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We discuss field redefinition ambiguities in string effective actions at order &%, in the parameterization which is most suitable
for comparison with the string amplitudes and the o-model parameterization. We find that, when the dilaton field is included, the
effective action can be most simply described by seven terms, whose coefficients can be fixed from the string S-matrix. We derive
relations among the coefficients that appear in each of the above mentioned parameterizations.

1. Many attempts to understand string low-energy physics start from a low-energy effective action for the
massless modes of the string [ 1-13]. In this letter, we investigate the gravitational sector of the effective action
of closed string theories i.e. bosonic, heterotic and type II superstring.

The effective action is non-unique since local field redefinitions do not affect the S-matrix [8,10,13,14].
Hence a proper understanding of the structure of the effective action at any order requires necessarily a system-
atic study of the ambiguities generated by local redefinitions. This is already apparent at order «’; in particular,
the coefficients of the R2, and R? terms are ambiguous and the fact that they are usually written in the Gauss—-
Bonnet combination is just a choice which renders the theory manifestly ghost-free. Actually, it has been shown
in ref. [ 13] that the terms which lead to ghosts in the graviton propagator can always be removed by appropriate
field redefinitions, to all orders in «’. This result has recently been extended to the case of general backgrounds
(8u» Houpn #) [15].

The study of ambiguities at order o', when the antisymmetric tensor and dilaton fields are included, has been
done in refs. [14,16]. At order a’?, the structure of the curvature cubed terms has already been discussed in ref.
[17], with the result that there are only two independent R3-invariants whose coefficients can be unambigu-
ously fixed from the string S-matrix: I, =R*%, R*,  R**,; and the “Gauss-Bonnet” combination G;=1,—21,,
with I,=R*,, ;R"#PR,; .°.

In this letter, we extend the analysis of the structure of the effective action at order &% by including the dilaton
field. The dependence of the action on the dilaton is non-unique; there is, in particular, a class of effective
actions which have the following dependence on ¢:

5= [ 4%x /g L(g.0. R D, 000) (1)

Here and throughout this paper, we use euclidean signature and the conventions

R*,,=0,1%,—., R,=R*,,, D,A4*=0,4"+T},A4". (2)

w

The above form for S is most suitable for comparison with the o-model and, following ref. [16], we call it
hereafter the “o-parameterization” of the effective action. This form is, however, not convenient for comparison
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with the string S-matrix since g,, and ¢ mix in the propagator. That does not occur in the “s-parameterization”
of the action

S= J‘de\/ée‘W) y(e_nguwRi,uupy D;n au¢): J’=—4/(D—2) s (3)

which is obtained from the g-parameterization by making a Weyl transformation: g, —~e~"%g,,,.

We seek the simplest form of the action, after field redefinition ambiguities have been taken into account, in
both these parameterizations. We find that in either case, the action can be written with a minimum of seven
terms at order o, whose coefficients can be fixed from the string amplitudes. Furthermore, these terms can be
chosen such that the resulting theory is manifestly ghost-free. Finally, we find the relation between the two sets
of coefficients i.e. the ones in the o-parameterization and the ones in the s-parameterization.

2. Consider the most general action containing all possible independent dimension-six invariants involving
curvatures and derivatives of the dilaton field. In the s-parameterization, this can be written as

S = % f de\/g{R+y(6¢)2+a’ e%Ao{R3,, —4R%, + R*+ [y2(D—4)/(D=2)]1(99)*}

+a?e?a,l, +a:G3 + a3 Ryuapy RAPR™ + a4 R,  R¥R*+ a5 R,,,R" R,
+asR,,D’R*+a,R},,,R+agR%,R+asR*+a,,RD’R+b,(D?¢)?

+5,(D?¢)*(09¢)*+b3(D?¢) (39)* +b4(99)°+bsD*(D*¢)D*¢+ b D*(D?9) (3¢)* + b7(D,.9,4)> D¢
+b5(D,0,0)%(9¢)>+by(D,3,6D*07¢D,0"$) +c,R(89)*+, R(39)*D>*¢p+ 3R (D?¢)?

+c4RD*(D?*¢) +¢sR(D,0,0)> +csRD,0,08“¢3" ¢+ c;RD*(3,0)0* ¢+ csRpp 090 9D?¢
+¢5Rap0%0329(30)* +¢1oRapD#PD* 0+ )| RayD859(09)? + 12 RapD 8% pD*d %0

+¢13R 3, D402 0070+ ¢ ) R2(90) 2 + ¢ s R D>+ 6 R2, (390)>+¢,7R2, D>+ s RR,,, 463" ¢
+¢/oRR,,D*8” ¢+ C20R o R¥ 00" G+ 21 R,y R%,D*3* G+ C25R sy R 34037 9

+ 23R 1oy RPDMDY ¢+ €34R 2 0 s (00) 2+ €25 R2 o s D2 0+ Co6 R 4y R,4F104 037 9] + O () } (4)

where I and G have been defined in section 1 and xk*=32xG.

The order o’ part of the action has been found in ref. [16] by comparison with the string amplitudes and
Aosy=1s Aoty =1%» Aos) =0, where the subscripts (B), (H) and (S) refer to the bosonic, heterotic and super-
symmetric string, respectively.

The most general local field redefinitions are

8w =0a’(..) +a? e¥{A Ryapy R + A3 Ry py R+ A3 Ry, R* 4+ A, DR, + A58, R e
+468,,R2p+A:8,,R*+438,,D’R+A43RR,,, +B,D,0,8D*¢+ B,D,8,6D9, ¢
+8;D,0,6(3¢)*+ B4 9,69,6D*¢+ B58,69,6(8¢)*+ Be g,y D*(D?¢) + B1£,,D* (3924)3%¢
+ B3 8, (D?0)* + B9,y (Dadpd)? + B108,wD*¢(36) + B11 8, D050 993”6+ B12g,., (39)*
+CRuapy 3%0079+ CoR 105, DP9+ C3 [R 1 D8, 0+ (4= 1) | + Co[ R, 8%09,0+ (u=v) ]
+CsR,,D*0+CR,,(80)2+ C1 D4R, 076+ Cyg, RasD*8 9+ Cog,, Rap 06049
+C108,RD*¢+ C1 £, R(86)2+ C128,, 9, RI*¢+ C3RD,8,6+ C 4 R8,03,0} +O () (5)

and
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Sp=0a'(...)+a?e¥?[A,oR2up, + A, R}y +A4,,R*+A4;D2R+ B ;D*(D?¢) + B, D?(3,0)9%¢
+B,5(D*¢)*+ Bs(D,0,0)* + Bi7(D*$) (3¢)*+ B15D,8,60"¢9" ¢+ B15(3¢)*+ Cis R, D"0" ¢
+CisR,, 3403”9+ C,,RD*¢+ C3R(3¢)*+ C,59,RI*¢] +O(a”) . (6)

We have not included terms like D?(D,d,¢) in (5) because 8g,,=2BD?*(D,d,6), d¢=BD?(0,¢)0d"¢ would
correspond to a general coordinate transformation, with parameter £,=BD?(8,¢) in this particular case, under
which (4) is, of course, invariant. Other terms of this type are D?(9,04)9,¢, D,D,0,0°¢, D R, 0%+ (u—v),
etc...

In order to find the change in the action (4), at order a'%, under the field redefinitions (5) and (6), we use

85> = (8S0/88.,) 082 + (8S0/ 89)80p >, (7)

where S, and S, are, respectively, the order «’® and a’? parts of the action (4) and 8g(2, 8¢ the order
parts of the field variations. Notice that we do not include in (7) the (8S,/8g,,)8g.) + (85,/8¢)8¢ ") varia-
tion; this is because we consider that the freedom contained in 8g(}) and 8¢ ‘') has already been used to put the
action S, in the form exhibited in (4).

Using (7), and after integrations by parts, we find that, under the transformations (5) and (6), all the coef-
ficients that appear in (4) at order «’? change, except @, and a,. All coefficients but a, and a4, are therefore
ambiguous. This does not mean that they can all be set to zero by a proper choice of the parameters in (5), (6)
since there are five combinations of the ambiguous coefficients that remain invariant under the field redefini-
tions; these are

—93a;+ 8¢5 =0,
—ypda; + 6¢,4 =0,
—8by + 8¢5 —78cy3 =0,
Sbg +2y8bs —ydes +4y8c,; +2y28a,0 —p?8as =0,
—938as -+ (y—1)8ag —y38ag —y38as —2y°8a,0 + 8bs — y? (y+3)8by — y8cy + 3928¢6 +y28c; — ydes
+4p28c;, —y2(1+9)8¢c,, +7°8c14 +728¢16 + 728015 ~ 1738019 + 728020 — 13805, =0, (8)

where 8a,=a;—a,, 8b;=b;—b,, dc; =c} —c¢, are the variations of a;, b;, ¢, under the transformations (5), (6).
Hence, only 38 of the 43 ambiguous coefficients in (4) can be transformed away by a proper choice of the 50
parameters in (5), (6). We choose the five coefficients that parameterize the effective action together with a,
and a,, to be bg, by, 3, €24 and ¢-6. We can then give arbitrary values to the remaining coefficients; in particular,
we can set them to zero, thus getting the simplest representation of the effective action, which we call hereafter
the “minimal scheme”. Notice that there is a class of actions in the minimal scheme, depending on which coef-
ficients in (8) we choose to parameterize the action. The choice we have made 1s based on the criterion that one
may be able to calculate these coefficients by comparison with the four-point string amplitudes [18].
Hence, the effective action in the s-parameterization, at order o2, can be written, in the minimal scheme, as

S =— ;23 J dPx \/g'a’z e2?[A, 1, +4,G3+45(D,9,0)*(3¢)* +1,D,0,¢D*0”¢D,3" ¢

+'1SRaﬂ/tuDaa!l¢aﬂ¢a”¢+}~6Riuab‘( a¢)2+i7RyaﬂvaaﬁTau¢a”¢] (9)

where A, =a', A,=ab, As=b}, As=b4, As=cl3, Ag=Cha, A7=C56 can be uniquely fixed by comparison with the
string S-matrix; A, and A, have already been found tobe [17]

ll(B)=4_18! AK(H)=}'I(S)=05 j'2(B)=%: AZ(H)=AZ(S)=O' (10)
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3. The above analysis can be repeated in the o-parameterization, where
() 2 D —29 2 P2 2 2

S=-51d x/ge P [R+4(89)>+ Ao’ (R%,0s —4R2, + R?)

+a? (a1, +d,Gy+ ...+ 6 R uap, RP49079) +O(a®) ] . (11)

The order o’ part of the action, S, has been found in ref. [16] (notice that there is no (d¢)* term in this
parameterization ) and .S, has the same structure as in (4).

Taking the field redefinitions (3), (6) and substituting in (7), we find that once again only 4, and d, remain
invariant and all other coefficients change; furthermore, there are also five combinations of the ambiguous
coefficients that remain invariant:

—48d; + 8¢54 +28¢,5 =0,
284, — 4846 + 8¢5 + 8656 =0,
—88ds + 8by — 28¢5 — 86,3 + 4885, — 2865, =0,
6484, — 88b, —43b, — 28b; — 8b, + 43¢, + 888, + 16865 — 168¢,5 —328¢,5 =0,
884, — 168ds + 3284, + 83bs + 48bg + 285, + 8bg — 168¢, — 4865 — 48¢,o — 26¢,,
+48¢8,6+88¢,, + 888, — 28¢5 =0 . (12)

We choose bg, by, ¢,, ¢24 and é,4 to parameterize the effective action and set the remaining coefficients to zero.
Except for ¢é,, this is the very choice that we have made in the previous section for the s-parameterization; ¢, is
replacing ¢, 5, which does not appear in (12) and therefore cannot be chosen.

Hence, the effective action at order 2, in the g-parameterization, can be written, in the minimal scheme, as

2
519 == 2 [ 4Px Jga e 1py 1, 40,6y +93(D,0,0)*(89)" +7.D,8,6D"9D,3"0
+p5R(a¢)4+p6R;2w/m( a¢)2+p7R;wz/)’yRuaﬂya/t¢ay¢] ) (13)
Whereplzﬁ'l,p2=d'2,p3=5§,p4=5£,,p5=é'1,p6=é’24,p7=é’26.

4. To find the relation between the coefficients (1, ..., ;) and (p,, ..., p;), we perform a Weyl transformation
[19]
g =e g,
Ffz(nf) =F;1l(lla) —261(;161/) +guu§1 5
RA(X)uV/'zRM”)M/I-*' 261 (v0p1u + 2‘7;' (+8plp— 2625;’ (v8pu 5
é;4=ra/1¢: a;w:Duéu-l_éuéu’ T=2/(D_2) 5 (14)

in order to change the parameterization and then the scheme to finally obtain from the results of section 3, the
minimal scheme of eq. (13).

Performing the Weyl transformation on (9) and integrating by parts, we find, after a considerable amount of
algebra, that the action can indeed be written in the form (11), with the corresponding coefficients given by
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dl =j.] N

by = — 48744, +614(5D—=22)A, — 15 +412A6—217%4,,

By =37[10t(D—2)+22—D]A, +31*[ = 51(D?—TD—10) = 2D+ 5314, — 314, + J1(d1— 1) A4
+1[21(D—6)+11]7As +103(2—D)Ag + §12(22~ D)4,

b,=41*[1*(—=D*+3D-2)-31(D-2)+3(D-6) 14,
+14[2¢2(D? —8D2+17D—10) +67(D>=7D+10) + 3(7D=26) 14, +7(tD+2)45
—1[t*(D-2)—-314s
+11[=21(D=2) =345 +20°[1(D?*=3D+2) +2(D=2) JAs + i12(D=6)A,

bs=0,

bo=314(2—D)A, =31 (D=2)A> — 3Tk, +4ths + 412 (2= D)4,

b, =313[1(2=D) +8]4, + 303 [=31(D=2)—8(D=5) 1A, — Iths + §1As — 412(D=2)A,,

by =241*(4—=D)A, +674(D*=14D+36)A, +A; — 314, +31hs +413(D—-2)As +47%4,,

bo=273[37(D—=2)+4(D—4) 1A, + T [91(D—2) +4(5D—16) 1A, + (1 +31)1s — LA s + 312 (D=2)A,,

¢ = —312[t3(D—6)+87+ 1614, + 272 [12(26 = 7D) — 327+8(D—8) [A, — 31A, + 4 7hs
— 4+ st[t(~D+2)—8]A,

¢ =3 [(D-2)12+87+32]4, +}1?[673(D—2)+96T +32(8—D) A, +31As— s tAs+ {t[t(D—-2)+8]4,,

& =—12074,4 373 (D—8)2,

é4=0,

6s=12124,+312(6=D)4,,

Ce=372[1(D—=2)+81+8]4, +372[3(D-2)12+241+4(8~D) A, + 3ths — LtAs + it[t(D=2) +8]A,,

é;=0,

by =—481%4,—121*(1—D+8)1,,

Co =487 (14+2)A, +241%(41—D+8)A, — 11h s+ 8124+ 21(7+2)1,,

é10=4872A,+1273(7=D)A,,

é =312 —-13(D=2)~247—-32]A, + 372 [-312(D=2)+81(D—=13)+16(D—-8) ] A — 314,
+itds+8ths+it[(2—D)t—8]4,,

Co=—24124,+127t3(D—-4)4,,

¢13=6T2[t2(D=2)+8(t+1)]A, +3712[3tX(D-2)—41(D=8)—4(D—8) JA, + 2th, + (1= }T)As
+it[t(D-2)+8]1,, (15)
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Cla=—6T4, =974,

é1s=3tA, +31,,

C1e =244, +67(1+6)4,,
é7=—1274, - 1814,,

Cig=127(t+2)A, +37[ —1(D-8)+12]4,,
Elo=—1274, —1874,,

Cro=—241(7+2)2, +67[1(D-8)—12]4,,
Gy =247A, +3614,,

¢y =241(7+2)A, +67[ —1(D—-10)+12]4,,
by=—=241(4, +4,),

Cra=—6T(t+1)A, =9t (t+1)A,+4,,

b5 =370, + 3745,

Gro=247(t+1)A, +[(42—-3D)12+367]A,+ 4. (15cont’d)

Finally, we change to the minimal scheme of eq. (13). To fix their variations we use the fact that, in this scheme,
all coefficients (except those appearing in (13)) are transformed away by field redefinitions:

da,=d;—d;=—a, (i=3,..,10), 8b,=b,-bj=-b, (j=1,..7),
8¢, =C)—b=—06 (k=2,..,23,25) (16)

with the 4, b;, ¢, given by egs. (15).
Regarding the coefficients which appear in (13), p; and p, can immediately be found using (15) and the fact
that 4, and 4, remain invariant under the field redefinitions

p1=6d1+é|=l|, p2=5d2+d2=12. (17)

As to the remaining coefficients, their variation is fixed by (12) and (16) and they can be found with the help
of (15). We get:

Py =1203[1(10=3D) + 1612, +672[12(D>— 17D+ 42) +87(9~D) + 1614, +15 — 6Thq + 2745
+41[t(D=2)—4]Ae+1[T(6—D) +4]A,,
Pa=872[T1(D—10)—6]1, +87°[4T1(D=5)— 151, +As — 45 —47h, ,
ps =1 [12(D>=3D+2)—12¢(D=2) +36]1,
+i0 [T (=D +8D2—~17D+10) +1213(D?=7D+10) — 1271(4D—=17)+ 6414,
—1t(tD=4)A;+ i1 [1(D=2)—6]As + 124+ 112 [13(—=D?*+3D—-2)+81(D—-2) — 164, ,
Po=—674,—=972A,+ 4,4,
pr=2472A,+ [ (42=3D) 12+ 12]4, +1 . (18)

5. Hence, we have shown that, in both the s- and o-parameterizations, the effective action, at order «’?, can be
described with a minimum of seven terms, when the dilaton field is included. Furthermore, it is possible to
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choose these terms such that there are no corrections to the standard propagators and therefore the theory is
manifestly unitary, in agreement with the general result of ref. [ 15]. We have derived the relations between the
coefficients of these terms in both parameterizations so that, once the s-parameterization coefficients are found
by comparison of the amplitudes generated by (9) with the string amplitudes [18], it is straightforward to get
the g-parameterization coefficients using eq. (18). This result would allow a direct comparison with the corre-
sponding g-model computations [20] and thereby examine the equivalence of the string equations of motion
and the g-model Weyl invariance conditions at order «’? [21].
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