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We demonstrate explicitly that R parity (Rp) can break spontaneously in a simple extension of the minimal supersymmetric 
standard model (MSSM) proposed previously. For suitable values of the parameters of  the low energy theory, consistent with 
observation, the energy is minimum when both R parity and electroweak symmetries are spontaneously broken. The R-parity 
breaking scale typically lies in the phenomenologically interesting range ~ I 0 GeV-1 TeV. 

1. Introduction 

The minimal supersymmetric standard model (MSSM) assumes a discrete symmetry called R parity [ 1 ] 
related to the spin (S), lepton number (L),  and baryon number (B) according to Rp= ( - 1 ) (3B+L+2S). Clearly 
under this symmetry all standard model particles are R-even while their superpartners are R-odd. Also B and L 
conservation lead to R-parity conservation and imply that SUSY particles must always be pair-produced, the 
lightest of them being absolutely stable. 

Whether or not R parity is a good symmetry, and to what extent, is ultimately a dynamical question, which is 
sensitive to physics at a more fundamental scale. It is therefore of great interest to investigate alternative scena- 
rios where the effective low energy theory does not exhibit this symmetry. This interest is further enhanced in 
view of the fact that the associated effects may well be accessible to experimental verification [2-6 ]. 

Explicit R-parity violating interactions uCuCd c, lle c or Q ld  c may arise as residual effects from physics at a 
higher mass scale [ 7 ]. They involve many arbitrary low energy constants generically denoted 2, some of which 
induce proton decay and are highly constrained [ 8 ]. Additional restrictions may follow from cosmological ar- 
guments related to the baryon asymmetry of the universe [ 9 ]. Indeed, these interactions mediate B -  L violating 
decays of  squarks and sleptons such as tT--, aid,/7--, l'd, and [--, lu. At temperatures T above O (mw/C~weak), B- and 
L-violating transitions will occur rapidly [ 10 ] and may erase any primordial B-asymmetry, unless an excess of 
the anomaly-free B - L  symmetry existed at very early times. However, in this case it is crucial that this B - L  
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asymmetry not be eliminated through Rp violating interactions in the early universe, leading to a very stringent 
limit ;t ~< O ( 10- 7 ) ( r~/TeV ) ~/2 [ 9 ]. Barring the existence of additional symmetries that may protect this erasure 
of the primordial B - L  asymmetry by appropriate restrictions on the flavour structure of the Rp violating cou- 
plings [ 11 ] (and/or  the possibility of generating the baryon asymmetry at low energy [ 12 ] ) this bound holds 
generically and substantially restricts the prospects of detectability of  effects associated to explicit R-parity vio- 
lating interactions at collider experiments. 

On the other hand it seems reasonable to assume that, as all fundamental symmetries, R parity should be a 
manifest symmetry at the lagrangian level broken only by the ground state [ 13,14 ]. This provides a systematic 
way to include R-parity violating effects, that automatically respects low energy baryon number conservation. 
Moreover, it naturally evades the baryogenesis restrictions discussed above, to the extent that the breaking of R 
parity sets in only as an electroweak scale phenomenon. As a result these models naturally allow for the possi- 
bility of sizeable R parity violating effects [ 2,15 ]. 

There are two ways to spontaneously break Rp. I f  lepton number is part of the gauge symmetry there is a new 
gauge boson Z '  which acquires mass via the Higgs mechanism at a scale related to that which characterizes R- 
parity violation [ 15,16 ]. On the other hand, if spontaneous R-parity violation occurs in absence of an additional 
gauge symmetry, there is a physical massless Goldstone boson, called majoron (J)  [ 13 ]. Consistency with LEP 
measurements of the invisible Z width requires that R-parity breaking be driven by isosinglet slepton vacuum 
expectation values (VEVs) [ 14]. In this case the majoron is mostly singlet and the Z does not decayby majoron 
emission. Both mechanisms above require the existence of additional singlet leptons and lead to distinctive 
dynamical consequences, such as the existence of a new Z'  boson or of the majoron, absent in the simplest 
explicit breaking models. 

In this letter we consider in detail the question of spontaneous R-parity breaking in the simple extension of 
the minimal SUSY standard model proposed in ref. [ 14 ]. First we determine the extremum conditions of  the 
scalar potential and devise a strategy to search for the corresponding minima. We calculate explicitly the scalar 
mass matrices in the model and show that they are positive definite in all directions in field space, except for 
that corresponding to the majoron. This shows that, for a wide range of effective low energy parameters in the 
scalar potential these extrema are local minima and not saddle points. Moreover we evaluate explicitly the 
potential for these VEV configurations and show that it attains a value lower than that which would correspond 
to configurations where R parity and/or  electroweak symmetries are unbroken. This establishes that R-parity 
breaking can take place. Its characteristic scale can naturally lie anywhere in the phenomenologically interesting 
range 

VR = O ( 1 0  GeV-1 T e V ) ,  (1) 

with a correspondingly small VL in the range 

VL 4 0 (  10--100 M e V ) .  (2) 

There is a marked hierarchy in the values ofvR and VL, because vL is related to a Yukawa coupling h~ and vanishes 
as h ~ 0 .  This naturally suppresses stellar energy loss via majoron emitting processes [ 17 ] and leads to an 
explanation of the solar neutrino deficit [ 3 ], absent in the MSSM. Although minima will depend on parameters 
of the effective low energy theory, we conclude that for a wide range of suitably chosen values the energy is 
minimum when both R parity and electroweak symmetry are spontaneously broken. Moreover this symmetry 
breaking is consistent with all observational restrictions such as those that follow from SUSY searches at LEP 
as well as neutrino physics. 

2. The model and the scalar potential 

We consider the SU (2) ®U ( 1 ) model proposed in ref. [ 14 ] that is defined by the superpotential terms 
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h, u C Q H u + h a d C Q H a + h e e C l H a + f t H u H a + ( h o H u H a - e 2 ) ~ + h y C l H u + h ~ v C S + M v c S + M a ~ + 2 ~  3 . (3) 

The first five terms are the usual ones that define the Rp-conserving MSSM. The fifth term ensures that electro- 
weak symmetry breaking can take place at the tree level [ 18 ]. The last four terms involve isosinglet superfields 
that arise in several extensions of the standard model [ 19,20 ] and may lead to interesting phenomenological 
signatures of their own [ 19,21 ]. For our present purposes their presence is essential in order to drive the spon- 
taneous violation of R parity and electroweak symmetries in a phenomenologically acceptable way [ 14 ]. 

The superpotential in eq. (3) conserves total lepton number as well as R parity. The superfields (~,  v~, Si) 
are singlets under SU ( 2 ) ® U  ( 1 ) and carry a conserved lepton number assigned as (0, - 1, I ) respectively (all 
couplings hu, ha, he, h~, h are described by arbitrary matrices in generation space). Note that we have added 
some new terms that were not included in ref. [ 14 ] because they are allowed by our symmetries. The bilinear 
H,Ha term plays an important role in giving more flexibility in the minimization of the Higgs potential while at 
the same time obeying all experimental constraints, especially the chargino mass limit from LEP. The bare 
singlet mass terms ~ and v~S allow us to give an approximate treatment of  the neutral fermion sector but since 
they do not play any important role for our present considerations, they will be ignored. Similarly, we also take 
2 to be zero in our study. 

In order to find the minima of the potential we assume that colour and electric charge are not broken, in 
analogy with what has been verified to hold for a suitable range of parameters in the corresponding R-parity 
conserving model [ 18 ]. We also assume that the coupling matrices h~ o and h o are nonzero only for the third 
generation and set h~ =-hv33 and h = h33. With this assumption we are studying effectively a one-generation model. 
We are well aware that a phenomenologically consistent model requires the presence of flavour nondiagonal 
couplings such as hv23, needed in order to ensure that the massive v~ decays fast enough [22 ] so as to obey 
cosmological limits. This has been shown to be the case due to the existence of the majoron emission decay 
channel u~--, u~,+ J. However for our present purposes the effective one-generation model approach will be enough. 
To further specify the model we give the form of the soft SUSY breaking terms. The most general form of these 
terms in a spontaneously broken N =  1 supergravity model is 

V~oft = rho( - A h o  ~ H ,  H a -  BEZ~+ Ch~ ~C~H, + D h ~ ¢ S  + EftH~Ha +h.c. ) 

+r~21a .  lZ+rh21nal2+rh21~12+r~ ~ 0 ~ 2+r~2 ] I s lS I2+f f /2  [ cJ~J 2 (4) 

where we just considered the neutral scalars. Our soft breaking terms have the form expected in models with 
minimal N =  1 supergravity theories which, at the unification scale, are characterized by a universal, diagonal 
supersymmetry-breaking mass for the scalars (the gravitino mass) and by the proportionality of  the trilinear 
scalar terms to a single dimensionless parameter A 

C = D = A ,  E = A - 1 ,  (5) 

~. 2 .z. 2 ~' 2 -- rh 2R -- fft s = rn 2~ (6) t i t  u ~ l i t  d ~ I l r  L - -  . 

Moreover in this case the coefficient B appearing in the linear term in • is proportional to A - 2. At low energies, 
however, these conditions are not expected to hold when renormalization group evolution from the unification 
scale down to the electroweak scale is taken into account. In our study we allowed the values of the soft breaking 
masses to be different from their unification scale value r~o. We have kept however the values of B, C, D and E 
related as above. Moreover for simplicity we assume all parameters in the potential to be real. 

With the definitions above the full scalar potential along neutral directions is given by 

V l o t a  I = Ih~S+h ,~H~  ]2+ i ho ~bH, +/2H, 12+ I h~17~ 12 

+ l _hodPHd_fiHd+h.~OCl2 + } _hoH~Hd+h~C~_~2]2 + ihvOCH, j2 

+ r h o [ - A ( - h ~ ¢ S + h o ~ H ~ H a - h ~ H . ~  ~) + (1 -A)l?tH~Ha+ ( 2 - A ) E e r O + h . c .  ] 

+ ~ m 2 tz i l2+ot ( lH~l  2 -  IHal 2 -  Iz712)2, (7) 
i 
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where 1 2 ,2 "~ a =  ~ (g + g  ~ and zi denotes any neutral scalar field in the theory. 
We now state the symmetry breaking scenario outlined in ref. [ 14 ]. Electroweak breaking is driven by the 

isodoublet VEVs v~= <H,> and va= <Ha>, assisted by the VEV W of the scalar in the singlet superfield q~. The 
combination v z =v,2 + v~ is fixed by the W mass, 

mZw=½g2(v~ + v ~ + v  2) , (8) 

while the ratio of isodoublet VEVs determines the parameter 

tan/~= v, /va.  (9) 

With this pattern we will basically recover the standard tree level spontaneous breaking scenario of SU (2) ® U ( 1 ) 
in a SUSY version of the standard model. 

On the other hand the spontaneous breaking of R parity is driven by nonzero VEVs for the scalar neutrinos. 
The scale characterizing R-parity breaking is set by the isosinglet VEVs 

VR=<~>, (10) 

v~=<£>, (11) 

where K= ~-~R + V~ can lie anywhere in the range ~ 10 GeV-1 TeV. Here we define the angle 3 as tan 8= VR/Vs. 
A necessary ingredient for the consistency of  this model is the presence of a small seed of  R parity breaking in 
the SU (2) doublet sector, 

U L  ~--- ( ~ L x  > • (12) 

We will now sharpen the analysis of the minimization of the potential energy in this theory, starting from the 
extremization equations. 

The stationarity equations obtained by differentiating Vto,,~ with respect to all six independent variables va, 

v~, rE, VR, VS and vv, where these denote the VEVs of the neutral scalar fields Ha, H~, ~, ~ ,  S, q~ respectively. One 
obtains 

OV 

OVa 
= -- (Ahor~ovv+hhoVRVs-ho¢2)Vu 

- [ 2 a ( v ~ - v ~ - v ~ . ) - h o v . 2  2 r ~ _ ( h o v v  +~)2]va_h~VLVR(hoVF +l~)+ ( l_A)fitrhovu=O , 

OV 

Ov. 
-- - (AhorhoVF +hhoVRVs-hoe2)Va+ 2 a ( v  2 - v } -  v~_)v~ 

2 2  - 2  2 2  2 2  - [ - h o v a - m ~  - h ~ v L - h ~ v a  - (hovv+¢)2]v .+h~hVLVVVs+A~oh .VrvR + (1 -A)#~oVa = 0 ,  

OV 

0VL 
[ - 2 a ( v ] - v } - v [ )  2 2 z 2 - +h.VR +rh~]vL+Ar~oh~VuVR +h~hvuvvvs=O,  +h~v~-h~VRVa(hoVF+~) 

Ov 

0VR 
- ( A t f i o h V F - h h o v a v u - h E 2 ) V s +  2 2 2 z 2 2 2 2 ~2 (h v s + h  V F + h ~ v L + h ~ v ~ + m R ) V a  

+Ar~oh.VuVL--h~hoVaVFVL--h~vavL=O, 

OV 

OVs 
- - =  (ArhohVF - h h o v ~ V d - h ~ 2 ) V R +  (h2v~+h2v~+ rh~ ) v s+h .hv uVv VL =O ,  

(13) 

(14) 

(15) 

(16) 

(17) 
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OV 
- [hg(vZ, +v~)  + h 2 ( v ~  +v~)  +5/2]  vF - ~ o [ A h o v u v a - A h V R V s +  (A - - 2 ) e  2 ] 

0vv 

+h~vL(hV ,v s -hoVaVR)  + ho#(V~ + v}) = 0 .  (18) 

In order to find determine these VEVs one has in general to solve these equations for each set of input low energy 
parameters, make sure that their solutions are in fact minima and not saddle points, and that their energy is 
lower than that of other trivial solutions where either R parity or electroweak symmetry are unbroken. 

3. Strategy to find minima 

Instead of directly solving the above extremization equations, which are nonlinear in the VEVs, we prefer to 
evaluate the squared mass matrices of  the neutral scalars and study their positivity in the low energy parameter 
space. They are given in general by 

1 ( 02V ) 02V (19) 
MLj= +c.c. + o2, 

1 ( 02v ) °2v (20) 
M2° = - 2 \Oz~ Ozj +c.c. + 0zj 0 z ~ '  

where 

l 
zi = ~72 [Re(zi) + i  Im(zi)  ] . (21) 

As we assume CP conservation, the real and imaginary parts do not mix, so that the mass part of the potential 
energy reads 

Vmass = ½ Re(zi) M2ij Re(zj) + ½ Im(z~) M2o I m ( z : ) .  (22) 

The matrices obtained this way are 6 X 6 matrices with complicated entries, that we choose not to write explicitly 
here. In this model there are six CP-even and five CP-odd scalars, the last ones including the massless majoron, 
given by the imaginary part of 

v~_ ( v u H u - v a H a ) +  vL _ V ~ +  Vs - Vv z --~ v, - --~ S,  . (23) 

Although the explicit expressions for the masses in terms of the input parameters defining the low energy theory 
are quite involved, a fairly simple mass formula can be derived. From eq. ( 19 ) and eq. (20) we have 

T r M ~ = T r M  2+ ~ ( 02V ) 
i=1 \Ozi Ozj +h.c. . (24) 

Using the explicit form of the potential we get the last term in eq. (24) is j ust m 2, so that 

Tr m ~ =  Tr  m ~  + mZz , ( 2 5 )  

which nicely generalizes the corresponding sum rule of  the MSSM. 
In order for a solution of the extremization equations to be a minimum the eigenvalues of  the matrices MI 2 

and M~ must all be positive, with the exception of the would-be Goldstone boson associated to the breaking of 
SU (2 )® U ( 1 ) symmetry and of the maj oron, which remains massless. In order to discriminate against trivial 
solutions (section 4) with no electroweak and/or  no R-parity breaking we need to devise a good strategy to 
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search for the interesting solutions, avoiding the trivial ones. We adopt the following criteria: 
( 1 ) We restrict the values o f  vu and Vd SO that they give the correct W-mass equation (8)  and choose a definite 

fixed value for their ratio, eq. (9).  
(2) For each set o f  parameters 

h, ho, h~, ~2, A, if/o, t anf l ,  

we take random values for 

(26) 

VR, VS, VL, VF (27) 

in a reasonable range. 
(3) With these VEV values we then solve the extremization equations for the soft SUSY breaking mass- 

squared parameters 

m,,~ 2 rh,~, rh2L, rh 2, rh 2s, rh2 • (28) 

This is easy because these equations are all linear in these parameters. Of  course with this method we cannot 
ensure that these masses are all equal to the universal rh 2 parameter as in eq. (6).  However, as we mentioned, 
universality is not expected to hold when renormalization group evolution from the unification scale down to 
the electroweak scale is taken into account. As a practical criterium we can adopt the view of  accepting values 
where the spread in these parameters is restricted to any given reasonable level. 

(4) After a solution to the extremization equations is found, we determine the eigenvalues of  the matrices 
M 2 and M 2 at the extremum. I f  all six eigenvalues o f M  2 and all four nontrivial eigenvalues o f  M~ are positive 
we have found a minimum. 

(5) The eigenvalues of  the matrices M 2 and M 2 should also be restricted by experiments such as LEP [23 ]. 
Pending a more detailed study [ 24 ] we will adopt the conservative criterium of  imposing on our model the same 
limit that applies to the MSSM, knowing that we may be excluding some of  the interesting solutions. 

(6) Finally we must check if  the min imum that breaks R parity is lower than the trivial minima. We also do 
this as discussed in the next section. 

If  all the above conditions are verified for a given set o f  parameters and VEVs then a min imum that breaks R 
parity spontaneously has been found. 

4. The trivial minima 

By inspecting the extremization equations one notes that the last o f  them is linear in VF and one can see that 
VF is easily nonzero. However, the set of  extremization equations admits many trivial solutions where some of  
the other VEVs are zero. These are either unphysical (no electroweak breaking) or uninteresting for our pur- 
poses (no R-parity breaking). We now consider these trivial minima in more detail. 

First note that there is always the possibility o f  having an R-parity conserving minimum. This min imum exists 
when vu ~ O, Vd# 0 and VF # 0, with VL = VR = VS= O. In this case only electroweak symmetry is broken. Then three 
o f  the extremum equations are automatically satisfied while the others have to be solved for vu, Vd and rE- We 
define variables 

2 v~, (29) X~=v~+v~, 3 ~ = v u -  

in terms of  which the potential to be minimized becomes 

Vsu(2)(X,,A,, Vv)=+Ced~ +¼ (X21-A2)h2+(hovF+~)2X~ +e4+½(rh~+rh2)X~ +l(rheu - rod)A1~2 +m•vv'2 z 

-- 2rho(A-- 2)e2VF + [ ( - - rhoAhovv-hoe  2) + ( 1 -A)/~r~o ] ~ - d  2 , (30) 

316 



Volume 288, number 3,4 PHYSICS LETTERS B 27 August 1992 

so that one can solve for A1 to find 

~ 2  ~ 2  (ma--mu)--r l  
A~ = rh 2 +rh2 + 2(koVF +l?t)2 +4aX~ . (31) 

This shows that indeed Vu = Vd if  fit ~ = rh 2. It is not possible to solve analytically the other equations for X~ and 
VF, SO we have done it numerically. Having found a set of values (X~, &, VF) that solves the extremum equations 
we must check that the corresponding second derivative matrix has positive eigenvalues and we have done this 
numerically. The points that obey this condition are local minima that break SU (2)@ U ( 1 ). This is the situa- 
tion in the model discussed in ref. [ 18 ] where the electroweak symmetry breaks at the tree level. The value of 
the potential at this minimum Vsu(2) (X~, AI, VF) has to be compared with the values found for the other solu- 
tions, such as the interesting one where both SU (2)@ U ( 1 ) and R parity are broken. 

Apart from the above R-parity conserving minimum there may also be unphysical minima. For example there 
is a minimum that occurs for vu= Vd= VL= VR= VS= 0 with only v~# 0. In this case neither electroweak nor R- 
parity symmetries are broken. The extremum equations are satisfied for 

r~/o(A--2)e 2 
v v =  M~ ' (32) 

and the corresponding value of the potential is 

=E 4 (1 r ~ ( a - 2 ) 2 ~  Vo j .  (33) 

This may be minimum if the corresponding second derivative matrix are positive. 
Another trivial minimum exists corresponding to the choice vu= va= ~ = 0 with VR # 0, VS¢ 0 and VF# 0. In 

this case only R parity is broken. It is convenient to define variables 

S 2  = v 2 + v 2,  A2 - v 2 v 2 - g -  s ,  ( 3 4 )  

we can write the potential as 

VR.(X2,A2, VF)=S2h2v~ ' ~ 2 + ~ (m~ + r~ ~)Z2 + ½ ( r ~  - r~D& + ~ (rg -A~)h 2 

+ ~4 + rh~v~--  2 r h o ( A -  2 )E2VF + ( rhoAhVF-he  2) x/~22-A~, (35) 

so that one finds 

( r ~ - m ~ ) &  
ZI2= rh2+rh2 +2h2v } , (36) 

showing again that if rh 2 # fit 2 then VR ¢ VS. The minima are found by checking that the corresponding second 
derivative matrix has positive eigenvalues. The corresponding value of the potential V,% (272, a2, VF) will he 
compared with the values found for the other solutions. 

5.  R e s u l t s  

Following the strategy outlined in section 3 we have varied randomly the parameters in the following inter- 
esting ranges 

10-6~<lh.l~<10 -1, 10-2~<lh[, [hol~<l, 103~<l~2/GeVl~<106, 

250~<rho~<1500GeV, -3~<A~<3, 10~<lVgl, IVsr~<1000GeV. (37) 
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For each value o f  tan p, v, and Vd are determined by the W mass, eq. (8).  We then determine VF and VL by solving 
eq. (8) and eq. (16) approximately. We find 

AhoV~Vd-AhvRvs+ ( A - 2 ) e  2 
~ 2  2 2 VF~-- mo +ho(v, +v~)+hZ(v~ +v~) (38) 

h~(ArhoVuVa +hvvv,vs-VdVa(hoVF +fZ) 
U L  ' ~  ~ - 2  2 2 mo +h~(v, +v~) - 2 a ( v  2 - v  2) (39) 

For  given values of  VR, VS, VL, V,, Va, VF we solve the extremum equations for the soft SUSY breaking mass- 
squared parameters. For tan f l~ 1 these mass parameters are necessarily different. I f  one wants to have them as 
close as possible to the canonical value ff~o at unification we can choose solutions in some given range around 
fit o . 

For illustration purposes we choose among a large variety o f  possible minima where both SU (2) ® U ( 1 ) and 
R parity break the point defined by the following choice o f  parameters: 

h ~ = 8 . 5 9 × 1 0  -3, h = - 0 . 3 5 1 ,  ho=0.140,  A = 1 . 1 9 6 ,  

E2= - 3 . 7 1 5 X  105 GeV z, rho =355.6  GeV, /2= - 2 3 . 8  GeV, fleff =fi '~-h0PF =94.1 G e V ,  

rhd = 426.9 GeV, r~ .  = 205.0 GeV, 

/ ~ F  = 355.7 GeV, r~R = 409.7 GeV, 

and the corresponding VEVs 

va=81.65  GeV, v, = 153.77 GeV, 

mL = 386.8 G e V ,  

rhs =409.7  G e V ,  (40) 

v L = - 3 5 . 9 M e V ,  Va=Vs=50.OOGeV, V F = 8 4 0 . 8 9 G e V .  (41) 

This min imum is illustrated in figs. 1, 2. In all o f  these we represent the shape o f  the potential around the 
min imum as a function of  pairs of  VEVs, keeping all the others fixed at the minimum. More precisely, we 
represent the relative difference to the minimum, i.e. [ V(v~, v2) - Vmin ]/Vmin where v~ and v2 are the chosen 
VEVs. Their corresponding values are shown relative to their values at the minimum. We have checked this 

ta n/J'/t a n/2m~° (b) 

'" " ::: ...... :::::: ::::::;:: :::.!::i!! ! !!! !i!!:i 
:° ~, . . . . . . .  1075 ' ,' ' " : ," ,'" ,'" ," ,'" -"" "'"--"-2"- ",,X :2 

, , - / ,,' ,.' ,,' / . .  " - . ' . . . ' . X - X  

,05 ,// /;i/ /:'j,,/, ,, "ii o.  .... ............... j / 

c ~ 5  ~ I i 

O 1 0.975 , ', 

O05 
0.95 

:a~;Vtan~m~,, 09%0.4 o.4 o.~ o.5 0.7 0.8 0.9 . . . . . .  2 
V j V m [  n 

Fig. 1. (a) Profile of the potential around the minimum as a function of tan fl= Vu/Vd and v= x/~ + v~ for the parameters given in the 
text. ( b ) Contour plot of the potential around the minimum as a function of tan fl and v for the parameters given in the text. 
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V/V . . . .  - I 

103 ) 
Fig. 2. Profile of the potential around the minimum as a function 
of VL and VR for the parameters given in the text. 

min imum with respect to all relevant variables but chose to represent here only the most interesting ones. For 
example, in fig. la we display the profile o f  the potential function as a function o f  (tan fl, v), illustrating the 
breaking of  SU (2)  ® U ( 1 ) symmetry. In fig. 1 b we see the corresponding lines of  constant tan fl, v. These level 
curves show a rather well behaved pattern indicative of  a minimum. In fig. 2 we see how the potential behaves 
as VL, VR vary, illustrating the need a small amount  o f  R parity breaking in the isodoublet sector. We have also 
checked that the contour plot o f  the potential around the min imum as a function o f  VL and VR corresponding to 
fig. 2 is well behaved. 

Last, but not least, we have verified that over the entire range ~ 10 GeV-1 TeV it is possible to find true 
SU (2) ® U  ( 1 ) and R-parity breaking minima which are consistent with experimental constraints imposed by 
Higgs boson physics as well as SUSY searches at LEP. 

6. Discussion 

In conclusion we have demonstrated that for suitable values of  the low energy parameters, consistent with 
observation, it is energetically favourable to spontaneously break R parity in the supersymmetric extension of  
the standard model defined in section 2 at a scale which typically lies in the range ~ 10 GeV-1 TeV. The major  
seed of  R-parity violation lies in an isosinglet sector (vn, Vs) so that the majoron is mainly singlet. The subdom- 
inant isodoublet breaking of  R parity by VL is controlled by the Yukawa parameter h~, thus naturally implying a 
hierarchy between VL and VR, required by astrophysics. This has, in addition, interesting implications for the 
neutrino mass spectrum, leading to an explanation of  the solar neutrino deficit [ 3 ] that can, on the other hand, 
be probed in accelerator experiments. New effects include large rates for single chargino and neutralino produc- 
tion at LEP [ 2 ] and hadron colliders [5] as well as experimentally measurable rates for rare muon and tau 
decays by majoron emission [6 ]. Note that in this discussion it is crucial to keepfinite values of  the parameters 
filL and h,. Ifh~ is taken to be strictly zero a conserved R parity can be assigned to the scalars in v ¢ and S so that 
Rp never breaks, irrespective of  whether or not a nonzero VEV is induced for VR, a trivial but crucial point missed 
in ref. [25] .  
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