
Z. Phys. C - Particles and Fields 40, 141-148 (1988)  'ticles 16r Physik C 

and 
�9 Springer-Verlag 1988 

The width of the Z boson 

W. Beenakker 1. and W. Hollik 2 

1 Instituut Lorentz, Leiden University, 2311SB Leiden, The Netherlands 
2 II. Institut fiir Theoretische Physik, Universit/it Hamburg, D-2000 Hamburg 50, Federal Republic of Germany 

Received 9 February 1988 

Abstract. We present a detailed discussion of the 
elctroweak radiative corrections to the partial decay 
widths of the Z boson into lepton and quark pairs 
(q r t) and to the total width for 5 flavors. The results 
are only very weakly dependent on the Higgs mass. 
The top mass dependence leads to sizable variations 
o f f  z which have to be taken into account for precision 
experiments at the e + e-  colliders LEP and SLC. 

I Introduction 

One of the basic measurements at the near future e + e-  
colliders LEP and SLC will be the determination of 
the shape of the Z resonance. This will provide us with 
two of the most interesting and important electroweak 
parameters: the mass and the width of the neutral 
vector boson. For precision tests of the Standard 
Model and for searches for signals of possible new 
physics it is indispensible to know the predictions of 
the Standard Model with high accuracy, including 
higher order corrections. The QED corrections I-1], in 
particular real and virtual photonic corrections in the 
initial state, constitute the largest part of the radiative 
corrections and lead to a distortion of the shape of 
the resonance and to a shift in the peak value. In view 
of the high accuracy with which the mass and width 
will probably be measured (+_20MeV [2]) we are 
forced to go beyond the O(~) contributions in these 
observables. The effect of O(e 2) initial state radiation 
on the Z shape has been studied in [3]. It was found 
that the 2-loop QED corrections reduce the shift of 
the Z peak by 88 MeV. Combined effects of initial 
state bremsstrahlung and weak corrections in the Z 
propagator, i.e. the s-dependence of the width and 
2-loop corrections to the imaginary part of the Z self 
energy, have also been investigated recently [4]. 

* Supported by the Stichting FOM 

The higher order corrections to the Z width are 
therefore of twofold importance: 

�9 They influence the shape of the resonance and have 
consequently to be considered for precision measure- 
ments of the Z mass. 
�9 The partial widths for Z ~ f f w i l l  allow one to study 
the weak coupling constants of the various fermions 
at the level of quantum corrections. 

In this note we discuss in detail the radiative 
corrections to F ( z ~ f f ) ,  f=  v, l, q( r which enter 
the results presented in [4]. Previous calculations have 
been performed for the leptonic widths [5] and also 
for Z-~ q~ [6, 7]. In [7] the influence of the top quark 
on the Z ~ b E  decay width has been considered in a 
unitary gauge calculation. 

The underlying schemes for the various calculations, 
however, as well as the choice of the input parameters, 
are different in general, and a numerical comparison 
at the high precision level as required nowadays has 
not been performed so far. Moreover, the on-shell 
renormalization scheme based on the boson masses 
Mw, Mz together with the electromagnetic fine struc- 
ture constant e = 1/137.03604 has become generally 
accepted meanwhile and has been widely used also in 
other practical applications [8-10] and references 
therein). 

The basis for our calculation is the on-shell scheme 
as specified in [123. In contrast to [7] we perform our 
calculation in the renormalizable ' tHoof t -Feynman  
gauge. Since we have to include virtual top quarks and 
unphysical Higgs bosons in the Z ~bb  decay vertex 
corrections the renormalization procedure of [12] has 
to be extended keeping finite mass effects of the type 

2 2 rnt /mw. 
QCD corrections in Z --* q~ decays are not explicitly 

discussed. They can easily be included by multiplying 
the electroweak partial widths Few(if) by the QCD 
correction factor [22,23] yielding ( f e t ,  massless 
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quark approximation) 

row+QcD(ff) = row(f:) 

"( l +Cr + ( ~  f "(1"98-0"115n:) ) r e  (1.1) 

for f =  q with n: = number of flavors.* 
Electroweak corrections to open top final states in 

case of mt < Mz/2, a possibility which is experimentally 
not completely ruled out, have been considered in [ 13]. 
They are less important in view of the uncertainties 
from the top mass in the phase space factors and from 
large QCD corrections near threshold [17]. Therefore 
in this article we study the case rn t > Mz/2. 

The paper is organized as follows: Section 2 contains 
the tree level results and the specification of our 
notation; in Section 3 we include the electroweak 
corrections to the partial widths, and Section 4 gives 
numerical results and a comparison with previous 
work. Relevant formulae including the top dependent 
vertex corrections are put together in the Appendix. 

2 Notations and tree level results 

In lowest order the Z propagator has the Breit-Wigner 
form 

1 
D~ - (2.1) 

s -- m2z + iMz F~ 

The lowest order total width F ~ is related to the 
one-loop self energy Ez(S ) of the Z boson by 

Mz F~ = I m  Ez(S = MzZ). (2.2) 

It can be written as the sum of the partial fermionic 
decay widths F~ with m: < Mz/2: 

F ~ = X F ~  (2.3) 
f 

These partial widths can be expressed in terms of the 
vector and axial vector coupling constants of the 
fermion f to the Z 

I }  - 2Q:s 2 
v: = 2SwC w 

13 (2.4) 
a f  = 2SwC w 

with 

Sw = sin Ow, Cw = cos Ow 

as follows: 

r~ 

= NSc3M z x/1 - 41,: (v}(1 + 2p:) + a}(1 - 4#:)) (2.5) 

* Recently the next order term has been calculated [-24] which is 
even larger than the 0(e~) term. For five flavours it is given by 64.835 

with Nc y = 3 for quarks, Nc y = 1 for leptons, and 

#:  --- M2. (2.6) 

The mixing angle is used in the standard on-shell 
definition in terms of the boson masses: 

= 1 M~" (2.7) 

For  actual calculations the dependence on Mw is 
eliminated in favor of the precisely measured Fermi 
constant G. by means of the relation [14] 

A M2w(1 2 2 - Mw/Mz) = (2.8) 
1 - Ar(~, Mw, Mz, Mn, rnt) 

with 

A = = (37.281 GeV) 2. 

For  our calculation we use the expression A r in the 
form as given in [11, 12]. 

3 Electroweak one-loop contributions 

The partial widths (2.5) in lowest order are influenced 
by next order corrections in terms of the vector boson 
2-point functions, external wave function renormaliza- 
tion of the fermions, and irreducible vertex corrections. 
In the following all symbols for the loop contri- 
butions denote the corresponding renormalized finite 
quantities. The explicit expressions for the 2-point 
functions can be found in [12]. 

The Z propagator (2.1) becomes modified replacing 
the constant width term by the Z boson self energy 
Ez(S): 

1 
Dz(s) - s - Mz z + Re 27z(S ) + i Im 2~z(S ) (3.1) 

Where Re Ez(Mz 2) -- 0 due to the on-shell renormaliza- 
tion condition for the Z boson. Around the Z pole 
approximately a Breit-Wigner form 

1 1 
Dz(s) = 1 -- Hz(M~) s - M~ + iMzF(z 1) (3.2) 

is recovered by a re-definition of the total width 

c o  
F~z ') - (3.3) 

1 - 

with F ~ from (2.3-5) and 

0 Re Ez(S). (3.4) n z ( S )  = - 

This global normalization (3.3) corresponds to the 
wave function renormalization of the Z line in the 
decay diagram la. For  each partial width this means 



that (2.5) has to be multiplied by a common factor: 

r~,(ff) = V~  - Hz(M2)) -~ (3.5) 

Furthermore, the relation (2.8) can be utilized in order 
to re-express (3.5) in terms of the Fermi constant G~, 
yielding: 

1 - A t  
F(z~)(ff) = p o ( f f )  1 - Hz(M2)" (3.6) 

The quantity 

m 3 

Z~ N / Z  

- (1 -4# :+(2 I~-4Q:s2 )2 (1  + 2p:)) (3.7) 

represents another possible tree level parametrization 
of the partial decay width leading to an approximate 
total width* 

ff, o = Z f,o(fy). (3.7a) 
f 

Since the large contributions from the light fermions 

a Q:log my 

in d r  and in Hz(M~) cancel in the expression (3.6), 
F '~ turns out to be a sufficiently good approximation 
(for mt < 100 GeV) including already the major part of 
the one-loop corrections. 

In addition to (3.6) we have to incorporate the 7-Z 
mixing contribution (Figure lb) and the vertex correc- 
tions together with the external fermion self energies 
(Figures2,3). Since we do not consider radiative 
corrections to Z -  t f  we can neglect all terms of order 
m}/M2z ( f ~  t) in the loop expressions. This means that 
also Higgs contributions in vertex and fermion self 
energy diagrams are neglected, except for f =  b. 

In case of the Z-- ,bb  decay channel the full top 
mass dependence coming from the virtual t quarks 
in Figs. 2, 3 are included. Due to the underlying 
' tHoof t -Feynman gauge also "unphysical" charged 
Higgs bosons enter the diagrams as virtual states with 
poles at q2= M~v. 

The final result for the partial width can be written 
in the following way: 

F z ( f f )  = ( F ~  + A Fz(f f ) ) ' (1  - nz(M~)) -~ (3.8) 

with F ~  from (2.5), and 

arz(ff) = NYc2aMz(v:(FYv + QflI~z) + @Ffa). (3.9) 

The y-Z mixing term is related to the mixing energy 
�9 ~ r z :  

H,z  = Re X,z(M~)/M~. (3.10) 

* Others than Z ~ f f d e c a y  channels in higher order of  the coupling 
constant  are very small 1-21] and can be neglected for our discussion 
of the total width 
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Xrz is taken from [12]. The finite vector and axial- 
vector form factors FYv,A are listed in the appendix for 
the various types of fermions. 

Finally we have to include the QED corrections due 
to virtual photon exchange and real bremsstrahlung 
integrated over the full phase space. For light final 
fermions the result can be simply obtained [21] by 
multiplying (3.8) with the correction factor 1 + 6fED, 
with 

3~ 2 (3.11) 

Its relative influence is < 0.17Vo. 

4 Results and discussion 

Besides the quantities c~, G,, M z, which are sufficient 
to determine Fz  at the tree level, the unknown 
parameters M n and m t enter the higher order result. 
For our numerical discussion we proceed in the 
following way: 

After specifying the values for Mz, Mn,  m~ we derive 
from (2.8) the corresponding value for M w  resp. sin a Ow 
thus fixing the coupling constants ve, a :  and the next 
order terms in (3.8-9). To this end we have to specify 
the hadronic vacuum polarization from the light 
quarks which enters the quantity Ar in (2.8) as well as 
the Z wave function renormalization//z(M~). We do 
this by adjusting our hadronic QED part of Ar to 
the result of Jegerlehner [15], which, for 5 flavors, is 
(Mz = 93 GeV): 

Ar~)a.Q~D = 0.0286 + 0.0007. (4.1) 

This is slightly different from the value 0.0274 in [16] 
which was adopted in [7]. In order to perform a 
comparison with [7] we have to modify our hadronic 
input accordingly. 

Table 1 contains the total electroweak Z width F z 
(including QED corrections) for fixed M n = 100 GeV. 
The tree level values F ~ correspond to the standard 
parametrization given in (2.3-5),/~o is the tree level 
width (3.7a) in the Gu representation. For top masses 
not too large (mr< 100GeV) po  gives already an 
approximation which is good within 5 MeV. For large 
top masses, however,/~o becomes insufficient as well; 
in some cases the parametrization F ~ in (2.5) is the 
better approximation. 

The Higgs and top mass dependences of the total 
width Fz are put together in Table 2 for various Z 
masses. The variation with mt is strong enough that it 
has to be taken into account if one wants a theoretical 
precision of 10 MeV. For example, the variation of mt 
between 50 and 150GeV leads to an increase in Fz  
by 21 MeV (for Mz = 92 GeV, M u = 100 GeV). On the 
other hand, the variation of Fz with the Higgs mass 
remains smaller than 10 MeV. 

The hadronic uncertainty coming from (4.1) is 
responsible for a hadronic uncertainty in Fz amount- 
ing to (AFz)ha d = _+0.6MeV. The somewhat larger 
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Table 1. Total Z width without QCD corrections. All 
values in GeV. /"z~ tree level width, parametrization 
(2.3-5), f,o: tree level width, parametrization (3.7), Fz:  
with electroweak corrections 

M z mt F~ F'~ F z 

90 50 2.1305 2.2936 2.2948 
90 100 2.1739 2.3056 2.3035 
90 200 2.2966 2.3386 2.3275 

91 50 2.2176 2.3889 2.3898 
91 1t30 2.2648 2.4019 2.3993 
91 200 2.3997 2.4379 2.4244 

92 50 2.3071 2.4869 2.4876 
92 100 2.3584 2.5010 2.4978 
92 200 2.5062 2.5401 2.5240 

93 50 2.3992 2.5878 2.5881 
93 100 2.4545 2.6029 2.5992 
93 200 2.6161 2.6451 2.6264 

94 50 2.4938 2.6914 2.6911 
94 100 2.5531 2.7075 2.7033 
94 200 2.7295 2.7531 2.7316 

95 50 2.5910 2.7978 2.7968 
95 100 2.6543 2.8149 2.8102 
95 200 2.8464 2.8639 2.8396 

96 50 2.6907 2.9070 2.9049 
96 100 2.7581 2.9250 2.9199 
96 200 2.9670 2.9776 2.9504 

hadronic error in the photon vacuum polarization of 
-4-0.0012, as estimated in [19], results in (A Fz)a~,~ = -4- 
1 MeV. In both cases the uncertainty coming from the 
light quarks is of no practical importance for F z. 

Next we discuss the partial decay widths for Z ~ f f  
and their dependence on the model parameters, listed 
in Table 3. Again, the variation with the Higgs mass 
is not very striking: 0.2 MeV for the leptonic channels, 
and somewhat more in the hadronic decay modes, but 
still smaller than 1 MeV. 

The dependence on m~ is strongest in the Z--*ua 
and Z--*dd decays. In the Z--*b[~ partial width, 
however, the top mass dependence is much weaker. 
The reason for this behaviour is the additional top 
dependence of the vertex corrections in Z ~ bb which 
cancels (partly) the top contributions in the gauge 
boson 2-point functions. This is exhibited in more 
detail in Table 4 (for Mz = 92 GeV, Mn = 100 GeV): 

The tree level approximations f . o ( f f )  as defined in 
(3.7) are slightly different for d and b quarks due to 
the finite mb. The determination of sin 20w by means 
of (2.8) and the dependence of A r on rnt are responsible 
for the variation of f ~  with the value of m,  The 
weak corrections A l-'~eak(ff) defined as 

3F~eak(ff) = Fz ( f f )  _ ff, o ( f f )  (4.2) 

with the corrected partial width Fz( f f )  from (3.8) 
induce additional top quark contributions. Those 
entering via the Z-Z  and Z-~ propagators (Fig. 1) are 
identical for both d and b, whereas the vertex and 
quark self energy diagrams (Figs. 2, 3) yield different 
corrections for d and b final states. For  bb they tend 

Table 2. Total Z width including electroweak corrections 
(no QCD corrections). All values in GeV 

M Z  M T  M H  = IO M H  = 1 0 0  M H  = IOOOGeV 

90 50 2.2924 2.2948 2.2870 
90 100 2.3011 2.3035 2.2958 
90 150 2.3112 2.3137 2.3062 
90 200 2.3249 2.3275 2.3203 
90 230 2.3349 2.3376 2.3305 

91 50 2.3872 2.3898 2.3818 
91 100 2.3966 2.3993 2.3913 
91 150 2.4072 2.4099 2.4022 
91 200 2.4215 2.4244 2.4169 
91 230 2.4319 2.4349 2.4276 

92 50 2.4847 2.4876 2.4793 
92 100 2.4949 2.4978 2.4897 
92 150 2.5059 2.5090 2.5010 
92 200 2.5208 2.5240 2.5163 
92 230 2.5316 2.5349 2.5274 

93 50 2.5848 2.5880 2.5795 
93 100 2.5959 2.5992 2.5908 
93 150 2.6074 2.6108 2.6026 
93 200 2.6229 2.6264 2.6185 
93 230 2.6341 2.6377 2.6301 

94 50 2.6875 2.6911 2.6823 
94 100 2.6997 2.7033 2.6946 
94 150 2.7117 2.7154 2.7070 
94 200 2.7277 2.7316 2.7235 
94 230 2.7393 2.7433 2.7355 

95 50 2.7928 2.7968 2.7878 
95 100 2.8062 2.8102 2.8013 
95 150 2.8187 2.8228 2.8141 
95 200 2.8353 2.8396 2.8313 
95 230 2.8473 2.8517 2.8437 

96 50 2.9005 2.9049 2.8956 
96 100 2.9155 2.9199 2.9107 
96 150 2.9284 2.9330 2.9241 
96 200 2.9457 2.9504 2.9418 
96 230 2.9580 2.9629 2.9547 

to cancel the increase of the lowest order term for large 
m t . 

Finally we want to compare our results with those 
of the previous calculations by Wetzel [6] and 
Akhundov et al [7]. Wetzel employs a different re- 
normalization scheme; therefore only a comparison of 
the corrected values for F z ( f f )  is meaningful. For  
M z = 9 2 G e V ,  M n =  100GeV and mt=40GeV,  as 
specified in [6], we find agreement within 0.5 MeV for 
the v, e, u, and d partial widths. Heavy quarks are not 
discussed in detail in [6]. 

In order to make our results comparable with those 
of Akhundov etal  [7,20], obtained in the on-shell 
scheme and the unitary gauge, we have to put m b = 0 
in the tree level formula and to adjust our value for 
hadronic QED vacuum polarization in a way that it 
fits the table for sin z Ow given by Lynn and Stuart [16] 
(since their hadronic part was adopted in [7]). 

Doing this, we find excellent agreement in all partial 
widths within 0.1 MeV, sometimes 0.2MeV, for the 
whole range, of the considered top and Higgs masses. 
This underlines the high level of reliability in the 
calculation of electroweak radiative corrections. 
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Table 4. Partial widths for Z ~ d d  and Z - ~ b b  in GeV. /~z~ tree 
level approximation, (3.7), AF'j~k: weak corrections, (4.2), mb = 
4.5 GeV, M z = 92GeV, Mn = 100GeV 

m, T'~ Ar~~ P~ zlr;'~k(bE) 

50 0.3784 0.0001 0.3748 -0.0002 
100 0.3809 --0.0005 0.3773 --0.0020 
150 0.3838 --0.0011 0.3801 -0.0055 
200 &3875 --0.0017 0.3839 -0 .0 t02  
230 0.3904 --0.0021 0.3867 -0.0139 

(a) (b) 
Fig. la, b. Contributions of the vector boson 2-point functions to 
the Z ~ f f  width 

/ f  f' f W~., f 

z--- wf,  z ..... 
~.~ ~- W ' ~ f  

(Q) (b) (c) 

, f § f 

f' "-, .  ~ |  
(d) (e) 

W'~. f ~ f .  

(f) (g) 
Fig. 2 a-g.  Weak vertex corrections to the Z ~ f f  width, f '  denotes 
the isospin partner of the fermion f 

z w" *~ 

f f f f f' f {- f, f 
(a) (b) (c) 

Fig. 3 a-e.  Weak contributions to the fermion self energy 

In conclusion, our discussion of the Z width has 
shown that the electroweak corrections play a role for 
precision experiments, in particular the top mass 
dependence. The variation with the Higgs mass does 
not exceed the aimed experimental accuracy. 

5 Appendix 

5.1 Z ~ f f  vertex corrections for f #  b 

For those external fermions which do not get virtual 
top contributions in the vertex diagrams only diagrams 

2a-c and 3a, b have to be considered. The finite result 
after renormalization can be summarized in terms of 
vector and axial vector form factors: 

I " Z f f  = ieyu(vf -- af?5) + iey u (Ffv(S) - ?~FYa(s)). (5.1) 

The quantities F{.A entering the Z width formula in 
(3.9) are given by the on-resonance values 

f 2 F~ = Re Fv(Mz), F~ = Re FYa(M~). (5.2) 

The explicit expressions for the form factors in (5.1) 
read for 

Neutrinos: 

F~,(s) = F~(s) = ~ 1 f 
1 

A 2( s, Mz) 
4n 4SwCw 

2s#- 3c~ t 
+ 2s~r~lA2(s, Mw)+-~-wA3(s, Mw) 

d 

Charged leptons: 

2 F~v(S) = ~ {v,(v, + 3 a2)A 2 (s, Uz) + rtL} (5.3) 

F~(s) = ~ {a,(3 v 2 + a2)A 2 (s, Uz) + F~} 

with 

F~ - 8s~cwA2(s, Mw) - A3(s, Mw). 

u-type quarks: 

~ 2 F~(s) = ~ {v.(v. + 3 a.~)A 2(s, Mz) + F[} 

N 2 F"A(s) = ~ {au(3 v~ + a~)A 2(s, Mz) + F[} 

with 
1-2-s2 . 3Cw_ , 

F [ =  -8s~-~ A2(s, Mw)+~s~  n3ts, Mw) 

d-type quarks: 

~ 2 Ff(s) = -~n {va(vn + 3 a2)A 2(s, Mz) + F~} 

o~ 2 
F~(s) = 4n {aa(3va + aze)A 2(s' Mz) + r~} 

with 

r~ - 1 -- 4s2 A 3 c w 
-8s3 c~ 2(s, Mw)-~s3wA3(s, My)" 

In the range rn} << s < 4M~ the functions A2, A3 
have the form* 
(W = M2/S ,  where M = Mz or Mw) 

* Since we need only the real parts we drop here the imaginary parts 



A 2 (s, M) = - ~ - 2 w - (2 w + 3) log (w) + 2 (1 + w) 2 

5 2w + 2 ,,/ / 1 
A3(s,M) 6 3 ~ ( 2 w + l ) - - g w - l a r c t a n x / 4 w - ~ l  

8 1 2 
3 w(w + 2 ) ( a r c t a n ~ ) .  (5.4) 

5.2 Vertex corrections for Z--* bb 

The situation for the bb final state is more complicated 
due to the presence of the top quark and the charged 
Goldstone Higgs bosons in virtual states. 

The form factors according to (5.1) can be written 
in a way analogous to (5.3): 

2 F b (s) = ~ { Vb (Vb + 3 ab 2) a 2 (s, Mz) + V b} 

(~ 2 Fba(s) = ~ {ab(3 Vb + a2)A 2(s, Mz) + Fbr} (5.5) 

Fbr is the sum of the top dependent diagrams Fig. 2 
b -g  and the Z-bb counter term [12] involving the b 
quark self energy diagrams Fig. 3 b, c: 

2 2 

F b =  ~ R e F i +  ~ S w -  (~zTn. (5.6) 
1 

i=b 4SwCw 

6Z~ n is the finite part of the left-handed b-quark 
renormalization constant which would vanish for 
mt << Mw: 

1 m~ - 
6 Z~n = ~sZw ( 2 + ~ww )(Bl (m2,mt, Mw) 

2Nt + mb Bl(m~, mr, Mw)) 
1 ( m ~ )  

~ 2 s  2 2 +  t ~l(m2,rn,  Mw). (5.7) 

For the function/Ta see (5.14). 
The F, in (5.6) are the expressions corresponding 

to the diagrams Fig. 2b-g  after subtracting those 
(divergent) parts which are cancelled by the vertex 
counter term after renormalization: 

vt + at ~ 3 
4s 2 [ - - ~  +21~ +4C~ Fb 

-- 2s(C~ (s, mr, mr, mw)  - C2 (s, mr, mr, mw)) 

+ 4 s C + (s, rn t, m t , mw)  -- 2 s C o (s, m,, mr, mw)  
) 

vt~-d~-at 2m~ Co(s, mt, mt, Mw) 
4Sw 

CW 
F ~ -  4s 3 {--23-+ 12C~ Mw,  Mw, m,) 

- 2s(C~ (s, m w, m w, m,) - C2 (s, m w, m w, mr)) 
+ 4sC+(s, Mw,  Mw, mt)} 

147 

v t -  at [" mt "k 2 3 

+ 2C~ mr, mr, Mw) 

s(C~ (s, mr, mr, Mw) - C2 (s, m t, mr, Mw)) ~ 
9 

vt + at ( mt "~ 2 m' C~ 

m, ? 
Fe 8S3wCw \ M w ]  { + 2 C ~  

m; 
Fs = E~ - 4SwCw C ~  m,). (5.8) 

The functions C + , C~, C ; ,  C o are specified in terms 
of the scalar 3-point integral C o and the finite parts 
of the 2-point integrals /7o, B1 defined below in 
(5.13-14): 

M' 
(4m 2 - s)C + (s, M, M, M') = l o g ~ -  +/7o (s, M, M) 

--/3o (rn~, M, M') 
+ ( M  '2  - -  M z + mZb) 

�9 C o (s, M, M, M') (5.9) 

C~ M, M, M') = �89 M, M) + 1) 
+�89 2 -- M ' 2 - m 2 ) C ~  (s, M,M,  M') 

1 �9 ~t2 +glu  Co(s ,M,M,M'  ) 

(4m 2 - s ) C f ( s , M , M , M ' )  

= �89 (s, M, M) 
+ �89 (rob 2, M', M) -- �88 + (M '2 -- M 2 + mE) 

�9 c ~  , o , ( s , M , M , M ) -  C 2 ( s , M , M , M ) ,  
sCz  ( s , M , M , M ' ) =  1 - 2 --~(B,(rnb, M', M)--�88 

- C ~  

The scalar vertex integral for equal external masses my 

,i . d4 k 
o~2C~  = J ( ~  

1 
( k 2 _ M , 2 ) ( ( k _ p f l 2 _ M 2 ) ( ( k + p f l 2 _ M 2 )  (5.10) 

corresponds to the diagram 

M "~~i pf 
M' 

P~ 

with 

s (pf+py)2, 2 2 = py=py=m}.  

Applying the method of 't Hooft  and Veltman [18] 
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the  in t eg ra l  (5.10) 

Co (s, M,  M,  M ' )  
1 y 

= - ~ d y ~ d x ( a y  2 + b x  2 + c x y + d y +  e x + f )  -1 
0 0 

with  

a=m~,  b = - c = s ,  d = M 2 - M ' 2 - m ~ ,  

e = 0 ,  f = M ' 2 - - i e  

is expressed  in t e rms  of  d i l o g a r i t h m s *  

Co(s , M, M, M ) = - - I  _ l ) l  Li2 
c+2c~b~= j= 

\ x z  -- Y 0 / )  

t oge the r  wi th  

and  

d + 2a + cc~ 
X I -- 

c + 2ab 

d 
x2 = (1 - a ) ( c + 2 0 ~ b ) '  

d 
x 3 - ~ ( c  + 2 a b ) '  

- c +_ x/c 2 - 4b(a + d + f )  
Ylj = 2b ' 

- d + x/d 2 - 4f(a + b + c) 
Y2j = Y3j - 2a  (5.12) 

F ina l ly  we have  to specify the  func t ions  /3o and  BI  
a p p e a r i n g  in (5.7) and  (5.9)./3o is the finite pa r t  of  the 
scalar  o n e - l o o p  in tegra l  Bo: 

- -  / 

Bo(s, M, M') = �89 M + AM, ) + Bo(s, M, M ) 

with  

2 4 n #  2 
A M - - 4 _  D 7 + l o g  ~ 5 - ,  

and  

M 2 q- m '2 l o g M +  
Bo(s ,M,M ) = 1 M2 M, 2 F(s ,M,M')  

1 l o g X Z S  - x ( s  + M 2 - M 'z) + M 2 - ie 
= - S d x  

0 M M '  
(5.13) 

T h e  ana ly t i c  express ion  for the  func t ion  F(s, M, M') 
can  be f o u n d  in [12].  

T h e  f ini te  func t ion /31  is re la ted  to F in the  fo l lowing  
way: 

* Because we are dealing with real internal masses no extra 
logarithm from crossing some cuts have to be added 

1 M 2 M 
/~l(S, M,  m ' )  = --  ~ + M2  _ M,  2 log  ~ 7  

M '2 - M 2 - s 
+ 25 F(s ,M,M) .  

I t  is the  f ini te  p a r t  of  the  2 -po in t  in tegra l  

i 
16~z 2 q, B1 (q2, M,  M ' )  

=tz4_oS dDk k~, 
(2n) v (k 2 - M2)((q + k) 2 --  M '2) 

def ined wi th  the  fo l lowing  sub t rac t ion :  

BI(s ,M,M')  = - � 8 9  u, +�89 + BI(s,M,M').  

(5.14) 
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