
Volume 220, number 1,2 PHYSICS LETTERS B 30 March 1989 

O R D E R  at' 2 EQUIVALENCE OF T H E  STRING EQUATIONS OF M O T I O N  
AND T H E  a - M O D E L  WEYL INVARIANCE C O N D I T I O N S .  
D E P E N D E N C E  ON T H E  DILATON FIELD 

M.C. BENTO a,l, O. BERTOLAMI a,b,2 A.B. HENRIQUES a and J.C. ROMAO a 
a Centro de Fisica de Mat&ia Condensada, INIC, Av. Gama Pinto 2, P-1600 Lisbon Codex, Portugal 
b InstitutJ'~r Theoretische Physik der Universitiit Heidelberg, Philosophenweg 16, D-6900 Heidelberg, Fed. Rep. Germany 

Received 3 January 1989 

We determine the order a '  2 terms in the closed string effective actions, when the dilaton field is included, by comparison with 
the four-point string amplitudes, both in the S-matrix parametrization and in the a-model parametrization. We find that for the 
bosonic and heterotic string theories there are terms involving derivatives of the dilaton field which cannot be removed by field 
redefinitions and whose coefficients are non-zero. Our result is not in agreement with existing a-model computations. 

1. Considerable effort has been devoted to finding the effective action which describes the low-energy dynam- 
ics of  the massless string modes [ 1,2 ]. The effective action is, at tree level, a perturbative expansion in powers 
of  the string tension a '  and, for the closed string theories, it is a functional of  the gravitational, antisymmetric 
tensor and dilaton fields. 

The structure of  these actions to order tx' is well known at present [ 3 ]. At order o~' 2, there are recent results 
concerning the curvature cubed terms [ 4 ]; it is found that while these terms are absent in the case of  the heter- 
otic and superstring theories, they are indeed present in the bosonic string theory. 

In this letter, we derive the dependence of  string effective actions on the dilaton field at order a '  2, using the 
S-matrix approach, i.e., we construct an effective action which reproduces the (four-point) string scattering 
amplitudes at this order. We find that, while for the superstring there are no order a '2 corrections at all, in the 
case of  the bosonic and heterotic string theories there are six terms which cannot be removed by field redefini- 
tions [2 ] and whose coefficients are non-zero, four of  which involve derivatives of  the dilaton field. 

Another method to derive the effective action, the a-model approach, has received much attention recently. 
It is believed that the equations of  motion derived from string theory effective actions are equivalent to the 
conditions for conformal invariance of  two-dimensional non-linear a-models. Different arguments have been 
presented to support the general validity of  this conjecture [ 5 ] and several low order explicit verifications have 
been performed [3,6,7 ]. At order o~' 2, the equivalence has been checked in what concerns the curvature cubed 
terms [ 7 ]. Regarding the dependence of  the action on the dilaton at this order, the authors of  ref. [ 8 ] derived, 
in the torsion-free case, the O (o~' 2) dilaton r-function from the O ( a '  2) metric r-function using the Curci and 
Paffuti identity to conclude that the effective action c a n b e  expressed in such a way that there are no terms 
involving derivatives of  the dilaton, a result which is in disagreement with our calculation. 

2. The low-energy expansion of  the gravitational sector of  closed string effective actions has the following 
structure, up to order ce' 2, when the dilaton is included [ 1-4 ]: 
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2 f dDxx/~{R+y(O~o)z+a ' exp(y~0)2o{G2 +y2[  ( D - 4 ) / ( D - 2 ) ]  ( 0 ~ 0 )  4}  s=-~ 

+ cC 2 exp(2y~0) [2 ~I1 + 2 2 G 3  +23 (Du0v~o)2(0~o)2 +J.4Du0/,oO°0/'tpD?0V~o 

+ 25Rc~pu.DaOU~oO~oOvb~+J.6RZvc~p(O~o)2+27Ruc~l~RS~PYOu~o&~o] + O ( o t ' 3 ) } ,  

7 = - 4 / ( D - 2 )  , (1)  

where x 2 -  = 32riG, G2 is the curvature-squared Gauss -Bonne t  invariant  (G2 = ~ '~2)  and G3 is related to the cur- 
vature-cubed Gauss -Bonne t  invariant/23: 

2 2 , G2 =Ru.~ p -4Ru~  + R  2 g23 = G3 +Ricc i  t e rms ,  G3 =11 -2•2 ,  

I, = R "".e.R"a ;~R~°u. , I2 = R /'../~R "X#YRauy" . (2)  

The order a '  part  o f  the action ( 1 ) has been found in ref. [ 3 ], with 2 ~a) = ~, ;t ~u ) = ~, 2 k s) = 0 for the bosonic, 
heterotic and type II superstring theories, respectively. The order a '  2 part  o f  the action has been put in its 
simplest form, with the help of  local field redefinitions [2,4 ]. In ( 1 ) and throughout this letter, we use euclidean 
signature for the metric  and the conventions 

2 2 - -  2 2 2 2 R u , p = O v F ~ o - . . . ,  R u ~ - R  Fa., DuA =OuA +Fu .A"  (3)  

The coefficients ;t l, ..., 27 can be found by compar ing the or' 2 four-point  string theory and field theory ampli- 
tudes. The four-point  ampli tudes  for the scattering of  massless bosonic string states are given by [ 9 ] 

, , s / o  ,u~'~ otS~ a 2 ~  ~i?/d-(L ) ~--"(M) ~M = - -  ~ 5 6 K 2 a ' 3 / ' ( S ,  t, . / c  I c 2 -3 -4 . - .~a . - .#xy ,  (4)  

with 

F( - l a '  s )F(  - l a '  t )F(  - l a '  u) 64 _ 2~(3) + 
F( s, t, u) = F( 1 + ¼a' s )F( 1 + l a ' t  )F( 1 + lot' u) - - ot'3sl---u . . . .  

s = - 2 k j . k 2 ,  t = - 2 k ~ . k 3 ,  u = - 2 k ~ . k 4 ,  s + t + u = O ,  (5)  

where (L, M) = (B, B), (S, B), (S, S) and K (a) (K (s)) is the kinematic  factor for the corresponding bosonic 
(supersymmetric) open string four-point amplitude: 

g~m . u .  . .  o., ~ { st 
u,~.a-, -2 -3 -4 =~.1 + l a ' u  (~13 - -  ½a'kt3k31 ) (~24 - ½a'k24k42) 

- 2s(k14k32~24 +k23k4t~3 + kl3k42~23 +k24k31 ~14) 

+ a's[k13k23(k31k41 +k32k42) + ~ (kl2k23k31 -kl3k2~k32)(k4~-k42) ] )  + t w o  permuta t ions ,  

KtS) ~/,  . . . . .  ~ [st~3~24-2s(k~.k32~24+k23k4t~3+k13k42~z3+k24k31~4)]+twopermutations (6)  ,uota~Cl c 2  c 3  ~ 4  ~ 

where ~m. = ~.U~mu, k~.~ = ~Ukm. and e~,. is the transverse polarization tensor, e~U"= ~ . u ~ ;  the latter can be de- 
composed  into the graviton and dilaton parts [ 10 ]: 

e u ~ ( k ) = h u ~ ( k ) + [ 8 ~ J ( D _ 2 ) ~ / 2 ] ~ ( k  ) ± _l~uk _kul~ ~ , C~uv=Om, , (7)  

where ~ ' k =  1, ~ 2 = 0  • u~ and 8u,8  = D - 2 .  
Coefficients 2 ~ and 22 have already been found in ref. [4 ] by matching the four-graviton ampli tudes at order 

o~ '2, with the result 
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As for the remaining coefficients 23,  ..., 27, we can extract from eqs. ( 4 ) - ( 7 )  the order a '2 four-point ampli- 
tudes which are relevant for their calculation. In the case of the superstring, it is trivial to see that there is no 
order o~' and a '  2 contributions to these amplitudes, implying 2} s) = 0 ( i=  1, ..., 7 ). Regarding the bosonic and 
heterotic strings, we have, starting with the two-graviton-two-dilaton amplitudes, 

Og t2 
y-cm [h,h20304] = (D-2~----) {6~(3D- lO)(h~h2)s tu+~(D-4)(k2h,h2k , ) tu  string 

+ ~ (D-2) (kzh ,h2k3)su+ 1 ( D - 2 ) ( k 3 h , h z k , ) s t -  l~ ( D - 2 ) ( k 3 h ,  hzk3) s2 

+ (k2h, k2) [ ~6 ( D -  2) (k, h2k~ )ut /s+ ] ( D -  6) (k, h2k3)u+ ~ (k3hzk3)su/t] 

+ (k2h~ k3) [~ ( D - 6 ) ( k ,  h2k, ) t -  ~ ( D -  10)(k, h2k3)s- ½ (k3hzk3)s2/t] 

+ (k3h, k3) [¼ (k, h2k, )s t~u-  ½ (k, h2k3)s2/u - ~ (k2h2k3) (s2/u+s2/ t )  ]}(/)3(/)4, 

(X ,2 
~H) _ _ _  { ~ ( D _ 7 ) ( h , h 2 ) s t u +  l (D_8) (k2h lhzk , ) tu  Y-string [h~ h20304] - ( D -  2) 

+ 3~ ( D -  6) (k2h, h2k3)su+ 3~ ( O - 6  ) (k3h~ h2k~ ) s t -  ~ ( D - 6 )  (k3hl hzk3)s 2 

+ (k2hj k2) [ ~6 ( D -  8) (kl h2k3)u+ 1 (k3hzk3)su/t] 

+ (k2hl k3) [ 1 ( D -  8) (k~ h2k~ ) t -  1 ( D -  10) (kl h2k3)s-  ~ (k3h2k3)s2/t] 

+ (k3h, k3) [ ~ (k, h2k, )s t~u-  ~ (k, hzk3)s2/u - ~ (k3h2k3) (s2/uWs2/t)  l }03(/)4. 

(9a) 

(9b) 

The one-graviton-three-dilaton amplitudes are given by 

ffaT-(B)string [ h i  020304  ] = _ 1 6(D- 23D- 10)3/20g,2 [ (kzhlk2)u2_2(k2hlk3)us  + (k3hlk3)s2102(/)304 

JoT(H) 3 D - 4  o l , 2 [ ( k z h l k 2 ) u 2 + ( k 3 h l k 3 ) s 2 2 u s ( k 2 h l k 3 ) ] 0 2 0 3 0 4  ' '~/string[hi020304]- 32 ( D - 2 )  3/2 

(10a) 

(10b) 

and the four-dilaton amplitudes read: 

j - t B )  r,~ (3D- 10) 2 
string t W 1 (/)203 (/)4 ] - -  64 ( D -  2 ) 2 ot'2stu010/)2 (/)/93 (/)4, 

3 ( D - 3 ) ( D - 6 )  Og,2stuO102(/)3()4 ' ~'-(H) I'tA 0 2 0 3 0 4 ]  = 64 ( D - 2 )  2 string I. 'P" 1 

( l l a )  

( l i b )  

where we have used momentum conservation, k~ + k2 + k3 -t- k4 = 0, to eliminate k4 from eqs. ( 9 ) -  ( 11 ). 
The evaluation of these string amplitudes is far from trivial, especially in the case of the bosonic string where 

the kinematical factor v(B) has many terms. Also the substitution of the polarization vector eu~(k) by its 
dilaton part 6 ~  is very complicated. In doing these calculations we have used the algebraic program REDUCE 
[ 11 ]. A check on our results is provided by the fact that the auxiliary vectors ~u drop out of the expressions for 
the amplitudes as they should on account of Lorentz invariance [ 10 ]. 

3. To evaluate the field theory contributions to the four-point amplitudes, we rescale the dilaton field tp~ 
¼ x / - ~ 0  in order to have the standard normalization of the propagator, thus obtaining for the effective action 
in the s-parameterization 
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2 
f dDxx/g{R - } (00)2+ c~'2o exp(m0) {G2 + ~ [ ( D - 4 ) / ( D - 2 )  ] (00) 4} s---~ 

"~- O/'2 exp(2m0) [2~ I~ +22  G 3 q- ... q-,~7Ruc~l~yR,C~#YouOOUO] - [ 'O(a t3)}  , (12) 

where m = - 1 / x / ~ -  2 and )7~ (i = 3, ..., 7 ) include the effect of the 0 redefinition. 
There are essentially two types of contributions to the relevant field theory amplitudes, generated by this 

action: the contact and exchange contributions, depicted in the Feynman diagrams of figs. 1 and 2, respectively. 
To find the vertices we first expand the metric in the form gu, = 6u, + hu~ + O (h 2 ), and then impose the dual 

gauge condition k~'Shi,~ =0  (where i is a particle label), and the on-shell conditions, k2=0 and huu=O for the 
external particles. Some of the vertices, especially those involving more than two gravitons, like e.g. the O (h 3) 
contribution from x/~R, have very complicated expressions which were computed with the assistance of 
REDUCE [ 11 ]. In the cases where the vertices were given in the literature we have checked that our results 
agree. 

The evaluation of 23 is straightforward since there is only the contact contribution of fig. la. We obtain 

~'com. [~3 ] = 6a'2)73StU0] 020304 .  ( 1 3 )  

Comparing with the four-dilaton string amplitude results of eq. ( 11 ), we get 

2-~B) ( 3 D - 1 0 )  z 2-~H ) _  1 ( D - - 3 ) ( D - 6 )  (14) 
-- 3 8 4 ( D - 2 )  2' - 128 ( D - 2 )  2 

Similarly to find 24 and ,~5, we calculate the contact contributions of figs. lb and lc, respectively. We obtain 

~corn. [£4] = 30g '2~4 (sZ"[-/2+ U 2 ) [ (k2hl k2) + (k2hl k3) + (k3hl k3) ]020304 

and 

~cont. [~5 ] = --30/'22-S [u2(k2ht k2) +s2(k3hl k3) -2us(k2htk3) ] 0 2 0 3 0 4 .  (15) 

Comparing with the corresponding one-graviton-three-dilaton string amplitudes, eq. (10), we get 

)7~a)=0 2-~m = 0 ,  ,~B)_ 3 D -  10 1 ( D - 4 )  
, _ 24(D-2)  3/z' 2 - ~ n ) _  16 ( D - 2 )  3n" (16) 

Finally, we calculate £6 and £7. The calculation of these coefficients is more involved since there are many 
contributions: the contact contributions of fig. 1 d and the graviton-exchange contributions of fig. 2. The contact 
terms give 

~o.~ [2-6 +)77] = {()76 +/)77)a'2 [ (h, h2)s3-l-4(k2hl hzkl )s2-F4(k2hl k2) (kl h2k] )s] 

- ~2-7 c~ '2 [2(h, h2 )stu+4(k2h, h2k~ )ut+4(kEh~ h2k3)su+4(k3h~ h2kl )st-4(k3h] hEka)s 2 

+ 8u(k2h~k2)(k, h2k3)u+8(kzh~ka)(klhEkl)t-8(kEh~ka)(k~h2ka)s]}0304. (17) 

/ / 

7,x a / / ' " "  , ,  ",.  x s, X r , , ~"~ ¢~ 0)= 

(a) (b) (c) (d) (a) (b) 

Fig. 1. Contact diagrams contributing to ~73, ...,/~7. 
Fig. 2. Exchange diagrams contributing to the two-graviton-two- 
dilaton amplitude. 
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The contribution of the graviton exchange between the exp (mO)G2 vertices (fig. 2a) with the graviton prop- 
agator taken in the standard harmonic gauge, 

1 1 D~,~o~p = - ~  [ ~ (Su~5.~+~u~5,, ,~) - (D -2 )  -~Su,,5,~p] , 

is given by 

~xch. [exp (mO) G2 - e x p  (m~) G2 ] =22a '2m 2{ (hi h2) (s 3 -  3stu) + 4 (k2 hi h2kl )s 2 

-- 8 ( k2hl h2kl ) u t -4 (  k2hl h2k3 ) su-4(  k3hl h2kl )st + 4( k3hl h2k3 )s 2 

+ (kEht k2) [4(kl hEkt)s-  16(kl hEka)u+4(kahzka)su/t] 

+ (kEhlk3) [ - 16(klh2k~ )t+24(klh2ka)s-8(k3h2k3)s2/t] 

+ (k3hl k3) [4(kt hEkl ) s t /u -8(k ,  hEk3)sE/u-4(k3hEk3) (sE/u+s2/t) ] }~3~4 • (18) 

Next, we compute the graviton exchange graphs between the vertices coming from the terms I1, /2 and 
N/~ (00) 2 = x/~g"aO~,OOp(9. We find 

~xch [Ii - x/g (0~) 2 ] = - 3a'2(21 +22){ - (kEhl h2kl )ut+ (kEh~ h2k3)su+ (k3hl h2kl ) s t -  (k3h~ hEk3)s 2 

+ (kEhl k2) [-2(klhEkl )ut/s+2(klh2k3)u] + (k2hlk3) [2(klh2kl)t-2(klhEka)s]}ck3(b4, 

~xch [ I2 - , . / g  ( o ~ , )  ~ ] ~ '~ = - T~ot 22{ (hi h2 ) (4stu-s  3 ) + (k2h~ h2k~ ) ( 16tu-4s 2) 

+ (k2hl k2) (k~ h2kl ) ( 16tu/s-4s)}0304. (19) 

Summing up all the contributions, eqs. ( 17 ) -  ( 19 ), and comparing with the two-graviton-two-dilaton string 
amplitudes, eq. (9), we find the following relations: 

/~6 + 12-7 +22m 2+ 322 =0 

_ ½,(7_ 322m2_ 322 = 3 D - 1 0  
6 4 ( D - 2 )  

D - 4  
2-7-822m2+ 3 2 , - 3 2 2 -  8 ( D - 2 )  

3~1 = 

--2£7--162~m2--321--322-- - -  
D - 6  

8 ( D - 2 )  

1 4~2m2= - -  
4 ( D - 2 )  

22-7 +2422m2+ 321 + 3 2 2  = 
D - 1 0  

8 ( D - 2 )  

(0),  

(64 (DD-._72) ) , 

D - 8  

° 6  
(0) ,  

( l  6 (DD-._82)) , 

(16j 2,) 
(o o) 

- 1 6 ( D - 2 )  ' 
(20) 

where in the case of the heterotic string the right-hand side of eqs. (20) should be replaced by the quantities in 
parenthesis. These equations are satisfied for the previously quoted values of2o, 21 and 22 and for 
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X~B) - 1 ,~H)_  1_~ (D--6_.........~) 2-.~B) = 1 ( 5 D - 2 )  X.~H)= - 1 ( D - 4 )  (21) 
32 '  128 ( D - 2 ) '  32 ( D - 2 )  ' 32 ( D - 2 ) "  

The fact that we have six equations to fix the two coefficients ;76 and ;77 both for the bosonic and heterotic string 
and that they are consistent is a very good verification of our results. 

In terms of the coupling constants of  the action ( 1 ), our results are 

2~a) - 2 ( 3 D - 1 0 )  2 2~H)=2 ( D - - 3 ) ( D - 6 )  2~B)=0 2~H)=0 
3 ( 0 - 2 )  4 ( 0 - 2 )  4 ' 

2~B) 8 (3D--10)  2~H)=4 (D--4)  2~B) 1 2~H) = 1 ( D - 6 )  
- 3 ( D - 2 )  3 ' ( D - 2 )  3 '  - 2 ( D - 2 ) '  8 ( D - 2 )  2 '  

2~B) = 1 ( 5 0 - 2 )  2 ~ H )  - 1 (D- -4 )  (22) 
2 ( D - 2 )  2 '  2 ( D - 2 )  2" 

Notice that we could have chosen different terms to parametrize the effective action at order or' 2, as pointed 
out in ref. [2 ], e.g. RRu#O~O~(9, R(Du0vO) 2, etc. However, none of the other possible terms contributes to the 
four-point amplitudes at order a '  2, either because they vanish at this order on account of  the on shell and dual 
gauge conditions as, e.g. with RR~O'fbO~(~, or because their contact and exchange contributions cancel each other 
as, e.g. with R ( D u 0 ~ )  2. This observation determined our choice of  terms in the action, eq. ( 1 ). 

Before closing this section we should mention that we have also computed the full three-graviton-one-dilaton 
amplitudes both from the string, eq. (4), and from the effective action, eqs. ( l ), ( 12 ). As these amplitudes only 
depend on the known coefficients 2o, 2 ~, 22 and they are very long we will not reproduce them here. We found a 
complete agreement for the values of  these coefficients given in the literature [ 3,4 ]. We stress that this is a highly 
non-trivial consistency check as those coefficients have been determined by matching only a few structures in 
the four-graviton amplitudes [ 3,4 ] whereas the hhhO full amplitude has 54 independent structures and they all 
match. This is another check on our computer programs and expressions for the vertices. 

4. Finally, we calculate the O ( a '  2) coefficients in the a-model parametrization, where [ 2 ] 

2 f dDxx/~exp(_2~0)[R+4(O~o)2+'2oa'G2 S---~ 
+ Ot'2(plll +p2G3 +p3(D~O~)2(OtP)E+p4DuOv~oOaO~tpDpOV~o+psR(O~o)4 

+p6R 2~p(0~0) 2 +p7R~R~'~&O~CO~(a) +O(ol  '3) ] . (23) 

We use the relations between coefficients p~, ..., P7 and 2 ~, . . . ,  2 7 derived in ref. [2 ] (eqs. (18) ) together with 
eqs. (22), to obtain 

( D - 3 )  ( D - 6 )  pi  n) - - 2  ( D - 3 )  ( D - 6 )  
p~B)=A ' p i N ) = 0  ' p ~ B ) = l ,  p~H)=0 ' p ~ a ) = _  8 ( 0 - - 2 ) '  ' -- (D- -2 )  4 ' 

p,~a) = 0  p~n) = 0  p~a) = 2 (503-24D2+76D - 128) (D3-9D2+40D-68) 
' ' 3 ( D - 2 )  6 , p~H)= (D- -2 )  6 , 

1 ( D - 6 )  pin) 1 ( 0 - 6 )  2 ( 0 - 4 )  1 ( 0 - 4 )  (24) 
p~n)_ 2 ( D - 2 )  2 '  - 8 ( D - 2 )  2 '  p ~ a ) = _  ( D - 2 )  ------------~' p~n)=  2 ( D - 2 )  2" 

We conclude that the coefficients of  the O (or' 2 ) terms in the gravitational sector of  the closed string effective 
actions are given by eqs. (8),  (22), in the S-matrix parameterization and by eqs. (24) in the a-model parame- 
terization. We note that some features of  string effective actions up to O(a' ) are lost at O(c~'2), namely: 
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( i )  The curvature  cubed terms do not  appear  in the general ized Gauss -Bonne t  combina t ion  (t23) [ 4 ], as 
conjectured in ref. [ 12 ]. 

( i i )  The effective act ions for the bosonic  and heterotic  string are no longer propor t ional .  
( i i i )  The inclusion o f  the dilaton,  in the a-model  parameter iza t ion,  does not  s imply amount ,  as we have 

shown, to the exponent ia l  factor, e x p ( - 2 ~ ) ,  in front of  the terms involving jus t  curvatures.  
According to the equivalence conjecture [5,6] it  should be possible to reproduce the above results through a 

computa t ion  of  the O (o~' 2) a -model  fl-functions. The authors  of  ref. [ 8 ] found the di la ton dependence  of  the 
effective act ion for the bosonic string theory at order  o~ '2 using a a -model  analysis; they computed  the O(ot  '2) 
( four- loop)  di la ton function from the O ( a '  2) ( three . loop)  met r ic / / - funct ion  using the Curci and Paffuti  iden-  
t i ty  and concluded that  the exp ( -  20) factor in eq. (23)  is the only modif ica t ion  necessary to incorporate  the 
effect of  a non-zero di la ton background into the result o f  ref. [4 ] for the purely gravi ta t ional  background.  This 
result is not  in agreement  with our calculat ion since we find that,  in order  to match  the four-point  string ampl i -  
tudes one needs in addi t ion,  four terms involving derivat ives  of  the di la ton field, the ones with coefficients P3, 

Ps, P6 andp7 in eq. (23) .  
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