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Abstract .  The cross section for single W-  production 
in e + e- collisions is exactly computed for an arbitrary 
W magnetic moment. It is found that this process may 
give a first look at the WWy vertex just below the 
two W threshold. A detailed comparison is made with 
previous calculations that used the equivalent photon 
approximation. 

1 Introduct ion 

At present, the experimental success of the standard 
model of electroweak interactions is an unpleasant 
feature for the theorists who feel that there is something 
missing. Preferably, one would like to show that this 
model is just a good effective theory at energies 
< G~ 1/2 

In this paper we address ourselves to the problem 
of finding deviations of the W electromagnetic 
coupling from its standard model form, looking at 
single W-  production in e § e- collisions. This has 
been done before [1-2], but in a way that we do not 
find completely satisfying: only a subset of the dia- 
grams has been taken into account and also use has 
been made of the equivalent photon (Weizs~cker- 
Williams) approximation. We have exactly computed 
the contribution to the cross section from all the twelve 
diagrams that contribute to this process at tree level. 
This was done using the spinor product technique of 
Kleiss [3]. We have found that in general it is necessary 
to consider the full contribution specially for high 
energies and for realistic cuts that are necessary to 
account for the impossibility of detection along the 
beam axis. 

At LEP-I this process has a negligible cross section 
( a - 6 x l O - 3 p b  at x/~=100GeV),  which makes 
useless any attempt to find deviations from the 
standard model predictions. But this cross section rises 
fast with energy, being about 0.2pb just below the 
W + W-  production threshold. If the schedule [4] for 
LEP-II is to be followed, then at least one year will 

be spent at energies ~ ~-150 GeV. This possibility 
will rend more relevant a precise study, because .it 
is precisely at high energy that the approximations 
considered before are more inaccurate. If the process 
e + e - ~ W + W  - is expected to provide the most 
accurate measurement of the W magnetic moment [5], 
single W production just below the two W production 
threshold couldprovide a first measurement (although 
more rough) before the completion of LEP-II. 

The paper is organized as follows. In Sect. 2 we give 
the expression for the exact cross section. In Sect. 3 
the equivalent photon approximation is discussed. The 
results and discussion are presented in Sect. 4. In the 
Appendix we collect the expressions for the helicity 
amplitudes and some other useful formulae. 

2 The  hel ic i ty  ampl i tudes  for e § e -  ~ W -  e § v 

Let us denote by p_(p+) the momentum of the in- 
coming electron (positron), by Pl(P2) the momentum 
of the outgoing neutrino (positron) and by Pw the W-  
momentum. Then if we choose as independent phase 
space variables the solid angles of the W-  and of the 
positron in the C.M.-frame, and the invariant mass 
squared of the neutrino-positron pair, 

m2a = (Pl + P2) 2, (1) 

the differential cross section for the process can be 
written in the form 

_ 1 ~1 [ Tie ]Pw] IP213 
da 2s(2~) ~ . _ .  16x~sslP212(~s_Ew)+E2P2.Pw 

"dm~zdOwdO2. (2) 

In the last expression ~ means, as usual, average 
pol 

over initial state and sum over final state polarizations, 
.x/~ is the C.M. energy and T is the invariant T-matrix, 
i.e. 

T - ~ . ~ " ( P w ) .  (3) 
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Fig. 1. Feynman diagrams for e + e - ~  W-e+v  

In Fig. 1 we show the twelve diagrams that contri- 
bute to T at tree level. Diagrams 2 and 7 have the 
W + W-?  coupling. As we want to test the possibility 
of having a non standard magnetic moment for the 
W, we write this coupling, with the conventions of 
Fig. 2, in the form 

F " ~  = - i e { f P ( p  - k) ~' + g~U[k - (1 + Ak)q]  ~ 

+ a. '[(1 + Ak)q  - p ] P } .  (4) 

For the standard model we have A k  = 0, while for 
a charged vector particle "minimally" coupled to the 
photon, A k  = - 1. 

We evaluate the helicity amplitudes using the spinor 
product formalism of [3]. In this technique the W 
polarization vector is defined to be 

/ 3 "~1/2 

where r 1 and r2 are light-like vectors such that Pw = 
rl + r2. The sum over the W polarizations is then 

 Sv, 
Fig. 2. The W + W - 7  vertex 

replaced by an angular integration over dO~ in the 
frame where the W is at rest. In fact one can show [3] 
that 

f d O  ~ a*"a v = - g"" MZ . (6) 

It's convenient to define a dimensionless scattering 
amplitude T by 

f =_ JTua"; #//, -= ~ Jg, .  (7) 

Then we can write the differential cross section 
as  

3( ~ )3 1~12 [pw ' 
da = ~-~ 2~ sin 2 0 w Po~ s ~ s s M  2 

[P213 dmZ2 d O w d l 2 z  d O  ~. 
(p2)2(,,/;- l w) + F 2p2"pw 

(8) 

For each diagram we have an helicity amplitude 
T~(0-_,a+) where a_(a+) is the electron (positron) 
helieity. At high energy it is a very good approximation 
to neglect the electron mass everywhere except in the 
photon propagators of diagrams 5 and 7. Then the 
amplitudes T i ( a _ , a +  ) are easily derived using the 
spinor product formalism [3]. If u+(p) are chiral 
spinors satisfying the equation 

u + (p)~ +(p) = y +p, (9) 

with y+ = (1___ 75)/2, the only non-zero spinor 
products are [3], 

s(pt, P2) = u+ (Pl)u-(p2)  = - s(p2, PO (10a) 

and 
t(PD P2) = a - ( P O u  +(p2) = s*(P2, PO. (10b) 

The amplitudes T, are given in the Appendix in terms 
of these spinor products�9 We have then 

~1~12 =�88 + IT( - , +)12 
pol 

+ I T ( - ,  -)12].  (11) 

From these expressions we see the simplicity of the 
spinor product formalism. The amplitude corres- 
ponding to each diagram is a complex number easily 
calculated from the expressions given in the Appendix. 
To sum all diagrams corresponding to a particular 



helicity amplitude one has only to add the complex 
numbers corresponding to each diagram that 
contributes. This is a fantastic simplification compared 
with the usual trace techniques, even with the use of 
symbolic programs. Another advantage concerns the 
case of having polarization, because we directly have 
the necessary helicity amplitudes. 

Of course the phase space integration has to be done 
numerically. This is not a serious drawback, because 
for phase spaces with three or more final particles 
most of it has to be done numerically anyway. We 
used RIWlAD [6], a Monte-Carlo integration routine 
from the CERN program Library. 

Before we close this section let us discuss the inclu- 
sion of the finite width of the W. Clearly this will be 
important only near the threshold for the process 
e + e - - + W - e + v ,  that is, x / s > M w  and close to the 
two W production threshold, which is x/s = 2 M  w. 
These effects can be easily incorporated. If we neglect 
the masses of the W-  decay products, we get for the 
cross section corrected for finite W width [7,1 

/ / i I/  I ~ W  ~ ( M w + ' A ) 2  2 m2 
f f  

�9 a(e + e -  --* W-(m_)e+v) ,  (12) 

where F w  is the W width and a(e+e - ~ W - ( m _ ) e + v )  
is the cross section to produce a W-  with mass m_ 
in the interval M w - A < m_ < M w  + A. 

In Sect. 4 we will present and discuss the results 
obtained with (11, 12). 

3 The equivalent photon approximation (EPA) 

The previous calculations of this process [1, 2] used 
the equivalent photon approximation (EPA) of 
Weizs~icker and Williams [8,1. In this approximation 
only diagrams 5 and 7 of Fig. 1 are considered and 
the cross section is given by 

(Dmax 

a(e+e - ~ W - e + v ) =  [~ N(co)~(ye- ~ W - v )  (13) 
O~min 

where 5 is the cross section for the process 7e- ~ W-  v 
with real photons, ('0 is the photon energy and N(co) 
is the equivalent photon spectrum. 

In the following section the exact cross section is 
compared with the EPA result. Here we want to see 
how good the approximation is compared with the 
exact result for diagrams 5 and 7. In doing this we 
realized that the expressions for N(co) used in [1, 2,1 
were only approximate. In particular, when the posi- 
tron scattering angle, 0, was very small one should 
expect the EPA to be quite good but that was not the 
case, it was worse than if 0mi n w a s  small but not 
extremeUy small (for instance a few degrees). 

To understand this difference we went back to the 
definition of N(co) given, for instance, in [9,1. We have 
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0~ cos0mj~ a ) 2 E  ' / /  1 \ 2  

�9 [ _ ,  + sm . 4 ,  

where q -  (•, q) is the photon 4-momentum, E(E') is 
the incident (outgoing) positron energy. 

The positron mass has to be retained in the photon 
denominator. As we want to compare the result of 
EPA with the exact result of diagrams 5 and 7 using 
the formalism of the previous section, and there we 
neglected the electron (positron) mass in every place 
except in the photon denominator, we should adopt 
the same procedure here. This means that in the square 
bracket in (14) we should put m e = 0. Then a trivial 
calculation gives 

c~ co2 f ( ~ -  cos 0max) 
N(CO) = ~ - ~  Cl ln  cos 0 ~ i  n 

+ C2 In - cos 
- -  COS 0mi n 

COS Omi n - -  COS Oma x 

-~- C 3  (fl - -  c o s  0min)(f l  - -  c o s  0max ) f (15)  

where 

m 2 (.02 

fl = 1 + 2E2E,~ 

(.O 2 

7 = 1 + 2EE~ 

(16) 

and 

C1 = 1/2 - C2/2 

4EE'  
I + - -  

(D 2 

(1 
- E E ' ]  

2EE'  2 2 m e CO 
1 + - -  

C 3 = - 2 m2 ('02 4EZE'Z 

( 
The expression used in [1, 2-], 

' 2 (co /E)2  me 

1 + 2E ~ (1 - co~E) 2 
In 2 (co/E)2 

m e 

1 + 2E ~ (1 -- co~E) 2 

-- COS~/' 
COS 

(17) 

(18) 

considered only the term proportional to C 1 and 
neglected the other two. Of course, this term is the 
largest if 0mi, = 0, but even for this case, the last term 
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Fig. 3. Relative error of the EPA for various cuts. The solid lines 
correspond to N(@ given in (15) while the dashed curves use N(@ as 
in (18) 

proportional to C 3 -(~(m~/s) gives a non negligible 
contribution because fl - cos 0min --~ (9(m~/s). For 
more realistic cuts for the positron, like 0rain = 5 ~ or 
10 ~ there is no reason to neglect the term proportional 
to C 2. 

In Fig. 3 we show the result of the comparison 
between the EPA and the exact result for diagrams 
5 + 7. We plot the relative error 

(7 . . . .  t(5 + 7) - o-Ep A 
e = , (19) 

aexaet(5 + 7) 

as a function of ~/~ for various cuts in the positron 
scattering angle. In those curves 0mi, = 5 ~ for instance, 
means that only angles in the interval 5 ~ < 0 < 175 ~ 
were allowed, and similarly for the other values of 0mi,. 
For  numerical results we took M z  = 92.0 GeV, M w  = 
80.7 GeV, sin 2 0 w 1 2 2 = - M w / M  z=0 .23  and F w =  
2.8 GeV. 

We can conclude that the EPA is a good approxima- 
tion to diagrams 5 + 7 only if very small scattering 
angles are included. Also the approximation gets worse 
at higher energies. This is due to the fact that the 
longitudinal part of the off-shell photon, that is 
neglected in EPA gets more important at those 
energies. We can also see that at this level of precision 
(the error in the Monte Carlo program was less than 
0.1%) we get very different results depending on which 
equivalent photon spectrum we take. If we use the 
approximate expression for N(@ given in (18) we see 
(dashed curves) that the EPA does not get better as 
we go to very small angles as we discussed before. This 
is not the case for the more exact N(@ given in (15) 

(solid lines). Therefore, in the next section when 
comparing the exact result for the total cross section 
with the EPA we will take (15) for N(@. 

4 Results and discussion 

For the numerical results presented in this section we 
used the same values for M z, Mw, sin 2 Ow and Fw as 
given before. 

In Fig. 4 we present the results for the cross section 
for two different cuts, with Ak = 0 (standard model). 
The exact result (solid line) is compared with the equi- 
valent photon approximation (dash-dotted line) and 
with the exact cross section corrected for the W finite 
width (dashed line). We can conclude that just below 
the two W production threshold this process will be 
seen at LEP-II. We can see that at these energies the 
EPA is not good specially if realistic cuts are taken 
into account. The fact that for ~/~ < 140 GeV the EPA 
is reasonably good for Ak >~ 0 can be misleading. It 
does not mean that diagrams 5 + 7 are much more 
important than all the others. In fact, we have verified, 
that even for 100 GeV ~< Vfs __< 140 GeV diagrams 
1 + 2 + 3  are not negligible (for 5 ~  ~ , 
diagrams 1 + 2 + 3 are 20% of diagrams 5 + 7 at ~/s = 
100GeV and 35% at ,V/s= 140GeV). But when we 
include all diagrams the interferences are negative and 
the final result is, by accident, close to the EPA. The 
introduction of a finite width for the W only affects 
the results close to the thresholds as it could be 
expected. The effect is bigger close to v/~ -~ 2Mw and 
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it should be considered for a careful study at these 
energies. 

In Fig. 5 we show the relative error of the EPA 

/3 = (7" . . . .  t -- aEPA (20) 
O ' e x a c  t 

as a function ofA k for several energies, for two different 
cuts. As it is to be expected the error is much bigger 
if we consider realistic cuts. In fact for some values of 
A k  this error can be even larger than the deviation of 
the exact result from the standard model (Ak  = 0). 
Notice also that the error is not a fiat function of Ak,  
being larger for A k  < 0. This has to do with a change 
of sign in the interferences we mentioned above. 

This can be seen in Fig. 6 where we show the varia- 
tion of the cross section with A k  for several energies 
and for the same cuts considered before. We see that 
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Fig. 6. Variation of the cross section with Ak for two different cuts 
and for several energies. 

if LEP operates, at it is scheduled [4], for a sufficient 
amount of time below the two W threshold, it will be 
possible to put limits on A k  much better than exist 
now. Of course after LEP is raised to its maximum 
energy the process e + e - - - - r W + W -  will provide a 
better way to look at A k  [5]. 

We did not attempt to turn our results into an upper 
limit for I Ak[ .  This will depend on the luminosity of 
the machine, the time of the running at those energies 
and the details of the experimental apparatus (cuts are 
very important). Instead, we give the detailed expres- 
sions that the experimentalists can use in their simula- 
tions. To the interested reader we can provide a 
FORTRAN program that evaluates the helicity 
amplitudes and the cross section. 

After we had completed these calculations, we 
learned about the model of 'Kuroda,  Maalampi, 
Schildknecht and Schwarzer [10] (KMSS for short). 
In this model there is a global SU(2)wI  (weak isospin) 
symmetry broken by electromagnetism. As a conse- 
quence the trilinear couplings 7W + W -  and 
Z ~ 2 4 7  - are given by [10] (see Fig 2 for conven- 
tions), 

F ~'~p = igxww[g~P(p - k)" + OP~'(k - Kxq) ~ 

+ O"=(~Cxq - P)P] (21) 

where X stands for 7 or Z ~ For  7W + W -  they have 
g T w w = - e  and x r = t r  + A k ,  which is just the 
vertex we considered above (4). For the Z ~  + W -  
coupling, corrections to the p-parameter [11] imply 
that gzww and ~c z are uniquely determined in terms 
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Table  1. To ta l  cross  sect ion (in pb)  for  the cut  0 ~ < 0 < 180 ~ as a f u n c t i o n  of  the C .M.  E n e r g y  a n d  of  the  a n o m a l o u s  
m a g n e t i c  m o m e n t  of  the  W. The  u p p e r  va lue  c o r r e s p o n d s  to the K M S S  model .  (22-24)  a n d  the  lower  va lue  to  the  
m o d e l  descr ibed  in Sect. 2 

0.6 0.8 1 1.2 1.4 2.0 

2.1 x 10 . 3  2.5 x 10 . 3  3.3 x 10 . 3  4.5 x 10 . 3  5.8 x 10 -3  7.6 x 10 . 3  1.5 x 10 . 2  
100 2 . 0 x 1 0  - 3  2 . 7 x 1 0  -3  3 . 4 x 1 0  - 3  4 . 5 x 1 0  - 3  5 . 7 x 1 0  -3  7 . 2 x 1 0  3 1 . 3 x 1 0  - 2  

2.1 x 10 - 2  2.9 x 10 -2  3.7 x 10 - 2  4.9 x 10 - 2  6.4 x 10 - 2  8.2 x 10 -2  1.5 x 10 -1  
130 1 . 8 x 1 0  2 2 . 9 x 1 0  a 3 . 8 x 1 0  - 2  4 . 9 x 1 0  2 6 . 3 x 1 0  - 2  8 . 0 x 1 0  - 2  1 . 5 x 1 0  -1  

1.9 x 10 -1  1.9 x 10 -1  2.1 x 10 - i  2.4 x 10 -1  2.8 x 10 -1  3.4 x 10 -1  5.6 x 10 -~ 
160 1.6 x 10 -1  1.9 x 10 -1  2.1 x 10 -~ 2.4 x 10 -~ 2.8 x 10 -~ 3.3 x 10 -~ 5.2 x 10 -1  

2.6 1.7 1.6 1.6 1.7 2.0 3.3 
200  

1.6 1.6 1.6 1.6 1.7 1.8 2.3 

of x = 1 + A k ,  the magnetic moment  of the W-boson, 
by the relations 

e(~c - sin2 Ow) ( Ak ) 
gzww(~C) = ~ - w ~ o s ~  --gS~w 1 -t cos~bw (22) 

and 

~c cos 20w sin 20w 
Xz(X) - ~c sin 20w 1 Ak.  (23) 

- c o s  a Ow + A k  

The standard model values are obtained for x = 1 
(Ak=0),  that is tc x z 1, s u  = = g z w w  = g cos 0 w. As 
everything depends only on one parameter, ~c, the 
KMSS model is very predictive. 

It is very easy to incorporate the KMSS model in 
our calculations. We only have to change diagrams 3 
and 8. The necessary modifications are, in an obvious 
notation, 

t-~MSS _ C3,8 1 + (24a) 
~'-~ 3 , 8  - -  

~ 3 , 8  t - -  , " "3 ,8  Y+ A 2 , 1 2  -}- 1 - - t - ~ -  A 3 , 1 3  

(24b) 

A4+ / 5 ,  

(24c) 

T K M S S ( - - , - - ) = c K M S S g _  A l o +  1 - t - T ) A 1 1  , 

(24d) 

where g+, C~ and A~ are given in the Appendix. 
We have evaluated the cross section for e + e - ~  

W - e + v  in the framework of this model. The results 
are presented in Table 1 where they are compared with 
the situation that we have studied above, in which the 
?W + W -  vertex is allowed to be non-standard but the 
Z ~  + W -  couplings are chosen as in the standard 

model. We can see that below the two W's threshold, 
for which most of the above discussion applies, the 
differences between the two models are, at most, 15- 
20~. As for tr = 1 (Ak = 0) the two models coincide 
with the standard model, the differences grow with 
Ak. If we go above the two W's threshold, then we 
will be able to distinguish among the various possi- 
bilities, at least for not too small values of Ak. We 
should also note that the KMSS model gives in most 
cases higher values for the cross section than the modi- 
fication of the standard model we have considered in 
Sect. 2. 

In conclusion we have shown that just below the 
threshold for two W production, the process e § e -  
W - e + v  can provide the first opportunity to test the 
W W 7  coupling. This will be specially important if, as 
planned, the LEP machine will stay at those energies 
for a reasonable amount  of time, before it goes to its 
maximum energy. 

In this energy region, and for reasonable experi- 
mental cuts, the equivalent photon approximation 
used before [-1, 2] for this process is very bad. If one 
wants to calculate are upper limit to the value IAkl 
one must use the exact results presented here. Also 
the effects of the finite width of the W must be included. 

Finally one should mention, that if x /s  > 2 M w  so 
that the process e + e - ~  W § W -  is allowed, the cal- 
culations presented here should be useful to determine 
one of the backgrounds to that process. Also, in this 
energy region this process could serve as a test of the 
KMSS model. 

A p p e n d i x  

The helicity amplitudes can be written in the form 

7r2(-, + )= C2I A2 + ( l +  -)A3 j 



7~2( + , - )  = c2[& + (1 + ~--~k)A51 

'F3(- - ,  4 )  = C3~/+ [A2 4 A3]  

7r3( + ,  - )  = c3o_ [A~ + A s ]  

T 4 ( - - ,  4 )  = C4g+A6 
Y4( + ,  - ) = C4g_ A7 
~( , ) = C ~ A 8  

~1"5(--, 4 )  = C s A  9 

' F 6 ( - - ,  - -  ) = C6~-A8 
' F 6 ( - - ,  4]_)= C 6 g + h  9 

'TS( - - ,  --  ) = C 8 g -  [Alo  4 A i i ]  

T s ( - ,  4 )  = C8g + [Ai2  4 A13 ] 

'F9( - - ,  - -  ) = C 9 ~ - A 1 4  

T 9 ( - - ,  4 )  = - -  C 9 g + A  1 

'FIO( - - '  4 ) = - -  C l o A  6 

~"11(--, 4 )  = -- C i i A 9  

T l 1 ( + ,  - ) =  CllA15 

T12( - - ,  4 ) : " C 1 2 g + A  9 

"~12(4,  - - )  = C12g_A15  , 

where  

(A1) 

g -  = 2 sin 2 0 w 

g+ = 2 sin 2 0 w - 1, (A2) 

and  

C 1 = - - 2 [ ( ( p  I 4 P 2 )  2 

- -  M 2 + i M w I - ' w ) ( p _  --  pw) 2] -1  

C 2 = --  4 s in 2 0 w  [ (p + + p _  )2 

"((Pl 4 p2) 2 --  M 2 + i M w F w ) ]  - 1 

C 3 = 2[ ( (p  1 + p2) 2 - M 2 + i M w F w )  

.((p+ + p_)2 _ M 2 + i M z F z )  ] - 1  

C 4 = - sec 2 0w[((p  + 4 p_)2  _ M ~  + i M z F z )  

"((P2 + Pw) 2 - m2)3-1 

C5 = 4 sin 20w[(Pz  - P+)2((pl  + pw)  2 - m 2 ) ] -  1 

C6 = O+ sec2 0w[( (p+  - p2) 2 - m ~ )  

"((Pl + P w )  2 - m 2 ) ] - 1  

C 7 = 4 sin 2 0 w [(P2 - P+)2((Pl - p_)2 _ M 2 ) ]  - 1 

C8 -- - 2[@1 - p_)2  _ MZ)((p2 _ p+)2 _ M 2 ) ] - 1  

C9 = sec20w [(t 7 - --  Pw) 2 ((/92 -- P + )2 __ M2)]  - 1 

Clo  = 2[-(p2 4 pw)Z((pl - p - ) 2  _ M 2 ) ]  - 1  

C i i  = - 4 sin 2 0 w [(p+ + p_)Z((pl + pw) 2 - m2)] - 1 

c1~ = - o+ sec 20w[( (m + pw) 2 - m~) 

.((p + + p_ )2 _ M ~  + i M z r z )  ] -1  (A3) 
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The  expressions for Ai, (i = 1 , . . . ,  15) are wri t ten in 
terms of  the sp inor  p roduc ts :  

A 1 = s(p_, r2)s*(p+, Pl) 

�9 Is(p_,  p2)s*(p-,/ '1) - -  S(P2' r2)s*(rl, r2)] 

A2 = s(P2, ra)s*(Pl, r l)  

�9 Is(p_,  r 1)s*(p +, r l)  + s(p_,  rz)s*(p +, r2)] 

A 3 = s(p_,  p2)s*(P+, Pl) 

�9 [s(p_,  r2)s*(p_, rl)  4 s(p +, r2)s*(p +, r l ) ]  

[.r2 +--~ p2 ) 

A 4 = s(P2, r2)s*(pl, ri)  

�9 [s(p +, r l)s*(p_,  rl)  4 s(p+, rE)s*(p_, r2) ] 

A s  = s(p +, p2)s*(P- ,  Pl)  

�9 [s(p_, r2)s*(p_, rl)  + s(p+, r2)s*(p +, ri)  ] 

(r2~-~p2 j 

A6 = s(p2, r2)s*(p +, Pl) 

�9 Is(P_, r2)s*(ri, r2) -- s(p_, p2)s*(p2, ri)  ] 

A7 = s(P2, r2)s*(P-,  Pl) 

�9 [s(p +, r2)s*(r i, r2) - s(p+, p2)s*(p2, r i)  ] 

A s = s(p_, p +)s*(Pl, rl)  

�9 [s(p +, r2)s*(p +, P2) + s(p_,  r2)s*(p_, P2)] 

A 9 = s(p_, p2)s*(Pi, rl)  

" IS(P2, r2)s*(P +, P2) 4 s(p_, r2)s*(p _, p +) ]  

Alo = s(p_, r2)s*(pl, rl)  

�9 Is(p_, p +)s*(p_, p~) + s(p +, pOs*(pl, p2)] 
A l l  = s(p +, r2)s*(p 2, r l) 

�9 [sfp_, p +)s*(p +, pO + s(p_, p~)s*(pl, a)] 
_ ~ p _ , - , r 2 ~  

(pi+-->rl J 

A12 = s(p_,  r2)s*(pl,  rl)  

�9 [s(p_, p~)s*(p_, p +) + s(pl, p~)s*(p +, p0] 
A13 = s(p~, r~)s*(p +, rl) 

"[s(p- ,  p + )s*(p +, Pl) + s (p - ,  pz)s*(Pl,  Pz) ] 

[ Pi+-~rl J 

A14 = - s(p_, r2)s*(Pi, P2) 

�9 I-s(p +, P2)s*(P2, rl)  + s(p +, p i )s*(pi ,  rl)  ] 

A15 = s(p +,p2)s*(pl ,  r l)  

"Is(r1, r2)s*(P-, rl)  + s(Pl, r2)s*(P-,  Pi)] -  (a4)  

The  sp inor  p r o d u c t  s(p, q) as a func t ion  of  the c o m p o -  
nents  of  the four -vec tors  p an d  q is [4]  

s(p, q) = (p2 + ip3) [ ( qO _ q l ) / ( p O  _ pl)3,/2 _ (p~_~q) 

(A5) 
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