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In a multiply connected manifold, M 4 ~ S 3 / Z  2, we compute at one-loop level the gauge symmetry breaking due to Wilson loops. 
For an SU (3) model without matter fields a non-trivial vacuum, which breaks the gauge symmetry has lower energy. 

The study of  spontaneous symmet ry  breaking of  
non-abel ian gauge theories has been a topical  subject 
since the early days of  the discovery of  the Higgs 
mechanism [ 1 ]. In a field theory,  formula ted  in the 
usual four-dimensional  spacetime, M4, it is quite clear 
that  only scalar fields can acquire a vacuum expecta- 
t ion value (VEV) .  However,  in Ka luza -K le in  theo- 
ries, formula ted  in M4®J, where J is a compact  
mul t ip ly  connected manifold,  there is an al ternat ive 
gauge breaking mechanism [ 2 ] due to Wilson loops. 
To some extent this mimics  the usual Higgs breaking 
but, the VEV is acquired by some components  of  the 
gauge field which correspond to space dimensions that 
are compact if ied.  

Recently, this mechanism has been generally as- 
sumed to be at work in the f ramework o f  superstr ing 
theories (see ref. [3] for a review).  Consistent  and 
anomaly  free theories of  this k ind  require gauge 
groups with enormous  d imensions  (for instance 
Es®Es has 496 d imens ions)  formula ted  in a ten-di-  
mensional  spacetime. Hence, to obta in  any phenom-  
enological interest ing model  one needs several 
symmetry  breakings and, in the init ial  stage of  this 
breaking chain only the Wilson-loop mechanism is 
available.  

Despi te  the fact that  these ideas have been widely 
advocated,  it is fair to point  out  that  there are not  
many  cases where explici t  examples  have been stud- 
ied. As far as we know, only one simple model  was 
studied by Evans and Ovrut  [ 4 ] but  their  results were 
contradic ted by Shiraishi  [ 5 ]. In this let ter  we re-ex- 
amine  the same example s tudied by these two groups 
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and solve the problem of  unders tanding their  con- 
flicting claims. As we will see, nei ther  o f  them is en- 
t irely correct. 

Let K be a simple connected manifo ld  and G a dis- 
crete symmetry  group which acts freely on K, i.e., 
g.y ' - -y  implies  g =  1 for any g ~ G  and y any point  on 
K. Then K / G  is a mul t ip ly  connected manifold.  On 
K we define a gauge field A ~ ( y )  where a is the gauge 
group index referring to the adjoint  representat ion of  
the gauge group E a n d / l  is the world index on K. I f  
D u denotes the covariant  der ivat ive  on K and C abe 
are the structure constants  of  E, the field tensor  F ~  
is 

- -  a a F ~ . ( y )  - D u A  ~(y)  - D~A.  (y)  

+Cat'CA~',(y)A~(y) . ( 1 ) 

Let B~ be a field configurat ion such that  F ~  l a = 0 .  
This is called a vacuum gauge field. The Wilson loop 
Uis  def ined by the path-ordered (P )  integral 

U = P  e x p ( - i ~  T " B ~ ( y ) d y ~ ) ,  (2)  
Y 

where T is a closed line on K and T a are the genera- 
tors of  E. Since U is invar iant  for cont inuous  defor- 
mat ions  o f  7, we have U =  4. However,  this is not so 
for the mul t ip ly  connected manifo ld  K / G .  On K / G  
the gauge fields are such that  

A~u(g .y )= at, b Ug A u ( y  ) , g ~ G , y ~ K / G ,  (3)  

where Ugb is an element  of  the adjoint  representat ion 
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of  E. The generators of  the unbroken gauge group are 
the ones which are invariant under Ug for any geG,  
i.e., 

UgTU~ -I = T. (4) 

This is a necessary condition for symmetry breaking 
by the Wilson-loop mechanism but, as we will show, 
it is not a sufficient condition to determine com- 
pletely the symmetry breaking pattern. 

After these preliminary definitions we can exam- 
ine our toy model. The spacetime structure is M4® 
S3/Z 2, where $3 is the three-sphere and Z2= { -  1,1 }. 
We parametrize $3 in terms of  the angles (0, ~u, 0) and, 
embedding $3 in E 4, their definitions are 

x+iy=r cos 0 exp[ l i ( ~ t + 0 )  ] , 

z+it=rsin 0 exp[ ½i(~ff-~) ] , (5) 

with 0~<0~<~z, 0~<q/~<4~z and 0~<q~<2~z. The gauge 
group E is SU3 and the quantum lagrangian o f  the 
system involves a gauge fixing term, L#gf, and a 
Faddeev-Popov  term, 5°vp, besides the classical 
Yang-Mills term L#VM. For convenience we split the 
world index/ t  into m and M, where m = 0, 1, 2, 3 re- 
fers to the Minkowski space. 

Clearly, B~ = 0 is a trivial vacuum. Other non-triv- 
ial possibilities are o f  the form 

B~u(y) = (B~(y) =0,  B~(y) ~ 0 ) .  (6) 

In any case, because F~ ,  I o = 0, at tree-level any vac- 
uum configuration has zero energy. One-loop correc- 
tions break this degeneracy and the relevant question 
is whether or not a non-trivial vacuum, which breaks 
the gauge symmetry, has a lower energy than the triv- 
ial one. To compute the energy E ~ corresponding to 
different background fields B ~ ( i =  1, 2,...) we com- 
pute the partition function Z[B'], i.e., 

exp ( - E ' )= Z *[ B  ~] , (7) 

where Z* is the restriction of  Z to the quadratic terms 
in the lagrangian. If  we write 

A~u(y) = B ~ ( y )  + Q~(y) (8) 

we obtain, for the quadratic terms in .L~, the expression 

5°(2) = ~e-2F~u,(x) hFU~a(x) h 

_ ½a- , e -2{  [0mA ma(x) ]2+  [DM~b I BQMb(x)]2} 

_ C a ( x )  OmOmCa(X) 

-Ca(x)  DMabIBDMbcIsCC(x ) 

-- (J~it(x) DrnikDmkJ~.)J(x) 

- ~i*(x) DMiklBDMkS ]B~s(x) 

+ i~PA (X) y~DmASgJS(X) 

+i~ 'a  (X) yMDMASIST~(X) , (9) 

where 

DMab[ B = DM t~ab- cabcBCM , ( 1 O) 

C a are the Faddeev-Popov  ghosts and, for complete- 
ness, we have included also scalar (q~) and spinor ( 79 
matter fields. 

If  in eq. (2),  instead o f  a closed path, we stop the 
integration at a point x, Uwill be a function of  x, i.e., 

x 

U s = P  e x p ( - i f  TCB~(y )dy i ) .  (11) 

Taking a covariant derivative we obtain 

D/~ U~P(x )  = - i U s ~ ( x ) ( T ~ ) ~ B ~ ( x ) ,  (12) 

where the greek indices in superscript denote a rep- 
resentation of  the gauge group, either the adjoint rep- 
resentation or one of  the representations of  the matter 
fields. For instance, if q ~ ( x )  is one of  these fields it 
can easily be shown that 

DM~PI~(x)=U~I~YDM[UBYP(X)~(X) ]. (13) 

Then, defining 

q~8~(x) = U B ~ ( X ) ~ ( X )  (14) 

and integrating by parts, L~ (2) can be cast in the form 

~ ( 2 ) =  ½e-2(QBua(X) [ _rl , ,  D + RU, 

+ ( 1 - l / a ) D U D " ] Q s . a ( x ) }  

+ C~ a ( x )  ( - [] ) C~ a ( x )  + ¢~d* ( x )  ( - [] ) q~d(x )  

+ ~v~ (x)  (i~,,O. + iyMDM) g"B A (X), ( 15 ) 

where R/'" is the Ricci tensor on M4®K. Hence, 

. . . . .  (16) Z* [B] - ZyM Z c  ZsZF 

with 
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Z}MOC I-[ [det(--gU~Dv+RU")] - ' /2 ,  (17a) 
adjoim 

red 

Z~oc 17 d e t ( - r q s ) ,  (17b) 
adjoint 

rep 

Z~oc I~ [ d e t ( - [ ] s ) ] - ' ,  (17c) 
scalar 

rep 

Z~oc I~ [det(-[]v+R¼)] ~/2. (17d)  
fermion 

rep 

Now, the problem is reduced to the search of  the ei- 
genvalues, of  the operators that appear in eqs. (17) .  
This is a well-known problem in differential geome- 
try which we solved following a procedure used by 
Pilch and Schellekens [6].  For  a unit n-sphere, S~, 
the eigenvalues of  the rank-m tensor harmonics, 
E (/~ (n, m) ,  are 

E ( l ) (n ,m)=-  [ l ( l + n - 1 ) - m ]  , (18) 

and the degeneracies corresponding to the m = 0 and 
m = 1 cases are 

( l + n - 2 ) !  ( 2 1 + n -  1 ) ,  (19a) D(/) (n '  0) = / ! ( n -  1)! 

and 

D~l)(n, 1) 

( l + n - 3 ) !  
= ( l + l ) r ( n _ 2 ) r l ( l + n - 1 ) ( 2 l + n - 1 ) ,  (19b) 

respectively. The details of  this calculation can be 
found elsewhere [ 7 ]. 

Using the $3 coordinate system introduced earlier, 
let us consider the following vacuum gauge field 
configuration: 

B ~ ) ( x )  = (0, 0, 0 ) ,  (20a)  

B~2)(x) = (0, 0, 2x /~8  as) (20b) 

and 

B~(3) M (X) = (0, 0, 2~ a3) . (20C) 

Calculating the Wilson loops in S3/Z 2 we obtain 

U~ ~ ) ='~ (21) 

for all SU3 representations, and 

U(B 2) = ~ 3 ( ~ 1  (~ ( - - ' ~2 )  (~ ( - - 4 2 )  (22a) 

o r  

U(f ) = ( - ~ 2 )  (9~1 (22b) 

for the adjoint and fundamental  representations, re- 
spectively. For the third background we obtain 

U~3' = U~ 2) • (23) 

In the first case, B j, there is no symmetry breaking 
but in the other two cases the gauge symmetry is bro- 
ken. However the breaking pattern is different. For 
B 2 the unbroken subgroup is SU2®U~ while for B 3 it 
is U~ ®U~. This conclusion can be easily obtained ex- 
amining the generators o f  SU3 which, in each case, 
commute  with the exponent of  the Wilson loop U. It 
is also interesting and straightforward to look at the 
quartic term in 5°yM and check that when the sym- 
metry is broken the gauge bosons associated with the 
broken generators acquire a mass. For instance, for 
the vacuum B 2 we obtain 

9 7 
~mass-- 2 e 2 r  2 a~=4 [2Qma(x)Qma(x) 

d l- a x Ma x QM ( )Q ( )] 

9 7 
+ ~a~4 Ca(x)C~(x) ' (24) 

where e is the coupling constant and r the radius o f  
83. 

Let us proceed with the evaluation of  the differ- 
ence in energy, ZXE between the first and second back- 
grounds, i .e. ,  

Z ~ = E  1 - E  2 • (25) 

Recalling eqs. ( 18 ), (19a),  (21 ) and (22a)  and not- 
ing that on M 4 the operator [] has a continuous spec- 
trum, it is easy to obtain the ghost contribution to 
zkE, namely 

=4ict_~n_a) f dnk oo zXE~ ~o ( - 1 ) ' ( 2 / + N -  1 ) 

F ( I + N - I )  ln[k2+l( l+N_l) / r2]  (26) 
× F(N).I! 

where/z is a mass parameter used in dimensional re- 
gularization. Notice that the sum over the adjoint 
representation in eq. (17b) gives, in view ofeq.  (21 ) 
and eq. (22a) four times the difference between the 
even and odd harmonics in S3/Z 2. This justifies the 
factor 4( - 1 ) / in  eq. (26).  In this equation the di- 
mensions of  M 4 and $3 are assumed to be n and N 
respectively and both are considered as continuous 

493 



Volume 206, number 3 PHYSICS LETTERS B 26 May 1988 

parameters  living in the complex plane. The integra- 
t ion in k can easily be done and we get 

81z-~n-4)F(-n/2) ~ ( - IV  F(I+N-1) 
AE~= (4~)~/2r" ,=o " F - - -~S / (  

X [ / + ½ ( N -  1)]  [l(l+N- 1 ) ] " / z .  (27)  

In this case eq. (26)  is convergent  for R e ( n + N )  <0 .  
Then, making an analyt ic  cont inuat ion  to the physi- 
cal values n = 4 and N =  3 the result can be expressed 
in terms of  l-functions.  This regularizat ion method  
was previously used by Candelas  and Weinberg [8 ] 
and further detai ls  can be found in ref. [7 ]. The re- 
sult is 

4 ( 7 ~ ( 3 )  1209~(5) 11430~(7)~ 
AE~ = ~ (2~)  ~ q- (27g)6 (2n)  8 j 

= 4.0925X 1 0 - 2 / r  4 , (28)  

which means that  the ghost cont r ibut ion  favours the 
symmetry  breaking. For  the Yang-Mil l s  fields we ob- 
ta ined after the k integrat ion 

4/.t - ( n - 4 ) F ( - n / 2 )  
~ e y M  ~---- - -  (4~)n/Zrn 

X ~ (-1)~ F(I+N-2) l(l+N-1) 
~=, F(N-1)(I+I)! 

X [ I + ½ ( N - 1 ) ] [ I ( I + N - 1 ) + I ] n / 2  (29)  

and, using the same method  for the analyt ic  contin-  
uation, the result is 

8 (46 .5~(5 )  5 7 1 5 ~ ( 7 ) )  

~ ,  = -  ~ \ ~ 3 ~ ;  + (2.)~ 

= - 2 . 5 2 4 8 X  10 2 / r 4  , (30)  

which favours the tr ivial  vacuum. However  the total  
result AEyM + AEc is posi t ive which implies  that,  for 
a theory without  mat ter  fields, the vacuum with SU3 
spontaneously broken to SU2®U1 is the true mini-  
mum.  The scalar fields cont r ibut ion  to &E depend  on 
the group representat ion but, in all cases except for 
the singlet, it favours the unbroken vacuum. This can 
be easily seen compar ing eqs. (17b)  and (17c) .  On 
the other hand, the spinor  fields give a null contri-  
but ion to AE because in $3 fermions cannot  be made  
invar iant  under  the discrete group Z 2. 

Now we can compare  our  results with the previous 
ones. The calculation of  Shiraishi agrees [ 5 ] with our  
result for the gauge fields but  he did  not  consider  the 
F a d d e e v - P o p o v  term. Hence it is obvious why he 
reached a different conclusion. However,  we should 
point  out that  both calculations were done in the co- 
var iant  ' t  H o o f t - F e y n m a n  gauge. So, it is clear that  
the F a d d e e v - P o p o v  ghost contr ibut ion  should be 
added.  This is also done in the work of  Evans and 
Ovrut  [4] .  But, these authors s imply considered the 
eigenvalues of  the laplacian on S3/Z 2 rather  than on 
M4@S3/Z 2. In this case, even the gauge fields give a 
posi t ive AE. Following again a l - funct ion regulariza- 
t ion scheme, rather than the Paul i -Vi l la rs  methods  
used by Evans and Ovrut  [4] ,  we obta in  

AEvM = 32[½1n 2 ( ( 0 )  + ¼(' ( - 2 ) -  ~(' (0)  ] 

= 0.1012192.  (31)  

Thus, we confirm their  results for this restrictive case. 
In conclusion, we have shown by explicit  compu-  

ta t ion that  in a par t icular  example the Wi l son - loop  
mechanism for symmetry  breaking works. It is easy 
to generalize this analysis for a general sphere S,, and 
for other  gauge groups. However,  it seems at this mo- 
ment  out  of  the question to carry the computa t ion  
onto Ca lab i -Yau  manifolds.  It would be interesting 
to consider  the case of  orbifolds which are s impler  
than Ca lab i -Yau  manifolds  and where, perhaps,  the 
evaluat ion o f  the harmonics  could be done. I f  this 
turns out  to be the case, then a more realistic model  
could be analyzed. 
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