ ‘ZAA
oM3,,6M2 , se

Lar sl 683 5¢P i=1,2 0

obtain all ghost interaction terms and in particular the four-10tal 13 13
point interactiong. However, with our choice of gauge fix-
ings, one could also use the better known Faddeev-Popov 12 o12
- : Z z Z z
prescription[15]. In any way we obtain w| _|“2Z2 “zZA|| fw 29
~+r -2 2 - A= r .2 2 + Mml0 AZ AA 13
Lep=—CT[0°+M{]C™ —C [°+My]C
_ s and
—C4 3%+ M35]C*—Chs*Ch
W= ZWAW,, , (22b)

+cubic and quartic terms. (21

where the bare fields are denoted by a zero subscript. At first

The cubic and quartic terms are similar to the ones in theyance it looks as though the first alternative is more eco-
standard model with the replacemett(SM)—HCOS>  homical. However, this is misleading since in this scheme

—hsing. the gauge fixing involves 6 renormalization parameters,
whereas in the second, th&; is, essentially, unrenormal-

IV. RENORMALIZATION PROGRAM ized. Leaving aside the fermionic sector, the comparison be-
tween the renormalization parameters in the two schemes is
shown in Table I.

So far, the fields and parameters in the quantum Lagrang- |n our extension to the 2HDM we found that the second
ian are bare. When this Lagrangian is used to calculate thgcheme turned out to be the most convenient one. This we
Green's functions in perturbation theory, renormalized fieldsyjj explain in the following paragraph. To close this section
and couplings have to be introduced. In fact, the calculationget ys define some of the entries in Table I, in particular the
of some Feynman diagrams give divergent results. The usgnes that will be used later. The mass counterterms are in-

of a regularization prescription, in our case dimensionakroduced in the renormalized Lagrangian via the scaling
regularization, isolates the divergences in a well prescribed

A. Renormalization of the fields and parameters

way. Furthermore, the proof of renormalizability, already ob- M\ZNHM\ZN'F 5M\2N, (239
tained in 19712], shows that these ultraviolet divergences
can be absorbed by a suitable scaling of the fields and pa- M§—>M§+ 5M§, (23b)
rameters of the theory. Deciding on a renormalization
scheme, in our case the on-shell scheme, fixes the relation ME'—>Mﬁ+6Mﬁ. (230

between renormalized and unrenormalized Green’s func-

tions. This is the general framework for the renormalizationThe scaling of the Higgs field and of the would-be Goldstone
of the 2HDM that we use. However, even in the simplerbosons, i.e.,

standard one-Higgs-doublet model, the same on-shell renor-

malization scheme can be implemented essentially in two H—Z{H, (249
ways. In the first one, followed by Bwmn et al. [16], the
gauge boson field renormalization respects the original gauge Go—>Z<1;/§Go, (24b
symmetry; i.e., the scaling is
+ 12 ~+
WZ—>Z\1,\/,2\NZ, G —>ZG+G y (24C)
12 introduces the remaining wave function renormalization pa-
Bu—Zg By rameters. The counterteriih, which stands for tadpoles, is

needed to cancel the one-particle irreducible Green'’s func-

The second alternative followed by Aokt al.[3] introduces tions. Later on we will come back to this point.

the scaling at the level of the physical fieldé Z, and A.
Then, sinceZ and A have the same quantum numbers, they o »
get mixed under renormalization, i.e., B. Renormalization of the gauge fixing

We start this discussion with the standard one-Higgs-
doublet model. In the scalar part of the Lagrangiég, after

1See Ref[14] for a further discussion of this point. symmetry breaking, two-particle mixed terms of the form
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Wt _ . o _. Gt Ht

FIG. 1. WG andWH mixing. 1 1
H, h
iMWa"W;G+ are generated. To define the propagators of , ,
the theory those terms have to be eliminated. This is obvious
in the unitary gauge where the would-be Goldstone bosons
disappear, but it is also true in tii®: gauges where the last
term in Eq.(18) gives a contribution with the opposite sign calculation we choosé,= &,= &,= 1, which corresponds to
to the term that we have considered. Clearly, if the gaugghe usual Feynman—'t Hooft gauge.

fixing is renormalized, the introduction of the same relations
between bare and renormalized fields bothlig and Lge
makes this cancellation true to all orders in perturbation
theory. Then one is left with no counterterm to renormalize
the mixed W;G+ two-particle Green’s functions, repre-
sented in Fig. 1.

FIG. 2. The tadpole condition.

C. One-patrticle irreducible Green’s functions

After the discovery of BRST symmetry, the renormaliza-
tion of gauge theories is proved using BRST Ward identities.
In the one-doublet standard model, these identities are inde-

For illustrative purpose let us write a linedigg in the
general form

1
Lop=— E((?MW;-F§X+G+)((9’“W;—§X7G7)+ e
(29
whereX*G™ is defined by the integral
X+G+=f d*yX* (x—y)G*(y) (26)
and X" (x—vy) is a distribution.
The renormalization implies
Ew—Zgbw, (279
W,—ZAW,,, (27b
G*—zJiG™. (279
Thus, if one renormalizes the functiot™ such that
Xt =2,z X (279

it is clear that the mixed terms remain unrenormalized. Fur-

thermore, with the conditioZ.=Z,y, all the terms in the

Lagrangian given by Eq25) remain unchanged. However,
if one tries to apply the same recipe for the 2HDM, we end

up with the following counterterms generated By:

L3= - +(IMWZg"ZEZ"WIH™ +H.c). (29

pendent of the sign of thg? term in the Higgs potential.
Then, the proof of the renormalizability of the spontaneously
broken standard theory follows immediately.

Recently[18], Schilling and van Nieuwenhuizen have ex-
plicitly proved the multiplicative renormalization of an
SU(2) gauge model. In this case, both the vacuum expecta-
tion valuev and the scalar field are multiplicatively renor-
malized by a differenk factor. Hence, it is clear that, in this
case, the tree-level conditior u?+\v?=0 is not man-
tained in higher orders. In the potentiat,u®+\v? is the
coefficient of the term linear in the Higgs field. So, in this
multiplicative renormalization scheme, there will be renor-
malized linear terms .

An alternative is to introduce an additive renormalization
scheme for the scalar fields. In other words, we shift the
fields by an additive constant such that their vacuum expec-
tation value vanishes order by order. This is the scheme that
we follow here.

In Fig. 2 we show these so-called tadpole diagrams to-
gether with their counterterms chosen in such a way that the
renormalized Green’s functions vanish. These conditions,
namely,

Sn+ TuZigh+ TaZii =0,

(293
St ThZi+ TyzZi2=0,

(29b)

fix, order by order, the values df, ,,. Notice that, because
of CP conservation, there is no tadpole diagram for the pseu-

Such a counterterm with opposite sign is generated by thdoscalar field. Furthermore, beyond one loop the tadpoles are

scalar piece of the classical Lagrangialy, which means
that, now, the two-particl&VH Green'’s function is left with-
out a counterterm. Fortunately, Bauliga4] has proved

mixed by the wave function renormalization.
Naively one could assume that this corresponds simply to
forgetting about the tadpole diagrams. Indeed, this is the

within the BRST framework that a linear gauge-fixing term case, for any diagram that differs from a lower order one by
is not affected by radiative corrections. So rather than struga simple addition of a tadpole subgraph. However, we still
gling with gauge-fixing Lagrangians with extégparameters, have to evaluate the counterterms given by E893 and

we will follow Ross and Taylof17] in their celebrated paper (29b) because those counterterms are going to influence the
and do not renormalize&ge given by Eq.(18). In other results for two-point renormalized Green'’s functions. This is
words, the fields and parameters in this equation are alreadyiready seen in Eq.10) and it will be shown in the next
assumed to be the renormalized ones. Furthermore, in thgaragraph.
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D. Two-particle irreducible Green’s functions ; g+ ég Taﬁ+TchS°'(,8+ 5B)

In this section we discuss the renormalization of the two- R 2412 sif2(B+8B) '
point Green'’s functions. The only differences from the stan- (Mt oMy "2(p+5F)] (313
dard model are in the scalar sector and in the mixing between
the scalar and gauge boson sectors. Hence, we only discuss g+ 89 T o+ ToSIM( B+ 5B)
those cases and refer to Aokt al. [3] for the remaining Tere-=—> T (Bt o ,
two-point functions. (Mt 6My) sin2(5+5p)]

We can start the renormalization program from the tree- (31b
level Lagrangian. The renormalized fields and masses are s
defined by the relations Thig = 9+ o9 5 (310

1/2 1/2 2( M \2N+ oM \ZN) 12 ,
+ Z Z H +
H HtH* HTGt )
| T e 12 + [ with
Gl [Zorn+ Zgho+ LG :
Ts=TysiNa+ da—(B+6B)]+T,co§a+ da—(B+B)],
M2 o=MZ + M2, . (30) (329
We also define the renormalized angles and the renormalized Tap=sin(B+0B)[ Tycog a+ da) = Tpsin(a+ 5a)](52b)

SU(2) gauge coupling by the relationsxg=a+ da,
Bo=pB+ 6B and go=g+ 9. The renormalization of the Now we have to find the counterterms for the two-point
angles will be discussed in a later section. The renormalizeflnctions. The bilinear terms in the Lagrangian for the
tadpole functions can be written as charged Higgs sector are

;C: - H+[ZH+H+(0"2+ M|2_|++ 5Ma+)+ZG+H+&2+ ZH+H+TH+H7+ZG+H+TG+67+ZZJI-(EH*Zé/EH*THJrGi]Hi

- G+[ZH+G+(0"2+ Ma+ + (SM aJr) + ZG+G+52+ ZG+G+TG+G7 +ZH+G+TH+H7 + ZngGJrZa/iG*THJrG*]Gi

1/2 1/2 2 2 2 1/2 1/2 2 1/2 1/2 1/2 1/2
- H+[ZH+H+ZH+G+(& + M H++ 5M H+)+ZG+G+ZG+H+(9 +ZH+H+ZH+G+TH+H*+ZG+G+ZG+H+TG+G*

(28 2+ 28 2 )T+ 6-1GT +HC. 33

Using the usual recipe for on-shell renormalization, that is, s, ,;.(0)—zM2,.Z22  (M?.+sM2.)
demanding that the pole stay at the physical mass and that AR . :

; ; i w2 12 12 12
tmhg”rzeas{:ggecgﬁd(i)tinoer;s\{ve arrive at the following set of renor- ~Zhn it Thin — 25 g+ Zg -+ Tote-

—(Z o 2 2 2 ) T - =0,
EH+H+(Ma+)—ZH+H+5Ma++ZG+H+Ma+ (363
~Zyrs Tuen-— Zorm+ Tora- St (MG = ZH0 1 2 e MG+ 288 6 280 oM
~27}2, 28 1 Thie =0, (343 — 2 T o Thon-— Zgr o Zaa+ Tore-
(2 6 2+ 2 T ) Theg-=0. (36b)

d . . . . . _
LY a+) FZui+Zeie =0, (34b) With these six equations we can determine the five renormal

dq? ization constants. Notice the explicit appearance of the tad-
pole counterterms. There is one dependent equation due to a
Ward identity in the charged sector, which is
2 2
26+6+(0) = Zyra+ (M + 0M{s) — Zgre+Tare- (0| ToHW "W, |0)—iM (O] TG" 4"W, |0)
~Zyra T — 2280 g+ Zh 26+ Thra-=0, +iMW(0| Td*W}; G~[0) + M{(0|TG*G|0)=0.

(353 (37

Finally let us discuss the mixed terms in the charged sector.
q Bearing in mind the discussion about the gauge-fixing La-
—ZEG+G+(0)+ZG+G++ZH+G+=0, (35  grangian in the previous section, the counterterms can be
taken from
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=i(M?2 2y1271/2 L evaluated by Denner an . In this article we sketc
L=i(M3+ M3 22wz W, 9*G* +H.c. luated by D d S&dd). In this article we sketch
their analysis in order to point out its extensions to the
+i(M3+ M) V2ZHZ L W, 9#H* +H.c. 2HDM. -
(389) Let us consider the decew+—>u|dj , Wherel, j=1,2,3

are the generation indicéapper case for up quarksAt the

The gauge-fixing Lagrangia(5) will cancel the tree-level (rée level the decay amplitude is

terms in EQ.(38) and so the final mixed Lagrangian is, in

fact, a counterterm Lagrangian for the self-energés and T=V,;To, (43)
WH. Notice that we did not explicitly introduce any coun-

terterms for the Green’s function G andWH. So we end

up this section by writing simbolicallg,y+g+ andZ+y+ as with
Zo2 =ik, (M3 + M2 Y2Zizl2 . (39) g_
TO:_EUI(mI)é')’LU(mj)- (44)
ZoZ =ik, (M3 + M2 Y2Zuizd2 . (40)
The complete set of counterterms for the scalar and mixedt one loop, in the on-shell renormalization scheme the self-
sectors can be found in Appendix B. energy corrections to the external legs vanish and the proper
vertex diagrams give an amplitudé that can be written in
E. Three-particle irreducible Green'’s functions the form
In the on-shell renormalization scheme that we have Ti=V|ToA, (45)

adopted, the gauge couplings andg, are not independent
parameters. In fact, they are both related to the gauge bosavhere A stands for the result of the loop calculation. To

masses and to the electric chaeged.e., obtain the full one-loop amplitude one has to add the coun-
terterms, i.e.,
EERR VI T, =TU+TS, (46)
M with
92=€& 5 212"
(My—M2) g 1 1
Tg:v,jTo{E— > 0Zw|+ ETO[E 5zj,Lij+Ei Vi 8Z;

Then, in the one-Higgs-doublet model, only one further
renormalization constant= de/e remains to be fixed. This +TodV); . (47)
is simply done by imposing the condition
_ _ Now we have to face the problem of imposing some condi-
u(mp)TEU(M) | o= Uy u (41)  tions to fix the CKM countertermsV,; . Denner and Sack
[19] have split the quark wave function renormalization pa-
for any charged fermion, whelé is the renormalized three- rameterssZ" into their Hermitian and antihermitian contri-
point photon fermion vertex. Usually, following the tradi- butions, namely,
tional QED prescription, where the Thompson limit was in-
troduced to definer=e?/(4), one uses the electron as the 1 1
charged fermion. However, the universality of the on-shell SZ == (8Z + 8Z2* ) + = (8Z-— 85Z*Y), (48)
charge guarantees that one can use any charged fermion. 2 2
Since the theory is by itself well defined, one could alterna-

tively fix Y by using the renormalize?/* W~ y three-point  and then they have fixedV,; by the condition
function, namely,

B 1
Lep(P) e DTR™ Jeu—op2=q2-nZ, V== 31 2 (8ZI" = 6Z5)Vay+ 2 Vis(6Z;5— 6z
1
= lim [&(q)- (k—p)e*(p)+(p—0)“(p) - €(0) 49
k*—0
+(q—K).pe(q)]=0. (42) It is possible to prov¢19] that 6V|; is needed precisely to

cancel the divergent contribution to the right-hand side of

Besides the gauge-coupling renormalization, fixed by thézq' (49)._Hence, th? use of Eg49) to fix also the finite piece
photon coupling, thaV quark-quark vertex requires the ad- O ©V1i 1S the choice made by Denner and Sack. Altermna-
ditional renormalization of the Cabibbo-Kobayashi- tively, one could select four physiciqq decay processes
Maskawa (CKM) matrix. For the standard one-Higgs- @nd impose the vanishing & for these decays. In this case,
doublet model this renormalization of the CKM matrix was the transition®V* —ud, W*—us, W —ub, andt—bW"
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TABLE II. Coupling constants for the fermion-scalar interac- sponding processl " —HW?™. In the absence of any infor-
tions. mation on Higgs boson scattering and Higgs leptonic decays

this is perhaps the only consistent way to proceed.

Model | Model Il Model Ill Model IV
@en _ cosx Sina _ Cosw sina
sinB cosB s|n,3 (;033 V. CONCLUSION
cosy cosw sina sina
%dn " s " s CosB coB In this article we discuss the renormalization program of
sina cosy sina cosy the CP-conserving 2HDM. We summarize our main points
@eH ~ Sng ~ og ~Sng ~ cog as follows. N .
sin sin cosx cos (1) In a general 2HDM, the condition that the potential
dH ~Sing ~Sing " cog " cog has only CP-invariant minima leads to a seven-parameter
3 . B ‘ potential [11] which is consistent with the absence of
Be cotp and cots ans FCNC'’s in the fermionic sector.
By —cotB —cotB tang tang

(2) The scalar part of the Lagrangian, written in terms of
the mass eigenstates, shows the existence of linear terms in

could form an interesting set. However, this process has thii€ neutral scalar fieldd andh [cf. Eq.(10)]. Clearly, those
disavantage of shifting all one-loop correction to some am{€rms are zero at the tree level due to the minimum condi-
plitudes. tions. However, at one loop, the requirement of vanishing
Since the renormalization of the CKM matrix vanishes inrenormalized linear terms induces, by itself, bilinear mixed
the limit of degenerate down quérmasses, most loop cor- terms of the typeHh Furthermore, the renormalization con-
rections to théV decay process are done in this approxima-dition for the tadpolescf. Egs.(293 and(29b)] will induce
tion. This is equivalent to dropping the last term in B47)  an additional mixing of the same type. Hence, in general, the
and, in the same term, to replace the sum dvandi simply  renormalization of the one-, two-, and three-particle irreduc-
by theJ=1 andj=i contributions. Hence, in this approxi- ible Green’s functions cannot be implemented sequentially.
mationT; is directly proportional to a single CKM element So one is faced with the task of solving a coupled system of
V). As far as we know all standard model analyses of theequations. Fortunetely, for one-loop calculations, the equa-
values of the CKM matrix elements are done in this approxitions decouple.
mation. In fact, the work of Denner and Sack has shown that (3) In Sec. IV B we discuss the problems connected with
the error of this approximation is of the order 1) far  the renormalization of the gauge fixing. Working with a
sma!ler than any other theoretical and experimental unceigauge-fixing Lagrangian where all parameters are already
tainties. renormalized 17], we have shown that the counterterms for

_In the 2HDM, one can do a similar analysis with the the mixed two-point functions with one gauge boson and one
difference that there are further contributions to the irreducycgiar arise naturally without any further conditidog Egs.

ible vertex and_to&Z,_ coming from diagrams with neutral_ (B22)—(B27)].
and charged Higgs bosons. Because some of these vert|ces(4) In Sec.
could be enhanced by the factor gcot3), one could ex-
pect to see such enhancement in the result.

In the 2HDM there are two further couplingsand 3 that . ST
need to be renormalized. This can be done imposing som#€ Propose fo use the decays-e’e” andH™ —e v to
physical conditions on the renormalized three-point or fourfenormalizea and 3.
point scalar vertex functions. There are in this model 8 cubic  (5) Finally, in a set of appendixes we list the vertices and
and 14 quartic vertices among the neutral and charged Higg§e renormalization constants of the 2HDM in order to make
bosons and any two of those can be selected. However, mo#tis information readily available to other users.
of these vertices have a complicated dependence on the
angles and, furthermore, without knowing the Higgs boson
masses it is difficult to select a physical process such as, for ACKNOWLEDGMENTS

instance,H—hh. Luckily, the verticeseeh and H~ev, We thank J.C. Ronmand J.P. Silva for a critical reading

. ; ) o
erICh _@uce the i tree-level  decayh—e’e  and of the manuscript. R.S. is partially supported by JNICT Con-
H™—e v, have a simple dependence on the ang&® 53¢t No. BD/2077/92-RM.

Table Il) and, at the same time, we already know that the

present bounds on the Higgs boson masses allow these de-

cays to occur.

In a recent calculatiof20] of the top-loop contribution to

the decayH " —hW", where the vertex depends only on the In this appendix we present the Feynman rules for the

combinationB— «, we renormalize §— «) using the corre- interactions involving scalar fields. All other interactions are
standard and can be found [8]. We have chosen the
Feynman—t Hooft gauge and followed the convention that all

2Obviously, the same is true in the limit of degenerate up quarkhe momenta in the vertices are incoming.
mass althought this case is less realistic. We start by defining the quantities

IV E we discuss the renormalization of the
anglesa and 8. Contrary to the MSSM, these angles are
now physically independent parameters of the model. Hence,

APPENDIX A: FEYNMAN RULES
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A, z=C0S Bsina + sin*Bcos, i
b p P hG,Gy ism5M2,
P 2Myy
B, z=C0S Bcosx+ s’ Bsina,
i
C.p=siracoss+cos’asing, hG*G™* 9 ~——sindM2,
2Myy
D ,3=C0S acosB—sinasing. iq
HG.G AV
In the Yukawa Lagrangian, the fermions can couple with the =0 2|V|w
scalars in four different and independent ways, with no fla-
vor changing. The couplings for those models are shown in - ig )
Table IIl. In model | only ¢, couples to all fermions; in HG'G™ - ZMWCOS‘W ,
model Il ¢, couples to the quarks angl; coulpes to the
leptons; in model lllg, couples to the up quarks and to the B g 5
leptons andp, couples to the down quarks; finally in Model AHG™ im(Mi— M{+).

IV ¢, couples to the up quarks ant} couples to the down
qguarks and the leptons. The two Higgs doublgisand ¢,
are defined in the expressidd). These couplings will be
used in Appendix A 3.

2. Quartic scalar vertices
2

gty ig 2R2
_ _ H*H H*H , (MEA2,+M2B2,),
1. Triple scalar vertices s|n22ﬁ|\/|W
H*H h ig( M; B, z—M?2 '5) AAAA 3ig* (M2A2 +M2B2 ),
———| =57Bas— siné|, -
M\ sin2g ~ @8 H' SirP28M2, @B ap)s
. 2 :
- ig [ M 2 - 9 2
+ - AAH"H - M?2 A -I—M B
H'HH —§ (stﬁA B+MH*C°S5)’ sit2pmz, MiAas as):
. 2 Ig2 1
ig [ Mj 2 H*H hh - (M2A,, ;Sin2aCc0S
AAh W\/(SlﬂZﬁBa'B MASIH5), 2M\2N SInZZE HMap
aaH -9 Mi M +M2cosd —2M{B gD ) +2M, SIS
M\ sin28 Aapt M ’
3ig M? ig2| 1
hhh — —— H*H HH 2MZA,4C.,
My Sin2s 2| G 2 A Cas
3ig M2 o
HHH —M—iﬁ +M2B,gsin2asing) + 2M? .cod s |,
HHH ig  sin2asind(2M3+M3) ig2[ 1 , .
2Myy sin2B ' AAhh M2, SinZZB(MHAaﬁSInzacog
ig sin2acoss(MZ+2M32) , ,
hhH _ZMW Sin2ﬁ ! _ZMhBalgDaﬁ)+2MASir]25 s
hH*G™ g — cosd(M2—M?2,) ig?
- 2My h ™My, AAH ———(2M3A,4C 5+ M 2B, gsin2asing)
2M3 | sirf23
. g 2
HH*G~ Sind(My— +)
2Mw M +2M34cog 4|,
Ig 2 2
hAGo —WCOS(s(Mh—MA), ig2 1
w HYH Hh  — ——| ——(MjA,gsin2asins
2M3| sirf2B

|
HAG, ﬁsin&(mﬁ—mi),

+MZ2B,,Sin2acoss) — M7, sin25|,



56 RENORMALIZATION OF TWO-HIGGS-DOUBLET MODELS

i92

AAHh
2| sirf2B

(MHAaﬁsm2asm5

+M?B,,ssin2acoss) — M3sin2s |,

2

3i
hhhh —_—92(4M D25+ M{sirP2acogs),
4sirf2MS,
3ig?
HHHH ——(Mh5|n22a5|r125+4M C2p),
4sirf2BM3,
3ig? o
hhhH — ————(4M{D ,gsin2acoss
8sirf28My,
+M?2Zsirf2asin26),
3ig?
HHHh —_—gz(Mﬁsinzzasinza
8sirf2Mg,
+4M{C,,gsin2asing),
ig2sin2a 3sin2a
hhHH —g_—z MZ—M2+ ———(siPoM?,
4sin2BMg, n2p
+cogoMD) |,
AAG,G 'g” [sin2a MZ—M?2)+3(sir? M3
050 4M\2N sin2,8( H h) +3(si H
+co§6Mﬁ)},
. 2 .
- - ig? [ sin2a
+ + _ 2 2_ M2
H'H GG 4M€N[MA+Sin2ﬁ(MH M2)
+3(sirPsMZ+cogsM?) |,
I ualr e Y * |g2 2 n2 2 S’) 2
H*H*G"G —ZMZ(—MA-l—SI SMZ+cogsM?),

w

HTH*AG g’
°  4m2

W
G*G AA Ci M2, + —— ! ———(cosdA, zME
2m2) T sin2B ap
—sinéBaBMﬁ)},
i 2
H'H GGy — - M? +— ———(CO5A  sM 3
0=0 oM2| H" ' sin2g ap

W

—sinﬁBaﬁMﬁ)},

(—MZ. +sirPSMZ +cog sM2),
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_ i sinéd
H"H H"G™ gz 5 (A MG +BaﬁMh)}
M, sin2B
ig© | sind
- _ 9 >l 2 2
H"H GA 2MZ, SinZ’B(AaﬁMHJrBaBMh)},
AAAG _3ig sino ——— (A sME+ B MD) |,
2M2, sin2B""F ap™h
_ i sind
AAH*G™ g2 5 (AMG +BaﬁMh)}
2M sin2B3
(2
[
G'G GoA 5Sin26(M%—Mp),

G'G H™GE - -
4M
GoGoGoA

ot 9
GoGoH™G™  — =5

w

i 2

sin26(M2—M3),

W

2
>Sin28(ME—Mp),
W

3ig

i 2

sin2s(M%—M32),

W
G*G hh L in2acos SM?2
Mz, sinZ,B(SIn aCO a
—2sinéD ,zM?) +2cog M7 |,
GoyGohh '9* 2aco€ M2 —2sinsD , ;M2
0Go _4M2 sm2,8(sm @ CO q—2si «gMp)
+2cog6M4|,
N2
G'G HH -3 ———(2c0s$5C . sM?,
4|\/|2 sin2B apB
—sir?8sin2aM?) + 2sirf oM. |,
GoGoHH 9’ 2c0s5C, ;M3
00 4m2, sm2,8( COPLap
—sir?8sin2aM3) + 2sirf SM3 |,
N2
HPG*HH — —2 ——— (4c0$5C . sM?,
8M2 sin2B apB

+sin28sin2aM2) — 2sin2sM?
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ig?

H*G*hh -
8M2,

sinZB(Sln25S|n2aMH

+4co9D ,,zM2) +2sin26M 7. |,

1
sin2B8

ig?
SMW

AGHH

—2sin25M?2

27 1

sin2pB

ig

AGghh e

+2sin26M3

2

T+ 2
G H"hA 2smé(MA M +),
W
2 2
SSiNd(Ma— M),
w

GTHHG,

2
GTH*hG,

2
-CosS(Ma—Mj;+),
w

2
G"H*™HA

2
5COSS(Ma—Mj;1),
W

[sin2a
| sin2B

ig

G'G™hH - (MZ—M2)+2sin25M?, .

EI\J

[ sin2«

M\ZN sin2gB

GoGohH

———(M2—M?2)+2sin26M3

ig? [ sin2«

GTH*hH ~ a2 sin2p

(sirf6MZ+cog6MP)

—CosZ6M ﬁ+

sin2a
sin2pB

ig?
AVES

AGohH (SiP M2+ cog6M2)

—cos25M 4

3

2

5 (Sif M7+ cossM7),
w

GG GG -

in2
92 (SirP M2+ cogsM3),
w

GoGoGoGo

(400§CaﬁM +sin28sin2aM h)

(sm2asm25M +4coD ,zM h)

G*G GyG,

udjH*

d_inH_

u;d,G*

V_ieiH7

e_iViG+ -

R. SANTOS AND A. BARROSO 56

iq?2

I
—iz(sin25M§+co§5Mﬁ).

w

3. Fermion-scalar vertices

_ ig
eieh My St XenMe,,
— ig cosw
uitih " 2My, sing
_ ig
didih My S ®dhMd
_ ig
e,eH My S YeHMe,
— ig sina
uitiH T 2My sing M
didiH My S @dHMy,,
— g
eigA T oMy S BeMe, Vs,
— g
u;u;A 2M cotﬁmu Vs,
— g
did;A " oMy, S BdMg, Vs,
— g
eieGy My S Me, Vs,
— g
uiuiGo EETVIRLC
didiGg My, e Ys

S ig
eiviH" Wﬁemei(1+ ¥s),
W

ig

mvij [ Bamq,(1+ys) +cotBmy (1= ys)],

ig
2\/§Mwﬁemei(1 75)!

ig

mV?}[ﬁdmdi(l— s)+cotBm, (1+ ys)],

meg (1+
2\/— W e 75)
ig
—V,;i[—my.(1+ y5)+m,(1— ,
2\/§MW Ij[ dj( 75) ul( 75)]
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— ig H*H™A,Z, —2ie’cot(26w)g,,,
Mes oM (1),

2V2My G'G A,Z, —2ie’col26)d,, .,
2 -
Ta- - g“sin( fw)
u; + + =AW .
diu;G 2\/— ™ VL= mg (1= ys) +my (1+ys)]. HEAW,A, +=———g,,,
2 .
4. - | i I g“sin( 6w)
Gauge-bosonscalar vertices H AW Z, =+ > tan 6)g,.,
hz,Z,—i Mz ins
m »— 19 cosd Sinog,, » » gZS|rK(9 )
W -+ x W
GGW,A, =0,
hWiW, —igMysinsg,, ,
. _ sin( 6y)
W crew:z, =& MWiangg,,
HZMZV|g Cosgwcoségw,
ig®sin( 6y)

HW,W,  igMycos3g,, , HEhW,A,  cosf————0,,,
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T2 . .
ig _ ig®sin( 6y)
hhz,Z, . x
" 200§0Wg” HThW,. 2, coss——7—1an w9,
iq2 _ ig2sin( 6
hhwW' W, %gw, G*HWIA, cosang(W)g,w,
_— _ ig2sin( 6y)
ig T W
HHZ,Z, ———d,., G HW;Z, cos§————-tan6y)d,.,
" 2co§0wg“ : 2 ’
. 2 .
ig2 . - _1g“sin(fy)
HHW W, %gw, HTHW,A, - Sind =50,
. 2 -
i . - _1g“sin(6y)
[ “HW, —
AAZZ, g, HTHW,.2,  sind——2—1an )9,
2cog by
. 2 .
_ _ 1g=sin(6w)
ig2 G*hW/ A, —sind————9d,,,
AAW, W, %g,”, : z
_ ig2sin( o
igz Gth;ZV _SinggTr(\N)tar(0W)gMV!
CoGoZ,Zy 2co6 20026y, O+
W T :
G_WMAV IMWegMV’

ig?

GoGoW,, W, > G G*W;Z, iMyetanfyg,,

H*H"Z,Z, 2ie?cof(26y)g,,,, AHTHT  ie(Pu+—Pu-)ps

o ig? ZH"H™  —iecot(26y)(Pu+—Pu-
HIH W, W, =0y,
AG'G™ ie(pe+—Pe-)y,
G*'G~2,Z,2ie’cot(26 : -
o (209, Z,G'G™  —iecot26y)(pc+—Pe-)u;
GG W/w, Eg gMz
wVy 2 Juv: Z,HGq My COSS(PH—Pa,) s
H*H A,A, 2ie’g,,, oM,
Z,hA My 577 COSS(Ph—Pa)

GG A, 2ie’g,,,
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M
g Zsin5(pH—

ZHA S

pA),u,!

gM;
Z,hGy 2My S SINS(PG,~ Ph) s

a9
WIHZA S (Pye—Pa),.

g
E(pGi_pGO),u,i

9
oS5 (Pr=—Ph),..

Tt . g
W, G™H |0055§(p6,—pH)H

Ty C o9
W/ H"H ilsméz(pH:—pH)M,

T _. .9
W,G"h +|S|n5§(pei—ph)ﬂ.

5. Ghost-scalar vertices

_ igM
CEctH - D Weoes,
2
__ igM
crcth  IWins,
2
_ igM
C*C G, i—gzw,
— igM5
C,C,H - 2cos9WCOS§’
CCh ~ 2 ging
A T Tk
. igMm
CC,6° %0420y,
C*C,G™ TFieMy,
~ igM
C,C*G™ - 92 z

APPENDIX B: RENORMALIZATION CONSTANTS
1. Two-point functions
a. Scalar counterterms

In the CP-even scalar sector the six renormalization con-

stantsZyy , Znn» Zun» Zny, M7, andéM?2 are determined
by solving the set of equations
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S pn(ME) = Zyu M = Zay(Mi—= M3+ 0M7) = Ty Ziw
—TnnZnn— 2TunZHAZEa=0, (B1)
d—qzzHH<Ma)+zHH+zhH=o, (B2)
S hn(MP) = ZphdMa = Zyn(ME =M+ SME) — ThnZnn
—TunZun—2TunZi2z2=0, (B3)
zzhh(Mh)+Zhh+ZHh_0 (B4)
dq

THHZJ./2ZZL/2 TthUZZl/Z THh(ZZL/2 1/2+Zl/221/2

0, (B5)

THHzllazl/z Tth]'/ZZ%ﬁ THh(leHZ%/hZ_I_ Zl/221/2)
=0, (B6)

with the renormalized tadpole functions defined as

gty Top+ Tssif(a+ da)

Tz omz) 2 si2(Brop] )

_ g+ag T.p+ TscoS(a+ Sa)

T W2 oz s2grep] PP
g+ 489 TssiN2(a+ da)] B9)

THh ™ (M2, + oM2,) 72 S2(B+ 5B) ]

The CP-odd scalar sector has five renormalization con-
stants to be determineBaa, Zg 6, Zacy: ZGoA andsM3,

because the Goldstone bosB8g is massless. Because of the
tree-level relations Top=Ty+y-, Te,yG, and

TAGO=TH+G7, the renormalized tadpole functions for this
sector are defined in Eq&1) and(32). From the following

set of six equations only five are independent due to the

Ward identity equivalent to Eq37) but for the neutral sec-
tor:

=Tg+c-,

S AA(M2) = ZAadMA — Zg AMA—TanZaa— To,6,26,A

—2Tnc, ZAAZEA=0, (B10)

— S pa(MR) +Zan+Z A=0 (B11)

dg?
(0)=Zpg,(MA+ 6MZ) —Tg 6,26,6,~ TarZAg,

1/2 1/2
—2Tp, 2806, Zh6,=

oGo

-0, (B12)
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d
—526,6,(0) +Zg 6, Zac,= 0, (B13)

dg?

2\ _ 512512 s\ 12 | SU2 512 a2 125172
26y (Ma) = ZaaZac, M At Zg 6,26 aAM A~ TanZanZAG,

_TG

12 5172 1/2-51/2 12 5112
— —+ =
180266, LGoA ™ TAGy(ZaAZ GG, T ZaG,Za,n) =0,

(B14)
Zac,(0)— ij\liz,lA%O( MZ+SMR) — TAAZ,lA/KZ}A%O

12 5172 1/2-51/2 12 5112
I 2562 I ZyiZ38%6 tZae Z .
6GZ GG LGon~ TAGy(ZAAZG Gyt ZAG,Zaon) =0

(B15)

Finally, the charged sector behaves like th@-even one.
The five renormalization constants to be determined are, in

th|S CaseZH+H+, ZG+G+, ZH+G+, ZG*H*! and 5M|2_{+ The
equations are

St (ME) = Zgrp+ M2 — Zg e+ M7

_TH+H—ZH+H+_TG+G—ZG+H+

1/2 1/2

_2TH+szH+H+ZG+H+:0, (816)

d_quHJrHJr(MaJr)+ZH+H++ZG+H+:O,

(B17)
Serer(0)—Zyrar(MAs+ M) —Tara-Zo o+

1/2 1/2
_TH+H72H+G+_2TH+szG+G+ZH+G+:O,

(B18)

d
FEG+G+(O)+ZG+G++ZH+G+201 (B19)
q

2 1/2 1/2 2 1/2 1/2 2
2H+G+(MH+)_ZH+H+ZH+G+5M H++ZG+G+ZG+H+MH+

1/2 1/2 1/2 1/2
- TH+H_ZH+H+ZH+G+ - TG+G_ZG+G+ZG+H+

1/2 12 12 1/2

~Th+e(Zyrp+Zgrgrt Zyra+Zaen+) =0, (B20)

2H+G+(O)_Za/iH+Zj}:|/%rG+(Ma++ 5Ma+)

1/2 1/2 1/2 1/2
_TH+H*ZH+H+ZH+G+ _TG+G*ZG+G+ZG+H+

12 12 12 512
~Thre(Zyiy+Zgter 2556+ g4y +) =0.

(B21)

The renormalized quantities; and T,z are defined in Egs.
(329 and(32b). The renormalized tadpole functions for the

charged sector are defined in E¢31a), (31b), and(310.

b. Mixed counterterms
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Zit e =ik (Mt MG YZi7ZE5 0 (B23)

Z8 =ik M+ oMYz, . (B24)
Zza=1Ku(MZ+ OMY)YZ77782, (B25)
238, =k, (M2+6M5) 2252782, | (B26)
ZiR=ik,(M3+6M2) 2272782, . (B27)

2. Three- and four-point functions

In this section we present the counterterms for the three-
and four-point functions involving scalar and other fields.
The scalar-scalar couterterms will not be shown since Higgs
boson scattering and Higgs boson decay involving scalar
particles only, in both initial and final states, are already
calculated at the tree level and were never observed experi-
mentally. So there is no point in doing loop corrections to
processes not yet observed. However, it is staightforward to
deduce any of those counterterms: First rewritte the scalar
Lagrangian as a function of the renormalized fields; then
group all terms with the same number and type of fields; the
factor that multipies those fields is the field renormalization
factor; finally renormalize the coupling.

All along this section we concentrate on the field renor-
malization. We usey,, instead ofA , to represent the photon
field so that it will not be confused with the pseudoscalar
field A. The parameter renormalization is written symboli-
cally aség;j and 6g;j Wherei, j, k, andl are the fields in
the vertex. These quantities are determined by a simple
variation of the independent parameters in the vertex. We
have chosen as free parameters the particle masses, the elec-
tric charge, the two angles in the scalar sectea(d), and
the four independent angles in the CKM matrix. We use
several constants as a bookeeping to make the vertex expres-
sions simpler. Among them are the @Jgauge constard,
the Weinberg angl#,,, the angleé=a— B, and the cou-
plings expressed in Table Il. The first three can be written in
terms of the independent parameters as

5y e M2 SM2, SM?2
2y 2 X 2 [ 2W_ 2Z . (B29)
g e 2Mi-MZ)| ME M2
SMy MM 5
SOw=— + ., (B29
w (M%—M\ZN)]'/Z MZ(ME_M\ZN)]JZ ( )
5(8)=da—8B. (B30)

The complete set of counterterms for the mixed gauge- The parameter renormalization in the vertices is easily

scalar sector can be written as

Zut or =ik, (M3 OME)V2ZRZ2 o, (B22)

calculated and so we will just give an example of how it is
done. In the example we will use the VergXen . for mod-

els | and I,
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5380
- fae hMe, ig QepMe, with
5geieih=5g 2Myy — oMy 2M\2N +(5a’ehmei
sina COsxCOo
Saegn=——6a— —— b B. (B32)
(B31) sing sir3

ig
+ 5me,aeh)—,
1 ZMW
a. 1 scalar+ 2 gauge

hz,z, Onz2ZbeZ 77+ OnzzZHeZ 22+ 89nzz,

HZ,Z, OnzzZHaZ22+ OnzZeiZz2+ O9hzz,

112 112
Ny  OnzzZinZzyt 9nzzZnnlzy

/ /
HY.Y,  OuzzZHaZzy* OnzzZniiZzy

hZ,y, Zghzzzﬁlhzzyzzz%‘F 29szzl%|lﬁzyzzz%/yz ,
HZ,y, 20n77ZHAZ32Z3 o+ 20h2 72232257,
hWIW,  ghwwZiiZw+ OnwwZinZw+ S9nww

7

HWIW,  ghwwZiaZw+ GnwwZinZw T 89hww,

6T 12 5125112 12 S125172
G W,7, Oerwylgrie+Zw Ly, T 9c+rwzZgig+Zw ZLzyT 69c+wy
T 12 5125112 12 5125102
G W.Z, derwzZgre+ZwZzzT9c+rwyZlgra+Zw Zyz T 09c+wz,
12 12,102

T 12 5125172
H"W, v, OetwyZgiy+ZwZyy T 9o wzlorn+Zw Lzy

1/2 1/2

A F 1/2 1/2-1/2 1/2:
H W,uZV gG+WZZG+H+ZWZZZ+gG+W72G+H+ZWZyZ'

b. 2 scalar+ 2 gauge
hhZ,Z, 9nnzZnnZzzt unzzZunlzzt 69nhnzz,
HHZ,Z, 9unzzZunZzzt 9nhzZnnlzzt 69uzz,
hhy,y,  GnnzZnnZzyt OunzzZunlzy

HHy,.v, OunzzZunZzyt OnhzzZnnlzy s

hhz,v, Zghhzzzhhzyzzz%/y2+ ZQHHZZZHhZ%/ZZZ%/31

HHZ,y, ZgHszZHHZ%IZZZ%/y2+ ZgthZZhHZ%/ZZZé/;%!
hHZ,Z, 20unz2ZHAZinZzz+ 29nnzZenZiilzz

1/2

hHy,v, Zghhzzzﬁ/hzzﬁ/n-%zmJr ZgHHZZZ#aZHhZZy ,

NHZ, 7,4 OnnzzZinZnialzaZzyt 49nnzzZinZinZ 227y
hhW, W, gnnwwZnnZwt GunwwZrnZw+ 89nnwws

HHWZW; IHHWWEHHZW T OhhwwZhHZw T S9HHWW:
hHW, W, 20nhwwWZhiZhbZwt 29uHwwZHAZHnZw

AAZ,Z, 9anzZanlzzt9c,6,zz2c,a L2271 09anzz:
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GoGoZuZ,  96,6,2226,6,L2z1 IanzZZac,Zzzt 696G zz
AAYLYy  9anzZanlzyt 96,6,2226,A L7y

GoGoYu?r  96,6,2226,6,Lzy T 9anzzZac,Lzy
AAZ,y, 20aazZanZ3eZy+ 29GOGOZZZGOAZ%/ZZZ%/y2 ,
GoGoZ. Yy  20anzzZnc 227272t 206,6,2226,6,27527 5
AGyZ,Z, ZgAAZZZ,]AﬁZXéOZZZ_‘_ ZgGOGOZZZgiGOngAZZZ ;

1125172 12 112
AGoy.Yy  20anzZZanlac,Lzyt 29662246 G, LG A2y

12512 5112512 12 512 5125172
AGoZ,v4  9anzZZanrlnc, L2747yt 496,6y224Gy 6, Lon L2247y

AAW, W, gaawwZarZwt 9c,6wwZaaZwt S9anwws
GoGoW, W, dg cwwZe,6,ZwT daawnZac,ZwT 89c,cww
AGoW,, W, ZgAAWV\Z%ﬁZi{éOZW"}_ ZgGOGOW\NzngOZgiAZW ,

H'H Z,Z, 9u+n-22Zn+n-Zzzt 96462226+ H-Z22 O+t yyZhH-Zyzt 96+ 6 y9Zc+H-Zyz

1/2-51/2
ZZ

125172
T O+ HyzZhrH-Lyz Z7

zt9c+6yzZctH-2Ly2Z477T 69n+h-zz,
G"G Z,Z, 9s+c-z7Z6+6-ZzztOn+n-z2Zn+6-Zzz O+ H-yyZhte-ZyzT 9o+ y9Zct6-Zyz
125112 125112
+Ou+HyzZnr6-Lyz2L771 96t 6 yzLete-Lyz 477t 096G zz s

H'H™ YuYv  OHtH- 9y ZH+H-Zyy T Ou+-22Zn+H-Zz2y T Q6+ 6-22Z6+H-Zzy T 96 +G yyZLe+H-Lyy

125112 1125112
TOn+tH—zZntn-23, 22, 9646 yzZ6 H-ZL5y L7yt 0Qu+h-yy

G "G v.¥y 96+6-9yZct6-Zyyt Ontn-z22n+6-Zzyt 96+ 6-2226+ 6 ZzyT OH+H-yyZH+ G- Zyy
+gH*H*yzZH+G*Z}y/$Z%/§+QG+G*yzZG+G*Z}y/$Z%/$+59(3+Gwy,
H+H_7,LZV gH+H‘yZZH+H‘(Z]«;’;%Z%/§+ZJ{//ZZZ%/;%)+29H+H‘ZZZH+H‘Zé/222%/$+gG*G‘yZZG”’H‘(ZJ)-//?Z%/ZZdl_Z:)L//ZZZ%?)
+ 29G+G*ZZZG+H’Zé/ZZZ%/y2+ 296+G*yyZG+H*Zy$Z}y/zz+ 29H+H*wZH+H*Z}y/yzzyzz+ OOH+H-yz s
G'G v,.Z, QG+G*yzZG+G*(Z%Z%/§+Z}y/zzzg)+29H+H*zzZH+G*Z%IZZZ%+gH*H*yzZH+G*(Zy$Z%/zz+Z}y/zzz%f)

125172 125172 125112
+206+6-2226+6-22227y T 290+ H-yyZn+6-Lyy Lyt 20646y LateLyyLyz T 09664z

+AT 12 12 12 12 12 12
H=G"Z,Z, Ou+n-zz2Znvn-Znre-Zzzt 9662226+ 6-Za+n-Zzzt On+n-yyZhrn-Luic-Zyz

12 512 12 12 125172 12 512 512512
tOct6 yylote-Lorn-Lyzt Onn-yzlntn-Zuro-4yz4zz1 96+ 6-yz2lcra-Larn-4yz242z

T 2 12 2 2 2 2
H G vy, Ontn-z2Z5w-Zhe-Zzy T 964622267626 H-Lzy T O H-yvZh n-ZhTe-Lyy
12 12 12 S12 512512 12 12 12512
+gGJrGi‘y‘yZG*G’ZG*H’Z’}/‘y—"_gH+H7‘yZZH+H’ZH+G72‘y‘}/ZZ'y+gGJrGi‘)/ZZG*G’ZGJrH’Z‘)/‘yZZ‘y’

+~F 1/2 12 1/251/2 1/2 12 1/2-1/2 1/2 12 1/2-1/2
H G '}/MZV ZgH+H_ZZZH+H_ZH+G_ZZZZZ}/+ZgG+G_V’YZG+G_ZG+H_Zy’yZ’yZ+ZgG+G_ZZZG+G_ZG+H_ZZZZZy

1/2 1/2 1/2-51/2 1/2 1/2 1/2-1/2 1/2-51/2
200+ lurn-Zure-Lyylyzt oo vzZero-Larn- (L3222t £5222,)

12 512 125112, 51/251/2
+tOn+H—yzlnrn-Zure- (25,2221 233275),
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— + —_
H'H"W, W, gn+n-wwZh+n-Zwt 9o+ 6-wwleH-ZwT 89H+H-wws
A\t
GG W,W, dg+c-wwZo+c-ZwtOn+n-wwln+c-Zwt 89c+c-ww:
4~ Tt 112 12 12 12
HG"W, W,  gu+n-wwliyry-Zyte-Zwt 9cte-wwlsic-Zoru-Zw:
T 12 12 12
HtAW;'yV O aw, 2L 21/221/221/2+9H+AWZZ Z1/221/221/2_}_g(;+G()\/\lyzG+|_l Z”zZ Z1/2
. 2112 Z1/2 21/221/2 P
96t wzlg+H- OH+AWy »
AT 12 11251/251/2 12 11251/251/2 12 12 5172 1/2
H AW/,LZV gH+AWZZ +H_Z Z ZZZ+gH+AW’)’ZH+H_Z Z Z)’Z+gG+GOWJ’ZG+H_Z Z Z
+0c+te szng—Zl/2 ZWZY2+ 89+ awz,
+ 5 12 12 5125112 112 12 5125112 112 12 512 1/2
G GOW,U.’)/V gG+G W’}’ZGJrG Z Z Z +gH+AW'yZ Z Z Z +gH+AWZZH+G Z Z Z
n 2112 Z1/2 Z1/221/2 P
Yetewztigte- 9G+Gowy
+ 5 12 12 5125112 12 12 5125112 12 5125112
G GOWHZ,, gG+GOWZZG+G Z Z ZZZ+gH+AW72H+G Z Z Z +gH+AWZZH+G Z Z Z
+ 0o cwrZe’ 6 Zogs,Zu Zrat 09e+ enz,
- = 12 1/2 125112 112 12 5125112 12 112 1/2
H*GoW. 7, Googw,Zere 282 ZWZY24 G punZit o ZN3 ZHZY2+ QawsZiy o ZH2 ZWPZ
12 1/2 125112
+gG+GOWZZG+G Z Z Zzy,
+ = 2 12 5125112 12 12 5125112 112 L2 ZU27112
H*GOWSZ,  GneawnZisiw ZN3 ZHZ2+ O awZiy? - ZH2 ZU2Z Y2+ 9o gwy 22 - 2826 ZU2ZY
12 12 512512
t0c+tc WZZ(3+H—Z Z wZzz,
AT 2 125112512 1/2 1251/251/2 1/2 112 1/2
G AWM'}/D gH+AW’}/ZH+G Z Z Z +gH+AWZZ +G— Z Z ZZ'y+gG+G W'}’ZGJrG Z Z Z
2 12 5125112
t0c+eywzZcre-Lealw L2y
GiAW;*Z,, gH+AwyZl/2 21/221/221/2+9H+szzl/2 ZV2ZlL2, o Wyzgie Zl/ Z1/221/2
112 1/2 1125172
tO9ctewzlaro-Loalw L2z
£ hWE 1/2 125125112 112 1251125112 125125112
HEhWS Y, Gy n- ZoZorZ o2+ 9o nwyZas n- ZoRZwZ Y24 9 nwilas v ZaZ o232
+ge+szZé'3H Zﬁ/ﬁzllzzllz
1/2 125125112 12 1251/251/2 112 1/251/2 1/2
+gG+HW'yZG+ ZHhZ Z +gH+HW’}/ZH+H ZHhZ Z +gH+HWZZH+H Z Z Z
2 1251125112
+OnrhwzZh  1-Zhndw £2yT O9Hhwy »
T 2 11251125112 112 1251125172 112 1251125112
G hW, v, de+rhwyZgc-Zhnlw Zyyt Ou+hwyly 't o-Znnlw Lyyt 9+ hwzZo s o-Zhnlw £2y
+gG+HWZZgEG Z1/2zl/2zl/2
12 12 12
0o nw 22 742711 lez+9H+HWyZ _zY27Y Zl/z+9H+HWZZH+G Z1/221/221/2
+ Ot hwiZr s - ZERZWZE2+ 596 hwy



G*hw;Z

G*HW;Z,

G HW; v,

HEHW 5,

H*HW Z,

H*hW;Z

RENORMALIZATION OF TWO-HIGGS-DOUBLET MODELS

1/2 1/2-51/2 12 1/2-1/2 12 1/2-1/2
gG+hWZZG+GZZ Z Z +gH+hW72H+G Z Z Z +gG+hWYZG+G Z Z Z

12 1/2-1/2 1/2
+gG+HWZzG+G_Z Z Z

1/2 1/2
+ 06+ 1wy 2o 6 ZHRZW Zag+ OnuwzZn s o ZHaZw Zez

12 5125125112 12 125125112
T Onu+rhwzZyt g-Zhnlw L2z n+HwyZyt g-Zrnl £yz T 096 +hwzs

1/2 1/2 51/2-1/2 1/2 1/2-1/2-1/2 1/2 1/251/2-1/2
gG+HWZZG+G Z Z Z +gH+hWyZ Z Z Z +gG+hW’yZG+G Z Z Z

1/2 1/2-1/2. 1/2
+gG+hWZzG+G_Z Z Z

1/2 1/2
+gG+HW7ZG+G Zl/ZZI/ZZl +gH+HWyZH+G Zl/ZZ Zl/2

12 5125125112 12 1251025112
T OnrnuwzZp o Zinlw L2z OnrnwzZp g Zntiw L2zt 096+ Hwz,

112 1/2 51/251/2 172 1/2 12 1/2 1/2 1/2
9c+HwyZaro-ZHnZwW LYyt OnthwyLyt g-Zh Z Z ST 96+thwylerg-Zh Z Z

12 5125125172 12 512 5125112 12 125172 112
T Oc+hwcra-Zhnéw £z, 9o Hwzrg-ZHREW L2y OnthwyLp+ g -ZHndw £y

1/2 1/2
Zl/2 ZlIZle2 Zl/221/2 1/2

+On+ruwZ g yt O+ hwZy G- 7yt 696+ Hwy »

1/2 1/2 51/2-1/2 1/2 1/251/2-1/2 1/2 1/2-1/2 1/2
gH+HWyZH+H Z Z Z +gH+hWyZ Z Z Z +gG+hW7ZG+ Z Z Z

1/2 1/2-1/2. 1/2
+gG+hWZZG+H Z Z Z

1/2 1/2 12
+ gG+HWZZG+H Zl/2 21/221/2+ gG+HW'yZG+H 21/2 Z Zl/2+ gH+HWZZ Zl/2 Z Zl/2

12 Zl/2zll2zll2

+OH+hwz ZyT 091+ Hwy »

1/2 1/2 51/2-1/2 1/2 1/251/2-1/2 1/2 1/251/2-1/2
gH+HWZZH+H Z Z ZZZ+gH+hW’}/ZH+H Z Z Z +gG+hW'yZG+ Z Z Z

+0g+ hWZZG+ - Zl/221/221/2

12 1/2 51/2-1/2 1/2 1/2 51/2-51/2 1/2 1/2 51/2-51/2
+gG+HWZZG+ Z Z ZZZ+gG+HW‘yZG+H Z Z Z Z+gH+HW’}/ZH+H Z Z Z

1/2
Zl/2Zl/22 1/2

+On+rhwZy - 7zt 00u+nwz,

1/2 1/2-1/2-1/2 1/2 1/2-51/2-1/2 1/2 1/2-1/2: 1/2
gH+hWZZ H_Z Z ZZZ+gH+hWYZ H_Z Z Z'yZ+gG+hW’yz H_Z Z Z

1/2 1/251/2-1/2
+gG+hWZZG+H Z Z Z

1/2 1/2-51/2-1/2 1/2 1/2-51/2: 1/2
+gG+HWZZG+H_Z Z ZZZ+gG+HW’}/ZG+H_Z Z Z

12 5125125172 12 5125125172
T Ou+rHwy Ll i -Zhnlw L3z T GnrrwzZy r - Zinlw L2z 09n+hwz-

c. 2 scalar+ 1 gauge

5383

H'H y, (pH+_pH*),L[gH+H*yZH+H*Z}y/3+gH*H*zZH+H*Z%/y2+QG+G*yZG+H*Z}Y/§+9G+G*ZZG+H*Z%+ OGH+H 41,

H*HZ, (pu+-—

pHZ),u.

12 12 12 112
[9n+r-2Zn+H-Z27F On+H-yZu+H-Zy2 T 9o+ e yZatn-Zyz t Oc+e-zZc+H- L2271 09n+h-z],

G'G vy, (pg+— pe*)ﬂ[gemszm*Z%*‘ gH*H’ZZHJrG’Z%/s_’_ 9H+H*yZH+G*Zy§+ QG+G*ZZG+G*Z%+ 09G+G—yl,

G+sz# (pG+_

HiGI'yﬂ

=(Py=—

1/2 1/2
/ 7 / Zl/2

1/2 1/2 1/2
pG:)M[gH+H’yZH+H* HTG™ z Z7

y PO+ h-zZnu-Zhre-2zy T 966~y 6-LatH-

1/2 1/2

+ gG+G ZZG+G_ZG+H_Z

1/2 1/2
/ Z/ Zl/2

172 172 172 12
Pe-)ul9c+6-2Z6+6-Z27+ On+r-2Zn+6-Z27 T Qn+H-yZn+e-ZyzH Ye+e-Ze+e-Zyz T 09c+c-z]s
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T _ 2 512 51 12 512 512 W2 12 12
H G Z, *(Pu==Pc)ulOn+n-+yZuiy-Zu'c-Zyzt Ou+n-zZn n-Zntre-Zzzt 96+ 642 6-Za n-Zyz

1/2 1/2 1
+gG+G*ZZG+szG+Hsz y

1 112 5172 112 5112 1125112 1125112
HGoZ,  (Pu—Pa,) uZ74 GHeyzZittiZass,+ InazZitZac, + OnazZniZac, t OncyzZniiZo.s, T 99Hayz],

HAZ, (pu— pA)#Z%[gHAzZﬂaZ}\/iJF QHGOzZﬁ/aZgCZ,A’L UnazZiaZan+t gheozzﬁﬁZgiAJr 09nazl,

hAZ,  (Ph—Pa) 272 OnazZinZAa+ On Gozzﬁlrzmzcl;/EA+ OHAZZHRZAAT ghGOzZﬁ/hZZ%;/cZ,A‘F 69nazl,

u 125172 125172 125112 125112
hGoZ, (pn— pGO)MZZZZ[ghGOZZthGOGO+ IHG zZHhL GG, T IHAZZHNZAG, T IhazZhhZac, T 09nc,z]:

1 112 5172 12 5172 1125112 112,112
HGoy, (Pu— pGO),uZZ;%[gHGOZZHHZGOGO"_ IHAZZHHZAG, T InazZhiZac, T Inc,zZhhZG G,

v 12 5112 112 5172 1125172 1125172
HAY,  (Pu—Pa) 270 GuazZitiZaat OnezZhnZcoat nazZniZant Ong zZhilaal;
v 1125112 1121/2 112512 11251/
hAy, (ph_pA),u,ZZ«f[ghAZZthAA"—gHGOZZHhZGOA+gHAZZHhZAA+ghGOZZthGOA]r
1 11251/ 1125112 125,112 11251/
hGo¥u  (Ph—Poy) uZz OncyzZinZoas, T IHGezZHnZo.s, T IHAZZHRZAG, T InazZinZAs,]:

T 12 12
H AW, (py=— pA)ﬂZ\l/\//Z[gH *AWZH+H*Z%A/§+ gG*GOWZG+H*Zg§A+ OGH+awl

1/2 1/2

+ x 1/2
G~ GoW, (pg=— pGO)MZ\%Z[gG+GOWZG+G,Zé/§GO+ gH*AWZHJrG*ZAGO—'— 5ge+eow],

+ ¥ 1/2 1/2
H=GoW;  (Pu=—Poy) uZWI9H+ awZii - Zho, ™ 9o+ ognle -Zacs,):
+ - 1/2 1/2
G AW, (pg=— pA)MZ%Z[gmeOwZGm—ZéfAJr On AW+ - Za

LT 1 2 e 2 e 12 S 2 12
H +hW,L (pn+— Ph)#zw2[9H+thH+H—Zhh +de+hwlgru-Zih T 9e+rHwZeri-Zah T O+ Hwly ry-Zih T 09n+hwl,

- 1/ 12 12 12 12 12 12 12 1
G hw, (pGJr_ph)ﬂzwz[gGJrhWZGJrG*Zhh+gH*hWZHJrG*Zhh+gG+HWZG+G*ZHh+gH*HWZH+G*ZHh+5gG+hW]u

S T U 12 512 12 512 122 12 12 12
G HW, (pG+_pH)MZw2[gG+HWZ Zpat Ournwlyro-Zhha T 9ornwloro-Zhh T IH+Hwly s g-Zan t 09 +Hwl,

Gta-
+ * 1/ 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
H HW, (pH+_pH)MZw2[9H+HWZH+H—ZHH+ge+hwzg+H—ZhH+QG+HWZG+H—ZHH+9H+hWZH+H—ZhH+59H+Hw]-

d. 1 scalar+ 2 fermions

In this section we present the counterterms for the scalar-fermion interactions. For the interactions with the neutral particles,
; will stand for up and down quarks, and charged leptons. For the interactions with the charged scalar particles we will use
uppercase letters for fermions with= — 1/2 and lowercase fdr= 1/2. To simplify the form of the counterterng;;, ], will
stand for the left part of the couplingroportional toy,) and[g;j]r will stand for the right part of the same coupling. For
the leptons, one of the couplings has to be set to zero by the reader. We also define the quantities

Z,2=2"y.+ Z{yr, (B33
1/2
Z, =12 1"yr+[ ZE] "y . (B34)

The counterterms are
o — 1/2 U2y U2, 1/2 127 512 —
i Gyl 2y 16l Zy T Zin+ Gyl 2 16l 2y T Zin+ 69y, in

- _ /2. _ /2 _
Pt 9yl Zy 1l 2500 ZHA+ 9 gl 23 L2310 2o 00 »

— B/ _ 112 _
b Agy wiA[Z,/T]ki[Zyz]ilzi\/g\"' gy, wieo[zj]ki[zl,/,lz]n Zg§A+ Yy yA
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DihGo gﬁwioo[zl,,i/z]ki[zilz]nZg§60+gﬁilﬂiA[Zl;/z]ki[Zyz]nZ/lx/éo"‘ 09,6y

wH [ZRAZOY ALy - 120t -+ G e 1 Zg 0 b T2 ZR1 AT 9550 m- 120 - + [ Gi00-1rZ8 -}
+ 59?_,¢1-H—,

JihH” [Z;]ijjlz[zl-]%z{[gjjl/{]HJr]LZj"-(EH’+[ng¢JG+]LZgEH’}+[ZI]?]IZ[ZR]\J]-IIZ{[QJJIJIJH*]RZ;:/EH*+[ng¢IJG+]RZJ(-3/EH*}
+ 5g;}_¢JH+ ,

WG [Z;;]Il.gz[ZL]jli/Z{[g%ij’]ngie—+[g;y//jH’]LZﬂ%rGf}"'[ZI]}AZ[ZR]%i/Z{[gIJLﬁjG’]RZgEG—+[g%z//jH’]Rzi{ng—}
+ 59%%67,

E‘ﬂ'GJr [Z;]E]IZ[ZL]%12{[9Z¢JG+]ng%G’+[9E¢JH+]LZﬁ/EG’}+[ZI]i]]IZ[ZR]%/IZ{[ngl/JJG‘*’]RZg%G*+[ng1,//JH+]RZj}-|/?rG*}
+ 59]1_%@.
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