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We give an S-matrix-theoretic demonstration that if the Higgs-boson mass exceeds M, = (8m'/3GF)",
parital-wave unitarity is not respected by the tree diagrams for two-body scattering of gauge bosons, and the
weak interactions must become strong at high energies. We exhibit the relation of this bound to the
structure of the Higgs-Goldstone Lagrangian, and speculate on the consequences of strongly coupled Higgs-
Goldstone systems. Prospects for the observation of massive Higgs scalars are noted.

I. INTRODUCTION

Unified gauge theories of weak and electro-
magnetic interactions provide an attractive frame-
work for the interpretation of weak-interaction
phenomena. ' Such theories are universal in the
prediction that existing data explore only the low-
energy tail of a spectrum of yet-to-be-discovered
particles. The most familiar of the hypothetical
particles are the massive vector bosons W' and Z'
associated with the observed charged and neutral
weak currents. Somewhat more obscure are the
massive scalar Higgs bosons which are connected
with the spontaneous breakdown of gauge symmetry.
Although the Higgs bosons serve important tech-
nical functions in field-theoretic calculations, their
existence and proyerties are less clearly indicated
by low- energy phenomenology. Thus, for example,
the mass M„of the Higgs boson is the only para-
meter in the Weinberg-Salam model' that is en-
tirely unconstrained by present experimental evid-
ence.

Theoretical considerations' suggest that the
Higgs-boson mass must exceed about 4 GeV/c',
and we have recently derived a conditional upper
bound4

M „M=(8e'v 2/SG —~)
' ~' = 1 TeV /c'

where G~ is the Fermi constant. The precise
meaning of the upper bound is that if MH exceeds
the critical value M„weak interactions will be-
come strong in the TeV energy regime in the sense
that perturbation theory will cease to be a faithful

representation of physics.
Because the Higgs self-interaction is proportional

to G~M„', it frequently has been remarked that a
large Higgs-boson mass implies a strong inter-
action among Higgs bosons. Weinberg' has cham-
pioned the view that G~ ' ' is a natural mass scale
of nature and that, in the event of strong Higgs
self-couplings, the effective ultraviolet cutoff
would be at this energy. More recently Veltman'
considered Higgs-boson contributions to certain

radiative corrections. He concluded that for Higgs-
boson masses exceeding approximately G„' ' the
perturbation expansion of weak interactions could
well break down. Our result (1.1) is in accord with
these expectations.

The condition (1.1) suggests that new phenomena
are to be found in the weak interactions in addition
to the charged and neutral intermediate vector
bosons. Either a light scalar boson (of mass well
below 1 TeV) will exist, or the weak interactions
above about 1 TeV will exhibit attributes of a
strongly coupled theory: resonances of inter-
mediate vector bosons, multiple production of in-
termediate vector bosons, etc.

If the Higgs boson is not very massive, say with
a mass between 4.5 GeV/c' (the Linde-, Weinberg
lower bound') and 2M~, we expect it to have the
properties outlined by Ellis, Gaillard, and

Nanopoulos. ' We shall explore in this paper the
possibility that the Higgs-boson mass lies above
the thresholds for decay into intermediate boson
pairs. In this regime the decays H-W W- and H
-Z'Z' are the dominant modes, with longitudinally
polarized intermediate bosons increasingly favored
as MH increases. As MH approaches the critical
rriass M„ the Higgs-boson width approaches its
mass, signaling a strongly coupled theory.

Because we wish to explore a regime in which
the weak interactions can become strong, it is nat-
ural to approach the problem from an S-matrix
point of view with a particular concern for unit-
arity. Our treatment provides a systematic in-
vestigation of the minimal Weinberg-Salam theory
from this point of view. In Sec. II we discuss and
calculate in tree approximation the Weinberg-
Salam model amplitudes for all two-body reactions
of gauge bosons with zero total electric charge in
the s channel. We display only those terms that
are potentially relevant to the question of unitarity,
omitting, for example, terms which are of or-
dinary electromagnetic strength at all energies.
Logarithmic violations of unitarity that occur at
exponentially high energies -M~e' will be of no
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concern to us here.
By focusing only on those amplitudes that con-

stitute a potential threat to unitarity one finds a
remarkable simplification of the problem. The
relevant amplitudes are those which involve only
longitudinal gauge bosons and the Higgs boson.
The system of these particles is the subject of Sec.
III. There it is shown that at energies large com-
pared with the intermediate-boson mass, this sys-
tem is a clear reflection of the underlying Higgs-
Goldstone system of the Weinberg-Salam model,
with the longitudinal W', W, and Z' behaving much
like the the Goldstone bosons from which they
sprang. Up to terms of order M~/vs, the S mat
rix for W~, Z~, and H (the subscript L denotes
longitudinal polarization) is identical to that for the
self-interactions of a complex doublet of scalar
particles, as we show in detail in an appendix.

Consequently exploration of the issue of unitarity
and of the strength of high-energy weak inter-
actions reduces to the study of a set of strongly
coupled self-interacting scalar fields. In Sec. IV
we pursue this issue using the N/D method. Sec-
tion V contains some aspects of the phenomenology

of heavy Higgs particles together with a discussion
of our results.

or at exponentially large energies) for any value of
the Higgs-boson mass. Of the surviving channels,
one (HZ~) is isolated and three (W~W~, Z~Z~, HH)
are coupled. We will first describe the 3 x 3 t mat-
rix for the latter system. Then we demonstrate
that all other channels decouple. In keeping with
our S-matrix approach, all calculations in this sec-
tion are done in the unitary gauge.

a z = A (q/M~)4+B (q/M„)'+ C, (2.1)

where the partial-wave amplitude a~ is defined
through

T(s, t) = 16@g(2J+ 1)a~(s)P~(cos8) . (2.2)

WL W~ -+ WL WL

For this case alone we shall detail the interplay
of the several Feynman graphs that make up the
tree approximation to the scattering amplitude. '

It is convenient to classify the cancellations am-

ong the tree graphs according to the power of

(q/Mv) which enters, where q is the c.m. mo-
mentum of the gauge bosons. The high-energy be-
havior of the individual graphs in Fig. 1 is at worst
~ (q/M~)'. Consequently the contribution of each
graph to the Jth partial wave may be written as

II. GAUGE-BOSON SCATTERING IN

THE WEINBERG-SALAM MODEL

We will refer to the coefficients in (2.1) as A, 8,

Our presentation will center on the helicity am-
plitudes for two-body reactions of gauge bosons
with zero total electric charge in the direct chan-
nel. In this section we shall discuss all such am-
plitudes, retaining those terms which are poten-
tially relevant to the issue of unitarity. For our
purposes, contributions which are manifestly of or-
der n or less at all energies can safely be disre-
garded. A nonexceptional value of the weak-inter-
action angle 6)~ is inferred from experiment. "
Thus all gauge coupling constants are assumed to
be of order o. ' '. It will be seen that neglect of the
innocuous terms dramatically reduces the number
of amplitudes which must be considered, so that a
complete treatment becomes quite manageable.

The particle content of the Weinberg-Salam model
includes three massive intermediate bosons ( V)
—= (W ', W, Z '), a neutral Higgs particle (H), the
photon (y), and a lepton doublet (e, v). We include
the last only to dismiss it from our considerations.
Counting all helicity states, there are 39 neutral
two-particle channels: W'W- (9), ZZ (9), HH (1),
HZ (3), yy (4), yZ (6), yH (2), ee (4), and vv (1).
We will find that, within the approximations out-
lined, all but four of these channels decouple in the
sense that the partial-wave amplitudes are small
at all energies (except very near the particle poles

Z' Z

I

H
I

FEG. 1. Feynman graphs (in the unitary gauge) for the
reaction W+ W —W+ W".
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and C forces„and refer to a force as attractive or
I epulsive if the coefficient is positive or negative.
It will be convenient to define the dimensionless
weak coupling analogous to the fine-structure con-
stant

a ~ = G~M~ '4 2 -/m = o, /sin'8~. (2.3)

All the divergent high-energy behavior of the
graphs in Fig. 1 is confined to the 4= 0, 1, and 2

partial waves. In each case the vanishing of A for-
ces results from a gauge cancellation among the
contact graph and the s- and t-channel (y+Z) ex-
changes. In the J = 2 partial wave the cancellation
of 8 forces is also pure gauge. For the J = 0 and 1
partial waves the 8-force cancellations involve the
Higgs boson in an essential way.

Having noted the disappearance of all high-en-
ergy divergences, we are led to consider the sur-
viving C-force terms which have acceptable asym-
ptotic behavior but are not necessarily small. It
will be convenient for us to present here the in-
variant amplitudes, deferring the partial-wave
projections to Sec. III. The C forces contributed by
the contact graph and by the y and Z exchanges are
of order o ~ at (almost) all energies and hence zero
in our approximation. In contrast, the Higgs-ex-
change graphs produce C forces which can be of or-
der unity for large enough Higgs mass. Thus for
our purposes the full amplitude is given by the C-
force terms of the s- and t-channel Higgs exchange
graphs,

i,H(3) H(4)~.

H
/

~ H(l ) H(2}

.,H(5) H(4)i
/

Y

~H
I

r
H( l) H(2) '

+ H(4) H(5) r
/

H
Jlr

~ H(l) H(2) ~

HQ) H(4) r

/

'H( I ) H(2)

FIG. 3. Feynman graphs (in the unitary gauge) for the
reaction HH —HH.

Having traced the pattern of cancel. lations of di-
vergences in the graphs for W~W~- 8'~W~, we
would serve no useful function by describing in
similar detail the cancellations for other processes.
We focus instead on the heart of the matter,
namely the convergent C-force terms. For the re-
action Z~Z~ -Z~Z~ there are three graphs shown
in Fig. 2, the s-, t-, and u-channel Higgs-boson
exchanges. The resulting amplitude is

T(Z~Z~ -Z~Z~)

T(W~W j W~W1) = —M2G~M„'

s
s —Mz-' t —M„2

(2.4)

s —M~ t —M~ u- Mg

The four graphs in Fig. 3 contribute to Higgs-
boson elastic scattering. In this case the eval-
uation of the amplitude involves no cancellations.
The result is

T(HH HH)

3 M2G, M,'

3M„~ 3M„' 3M„'
(2 6)

s —M p t —M~ u —Mg-'

FlG. 2. Feynman graphs (in the unitary gauge) for the
reaction ZZ —ZZ.

The four graphs contributing to this process are
shown in Fig. 4. The only non-negligible C force
arises from the s-channel Higgs exchange, which
gives

T(Z,Z, -W;W;)= M2G M„' ', . (2.7)~ s —M~
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I
I

iH
I

FIG. 4. Feynman graphs (in the unitary gauge) for the
reaction ZZ W+ W

Each of the four graphs in Fig. 5 contributes a
nonvanishing C force. The Feynman amplitude is

T(HH —Wi Wi)

= —M2G~M

s —M2 t —M2 u —M~

where the four terms emerge from the contact
graph, the s-, t-, and u-channel Higgs exchanges,
respectively.

The Feynman graphs and the results are identical
in form to those for HH - W~ W~:

T(HH —Z~Z~)

=- M2G M

Higgs mass for which unitarity bounds may be ap-
proached or surpassed in longitudinal amplitudes
are such that M„'/s, Mv'/M„' s 8(o.v). In this re-
gime the transverse amplitudes are of relative or-
der a~ ', where n is the number of transversely
polarized particles involved in the reaction. All
such amplitudes are therefore negligible under the
conditions of interest to us. These assertions can
easily be verified by direct calculation, but the
conclusion that transverse channels decouple also
follows as a corollary to the discussion in Sec. GI.
There it will be argued that our approximations are
leading us back to the underlying Higgs-Goldstone
system of the Weinberg-Salam model.

Turning to the HZ~ channel we observe that the
elastic amplitude for HZ~ -HZ~, which is obtained
by crossing from (2.9), does have nonvanishing C-
force terms. However, the off-diagonal amplitudes
are negligible. The HZ~ channel is thus isolated
from the other channels of interest discussed ear-
lier. To see that HZ~ decouples, note first that the
reactions HZ —ZZ and HZ -HH do not occur at tree
level. Evaluation of the amplitude for HZ~ -W~W~
involves some intricate but by now familiar cancel-
lations among s-channel (y+ Z) exchange and
crossed-channel W exchanges, and leads to an am-
plitude which is negligible in our approximation. A

group-theoretic argument for the isolation of HZ~
will be presented in Sec. III.

Concerning the leptonic channels ee and vv, the
only processes of conceivable relevance to the pre-
sent discussion are of the general type ll —V~ V~.
We shall describe the calculation of e'e - W~W~
in full; other reactions of the class are also incon-
sequential for similar reasons. For leptons of op-
posite helicity, the t-channel v-exchange graph gen-
erates B-force terms which are confined to the

3M„' M„' M~'
(2 9)

s -Me' t-Mz' u-Mz'

7. Decoupled channels

We shall first dispose of all channels which in-
volve one or more transversely polarized inter-
mediate bosons. Processes involving HZ~ and lep-
tons will be dealt with separately. The channels
with transversely polarized vector particles are
unimportant for unitarity considerations because
the corresponding tree graphs have softer high-en-
ergy behavior, graph by graph, than those for long-
itudinal polarization. By the nature of the gauge
cancellations, this translates into the absence of
any residual C forces which are potentially strong
(i.e. , of order unity). The values of the energy and

//

/ H(l) H(2) '.

I
I

/ 'll,

/I
H(I ) H(2)

r H(l)

V

H(2)'
rr

' H(l) H(2) &

FIG. 5. Feynman graphs (in the unitary gauge) for the
reactions HH —W+ W and HH ZZ. Here the symbol
V denotes a generic intermediate boson.
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J= 1 partial wave. These terms are exactly can-
celed by the s-channel (y+Z) exchange. By now it
is evident that in order to obtain a potentially in-
teresting amplitude we must produce a factor of
MH'. Since the Higgs boson in the direct channel
can play no role at all in the J= 1 partial wave, no
such factor is forthcoming and the amplitude is neg-
ligible. The Higgs boson does become involved if
the leptons have the same helicity. In this case the
v- exchange graph produces a divergent high-energy
behavior in the J= 0 partial wave which must be
cancelled by s-channel Higgs exchange. However,
the lepton mass factors in the Higgs-fermion-fer-

mion coupling make the resulting amplitude utterly
negligible.

We have now shown that the question of unitarity
in the tree-graph approximation to the Weinberg-
Salam model reduces to the study of a 3 x 3 matrix
of amplitudes for the channels W~W~, Z~Z~, and
HK (along with the isolated HZ~ channel). In the
following section we discuss the relevant am-
plitudes further, derive a high-energy unitarity
bound which sets a conditional upper limit on the
mass of the Higgs boson, and relate the results to
the Higgs-Goldstone system of the Weinberg-
Salam model.

III. PARTIAL-WAVE UNITARITY, THE HIGGS-BOSON MASS, AND THE HIGGS-GOLDSTONE SYSTEM .

(3.la}

By taking partial-wave projections of the Feynman amplitudes (2.4)-(2.9),we can construct the elements
of the coupled-channel t matrix for the J=0 partial wave. Assuming s, MH»M~ Mz we have

G M M Ma(W'W -W'W )= r " 2+ " — "ln 1+s —M' s MH

G M M 2M ~

M„
GM2 9M2 y8M ~

8@v 2 s —M„s—4M„MH
GM2 M

ao(Z~Z~ W~W~) = r " 1+
s

a, (HH- W~W~) =a,(HH-Z~Z~)

Bvv 2
' s —M„' [s(s —4M„'}]'~~ 2M„'

(3.1b)

(3.1c)

(3.1d)

(3.1e)

—GM2 M2
a,(HZ~ -HZ~) =

8vM2 s

a,(HZ~ -HH) = 0, ao(HZ~ -Zzz~) = 0, a,(HZ, —W;W;) =0.
(3.1f)

(3.1g)

We first consider the effect of the elastic unit-
arity condition for the reaction W~ WL —W~ W~,

ia, (W;W; —W;W;)
i
=1. (3.2)

At energies far above the Higgs pole the amplitude
(3.1a) approaches a constant,

—GpMH
ao(W~W~ W~ W~) 4m' (3.3)

Consequently, in order for the tree approximation
to respect the unitarity bound at high energies the
Higgs-boson mass must satisfy

4~F2
G~

(3.4}

The nature of this upper bound is to delimit the
class of weak-interaction theories in which low or-

ders of perturbation theory are expected to be a re-
liable guide to physical phenomena.

The behavior of ~a,(W ~w~ WW )~~is shown in
Fig. 6 for Higgs-boson masses well below and at
the critical value (3.4). If M„ is substantially less
than the critical value, the magnitude of the am-
plitude is well within the bound (3.2) everywhere
except near the Higgs-boson resonance pole, where
finite-width corrections are sufficient to rescue the
bound. In contrast, if MH attains or exceeds the
critical value, the unitarity bound will be violated
by the tree approximation at all energies above the
Higgs-boson pole. Higher-order effects will nec-
essarily become important at high energies, and
high-energy weak interactions take on considerable
added richness.

It is possible to refine the bound (3.4) somewhat
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2.0

1.0
O

WL WL
—

WL WL
we want to clarify the reason that the four channels
WJ W~) (I/M2)ZzZ~, (I/M2)HH, and HZ~ stand so
clearly apart from other neutral two-body channels
for s» M~', Mz'. The basic point can be made by
direct computation. Consider the Lagrangian for
the Higgs sector of the Weinberg-Salam model be-
fore the gauge couplings are turned on,

(3 7)

where P represents a complex scalar doublet

0.5—
GeV/c (3.8}

0
0

s/M~

Shifting the origin of fields in the usual way, we
find that (3.7) describes a theory with three mass-
less Goldstone bosons (w', w, z') and one massive
neutral particle (h) which interact according to

FIG. 6. Sketch of the energy dependence of the J=o
partial-wave amplitude for elastic scattering of long-
itudinally polarized W bosons for two choices of the
Higgs-boson mass. For Mz & (47rW2/GF)' the partial-
wave unitarity bound (ao~~ 1 is violated for s &M~ .

by considering the requirements of partial-wave
unitarity on the four-channel system consisting of
W~W~, (I/v 2 )Z~Z~, (1/v 2 )HH) and HZ~, with
amplitudes given by (3.1). For s»M„' each am-
plitude approaches a constant, so the 4x 4 t matrix
takes the form

—GFM
0 g~hl&& 4

1 1

v8 M8

1 3 1 0
4 4

1 1 3 0
4 4

(3.5)

0 0
1

0
2

ae matrix t, has eigenvalues &, —,', —,', —,', in units of
—GzM„'/4nM2, correspond'ing to the (unnor-
malized} eigenchannels 2W~W~+Z~Z~+HH,
2W~W~ —Z~Z~ —HH, Z~Z~ —HH, and HZ~. It is
striking that we arrive at a t matrix with such a
simple eigenchannel structure, and we will expose
the reason for this simplicity later in this section.
The most stringent unitarity bound on (3.5) is de-
rived from the requirement that the magnitude of
the largest eigenvalue not exceed unity. This is en-
sured by the restriction on the Higgs-boson mass,

2, = —Xvh(2w 'w +z'+ h'}

——,
'

A.(2w'w +z'+ h')', (3.9)

where v' =i}.'/X. In the language of the full Wein-
berg-Salam theory, v and A. are related to the
Fermi constant and the Higgs-boson mass by

I/v'=G„v 2,
GFMP

}}2

(3.10)

When the gauge couplings are turned on, the Gold-
stone bosons mix with the longitudinal components
of the vector bosons. The masses acquired by the
Goldstone bosons in the course of this mixing are
gauge-dependent. We find it expedient to adopt the
't Hooft-Feynman gauge, " in which the masses of
m' and z are Mgp and Mz respectively.

The S matrix for the scalar theory of (3.9) is
easily calculated in tree approximation. Feynman
graphs for the neutral two-body channels are shown
in Figs. 7-11. The resulting amplitudes are

T(w' — ' }= ))Gw})„',~,),S t

(3.11a)
T(zz -zz)

S t Q

(3.11b}
T(hh —hh)

3v2G M„'

M '~ —=M ' —(1 TeV/c )H 3G c
F

(3.8)

Further assessment of the meaning of this result
and the various possibilities that follow from it
will take up the succeeding sections. At this point

T (z z -w'w }= —M2 G~ z'~s —M„''

(3.11c)

(3.1 ld}
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.h(a) h(4),
/'
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/
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/

'h(i) h(2)
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h(5) h(4) ~

/
/

/
Y

I

I

jh
I

/

/

h(l) h(2) '

.h(4) h(&).

/

h

~ h(i) h(2) ~

,h(S) h(4),

X
/

' h(l ) h(2)'

FIG. 7. Feynman graphs for the reaction w+w w+w
FIG. 9. Feynman graphs for the reaction hh hh.

T(hh —xo'w )

T(hz —hz)

=- v 2 G~„'

T(hh -zz)
= —M2G~„

(3.11e}
T(hz —w'w ) =0,

T(hz -zz) = 0,

T(hz —hh) = 0.

(3.11g)

(3.11h)

(3.11i)

(3.11j)
3M ' M,'

M 2 t —M u —M
H

gz(3

I

I

'h
I

(3.11f)

Comparing these amplitudes with those calculated
in Sec. 0 for physical gauge-boson scattering we

observe that the amylitudes (2.4)-(2.9}which de-
scribe the high-energy limit of the full theory are
identical to the corresponding amplitudes for the
scalar theory. We are led to the following:

Theorem If T(Wz; W. z;Zz;H) is an amplitude
for scattering of longitudinal intermediate bosons
and physical Higgs particles in the Weinberg-Salam
model and if T(au';&a;z;h) is the analogous am-

FIG. 8. Feynman graphs for the reaction zz zz.

z

FIG. 10. Feynman graphs for the reaction zz w+u
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(~~s~+~~s) /2 ~(s) )
I;0=

&(*) l&(~) &(~))
(3.14)

(3.15)

B(s) = ~" 1 — " ln 1+
Bv~2 . s M»

(3.16)

FIG. 11. Feynman graphs for the reactions hk ge+u

and Ah zz. Here the symbol v denotes a generic Gold-
stone boson.

plitude for the scalar field theory described by
(3.9), in the 't Hooft-Feynman gauge, then for s
&& M~, Mz,

T(W ~; W ~;Z~; H) - T(w'; w; s; h)+ 0 (M~/Ms ).

(3.12)

The theorem stated in (3.12) is a lemma used in

showing that spontaneously broken gauge theories
comprise essentially all renormalizable massive
vector-boson theories, "apart from electro-
dynamics with massive photons. We supply a for-
mal demonstration in the Appendix.

The identification of the physical Weinberg-Salam
model amplitudes which are dominant at high en-
ergies with the amplitudes of the underlying Higgs-
Goldstone system enables us to understand the sim-
ple eigenchannel structure of the high-energy t
matrix. This structure is a manifestation of the
symmetries of the Higgs-Goldstone interaction
Lagrangian (3.9) which controls the high-energy
limit. (In this limit the mass terms are irrel-
evant. ) Consider first the exact O(3) symmetry of
the interaction Lagrangian (3.9) in the space lab-
eled by sv„av„and z, where

The eigenvectors of the matrix (3.14) correspond
to the channels 2w'w +zz (I= 0) and w'w —zz (I= 2),
with eigenvalues &A, +8 and B, respectively. The
isovector state is excluded by statistics from the
J= 0 partial wave. The exact isospin symmetry of
the interaction Lagrangian also explains the ab-
sence of off-diagonal processes involving hz. We
assign even charge-conjugation parity to all the
Higgs-Goldstone particles and define a 6 parity
which is even for h and odd for w', sv, and z. The
hz channel is the only neutral two-body channel
with odd-G parity and is thus isolated.

At energies very large compared with the Higgs-
boson mass the trilinear term in the interaction
Lagrangian (3.9}becomes ineffectual (contact
terms dominate pole graphs at the tree level), so
the theory displays an asymptotic O(4) symmetry.
The fields m„se2, z, and h form a four-vector in
O(4} space. The Clebsch-Gordan reduction ap-
propriate to two-particle states is

484=98661, (3.17}

corresponding to a symmetric traceless tensor, an
antisymmetric tensor, and a scalar in the O(4)
space. The antisymmetric 6 representation does
not occur in the J=0 partial wave because of sta-
tistics. Adopting the notation

(3.18)

we may write the singlet representation in the two-
particle basis as

(3.13) = 2$0+tv +zg + f/@ (3.19)

In isospin language, k is isoscalar and u, so", and
s are isovector. The O(3) symmetry emerges in
the structure of the 2 && 2 t matrix for the channels
w'w and (I/M2)sz or, equivalently, W~W~ and

(I/v 2 )Z+Z~. For the 8= 0 partial wave, we read
off from Eqs. (3.1a), (3.lb), and (3.ld) the form

(9)(~-—4(4~ ——,
' 5)~(1). (3.20)

The singlet corresponds to the eigenvector of the
f matrix with the largest eigenvalue —,

' x ( G+M„'/
4vv 2 ) . Of the elements of the nonet, three denote
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channels that are electrically neutral. It is con-
venient to choose the combinations

(9)»+ (9)~= —w'w + z zz + z hh,

(9)„—(9)„=zz —hh,

(9)„=hz,

(3.21a,)

(3.21b)

(3.21c)

which correspond to the three eigenvectors of the t
matrix (3.5) with common eigenvalue z x ( —GzM„'/
4vv 2 ). This completes the demonstration that the
structure of the physically interesting t matrix is a
reflection of the asymytotic symmetry of the under-
lying Higgs- Goldstone theory.

IV. PROPERTIES OF STRONGLY COUPLED

HIGGS-GOLDSTONE SYSTEMS

We have demonstrated that the Higgs-boson mass
is the gauge theory parameter which governs the
strength of weak interactions at high energies. If
1llH is small compared with the critical mass given
by (3.6), partial-wave unitarity will be respected
by the tree diagrams for gauge-boson scattering at
(almost) all energies. Weak interactions may
therefore remain weak at all but a few exceptional
energies, in that higher-order corrections to scat-
tering amplitudes will be negligible. On the other
hand, if M„ is coLnyarable to or greater than the
critical value of 1 TeV/c', weak interactions among
gauge bosons necessarily become strong in the TeV
regime. The proved unitarity and renormalizability
of gauge theories ensure that when partial-wave
unitarity is violated by tree graphs, higher-order
diagrams will come to the rescue. However, the
problem of sorting out the consequences of a
strongly coupled theory by field theory techniques
is not one we can solve at yresent.

We have relied so far uyon S-matrix techniques,
with partial-wave unitarity ylaying a central role.
It is therefore natural to investigate the strong-
coupling situation by means of a venerable device
from the S-matrix theory of strong interactions,
the N/D method. " This technique provides a, pre-
scriytion according to which analytic partial-wave
axnylitudes which satisfy unitarity constraints can
be constructed. We shall ayply it to the Higgs-
Goldstone theory specified by (3.9), the behavior of
which should give a reliable indication of corres-
ponding phenomena in the Weinberg-Salam model.
Our rudimentary calculations are exploratory rat-
her than definitive, but they suggest a possible
viewpoint regarding the heavy-Higgs-boson alter-
native.

Our concern is the behavior of the theory when
the Higgs boson h becomes very massive while the
Goldstone particles av, zo, z remain massless. In
terms of the parameters of the interaction Lag-

rangian (3.9), this is the regime X 1 with v fixed.
Under these conditions the yarticle h is highly un-
stable against decays into channels with two or
more Goldstone bosons. It is therefore ayyropriate
to consider only the two couyled neutral channels

and zz. The O(3) symmetry of the interaction
Lagrangian (3.9) then separates the coupled-chan-
nel problem into two single-channel problems for
1=0 (2w'w +zz) and I= 2 (w'w- —zz).

In the tree apyroximation the J= 0 partial-wave
amplitudes are given by (3.14) as

a"="(s)= 2A(s) yB(s),

a"="(s)=B(s),

(4.1)

(4.2)

where A(s) and B(s) are defined by (3.15) and

(3.16). At low energies s «M„' the isoscalar inter-
action

aoto~(s), „= a G~/8vM2

is attractive, while the isotensor interaction

a,"'(s) =, —Gzs/16vM2
@%can H

(4.3)

(4.4)

is reyulsive and half as strong. Both amplitudes
grow linearly with s until energies comyarable with
M„are reached. This brings to mind the yos-
sibility that if M„ is chosen very large there may
appear a scalar, isoscalar bound state which would
serve as a low-mass Higgs boson for yhenomeno-
logical yuryoses. This intriguing possibility is not
excluded by the crude calculations we are about to
discuss, but we have no arguments for its inevit-
ability. Indeed, our investigations suggest that
unitarity forces a very massive Higgs particle pole
to migrate into the complex s plane far from the
physical sheet, so the I= 0, J= 0 channel becomes
nonresonant.

A number of important caveats are in order be-
fore we pursue this discussion any further. As we
have applied it, the N/D technique is an imple-
mentation of elastic unitarity which should be lim-
ited in validity to the region 4M~'&s &16M~'. Fur-
thermore, the solutioa we shall describe is the
first-order determinantal approximation"a" which
is likely to be inadequate for very strong couylings.
While both of these approximations could be im-
proved, our very rough computation has revealed
nothing which motivates us to undertake a more
thorough exploration of the strongly coupled system.

We display in Fig. 12 the motion in the comylex s
plane of the second-sheet pole of the unitarized am-
plitude as a function of the input mass of the Higgs
boson, with M~= 60 GeV. As the inyut mass is in-
creased, the output resonance migrates into the
complex plane, acquiring a width comparable to its
mass.

The solution to the N/D equations gives no signal
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FIG. 12. Trajectory in the complex s plane of the
second-sheet pole of the unitarized I =0, J =0 ampli-
tude as a function of the input mass of the Higgs boson.
The intermediate boson mass is fixed at 60 GeV/c .
Tick marks along the trajectory denote the input Higgs-
boson mass in units of GeV/c~; s is expressed in units
of TeV .

to-back jets of hadrons in the Higgs-boson rest
frame. The discovery of a light Higgs particle will
be an indication that weak interactions remain weak
at nearly all energies. In that case a perturbative
treatment of interactions among leptons, inter-
mediate bosons, and the Higgs boson is adequate to
develop the consequences of the theory. An ex-
haustive phenomenological portrait of a light Higgs
boson has been given by Ellis, Gaillard, and Nano-
poulos.

The conditional upper bound (1.1) on the Higgs-
boson mass leads us to contemplate the heavy-
Higgs-boson alternative, M~&2M~. A Higgs boson
in this mass range has the striking property that it
decays almost exclusively into pairs of inter-
mediate bosons. If the mass of the Higgs boson is
substantially less than the critical mass, say 2M~
&M„~ 600 GeV/c', we expect that perturbative es
timates of the production and decay rates should be
reliable. For the intermediate boson decay modes,
we find

r(H-W W-) G,M,' (1 x)'~'
M„8n'M2 g

(5.2}

that a light, scalar bound state will be generated by
unitarity. However, because the approximate sol-
ution becomes untrustworthy in the regime of very
large input masses (hence very large couplings and

very many coupled channels), the bound state pos-
sibility has not been excluded. It goes without

saying that the problem of a very strongly coupled
Higgs-Goldstone system remains open.

V. DISCUSSION

Even within the restrictive framework of a min-
imal SU(2) SU(l) gauge theory there is a broad
range of possibilities for the behavior of weak in-
teractions at very high energies. In the Weinberg-
Salam model, in addition to the gauge couplings and
the weak-interaction angle 8~ which are fixed by
low-energy phenomenology, there enters as a free
parameter the mass of the Higgs boson. It is nat-
ural to classify the possibilities for high-energy
behavior in unified theories as light-Higgs-boson
theories, with M~& 2M~, and heavy-Higgs-boson
theories, with M~& 2M~.

In a light-Higgs-boson theory, the Higgs boson
will decay into ordinary fermion pairs, with heavy-
lepton pairs and heavy-quark pairs the preferred
decay modes. The partial widths (well above thres-
hold) are given by

r(H-ff )=G m&'M„/4vv 2 . (5.1)

Decays H-qq are expected to be observed as back-

r(H-Z Z') G,M,' (1 x)'~'
M~ 16'~

(5 2)

where x=4Mv'/M„' and x'=4Mx'/M„'=x/cos'8~.
The resulting partia1 decay widths are shown in
Fig. 13. It is amusing to note that because of its
peculiar decay properties, a heavy Higgs boson
may have a more distinctive experimental sig-
nature than a light one. The chain

a-zoz o

l'l

would be rather unmistakable.
A variety of production processes for the heavy

Higgs boson may be considered. We have found
none which promise copious production, so our dis-
cussion will be brief. The rate for Higgs formation
in e'e- collisions is

4v r(H-e e-}
M„' I'(H — 11}

5 x 10 ' cm' I'(H —e'e )
(M„/1 GeV/c')' I'(H —all)

(5.4)
a discouraging prospect [because of (5.1)) even for
relatively light Higgs bosons. For colliding pp or
pp beams, in which an analog of the Drell- Yan pro-
cess may operate, we estimate that
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IOOO over to hadronic collisions as a rough guide. We
then have, as an order-of-magnitude estimate,

o(p'p-HZ+ anything}
o(p~p- p, 'p. +anything)

(5.9)

200—

0 IOO—
0)

50—

20-

I

IOO 200 500 IOOO I500
M„(GeV/c )

FIG. 13. Partial decay widths of the Higgs boson into
intermediate vector-boson pairs versus the Higgs-boson
mass. For this illustration we have taken M~
=60 GeV/c and Mz=77 GeV/c .

o(p'p-H+ anything) I,
o(p'p-W+ anything) M„

(5 5)

where the cross section for W production is to be
evaluated at "M~"=M» and n~, is the quark mass.
This too is likely to be a feeble rate, since the
cross section for W production is now expected" to
be less than 1032 cm2 even for Mv2/s «1.

More promising is the production of H in as-
sociation with an intermediate boson. A simple ex-
ample is the reaction

e+e Zv], t~~ ZH,

which occurs with a cross section'

(5.6)

o(e'e--HZ) (1 —4xv+8xv')
o(e'e-- p, +p ) 128x'(1 —xv)' (5 8)

from below. For 0.3&x~&0.4, the ratio is asymp-
totically about 9%. This result can be carried

vn ~ (K+3Ms) (1-4xv+8xv')
24 ~s (s —Ms')' xv'(1 —xv)'

(5.7)

where x~= sin'0~ and K is the c.m. momentum of
the emerging particles. At very high energies, for
which 2K-Ms, the ratio

where HZ and p, 'p, production are compared at the
same invariant mass.

Adopting a somewhat broader view than we have
taken earlier in this article, we may envision three
major possibilities for the evolution of weak inter-
actions at very high energies. " The first option is
that no intermediate bosons exist, in which case
weak interactions among leptons or among quarks
are expected to become strong at c.m. energies ex-
ceeding about 300 GeV. A second is that inter-
mediate bosons exist, but are not described by a
renormalizable theory with gauge couplings. Weak
interactions among leptons or among quarks would
never become strong (except at resonance poles or
exponentially high energies}, but unitarity at very
high energies would have to be salvaged by strong
interactions among the intermediate bosons. ' The
final option is the one most attractive to us, namely
that weak (and electromagnetic) interactions are
described by a renormalizable gauge theory.
Apart from exceptional energies, the weak inter-
actions among leptons or quarks would always re-
main weak. We have shown by explicit calculation
of gauge-boson scattering amplitudes in the Wein-
berg-Salam model that if the Higgs-boson mass ex-
ceeds a critical value of about 1 TeV/c', weak
interactions among W', Z, and H must become
strong in the TeV energy regime. It is then likely
that familiar features of the strong interaction at
GeV energies such as resonance formation and
multiple production would come to characterize the
interactions of gauge bosons. If instead the Higgs-
boson mass is small compared to 1 TeV/c', weak
interactions among all particles may remain weak
at all unexceptional energies.

We interpret the bound (1.1} in much the same
way as Veltman' has interpreted the results of his
related investigation: We find it appealing to be-
lieve that new phenomena are to be found in the
weak interactions at energies not much larger than
1 TeV, in addition to the anticipated discovery of
the intermediate bosons. Either a light Higgs
boson will exist or weak interactions will approach
the richness and complexity of low-energy strong
inter actions.
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APPENDIX

The substance of this Appendix is implicit in Eq. (19) of Ref. 12. However, for completeness we present
the argument in the framework of gauge field theory.

We consider the generating functional of Green's functions

d(d, ]=—(~f (dV, dd )eed('(d„, (V„,d, . . .]ef d'ed V )]Ile(e V„'Md) (A. l)

from which connected Green's functions with external longitudinally polarized vector bosons are obtained by

functional differentiations with respect to the source J~. Here we suppress the group index, so that V„and
(t) stand collectively for W'„, and Z„, and for se and s, respectively, with appropriate mass M. The con-

straints"

8~V +iMQ=O (A.2)

define the 't Hooft-Feynman gauge, and the effective action S,f~[V, (]]). . .] includes the Faddeev-Popov

term "
The longitudinal vector field V~ is defined as

V (k)=e'V„(k), &" = (~k~, kok), (A. 2)

where k„ is the four-momentum carried by the vector boson, and V, (k) is the Fourier transform of V, ( ).
Equation (A.2) states that

V„(k)= P (k), (A.4)

while Eq. (A.S) implies

(A. 5)

Thus, Eq. (A. l) may be cast in the form

z[d ]=—')ef ( dv dd)ex„p (]„1, („v, ,d. . .] fed'ez ( —'e)'d(e)+0 —]] 115(e"v„+(Md). (Ae)
ko

In vector-boson scattering, all ko's are of order Ms, and we obtain the result of CornwaB, Levin, and

Tiktoyoulos, "that

T(V 's ) = T((ts) +)O(M/v s ) (A.7)

for large s, s»M'.
Inclusion of the physical Higgs bosons as external lines in the T matrix does not alter the above discussion.
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