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A detailed analysis of W pair production in e + e - annihilation at LEP-II energies is presented 
by using helicity amplitudes for the process e ' e  ---,W+W - with arbitrary WWy and WWZ 
couplings. Expressing the complete angular distribution of W decay products in terms of these 
helicity amplitudes, we perform a systematic search for the most sensitive angular distributions or 
correlations for anomalous couplings. As a result precise tests of the gauge-theory cancellations 
between different diagrams are suggested. Angular distributions sensitive to W ÷ W- rescattering 
effects and/or CP-violating vector boson couplings are studied as well. Complete helicity 
amplitudes for the process e+e - ---, W ~ W -, (ql~2g)(qs?:14g) with arbitrary quark masses and 
finite W width are presented in a form convenient for their direct numerical evaluation. 
Amplitudes for the processes e + e-  ~ ZZ and Z~, are also included. 

1. Introduction 

T h e  p r i m e  ta rge t  o f  e x p e r i m e n t s  at  L E P  in its s econd  phase  ( L E P - I I )  is the  

p r o d u c t i o n  o f  cha rged  w e a k  b o s o n  (W) pa i rs  in e + e  - ann ih i l a t i on  [1-33] .  T h e  

p r o d u c t i o n  c ross  sec t ion  reaches  its m a x i m u m  ( -  20 pb )  at v/s - 200 G e V  and  o n e  

e x p e c t s  to  o b s e r v e  104 W pairs  a year  wi th  the  des ign  l u m i n o s i t y  o f  5 × 1031 

c m  -2  sec -1. D e t a i l e d  q u a n t i t a t i v e  tests of  e l ec t roweak  theor ies  shou ld  thus  be  

p o s s i b l e  a t  L E P - I I .  

T h e r e  a r e  t w o  d i s t inc t ive  aspec ts  o f  W pa i r  p r o d u c t i o n  s tudies  in e + e -  ann ih i l a -  

t i on  [1]. F i r s t ,  a p rec ise  d e t e r m i n a t i o n  o f  the  W b o s o n  proper t i es ,  e.g., its mass ,  

w i d t h ,  a n d  i ts  coup l ings  to d i f f e r en t  q u a r k  f lavors  ( C a b i b b o - K o b a y a s h i - M a s k a w a  
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Fig. 1. Feynman diagrams for the process e' e --* W ~ W-. 

matrix elements) can be achieved in the clean environment of e+e - annihilation. A 
precise measurement of m w is particularly important [1,34] to test the standard 
theory of electroweak unification a the loop level. Second, this process provides the 
best opportunity to measure directly the three-vector-boson couplings, WWT and 
WWZ, via s-channel 3' and Z exchange contributions (see fig. 1). Indeed, the 
requirement of tree unitarity for the process e + e----, W +W- restricts uniquely the 
three-vector-boson couplings to the form prescribed by the Yang-Mills self-interac- 
tion [35]. In other words, a small deviation of these couplings from their gauge 
theory values violates the subtle cancellation among the three contributions shown 
in fig. 1 and hence can lead to observable effects. We shall see in the following that 
the sensitivity to these couplings in the process e +e- --* W +W- is far greater than 
that achievable at SpaS or the Tevatron collider by W pair production [11, 36-38], 
WT production [36, 39], and W radiative decay [39] processes* even at the moderate 
energies reachable at LEP-II. 

A number of authors have made important contributions to the subject. Charged 
vector boson pair production in e+e - collision was examined already in 1961 by 
Cabibbo and Gatto [2, 3], and these papers were followed by several studies [4, 5, 7]. 
Dolgov and Solov'ev [6] were the first to include the weak (u exchange) contribution 
in 1965. 

In contrast to these early results, the amplitude for e~e ---* W+W - in sponta- 
neously broken gauge theories was shown [41] to have good high-energy behavior. 
The converse was also shown to hold: good high-energy behavior singled out gauge 
theories [35]. After the opening of the gauge theory era, the process received more 
intensive investigation. 

The cross section in the standard SU(2)® U(1) theory was calculated by many 
authors. The total cross section was first calculated by Sushkov, Flambaum, and 
Khriplovich [8]. Alles, Boyer, and Buras [9] presented the differential cross section 
and displayed the gauge-theory cancellation. Bletzacker and Nieh [10] included 
transverse beam polarization and numerically calculated various distributions in- 
cluding the final lepton energy and lepton-beam angle distributions, the azimuthal- 

* See also ref. [40] for W pair production studies in hadron collisions. 



K. H a g i w a r a  e t  al. / e ~ e - --* W ~ W - 255 

angle correlation between the two final leptons, and the average dilepton mass. The 
analytic form of the lepton energy and angle distributions was obtained by Mery 
and Perrottet [15]. Koval'chuk, Rekalo, and Stoletnii [25], studied the energy-angle 
distributions of the lepton, while the double energy distributions of the two final 
leptons were examined by Dicus and Kallianpur [28]. Duncan, Kane, and Repko 
[29] showed that a certain azimuthal-angle correlation of two decay planes is very 
small in the standard model. 

Meanwhile, the density matrix for single W polarization was derived by Koval'chuk 
and Rekalo [14], and the ratio of the three helicity states was calculated by Bilchak, 
Brown, and Stroughair [22]. The one-loop radiative corrections to the process were 
evaluated by Lemoine and Veltman [13] and by Philippe [17]. Without explicitly 
referring to the "intermediate" W state, the process can be described in terms of the 
initial and final fermions. The helicity amplitudes in this approach (which is 
different from ours) were calculated by Kleiss [31] and by Gunion and Kunszt [32]. 

W-pair production in extended nongauge models has also been studied. The 
polarization amplitudes with the most general three-vector-boson couplings were 
presented by Gaemers and Gounaris [12]. However, most studies of these anoma- 
lous couplings restricted themselves to just a few couplings which satisfy C, P, and 
T invariance separately. The effect of these nongauge terms was examined in the 
differential and total cross section [21, 26, 30], the single W helicity ratios [22], the 
lepton-beam angular distribution [26], and in the single and double lepton energy 
distributions [28]. 

The purpose of this paper is to systematize these previous studies. First, we will 
present a general expression for the distribution of the decay products of the two 
W's in terms of the e + e - ~  W+W - helicity amplitudes. Then we will study the 
effects of various possible anomalous three-vector-boson couplings in detail. 

The paper is organized as follows. In sect. 2, we give the most general form of the 
WWT and WWZ couplings and show which constraints on these couplings come 
from electroweak gauge symmetry, C, P, and electromagnetic U(1) gauge invari- 
ance. This section updates the work of Gaemers and Gounaris [12]. In sect. 3, we 
present the complete helicity amplitudes for the process e e --, W÷W - in a 
compact form, making the gauge-theory cancellation between T, Z, and ~, exchange 
graphs manifest. These amplitudes are derived for the most general couplings of the 
previous section. Sect. 4 presents all 81 coefficients of the quadri-differential angular 
distributions of the W + and W-  decays into massless fermion pairs, expressed in 
terms of the helicity amplitudes for W pair production. Sect. 5 gives the main results 
of this paper, which are angular distributions and correlations of W decay products 
providing tests of the three-vector-boson couplings. In this section the separation of 
longitudinally polarized W's from transversely polarized W's, polar and azimuthal 
angle distributions of W decay products, and also correlations between W + and W 
decays are studied systematically. Finally sect. 6 gives a summary and some 
conclusions. 
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We include four appendices for completeness. In appendix A, we show that only 

seven of  the nine form factors given by Gaemers  and Gounaris  are independent.  In 

appendix B, the twofold solutions for the neutrino momenta  in the process e + e -  ---, 

W + W - ~  ( t  '+ u ) ( [ - ~ )  is explicitly given in terms of the observable charged lepton 

momenta ,  in the zero W width limit. In appendix C, we provide a closed expression 

for the helicity amplitudes for W pair production,  followed by decays of  each W 

into massive fermion pairs with or without a single gluon emission. Here we include 

finite W width effects since they are necessary for a precise measurement  of  m w 
and for flavor identification [1]. The helicity amplitudes are expressed in a for- 

malism developed by two of  us [42], which makes their direct numerical evaluation 

simple and efficient. Finally, appendix D gives helicity amplitudes for the processes 

e+e  - --, ZZ  and Zy. 

2. T h r e e - v e c t o r - b o s o n  c o u p l i n g s  

The general couplings of  two charged vector bosons with a neutral vector boson, 
W W ' /  and WWZ,  can be derived from the following effective lagrangian* 

-~wwv/gwwv ,gl ( w , . w  v - w;v.w.") + 

O,v wLw.y~_ gvw,w. (e.w + a"v,) 
+ m~-~w 

+ gve  o( w; + i vW;Wy. 

i ~ v  W*x~,W~'~I 7""x . (2.1) 
+ m--~w 

Here V~( = V "t) stands for either the photon or the Z field, corresponding to V = "/ 
or  Z respectively, W ~ is the W-  field, W.~ = 3~,W. - O~W~,, V~. = O~,V v - O~V~, 

~ =  '~ v .  o ~ . B )  - ( O ~ A ) ~  5~,.,o , and ( A  = A ( O ~ , B )  

The seven operators** in (2.1) exhaust all possible Lorentz structure when we 

neglect the scalar component  of all three-vector-bosons: 

O~,V ~' = O,  O~,W ~' = 0.  (2.2) 

* Throughout the paper, we use the Bjorken-Drell metric with %123 = " ~ . 0 ~ . 2 3  = 4- l. 
* * Seven operators are sufficient due to the fact that only seven out of the nine helicity states of the W 

pair can be reached by s-channel vector boson exchange (J = 1 channel). The other two helicity 
combinations have both W spins pointing in the same direction and thus have J >/2. 
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v. P - ' ~  = i gww v I-v~" (q,F:::],p) 

~ w ~  
Fig. 2. Feynman rule for the general WWV (V = ~, or Z) vertices. 

257 

This condi t ion  is automatic  for on-shell W's:  

(m + m 2 w)  W" = O, 8~W" = O. (2.3) 

It also holds for the virtual photon  and is valid for the Z in the process we are 

investigating. Terms containing 3 , Z "  are in fact proport ional  to the electron mass 
and negligible. 

The  lagrangian (2.1) contains 5 operators with dimension four and 2 with 

d imension six. All the higher-dimensional operators for on-shell W's  are obtained 

f rom the operators  in eq. (2.1) simply by replacing V" by t 3 " V "  03 = 82) with an 

arbi t rary  positive integer n. These operators form a complete set* of  W W V  

couplings under  the conditions (2.2) and (2.3). Any other operator  can be reduced to 
a combina t ion  of  these**. 

In  m o m e n t u m  space as depicted in fig. 2, the corresponding WWV vertex can be 

expressed as follows 

fv 
r~.(q,  q, P) =fV(q _ q).g~ _ m 2 ( q _ q ) .  p . p ~  + f3v( p . g . ~  _ p~g.o) 

+ i f V (  p ~ g  "# + P a g ' " )  + ifsVe'"BP( q -  ~ ) p  

f v ,  
- f ~ t , ~ # P p p  - m--~w t q - (l ) " e~ap°pp ( q - F1) o , (2.4) 

for V = y ,Z .  Here all the form factors f v are dimensionless functions of p2. The 

expression (2.4) agrees with the one adopted by Gaemers  and Gounaris  [12] apart  
f rom their form factors f v  and f v  which are actually redundant.  This fact is shown 
in appendix  A. 

* If the W's are off mass-shell, additional derivatives D t Wff,t3mW, (1, m integer) complete all possible 
operators. The spin-0 part can still be neglected in so far as the W's couple to massless fermion pairs. 

** It should be kept in mind that the choice of the two dimension-6 operators in (2.1) is not unique. 
Actually, the operators which correspond to the vertex function (2.4) represent another choice. 
However, this nonuniqueness merely amounts to a different p2 dependence of the form factors. 
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It is straightforward to calculate the contribution of the lowest-dimensional 
operators (2.1) to the seven form factors. We find, 

S 
i / =  gv + Xv ' 

f2 V =  ~V~ 

f V = g V + ~ v + X  v, 

f v =gV for i = 4 , 5 ,  

f6 v = I~v - ~ V ,  

f T V ~  - -  i ~ iTtv. (2.5) 

Contributions from the higher dimensional operators provide the P 2 dependence of 
the form factors. (For instance, if we restrict ourselves to the corresponding 
operators of dimension 6 or less, the form factors ./'2 and ./'7 are constants, and the 
others are linear functions of p2.) Hermiticity requires that the ~V,s should be real 
for p2 < 0. However, the form factors may have imaginary parts above threshold, 
which we will discuss shortly. 

Without losing generality, we can fix the overall coupling constants gwwv- We 
choose for convenience 

gwwv = - e, gwwz = - e cot 0w, (2.6) 

where e denotes the positron charge and 0 w is the weak mixing angle of the 
standard model. 

For the photon couplings ( V = y ) ,  the first term in eq. (2.1) (with g{= 1 
determining the charge of the W) is the so-called "minimal" coupling term, and the 
second coefficient ~v is conventionally called the "anomalous" magnetic moment of 
the W [43]. This term and the third coefficient [3,5,44] 7tv are related to the 
magnetic moment #w and the electric quadrupole moment Qw of the W ~ by 

e 

~w-- --(12mw + xv + Xv), (2.7a) 

e 
Qw m2 w (K r - 7tv). (2.7b) 

These first three couplings respect the discrete symmetries P, C, and T separately 



K .  H a g i w a r a  e t  al .  / e ~ e - ~ W ' W " 259 

with the following definitions: 

 w v-x=-w 2, 
~ B ~ ( x , t ) ~ - I = B " ( - x , t ) ,  

~'B~( x, t )2~ -1 = B~( x, - t ) ,  (2.8) 

for B ~ = W ~, V ~. The symmetry properties are most easily established by applying 
the above transformation to the effective lagrangian (2.1). 

Two of the parity-violating couplings ~v and ~,y respect charge conjugation 
invariance. They are related to the electric dipole moment dw and the magnetic 
quadrupole moment Qw of W + by 

e 

d w -  2 m w ( ~ +  Xv), (2.9a) 

e 

(~w = - m--~w ( ~ -  Xv). (2.98) 

Finally, the other two couplings gg and g~' in eq. (2.1) violate charge conjugation 
symmetry. However, the former coupling respects parity whereas the latter is CP 
invariant. These properties of the form factors fiv under discrete transformations 
are summarized in table 1. 

If the underlying dynamics respects some of the above discrete symmetries, the 
corresponding form factors which are odd under these transformations would be 
identically zero. To be completely general, however, one should retain all these form 
factors in the WW-/or WWZ coupling. 

For the photon the effective lagrangian (2.1) is not gauge invariant when g~ or g~' 
is nonvanishing. However, this can be cured by considering higher-dimensional 
operators. At the level of the vertex function (2.4) we may modify the fa r and f5 v 
terms to 

ifar( P~g ~ + p ~ g ~  - 2pt 'p"pl~/p2)  

+if~'[tt'"a°(q - g t )o-  Pt't'q3P°Po(q - q ) o / P 2 ] ,  (2.10) 

TABI.E 1 
Propert ies  of  the couplings f v (V = "t', Z) unde r  discrete t ransformat ions  

i 1 -3  4 5 6 ,7  

P + + - _ 

C P  + - + 

C + - 4 
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without affecting the amplitudes for e+e - --* W+W-.  Now the absence of a pole at 
p2 = 0 implies that f4 r and f ]  should be proportional to p2 = s. Another constraint 
arises because the W + charge is fixed (g~' = 1 in eq. (2.5)). We thus obtain the 
following constraints on the WW3, couplings at s = 0 

flr(s = 0) = 1, (2.11a) 

f,V(s = 0) = 0 for i = 4 , 5 .  (2.11b) 

The imaginary parts of the form factors are essentially the absorptive part of the 
WWV vertex function. Such effects are proportional to small coupling constants in 
a weakly coupled theory such as the standard model. However, they can be 
substantial if the W boson sector is strongly interacting in the relevant region of s. 
Actually in such a situation, not only the WWV vertex we are parametrizing but 
also the amplitudes for the whole process e +e- --* W * W -  may be affected substan- 
tially by the strong interaction. In what follows we neglect this possibility and shall 
study mainly the case where all the form factors are approximately real. We shall 
return to this point in sect. 4 and see that such strong rescattering effects have 
distinctive experimental signatures. 

In principle, there are some purely phenomenological constraints on the couplings 
in eq. (2.4) arising from the anomalous magnetic moment of charged leptons [45], 
the electric dipole moment of leptons and neutrons [46], and the so-called O 
parameter [47]. However, we shall largely ignore these constraints for the following 
reasons. First, the couplings which enter in these calculations have different kine- 
matical configurations: pr-2_ 0 in the first two cases and p2 or p 2  = 0 in the last 
case. Second, even if one assumes constant form factors in the relevant regions, 
there is always a possibility of cancellation among different contributions which 
renders these bounds ineffective. Direct studies of W-pair production at high-energy 
experiments are in this sense quite complementary to these precision experiments at 
low energies. Although the interplay between high- and low-energy experimental 
constraints is important, the latter bounds by no means can replace the rSle of 
high-energy measurements. 

Strong constraints on the s dependence of the form factors occur if the size of the 
W boson, A -  1, is much smaller than the scale one can probe, (1 /¢~) .  In such a case 
we can expand all the form factors around s = 0, 

f V(s ) = f,v(0) + O ( s / a 2 ) ,  (2.1 2) 

and thus constraints like eqs. (2.11) become effective. Furthermore, naive dimen- 
sional considerations tell us that all the dimension d > 4 operators should scale as 
A 4-a, which implies 

f~V(s) = O(s/A 2) for i =  2 ,4 ,5 ,7 ,  

f iZ(s) = O(s/a 2) for i =  2, 7. (2.13) 
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It is often argued that the scale of compositeness may be of the order of 1 TeV or 

higher*.  However,  because of the ambiguity in defining A and also because of  the 

high energies of  LEP-II ,  7~- - 0.2 TeV, it may not be completely safe to ignore the 

O ( s / A  2) terms**.  In any case, in the energy region covered by LEP-II ,  we may take 

the form factors to be approximately constant  

f iV(  s ) - f iV (4mZw ) . 

Note ,  however,  that these values of the form factors may be different from those at 

s = 0 .  

In the s tandard  model, non-abelian gauge symmetry  gives very strong constraints 

on the couplings of eq. (2.4): 

f V ( s )  = 1 + O ( a ) ,  (2.14a) 

f V ( s )  = O ( a ) ,  (2.14b) 

f V ( s )  = 2 + O ( a ) ,  (2.14c) 

for bo th  V = ~,, Z, while all other form factors which violate either P or C invariance 

are either O ( a )  or higher. (Actually they receive contr ibutions only from fermion 

loops.)  Not ice  that the s dependence appears only at order a and hence the 

s tandard-model  constraint  (2.14a) is much stronger than the condit ion (2.11a). The 

constra ints  (2.14) can also be written as 

Xv = 1 + O ( a ) ,  (2.15a) 

Xv = (2.15b) 

for  V = y ,Z .  

3.  H e l i c i t y  a m p l i t u d e s  f o r  e + e  - --,  W + W  - 

In this section we give polarization amplitudes for the process 

e - ( k , o )  + e + ( ~ : , 6 )  ~ W - ( q ,  h )  + W ~ ( ~ / , ~ ) ,  (3.1) 

as depicted in fig. 3, with the general three-vector-boson couplings (2.4). (The 

* For a recent review on the compositeness scale, see e.g., ref. [48]. 
* * We have chosen the seven operators to give the most general spin structure. From the vicwpoint of 

dimensional counting, it may be more consistent to choose -/2 =f7 =0 or give extra linear s 
dependence to the other five form factors: f , ( s )  =f , (0)  + f / . s .  However, we are not interested in the 
energy dependence of the form factors (except for threshold behavior) because LEP-II will not cover 
a wide energy range. If one is to study higher-energy behavior of the reaction, one should take into 
account the effect of unitarity and final state interactions (ref. [49]). 
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e--, o" ~ w-,)k 

e÷,o w*,-h 

Fig. 3. Schematical view of the process e" e ---, W ~ W-. Indices o, g, X, and ~, denote helicities. 

four-momentum and the helicity of each particle are shown in parenthesis.) We 
discuss here only the amplitudes for on-shell W pair production; the more general 
case with off-shell W's is treated in appendix C. 

Helicity amplitudes contain more information than the cross section for polarized 
W's. The relative phases of the amplitudes are important for the distribution of the 
final fermions because the interference of different W helicity states gives a 
nontrivial azimuthal-angle dependence. Furthermore, polarization of the initial 
e ÷ e -  beams can be taken into account in a straightforward manner 

The helicity of a massive particle is not a relativistically invariant quantity. It is 
invariant only for rotations or boosts along the particle's momentum, as long as the 
momentum does not change its sign. In this paper we define the helicities of the W 
in the e+e - c.m. frame, which is the natural frame of the problem. 

It is well known that a longitudinally polarized vector boson leads to a possible 
bad high-energy behavior. If we take the W boson momentum in the positive z 
direction 

pw= ( Ew,O,O, pw), (3.2) 

the transverse (helicity-__ 1) polarization vectors are given by 

c~ 
e( :1: 1) = { 1  ( 0 ,  : F 1 , - i , O ) ,  (3.3a) 

whereas the longitudinal (helicity-0) vector is 

e(o ) = row1( pw,0 ,0 ,  Ew) 

= (yfl ,0,0,  y ) ,  (3.3b) 

where , /=  Ew/m w, fl = (1 - ,,,w/,~wJ"2/r2 xt/2. It is this y factor that leads, with its 
extra power of energy, to a possible breakdown of unitarity at high energies. For 
example, if we restrict ourselves to dimension-4 interactions, the high-energy behav- 
ior of a tree amplitude is given by yN, where N is the number of longitudinal W's in 
the final state. (Note that the longitudinal part of the virtual Z does not contribute 
because it couples to a conserved electron current.) For dimension-6 interactions 
there are two extra factors of y, and so on. 
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TABLE 2 
Explicit form of the d funct ions  needed 
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d12.2 = -d2-1.  -2 = 12(1 + cos O)sinO 

d21.-2 = -d2--1.2 -- - ~ ( 1  - cos 8)s in  8 

d ~ A = d ! l "  1 = }(1 + c o s 0 )  

d 1 = d~. = ~(1 - cos O) 
1 , - 1  1 ,1  

d 1 - d  ] - -,/TsinO 
1 , 0  = - 1 , 0  - -  V z  

3.1. H E L I C I T Y  A M P L I T U D E S  

We have calculated the polarization amplitudes by using two different spinor 
calculus techniques. One [42] is a very straightforward and general method based on 
two-component spinors developed by two of us. The other [49] uses a non-covariant 
d-function representation of spinors and vectors, and is convenient for two-body 
reactions. Both methods give the same result. Our results also agree with the result 
of Gaemers and Gounaris [12] who used a rectangular basis for W's. 

In this section we present the results* in a compact form [49] using the helicity 
basis for W's. For convenience we extract some factors from the amplitude 

• "¢¢,,e; xX(~9)  = v ~ - e  2 ~ o 8 ;  x ~ , ( @ )  e d ~ ° , a x ( ~ 9 ) ,  (3.4) 

where e = A o ( - 1 )  x is a sign factor, A o = ~ ( o - 6 ) ,  A ? ~ = ~ . - ~ . ,  J 0 =  

max(lAol, IAhI), and @ denotes the scattering angle of W -  with respect to the e -  
direction in the e+e - c.m. frame. Finally d~oax is the d function in the convention 
of Rose [50]. The explicit form of the d functions needed here is reproduced in table 2. 
Note that , ~  is not a partial wave amplitude because it can still have a O 
dependence. Rather, J0 is the minimum angular momentum of the system and the 
amplitude includes partial waves of J = J0, J0 + 1 . . . . .  

Two of the three lowest-order diagrams, namely those with s-channel "r and Z 
exchange (fig. la, b), have only J = 1 partial wave because of angular momentum 
conservation. On the other hand, the diagram with t-channel v exchange (fig. lc) 

has all the partial waves with J >/J0. It is convenient to discuss the cases J0 = 1 and 
2 separately. (Since we are neglecting the electron mass, conservation of the electron 
chirality excludes the case Jo -- 0, because Ao is either 1 or - 1.) 

The case Jo--2 is simple. The above argument shows that only the v exchange 
diagram contributes to this final state. Moreover, because IA~,[ = 2, the final W 

* O u r  resul ts  can  be obta ined  by evalua t ing  the s u m  .,¢t" +~¢t 'v + , A  ' z  presented in eqs. (C.11) and  
(C.12) in the e+e  - c.m. f rame where the electron b e a m  direction is chosen  as the z-axis and  the W -  
t ransverse  m o m e n t u m  as the x-axis.  The  phase  convent ion  thus follows that  of  ref. [42]. The  
a m p l i t u d e s  in Jacob-Wick phase  convent ion  in the above f rame can  be obta ined  from eq. (3.4) by 
d r o p p i n g  the sign factor E. Also, in this paper  we normalize  the fermion helicitics to + 1. 



264 K. H a g i w a r a  et al. / e ' e - ~ W + W 

bosons are both transverse [(XX) = (+  - ) or ( -  + )]. Thus these amplitudes do not 
have a bad high-energy behavior: 

vc2 1 

,,¢~= sin2Ow 1 +f12_  2 f l c o s O 3 a o . ,  (A) ,=  +2) .  (3.5) 

The other seven final helicity combinations give J0 = 1. Five of them have at least 
one longitudinal W, which could give a possible divergent behavior at high energies. 
We write the amplitude as a sum of three contributions 

. ~ =  /~v + j ~ z  + j ? ~  (AX ~< 1), (3.6) 

where 

. ~ '  = -,831a,,i.1A~x, (3.7a) 

[ , 
• . ~ Z = ~ 8  ~laol,l 2sinZOw3ao,_X s _ ~ z A x X ,  (3.7b) 

1 [ 1 ] 
2sin207-~ 3a°'-I BxX 1 +/32--2f lcosO Cxx " (3.7c) 

The coefficients A, B,C for the standard model are shown in table 3. For the 
general WWV coupling the A coefficients are tabulated in table 4. 

3.2. STANDARD MODEL 

Using eq. (3.7) one can readily appreciate the structure of the gauge-theory 
cancellation in the standard model, which provides a good high-energy behavior. 
First note that the bad high-energy behavior is confined to the J = 1 partial wave, 
because the second term of the v exchange contribution (3.7c) is regular at high 
energies (see the coefficient C in table 3). This is in fact necessary for the 

TABLE 3 
Y _ _  Z Coefficients AxX - AxX, BxXo and Cxx in (3.7) for the standard model 

a x (xX) AT,~ z sxx C~x 

1 ( + 0 ) , ( 0  - ) 2 y  2"r 2(1 + fl)/y 
- 1 (0  ~ ) , ( - - 0 )  2 r  2 ~  2(1 - [O/'r 

0 (+ + ) , ( - - )  1 1 1 /y  2 
0 (00) 2"/2 + i 2"l 2 2/ ' r  2 

B = (1 - 4,,,2w/~) '/2 and v = ¢7/2mw. 
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TABLE 4 
Coefficients AVx for the general coupling (2.4) 
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ax (xX) A~× 

1 (+0) 

1 ( 0 - )  

-1 (0+) 
- 1 ( - 0 )  

0 (++)  
0 ( - - )  
0 (00) 

~,(ff - i / I  + ~.t~ + i a - ' / , " )  
r ( / v  + i/,  ~ + B / :  - i ~ - ' f g )  

r ( f f  + i f f  - ~ / v  + i ~ - l f f )  
~ , ( /v  _ ~/v _ ~ / v  _ ~ -  , / g )  

i v  + i , a - , f ~  + 4 i . A a / v  

f v  _ i a - ~ / v  _ 4 i ~ , ~ / v  

y2[-(1 + B2)fv + 4y2f12f2v + 2fv] 

The last coefficient A v can be alternatively written as gV + 2y2~v. 

cancellation, because the . / and  Z exchange diagrams have J = 1 only. So one need 
only concentrate on the A and B contribution. 

Some of the coefficients A and B (table 3) are proportional to ./ or ./2 as 
expected from longitudinal W counting. However, all the divergent parts are 
common to all three diagrams. At high energies (./--, ~ ,  /3 --, 1), we have 

A~X = AZx = BxX, (3.8) 

up to an O(1) term. The Z contribution (3.7b) is separated into two terms. The first 
term conserves parity (thus "electromagnetic" component), and is canceled by the 
`/-exchange contribution at high energies. The second term in (3.7b), which exists for 
the left-handed electron only (thus weak isovector or " W  0 ,, component) is canceled 
by the r-exchange B term. 

Because the cancellation reduces the power of y by 2, the amplitudes for one 
longitudinal and one transverse W pair (A~, = + 1) go down as `/-l  at high energies. 
From table 3 one also readily sees that the amplitudes for two of the A~, = 0 states 
( ( ) ~ X ) = ( +  + ) and ( - - ) )  are suppressed by ./-2. Thus only three of the nine 
helicity combinations, namely (+  - ), ( -  + ), and (00), survive at high energies for 
finite scattering angle O. 

These three amplitudes do not contribute to the cross section equally. The 
A h = - 2  ( - +  ) amplitude (3.5) dominates over the other two at high energies 
because of the t-channel pole factor 1/(1 +/32 - 2/3 cos O) which peaks at cos O = 1 
with a ),4 enhancement. (In practice the peak in the ( - +  ) amplitude appears 
slightly below cos O = 1 because the function d_ 2 l . -  2 is proportional to sin O and 
vanishes at I cos O I = 1.) A kinematic zero kills the t-channel pole for the (+  - )  
amplitude. For  the (00) final state the pole term is suppressed by a dynamical `/-2 
factor in the C coefficient and further softened by a kinematical sin O factor. 
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Fig. 4. Angular  distribution d o(~., X) /d  cos O of polarized W -  W + production in e + e -  annihilation at 
(a) ¢~- - 500 GeV and (b) 190 GeV, averaged over initial lepton polarizations. Shown in parentheses are 

W -  and W + helicities in the e+e - c.m. frame. 

Moreover, even at large angles, the (00) amplitude happens to be numerically 
smaller than the transverse amplitudes. Thus the dominant final state is purely 
transverse and there is a strong forward peaking. These characteristics can be seen 
from fig. 4a, where the cross section for each final helicity state at V~- = 500 GeV is 

shown. 
Even at LEP-II energies (vfs < 200 GeV), these tendencies already appear. At 
= 190 GeV, the ratio of transverse to longitudinal W's is about 3:1.  The cross 

section for polarized W's is plotted in fig. 4b for this energy. The A~. = - 1  states 
have an appreciable contribution to the cross section at this energy, which in fact is 
the second largest. However, the dominance of the A~ = - 2  state already holds. 

At threshold, the behavior of the cross section is quite restricted. Since no orbital 
angular momentum is allowed between the final W's, the total spin is equal to total 
angular momentum. It can take the values 0, 1, 2. However, it turns out that only 
J = 2 is allowed under quite general conditions, as we shall explain below. In this 
case all helicity amplitudes at threshold are related by Clebsch-Gordan coefficients 
irrespective of detailed dynamics. This fact may provide an interesting opportunity 
to uncover exotic interactions. A chirality-nonconserving interaction of electrons 
(scalar or heavy lepton exchange [16], for example) gives a J = 0 final state, and 
CP-violating three-boson interaction can give J = 1. (The latter possibility will be 
discussed later in this section.) 

The proof of the above assertion is rather straightforward. Among the three 
possible angular momenta J = 0 , 1 , 2 ,  J = 0 is forbidden by electron chirality 
conservation because the initial state can have only J >/1 [up to O(me)]. CP 
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invariance forbids J =  1 because the initial e+e - state should have C P =  +1 
( j e c =  1 + + / 1 - - ,  2 + + / 2 - - , . . . )  and the final W ' W -  state should have j e c =  0 + . ,  

1 +-, or 2 ++. For  J = 2 there is no selection rule to forbid the reaction. In fact, in 
the standard model, the process receives a contribution from 1, exchange. 

Finally we note that for polarized beams containing e R a n d / o r  e ÷ L, only the pure 
longitudinal final state (00) remains at high energies because 1, exchange does not 
contribute. However, the cross section for this helicity combination is only - 10- ~- 
of the unpolarized cross section. 

3.3. GENERAL THREE-BOSON COUPLINGS 

For  general couplings (table 4), the cancellation detailed above no longer occurs. 
The worst case exhibits a ),4 behavior. Of course, form factors a n d / o r  higher order 
contributions should provide the necessary damping in this case to guarantee 
eventually that partial-wave unitarity is not violated. 

Even for general couplings, however, the cancellation in the "electromagnetic" 
part  takes place if fiv=f~ z is satisfied. Numerically, more than 70% of the ), 
exchange amplitude (3.7a) is canceled by the "electromagnetic" term of the Z 
exchange (3.7b) already at ¢~ = 200 GeV. Violation of this cancellation by f,r * f f  
can be seen most directly in the Ao = 1 channel. Separation of this channel from the 
dominant  Aa = -  1 channel can be achieved by measuring the azimuthal-angle 
dependence when the beams are transversely polarized, or by using longitudinally 
polarized beam(s) (see subsect. 5.4 below). 

For the "weak isovector" part, the cancellation between the Z- and v-exchange 
contributions (B terms only) is numerically less significant (40~ at v~-= 200 GeV) 
because of the difference in the threshold behavior. Indeed, the ~,-exchange ampli- 
tude dominates near threshold* (S wave) whereas the s-channel exchange contribu- 
tion is suppressed by at least a factor of fl (P wave). Hence, in the threshold region, 
the reaction e +e-  ---, W +W- is not very sensitive to the three-vector-boson coupling. 

There is an exception to the above conclusion which was already noted in the 
preceding subsection. We see from table 4 that if the CP-violating coupling f~" is 
nonzero, the )'- and Z-exchange amplitudes have S-wave behavior. Tests of C P  (see 
subsect. 5.2) near the threshold can thus constrain f6 v rather independently of the 
other couplings. 

Because the standard model prediction is far below the unitarity limit, the cross 
section will become very sensitive to anomalous couplings at high energies (~, >> 1) 
through the violation of the gauge-theory cancellation. Unfortunately, the energy 
range available at LEP-II is not high enough ()'2 = 1.5 at V~ = 200 GeV) and we 
need a detailed study to constrain these couplings, as will be discussed in the next 
two sections. 

* The fl- l factor in (3.7c) is spurious and the fl --, 0 limit is finite. 
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3.,1. SYMMETRY PROPERTIES 

Before closing this section, we remark on some general restrictions to the full 
amplitudes (3.4). (Corresponding details for the cross section appear in subsect. 4.3.) 
It  is easy to see that if all the form factors f v are real the following equation holds: 

..¢lo~; xx =..¢( * - (3.9) - o , - a ; - X , - - h  • 

This is a consequence of CPT invariance and the absence of absorptive parts. 
Hence violation of this relation immediately indicates substantial rescattering ef- 
fects. This fact can be seen as follows. CPT invariance gives the following relation 
between scattering amplitudes (with appropriate phase convention) 

T/,=r,y, (3.1o) 

where ~( f )  denotes the CPT conjugate state of a state i ( f ) .  This relation is not 
immediately useful for our purpose, because it connects the amplitude for the 
reaction e ÷ e -  ~ W ÷ W -  to that for W + W - ~ e ÷ e- .  However we find 

= T f , -  T/, t . ( 3 . 1 1 )  

Here we have used CPT invariance for the second equality. If the T matrix is 
hermitian, we have 

T/i= T/,*. (3.12) 

This is actually the case in the Born approximation. Unitarity tells us that T -  T t is 

the absorptive part  which arises from rescattering effects. Thus in a weakly coupled 
theory eq. (3.12) holds to a good approximation. When applied to the reaction 
e+e - ~ W + W  -, it gives eq. (3.9). 

CP invariance leads to the relation 

" ~ a ~ ; h X = ' / ~ - ~ , - a ;  - X , - X ,  (3.13) 

which can be directly used as a test of CP conservation. This test does not assume 
the absence of absorptive parts*. 

* It should be noted that the relations (3.9) and (3.13) are simpler than their appearance. Actually they 
connect the same initial state for nonvanishing amplitudes: ( o 8 ) =  (_- -T-)= (--8,  - a ) .  As for the 
final state, they relate states with same AX: 

a x ~  +1: (x),) = (+o),-. ( o - ) ,  

o: ( + + ) ~ ( - - ) ,  

- 1 :  (o +)~. ( - o ) .  
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It is also possible to write down similar relations derivable from C or P 
invariance. However, they are not very useful since the u-exchange contribution 
already violates C and P maximally. It is not easy to obtain simple relationships for 
the amplitudes which signal C or P nonconservation in the vector boson sector*. 

4. Angular correlations for final state fermions 

In this section we present the most general angular distributions of the decay 
products in the process 

e - ( k , o )  + e+(f(,ff) ~ W - ( q ,  X) + W*(q,  X), 

W- (q ,  X) ---, f,( Pl, °x) + I:2( P2, °2), 

w+(q,  X) --, f3(p3, o3) + f,( p,, o,), (4.1) 

with massless fermions. As the material in this section is rather technical, the reader 
who is only interested in the results may proceed to sect. 5. 

Since we understand the decay interactions well, we can extract explicitly the 
dependence of the cross section on final fermion angles. The fact that the W has 
spin one restricts the possible form of the angular dependence to a finite but large 
number of terms (actually 81). The coefficient of each term can be written in terms 
of the production density matrix, which may be obtained from the polarization 
amplitudes presented in sect. 3 or appendix C. 

4.1. D E R I V A T I O N  

The full amplitude can be expressed as follows (see fig. 5): 

,.g ( k, o; ~:, if; Pi, o,) = Dw( q2 ) Dw( ~ 2 ) ~_, Y'..Xg,( k, o; ~:, if; q, X; ~, X) 
x X 

X.AC2(q, X; p,,  o,; P2, °2)'-/t'a(q, X; P3, °3; P4, 04), (4.2) 

* For the three-boson coefficient AVx, we can write down the requirement from P, C, and C P  

invariance as follows: 

P: AVxx = A v 
- M - X ,  

c: A x=AL, 

C P :  AVx = A v  X. • x .  

The first two equations relate final states with opposite AX, while the last one relates those with the 
same A h. 
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~ fl (Pl ,o3) 
- f'2 (P2 ,o'2) 

e - (k ,o)  
e+(K,~) 

f3 (p3,0"3) 
f'~ (p~ ,o'A ) 

Fig. 5. Schematical view of the process e+e- ---, (W ~ f] fz) + ( W~ ~ f3 f,~). Shown in parentheses are 
four-momentum and helicity of the particles. 

with the Breit-Wigner propagator factor for W bosons: 

Dw (q2) = ( q 2 _  m2w + imwF w ) - l .  (4.3) 

Here the summations over intermediate W polarizations can either be done in the 
Cartesian basis ),, X = 1, 2, 3 or in the helicity basis A, X = +,  0. The former basis is 
convenient for the numerical evaluation of the amplitude (see appendix C), whereas 
the latter, which we take here, is more suited for theoretical considerations. 

The production amplitude ~¢~ is a sum of three contributions which are given in 
eqs. (C.11) and (C.12). Its explicit form in the e+e - c.m. frame for on-shell W's has 
been presented in sect. 3. 

In the massless fermion limit (see eq. (C.19)), the W-  decay amplitude -'//2, as 
evaluated in appendix C (see eq. (C.16)), simplifies to give 

.A[ 2 = egWt~r2C3ol,  _3°5 , + 2 ~ / ~  S( PI, e(q, X), P2) - - .  (4.4) 

Here g_Wfd2 is the standard V - A coupling (C.15). The effective color factor C is 1 
for leptons and ¢3- for quarks. The corresponding W-  decay amplitude .At' 3 is 
obtained from (4.4) by the replacement (1,2, q, X) ~ (3, 4, ~, X). The spinorial string 
S (see eq. (C.7) for its definition) can be explicitly expressed in a given Lorentz 
frame. 

In the c.m. frame of the colliding beams, we choose the W momentum direction 
as the z-axis and the k(e- )  × q(W-)  direction as the y-axis; the scattering e -e  
W +W- takes place in the x - z  plane (see fig. 6). The production amplitude d-t'~ is 
then a function of the scattering angle O between e-  and W-  momentum directions 
in this frame, as explicitly shown in the previous section. The decay amplitudes ..¢t' 2 
and ~t' 3 are most simply expressed in the W and W + rest frame, respectively. We 
define each of these frames by a boost of the above e ~e- c.m. frame along the 
z-axis. 

In the W -  rest frame, we parametrize f~ and t~2 four-momenta as 

p ~' = z 1 V'c~ - (1, sin 0 cos @, sin 0 sin @, cos 0 ), 

p~, = iq~-(~ qE 1, -sinOcos@, - s inO sin@, - cosO), (4.5) 
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W ÷  _--a- q 

q W- 

e- 

Fig. 6. The coordinate system in the colliding e ~ e c.m. frame. The y-axis is chosen along the 
k ( e - )  × q ( W - )  direction and is pointing towards the observer. The coordinate systems in the W -  and 

W + rest frames are obtained from it by boosts along the z-axis. 

and in the W + rest frame, we choose the antiparticle (f4) angles as 6 and 5, 

p~' -- ½ q ~  (1, - sin Ocos 5, - sin 6sin 5, - cos 6) ,  

p~' = ½ q ~ ( 1 ,  sin Ocos 5, sin Osin ~, cos 6).  (4.6) 

In this convention the angles of the charged lepton or the d-type quark are chosen 
as (0, q,) in W -  decays and (0, q,) in W + decays. 

It is a straightforward exercise to evaluate the spinorial string S in (4.4) in these 
two frames. One finds 

where 

with 

" ~  2 -~ e g  w - f ' f 2 C ~ q - 2  8 , , , , - ~ o  2 , + I x ,  

"&¢3 = - eg-Wf3 f'ff~/~6o 3, - 8o,,+ / x , 

(4.7a) 

(4.7b) 

(l_,lo, l+)=(d.e-i*,-do, d_ei*), 

([_,[o,[+)=(Le'*,-do, Le  '~), 

(4.8a) 

(4.8b) 

d_+ = l + c o s  , d o =s in  0 . (4.9) 

Here C and f fdenote  the effective color factors (1 or vc3 -) for the corresponding W -  
and W + decay processes. 
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4.2. C R O S S  S E C T I O N  F O R M U L A S  

It is now straightforward to obtain the polarization-summed squared matrix 
elements 

El 'l 2- E E E E E El t(k, o; f,, p,,o,) I 
o ~ ol  o2 o'3 o 4 

= e41gWqf2gW_f,f,12C262q2Ft21Dw(q2)Dw(F12 ) 2,-~xXo_x,X,=,x,=,X,~x,~X. (4.10) 

Here, and in the following, summation over repeated indices (~, ~,', X, ~ ' )=  + , 0  is 
implied. The production tensor reads 

~x,X, = E E j t l ( O ,  if, ~., X; @)..1~,(o, if, ~,, X,; o ) ,  (4.11) 
a 6 

and the decay tensors are 

~x, = lxl~,, (4.12a) 

~X = [X[~" (4.12b) 

Eq. (4.10) gives the general structure of the polarization-summed squared matrix 
element for the process (4.1) with pure V -  A couplings of the W to massless 
fermions. After integration over the virtual W mass squared, q2 and ~2, the 
differential cross section can be expressed as (in the narrow width approximation) 

do 9,8 B(W ~ fa{2)B(W - xx x -x 
f 3 f 4  ) ,-@ X, X, *@ X, --@ X, , 

d cos O d cos 0 dq~ d cos 0 dq~ 8192~'3s 

(4.13) 

where fl = (1 - 4m2w/S//2.  By integrating over W + decays, we obtain the inclusive 
W -  ~ f1(2 decay distribution 

do 3,8 
= 1.7- X,K.zt, x, , dcosOdcos0dq ,  1024~r2s B(W ~ fl{z (4.14a) 

and alternatively we obtain the W + --, f3 (4 decay distribution as 

do 3/3 B(W - xx -X 
= --* f3 f 4 )  ~XX,..@X,. (4.14b) 

dcos Odcos 0d~ 10241r2s 

By further integrating out all the decay fermion angles, we simply get the 
differential cross section for the process e ÷ e- --* W + W -: 

do fl xx (4.15) 
d cos~  - 128~r----s ~xx " 
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By comparing eqs. (4.13)-(4.15), one can appreciate the additional information on 
the W+W - production amplitudes contained in decay fermion angular distribu- 
tions. 

It is useful to isolate explicitly the azimuthal-angle dependence in eq. (4.13). One 
finds 

• x X  ,~x,SX {2 Re[Bcosq, x,x,~x,=,x, = A + + Boos $ + Ccos 2¢ + (~cos 25 

+ D+cos(q, _+ $) + E_+cos(2q~ + $) + if_+ cos(ff + 25) 

+G+cos(2q,+ 25)] + (Re ~ Im,cos ~ sin)}, (4.16) 

where a shorthand notation such as D±cos(¢ + ~) for D ÷ cos(¢ + $) + D_cos($ - $) 
is used, and 

,~xX.,2 .~2 (4.17a) A = o - x ~ u _ x u _  X ,  

B=(~o-Xxd+ +~°Xd+x -/~t - dod-2x) , (4.17b) 

= ~.i'~x+dxo _ -t-' .0ax° aTx_ . ) ( -dod2x)_  , (4.17c) 

c = (4.17d) 

-- ~ + -  - 2 C=~x_d+d_d_x, (4.17e) 

D~=[(~o~d~+~o°d+_)d, +(~°~d~+~°°d+_)d_]dodo, (4.17f) 

E_+ = (~T.~ d:~ + ~°d+_  )( - dod~ d_ ), (4.17g) 

ft.+ = (~o~d+ + ~°~d_) ( - c lod÷d_) ,  (4.17h) 

G+ = +~.d+d_d_d (4.17i) 

There are 25 independent azimuthal-angle distributions (including the constant 
piece A), as seen explicitly in (4.16). By taking into account the polar angle 
distributions in 0 and 0-(see eq. (4.9)), one sees that there are nine independent 
distributions in A, 24 in B and B (counting both the real and imaginary parts), 12 
in C and ~ 16 in D±, 16 in E+_ and /~ ,  and four in G ~, which altogether give the 
81 independent angular distributions. This is of course just the number of compo- 

xx nents of the density matrix ~x,x,- 
In principle one can imagine measuring all possible combinations of products of 

the nine helicity amplitudes, summed over initial polarizations. In practice, this 
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requires charge (flavor) identification of both the W-  and W * decay products. 
Although this is easy when both W's decay leptonically, these rates are rather small 
and one has the twofold identification ambiguity discussed in appendix B. Experi- 
mentally the most favorable mode is thus "semi-leptonic," with one W decaying 
leptonically, the other hadronically. In view of the difficulty of flavor identification, 
for most of the hadronic decays one cannot tell 0 from ~r - 0 (0 from ~r - 6) and q~ 
from q~ + ¢r (~  from ~ +  ~r). This makes it very difficult to measure any of the 
coefficients in D± and one combination of the coefficients in A. Apart from these, 
there is a reasonable chance that one can determine the remaining 64 coefficients. 
We remark that the nontrivial azimuthal-angle correlation recently studied by 
Duncan, Kane, and Repko [29] is just one of these coefficients, Re G_. 

In sect. 5, we will describe in some detail how to project out some of these 
coefficients experimentally, as a function of the scattering angle O. There we shall 
also discuss the accuracy with which they may be determined. 

4.3. SYMMETRY PROPERTIES AND INCLUSIVE DISTRIBUTIONS 

Although each of the 81 coefficients gives independent information on the W pair 
production mechanism, some of these coefficients may be related even in the 
presence of anomalous couplings. This is the case, for instance, if CP is a good 
symmetry or if no strong interactions exist in the W-boson sector. Even in models 
where one expects a strongly interacting W sector at high energies, one generally 
gets small WW interactions near the threshold, that is, at LEP-II energies. In 
contrast, C or P invariance do not lead to a useful classification, because the 
neutrino-exchange contribution to the amplitude violates C and P maximally, 
thereby hiding C and P invariance of the vector-boson sector. 

Let us first examine the consequences of CP invariance. Since the relevant initial 
e+e - state is CP-invariant, the CP transformation simply reverses all the momenta 
of final particles and changes particles to antiparticles. Thus CP invariance leads to 
the following relation in the differential cross section 

do(O;O, ep;~)C=edo(O;~r-O,q~+~r;~r-O,~a+~r). (4.18) 

In other words, the angular distributions which change sign under the exchange 

(0, q~, 0, ~) c~e (~r - 6, ~ + ~r, ~r - 0, ~ + ~r) (4.19) 

are called CP-odd and should have vanishing coefficients if CP is a good symmetry. 
The terms which remain unchanged are called CP-even and can be nonzero. It is 
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straightforward to organize the 81 coefficients into 45 CP-even combinations and 36 

CP-odd ones*. 
Secondly, we study the implications of having only weak interactions among W's. 

The concomitant  smallness of rescattering for the produced W pairs leads to small 

absorptive amplitudes. As is discussed in subsect. 3.4, if an amplitude has no 
absorptive part, CPT invariance gives the relation (3.9). We will refer to this 
symbolically as CPT symmetry**. Thus the observation of a CPT~-odd asymmetry 

would indicate the existence of rescattering effects. As a consequence of CPT 
invariance we find 

do(O;O,q~;O, ck)ce=i 'do(O;Tr-O,~r-(~;~r-O, Tr-q~). (4.20) 

We can easily separate the angular distributions into CPT~-even and CP]Z-odd parts 
according to their behavior under the exchange 

(0,,, & (4.21) 

The eighty-one angular coefficients can thus be divided into four categories under 
CP and CPT: even-even, even-odd, odd-even, and odd-odd terms. CP-odd coeffi- 
cients directly measure CP violation and CPT-odd terms indicate rescattering 
effects. Once both CP-odd and CPf'-odd terms are found to be small experimen- 

tally, it is then safe to ignore odd-odd terms since they should be doubly suppressed. 
With regard to these properties, we shall present a detailed study of three kinds of 

distributions which are more inclusive than the completely differential cross section 
(4.13). These are the azimuthal angle distributions after polar angle (8 and 6) 

integration, the polar angle correlations alter azimuthal angle integration, and the 
inclusive W -  and W ÷ decay angular distributions (4.14). 

After the integration over polar angles O and 0, we can regard the 25 coefficients 
appearing in eq. (4.16) as functions of the scattering angle (9 only. Besides the trivial 
constant piece A, the remaining 24 azimuthal angle distributions are classified in 

table 5 according to their CP and CPT properties. We find that all the sine terms 
are either CP-odd or CPT:-odd whereas certain combinations of cosine terms are 
both CP- and CPT~-odd. The standard model contributes exclusively to the even-even 
sector in the lowest (a 2) order. CP-even, CPT~-odd terms*** are down by an 

* In terms of helicity amplitudes, CP invariance reduces the number of independent amplitudes from 
nine to six (see eq. (3.13) and the footnote following thereafter), leading to 6 × 6 = 36 distributions. 
The remaining nine CP-even terms arise from a product of two CP-odd amplitudes, and may be 
ignored. Similar remarks also apply to the CP7 ~ properties discussed below. 

* * When the interaction respects T invariance, we can similarly define obseB,ables which are propor- 
tional to rescattering effects. They are traditionally called T-odd quantities (see, e.g., ref. [51]). Here 
we use the term CP'f to avoid confusion with real CPT violation effects. 

* * * The one-loop Higgs contribution to these terms is calculated in ref. [52]. 
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TABLE 5 
CP and CPT properties of azimuthal-angle distributions and correlations 

CP CPT Azimuthal-angle distributions Number 

even even cos ~ - cos 6, cos 2 ¢, + cos 2 ,~, cos(,/, + e~), 8 

cos(~ + 26) - cos(~ + 2¢),cos(2#, _-4- 2~) 

even odd sinq~ - sin ~,sin2¢, + sin26,sin(¢ + ~), 6 

sin(~, - 2e~) - sin(~ ± 2q~),sin(2¢, -~ 2,~) 

odd even sin~ + sin ~,sin2q~ - sin2~,sin(¢, - ~), 6 

sin(~, + 26) + sin(~ + 2¢,),sin(2¢ - 2,#) 

odd odd cos q~ + cos ~, cos 2 ¢, - cos 2 ~, 4 

cos(¢ ± 26) + cos((~ + 24) 

a d d i t i o n a l  f ac to r  of  a ,  and  C P - o d d  coef f ic ien t s  are  even fur ther  suppres sed .  Th is  

s t r u c t u r e  is n o t  chan g e d  by  the i n t r o d u c t i o n  of  C P - c o n s e r v i n g  a n o m a l o u s  coup l ings  

such  as  x a n d  ~,. 

If, on  the  o t h e r  hand ,  one  in t eg ra te s  over  the a z i m u t h a l  angles  first,  on ly  the t e rm 

A in eq. (4.16) remains .  The  surv iv ing  d o u b l e  p o l a r  ang le  d i s t r i b u t i o n  is g iven b y  

eq. (4.17a).  W e  can  def ine  the  cross  sec t ion  for  p r o d u c i n g  p o l a r i z e d  W ' s  by  the  

coe f f i c i en t s  ~ s ince they  are  n o th in g  bu t  the  squa red  p o l a r i z a t i o n  a m p l i t u d e s  (see 

eq. (4.11)):  

d o ( h , X )  13 
- ~ (A,  X no t  s u m m e d ) .  (4 .22)  

d cos  O 128~s 

T h e  n ine  c ross  sec t ions  can  be  eas i ly  p r o j e c t e d  ou t  f rom the p o l a r  ang le  d i s t r i b u t i o n  

(4 .17a)  w h i c h  can  be  expres sed  as fol lows:  

d a  d a ( A ,  ~,) 

d c o s O d c o s O d c o s d =  d c o s O  B ( W ~ f ,  f 2 ) B ( W  + ~ f a t ~ 4 ) q d 2 x d _ 2  X, (4 .23)  

w h e r e  n o w  the  s u m m a t i o n  over  ~. a n d  ~, shou ld  be  p e r f o r m e d .  A m o n g  these  n ine  

c ros s  sec t ions ,  six c o m b i n a t i o n s  sa t i s fy  b o t h  C P  a n d  C P T ,  the  r e m a i n i n g  three  

v i o l a t e  bo th .  T h e y  are  l i s ted  in t ab le  6. 

TABI.E 6 

CP and CPT properties of polar angle distributions 

CP CP'F Polarized W cross sections Number 

even even o( +, - ), o( - ,  + ), o(0,0). 6 
o(+ ,0) + o(0, - ) ,  o ( - , 0 )  + o(0, +), 

o ( + , + ) + a ( - , - )  

odd o( + ,0) - o(0, - ), a( - ,0) - o(0, + ), 3 
o(~-, + ) -  o ( - ,  - ) 

odd 
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Identification of all nine polarized W cross sections is difficult because of the 
necessity of double charge (flavor) identification. It is, however, possible to dis- 
tinguish longitudinal W's from transverse ones without charge identification. Hence 
it is useful to define slightly more inclusive distributions 

dOTT do(• ,  X) 
E E dcosO  x=+ X-:.~ dco sO  

dOtE do(0,0) 
d cos 0 d cos 0 ' 

dOTL do(~,,O) 

dcosO  x-+_ d c o s O  ' 

dOLT do(0,  X) 
]~ (4.24) 

d c o s O  X=_+ dcosO  ' 

and 

do T dovr  dOTL 
- -  " 3 1 -  - -  

d cos 0 d cos 0 d cos 0 ' 

do L dOLT dOLL 

d cos O d cos O d cos O ' 

do~ d a r t  dOLT 
d cos 0 d cos 0 d cos 0 ' 

doT_ dOTE dOLL 
d c o s O  d c o s O  + dcos 0 " (4.25) 

Some properties of these distributions have been studied in ref. [1]. 
Finally, the inclusive W -  or W* distributions (4.14) should be most useful when 

we study leptonic decay channels. We can parametrize these distributions as 
follows: 

d o ( W -  --, e i )  9 
= Y'. F/(cos 0 ) L i ( O, ~ ) ,  (4.26a) 

dcos O dcos 0dq~ i-1 

d o ( W  + --,/.) 
- ~ ' .  f f ~ ( c o s O ) L , ( O , ~ ) .  (4.26b) 

d cos O d cos 0 d ff i = 1 
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Here the L, 's  are the following nine orthogonal functions which are normalized to 
47r :  

L 1 = 1 ,  

L 2 = ½¢3-(1 - 3cos2O), 

L 3 = V ~ - c o s  0 ,  

L a = ¢3-sin 0 cos q~, 

L s = ½¢'~-sin20cos,~, 

L 6 = ½ lv~3-sin28 cos 2~ ,  

L 7 = v'3-sin 0 s in~ ,  

L 8 = ½ lv'~-sin 28 sinff ,  

L 9 = ½ l ~ s i n 2 0  sin 2q~. (4.27) 

Note  that we have used the W -  scattering angle O in both F, and 4 .  The 
coefficients F~ and ff~ are then proportional to the total inclusive angular distribu- 
tion (4.15): 

B(W --* dr) do 
Fl(cos O ) = / ~ ( c o s  O ) =  41r d c o s O  ' (4.28) 

It is an elementary exercise to express the F,'s and b~'s in terms of our production 
tensors ,@xx, x and xx • ~xx,, respectively. The CP and CPT properties of these 18 
coefficients are listed in table 7. 

TABLE 7 
C P  and CP"F propert ies  of  inclusive W -  or W ÷ decay angular  d is t r ibut ions  

C P  C P T  Inclusive angular  coefficients N u m b e r  

even even Fl ~ Fl, F2 + F2, F3 - F.a 6 

F,-  P4, F5 + ~, F6 + P6 
even odd F7 - F'7, F~ + Fs, F9 -~ F9 3 

odd even F7 + if7, Fs - ff~, F9 - F9 3 

odd odd F l - f f ' l , F 2 -  f f 2 , F a -  ff3 6 

F4 + F4,F5 " Fs,F6 - F6 

See text for the defini t ion of the coefficients F, and if,. Note  that  F l - ffj is identically zero as long as 
C P  violat ion in the decay process is neglected. 
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5. Observable consequences of anomalous three-vector-boson vertices 

From the discussion of sect. 3, and in particular from table 4, it is apparent that 
different anomalous three-vector-boson vertices lead to deviations of different 
helicity amplitudes from their standard model values. In order to discover and then 
distinguish the anomalous couplings from each other, one thus has to separate the 
various helicity amplitudes. As has been discussed in the last section, the unique 
way of doing this is by studying angular distributions of the W ÷ and W -  decay 
products. 

Let us estimate the various experimental branching fractions. Consider the decay 
of each of the W's into a fermion-antifermion pair (quark-antiquark qxClz or charged 
lepton-neutrino f + ue) at tree level. Assuming a top quark of 40 GeV, the branching 
ratio for W ~ g'~'t (t '= e, /t, or ~') is about 9% each. We thus expect the following 
final state combinations: 

(qq)(qY:l) ~ 4-jet 53%, 

qTq(gu) ~ dijet + g-+ + ~  40%, 

(gff)(i~,) =, ¢+¢- + ~ 7%, (5.1) 

where ~ stands for the momentum of the escaping neutrino(s). In this paper we 
shall mainly concentrate on the lepton + dijet decay mode*, because it is most 
amenable to a complete determination of angular distributions. However, to the 
extent that flavor and /o r  charge identification of the dijet subsystem is possible, the 
four-jet events can also contribute to the analysis. A very large fraction of all the W 
pair events can thus be used. Assuming a luminosity of LEP-II of 500 pb- 1/year 
and using o(e+e - ~ W+W ) - 20 pb at yes - = 190-200 GeV, one should have several 
thousand clean events per year, which is a statistically significant sample. 

In the last section we gave a complete expression for the angular distribution of 
the two fermion-antifermion pairs arising from the decay of the W +W- pair. These 
angular distributions are particularly simple when measured in the rest frame of the 
parent W. Experimentally it is thus necessary to first identify the direction of the W 
axis which gives O, the angle of the W-  with respect to the e- beam. The momenta 
of the decay products (the two jets and the charged lepton, say) then have to be 
boosted to their parent rest frames, which are moving with known velocities 
fl(W +) = q:(1 - 4mE/s) 1/2 along the axis. From the measurement of the opening 
angle between the two jets and the energy of both the charged lepton and the dijet 

" In the clean environment of e * e-  annihilation, the ~u decay of the W can be used as well as e/p, 
decays. The decay products of the ~, are easy to identify. Because the "r mass is much smaller than 
the W mass, the direction of the final e//~ or hadrons from ~" decay well approximates that of the 
parent ~'. Although the energy of the ~" cannot be measured directly, it can be calculated from other 
observable quantities using the kinematic constraints of the reaction. 
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system, it should be possible even to correct for initial radiation and finite width of 
both the W's. 

Schematically, the differential cross section has the form (see eq. (4.13)) 

81 

do - E ~ , ( O ;  s)~,(O,g~,O,q~). (5.2) 
i--1 

Here the functions .~, form a linearly independent set consisting of low-order 
spherical harmonics, which reflects the known decay dynamics. The dynamics of the 
production process is solely contained in the factors ~ .  These are given essentially 
by the density matrix for the W pair, obtained from the helicity amplitudes. The 
fact that one can in principle measure 81 functions (instead of one for d o / d  cos O) 
shows that it is possible to extract an enormous amount of information on the 
production mechanism. Even though no polarization measurement is involved here, 
the parity-violating W decay provides a complete spin analyzer for the W. 

With a few thousand events it is impossible to perform an 81-parameter fit 
(corresponding to the 81 angular coefficients in eqs. (4.16) and (4.17)) for each of 
several cos @ bins. Rather one would like to obtain from the experimental data the 
moments of those angular distributions that are most sensitive to new physics, i.e. 
the anomalous three-boson vertices for the case at hand. 

The most sensitive distribution for any anomalous coupling will in general be 
some linear combination of the 81 angular distributions, whose coefficients depend 
on the W scattering angle 0. It is in principle straightforward to maximize 
sensitivity for each coupling with respect to these 81 coefficients. Rather than 
pursuing such maximization, which would require detailed information on both 
detectors and actual event topologies, we have performed a systematic scan of "all 
polar angle as well as azimuthal angle correlations and of all one-W-inclusive 
distributions. 

In the following we mainly concentrate on the distributions which do not require 
double charge identification, because the charge of the parent quark of jets is 
difficult to measure. As seen from the discussion following (5.1), at least 40% of the 
events can be used to extract these distributions. 

5.1. CP-CONSERVING COUPLINGS 

A convenient way of organizing our findings is according to the sensitivity of the 
angular coefficients to CP violation and rescattering effects. We first discuss 
distributions which are even under the transformations (3.9) and (3.13) and thus in 
general are nonvanishing in the standard model at tree level. The couplings f~, f2, 
f3, and f5 are the ones to consider. Setting gl = 1 in f l  = gl + 2Y 2~ (eq. (2.5)), we 
shall take the more conventional quantities K and )~, and f5 as variables. 

The simplest distribution of this kind is the differential cross section d o / d  cos @ 
which is given in fig. 7 for the standard model and for an anomalous "magnetic" 
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Fig. 7. Angular distribution do /dcos6)  at vr~ = 190 GeV. Curvcs are shown for the standard model 
(solid line) and anomalous magnetic moments rz  = 0.5 (dash-dotted line) and ~z = 1.5 (dashed line). All 

the other couplings are as in the standard model. 
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Fig. 8. Deviation of do /dcos  6) from the standard model (SM) value for ~z = 1.5 (solid line), X z = 0.5 
(dash-doned line), and f z  = 0.5 (dashed line) at ~/~ = 190 GeV. The error bars indicate the statistical 

error for 4000 W-pair events. 

m o m e n t  r z = 0.5 a n d  1.5 a t  ~ = 190 O e V * .  T h e  e f fec t  o f  t he  a n o m a l o u s  c o u p l i n g s  

is m o r e  c l e a r l y  d i s p l a y e d  in fig 8, w h e r e  t he  d e v i a t i o n  f r o m  t h e  s t a n d a r d  m o d e l  is 

s h o w n  fo r  •z = 1.5, )~z = 0.5, a n d  f z  = 0.5 a t  t he  s a m e  ene rgy .  C o m p a r i n g  w i t h  t he  

e x p e c t e d  s t a t i s t i c a l  e r r o r  o f  t he  c ross  s e c t i o n  m e a s u r e m e n t  as  s h o w n  b y  t h e  e r r o r  

* For all the numerical results in this paper we choose m w = 82 GeV, m z = 93 GeV, sin2Ow = 0.223, 
a n d  e 2 / 4 q r = a ( m 2 ) =  i 
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bars in fig. 8, we find that a deviation by 0.5 from the standard model value gives a 
very clean signal for K z and ~'z, while the effect is considerably smaller for f5 z. 

The error bars in this and the following figures represent the statistical error for 
N = 4000 W-pair events in which one of the W's decays ieptonically, and the other 
hadronically, thereby allowing single charge identification and a complete kinemati- 
cal reconstruction. This number roughly corresponds to the production of 104 
W-pair events (see the estimate (5.1)), expected with an integrated luminosity of 500 
pb-1.  When a double charge identification for both W -  and W + decay products is 
required, only part of these 4000 events with clean heavy quark signals will be 
effective. On the other hand, a part of purely hadronic events can be useful with 
flavor identification and also purely leptonic decay channels can be used with the 
help of the kinematic reconstruction (appendix B). Since the statistical error scales 
as l / f N - ,  it is easy to correct for these details as well as for detection inefficiencies. 

By measuring the polar angle distribution of the W decay products, one can 
directly determine the differential cross section 
eq. (4.23) we obtain for example 

for fixed W helicities. From 

da d o ( X = + )  )2 d° ( ;k=O)  .¼sin2 0 
d c o s O d c o s S - -  dcosO . ~ ( 1 - c o s 8  + d co sO  

d o ( h  = - )  . ~(1 + cos0)  2. (5.3) 
+ d cos O 

By projecting the experimental data onto (1 _+ cos0) 2 and sin20 for each cosO bin 
(this can be achieved by taking the expectation values of ½(-  l _+ 2cos O + 5 cos20) 
and 2 -  5 cosEO), one will thus obtain the differential cross section for fixed W -  

6 
d3 
Q- 

I I I i I i I I I l t t I I I I r I 

¢E =190 OeV 

,_, Xz =o5 . . . . .  / / t  

-4 
-1.0 -0.5 0 0.5 1.0 

cos O 

Fig. 9. Polar angle distribution for one of the W's being longitudinally polarized. Deviations from the 
standard model (SM) distribution are shown. Couplings and parametrization are chosen as in fig. 8. The 

error bars indicate the statistical error expected for 4000 W-pair events. 
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Fig. 10. W-scattering-angle dependence of  ( F  3 - ~ ) / F  1, the " s u m "  of forward-backward charge asym- 
metr ies  (see eqs. (4.26) and (4.27)). Standard model predictions at ~ = 190 GeV are shown by the solid 
circles with expected error bars based on 2000 W -  --, t'F and 2000 W ÷ ~ dv events. The three curves 

denote  predict ions with ~z = 1.5 (solid line), %z = 0.5 (dash-dotted line), and f5 z = 0.5 (dashed line). 

helicities from the moments. Unfortunately, the cross sections (4.24) and (4.25) are 
in general not particularly sensitive to small deviations from the standard model 
couplings. The main exception we have found is d(OL+OL)//dcos~9 (requiring 
either W -  or W ÷ to be longitudinally polarized) which is reasonably sensitive to a 
variation of r. Actually this quantity should make it possible to distinguish an 
anomaly in r from others, as is demonstrated in fig. 9. 

While the previous distributions only require distinction of W ÷ from W-  decay 
products (to identify cos O), charge (or flavor) identification of the decay products 
gives their forward-backward asymmetry in the W rest frame. This asymmetry is, 
however, somewhat less sensitive to anomalous couplings than the previous distribu- 
tions, as can be seen from fig. 10 where the sensitivity of the coefficient ( F  3 - ffa)/F1 
is shown. Incidentally, the strong charge asymmetry implies that the full polariza- 
tion information on the W's is essential to reliably calculate the energy distribution 
of the charged leptons. 

When the azimuthal angle of, say, the charged lepton is measured, new angular 
distributions can be obtained. Fig. 11 shows the sensitivity of ( F  4 - f f 4 ) / F l  to a 
variation of x, X, and f5 (F4 is the coefficient of sin 0 cos ~, which is essentially the 
left-right asymmetry of the lepton; eq. (4.26)). It turns out that F 4 is only slightly 
less sensitive than d o / d c o s  O (fig. 7) to variations of order 0.5 of x or X from their 
standard model values. For smaller deviations from the standard model the relative 
sensitivity of these two distributions changes in favor of d o / d c o s O ,  due to the 
effect of terms quadratic in the anomalous couplings. 

Additional flavor identification in the £v plus dijet sample will increase the 
statistics for the inclusive W-decay distributions, because both W + and W-  decays 
can then be counted whereas the number of events contributing to d o / d c o s O  
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Fig. 11. W-scattering-angle dependence of (F4 - F 4)/F l ,  the coefficient of sin 8 cos q~ minus the coeffi- 
cient of sin #cos ~ (see eqs. (4.26) and (4.27)). Couplings and parameters are chosen as in fig. 10. 

remains unchanged.  For  all the W + or  W -  inclusive distributions, we show statisti- 

cal errors on the basis of  2000 W -  --* dF and 2000 W + --, dry events only, neglecting 

any  improvement  from possible quark flavor identification. 

It is clear f rom fig. 11 that the measurement of  F 4 -  ff4 alone cannot  distinguish 

between anomalies in x and A. This distinction is provided not only by the 

dis tr ibut ion d ( o L + e f . ) / d c o s O  (see fig. 9), but also by measuring in addit ion 

( F  5 + f f s ) / F 1  ( F  5 is the coefficient of  s i n 2 8 c o s ¢ ,  or the quadrant  asymmetry  in the 

x - z  plane; see eq. (4.26)), as demonstrated in fig. 12. 

In all the distributions shown so far, sensitivity to the C- and P-violating coupling 

f5 was much smaller than that for K -  1 or )k. The reason for this is obvious when 

looking at table 4: in the amplitudes fs has a D-wave threshold and is suppressed 

0 / ~  - I  ' '' I ' '  ' ' I ' ' '  ' I ' i ' ]- 

• L ~ =190GeV 
/ ~ z  =1.5 - -  - ~,- 

0.2~- Xz =Q5 . . . .  , ~ t  
Z /t I -  fs = o 5  . . . .  2 f , /  - 

. - &  0 , - 

I ~  ' .,,,. '/ _ 

-10  -0 .5  0 0.5 1.0 

c o s  8 

Fig. 12. W-scattering_-angle dependence of (F s + ffs)/Ft, the  sum of the coefficient of sin 20 cos e# and 
that of sin 20 cos • (see eqs. (4.26) and (4.27)). Couplings and parameters are the same as in fig. 10. 



QZ, 

02 

0 
itC 

u_ -0.2 

-0l, 

K. H a g i w a r a  et al. / e + e - ~ W * W -  

i ] t i I t ~ ~ t I ~ ~ ~ t I J i t f" 

= 190 GeV fz = 0.5 
fz =0.5 

285 

l I [ I J I 1 I I I I I 1 I I ~ t i I 

-1.0 -0.5 0 0.5 1.0 
cos e 

Fig. 13. W-scattering-angle dependence of ( F  7 + f f T ) / F l ,  the  sum of the coefficient of s in0  sine? and 
that  of  s i n O s i n ~  at v~- = 190 GeV, for f z  = 0.5 (dashed line), f z  = 0.5 (dash-dotted line), and f7 z = 0.5 
(solid line). The solid circles show the standard model expectation (zero), with the error bars indicating 

the expected statistical error for 2000 W -  --, t'~ and 2000 W - ~ : v  events. 

by an extra factor fl - 0.5 at v/~ = 190 GeV, m w = 82 GeV. Better sensitivity to the 
coupling f5 requires higher c.m. energies. 

5.2. C P - V I O L A T I N G  COUPLINGS 

As the next class of anomalous couplings we consider the CP-violating terms 
proportional to f4, f6, and fT. Without absorptive parts, they contribute imaginary 
parts to the helicity amplitudes (see table 4). Provided that they are not so large, 
they have very little effect on "real" distributions*, such as d o / d  cos 0,  because in 
the standard-model amplitudes there is no large imaginary part to interfere with. A 
large sensitivity can only be obtained by measuring coefficients of sines of azimuthal 
angles, where the dynamical imaginary part from CP violation interferes with the 
relative phases between different helicity amplitudes. 

The most sensitive measure appears to be the quantity ( F  7 + ff7)/F~ (F7 is the 
coefficient of sin0 sin(/); see eq. (4.26)), which is plotted for f z (i = 4,6, 7 ) =  0.5 in 
fig. 13. It is essentially the up-down asymmetry of the lepton with respect to the 
scattering plane. A deviation from the standard model prediction (identically zero) 
is clearly visible for all these couplings with 4000 W-pair events with dijet + / v  
topology. 

While the dependence of the above quantity on the W scattering angle is distinct 
for ./'7, separation of f4 and f6 may be achievable by studying some of the azimuthal 
correlations, namely, the coefficients of sin(~ - 2~) - sin(2~ - ~) (fig. 14) or sin(O 
- ~) (fig. 15) in the double decay distributions (see eq. (4.16)). However, the former 

* W h e n  their absolute value becomes 0(1), they do have measurable effects on e.g., d o / d c o s O ,  
however. 
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(see eqs. (4.16) and (4.17)). Expected statistical errors are shown for 1000 W-pair events where the 
charges of both W-decay products are identified. 
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is not  very sensitive to anomalous  couplings, and the lat ter  requires addit ional  flavor 

ident if icat ion,  even when the charged lepton + dijet signal is considered. (This 
addi t ional  requi rement  has crudely been taken into account  in the error bars of  
fig. 15, which are based on a sample  of  1000 W pairs only.) Alternatively,  a 

m e a s u r e m e n t  near  the W W  threshold could single out  f6, because it is the only 
th ree-boson  coupl ing that gives an S-wave threshold behavior.  

I t  should be  noted that  the distr ibutions shown in figs. 13-15 provide a genuine 
measure  of  C P  violation in the vector-boson sector. Even with arbitrari ly strong 
f inal-state  interactions,  all of  them vanish as long as C P  is conserved. 

5.3. FINAL-STATE INTERACTIONS 

In order  to adequately treat rescattering effects, a partial  wave analysis of  the 
W W  sys tem is required. However,  one can approximate ly  include these effects by 

al lowing for imaginary  parts  in the form factors f, (i = 1 . . . . .  7). Tables  5 - 7  in sect. 4 
give the dis t r ibut ions which are sensitive to rescattering, with and without  C P  

violat ion.  Here  one example  should suffice. Fig. 16 shows the effect of  a small 

imaginary  pa r t  of  •z (Xz = 1 + 0.2i) on F 7 - fir. (F7 is the coefficient of s in0 sin~, 
and  if7 tha t  of  sin 0 sin ~; see eq. (4.26).) It should be noticed that  F 7 - ff7 does 
vanish even in the presence of C P  violation, as long as there are no absorpt ive  
par ts .  

A careful  s tudy of the angular  distr ibutions of  W decay products  thus provides a 
un ique  separa t ion  of anomalous  effects into those due to strong final-state interac- 
tions, C P  violat ion in the vector-boson couplings, or real anomalous  momen t s  of  
the W (such as • or  h). 

QZ.-, , ~ , I ' 

= 190 GeV 

u-~ 0 
ju_ ~- 

I 

u_" - 0 2  - 

- O . l . - , , , ,  r , 

- 1 0  - 0 . 5  

I I I ' r l l I : i i i~] 

",tz = 1"* Q 2  i - -  

J 
I [ [ I I I ] ] J I I I 
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cos 8 

Fig. 16. Sensitivity of F 7 -if7 (the coefficient of sin0sin¢ minus that of sin~sin~) to an imaginary, 
part in ~z (~z = 1 + 0.2 0 at v~ = 190 GeV. The solid circles show the standard model expectation, 
slightly away from zero due to the finite Z width (which is a part of one-loop electroweak corrections), 

with expected statistical errors for 2000 W- --, d~ and 2000 W ÷ --* dv events. 
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5.4. P H O T O N  VERSUS Z COUPLINGS 

So far we have only considered anomalous WWZ couplings. The question arises 
whether adding anomalous WW~, couplings as well may produce new features in 
angular distributions. The answer is n o  in the absence of t r a n s v e r s e  beam polariza- 
tion. Let us explain this statement. 

The differential cross section is a sum of contributions from left-handed (Ao = - 1) 
and right-handed (+  1) electrons: 

do - 1..¢¢+ 12 + IX_ 12 (5.4) 

Adding photon and Z contributions, we deduce from eq. (3.7) that .At'+ and ..¢t' are 
always proportional to the same linear combination of couplings f v and f z: 

s 
,.#+ _ f y  z s-m  f 

- - f R = f r _  1 .32fZ,  (5.5a) 

1 ) s z 
..¢t'_ - f v + 2 sin20w 1 s_--S-~z f 

- - fL = f v  + 1 .63fz ,  (5.5b) 

where the numerical value holds for fs- = 190 GeV, m z = 93 GeV, and sin20w = 0.223. 
However, only the left-handed contribution (5.5b) can interfere with the neutrino- 
exchange graph which contributes the dominant part of the cross section. One thus 
finds a much larger sensitivity of almost all angular distributions to the combination 
f L  than to fR.  This effect is clearly demonstrated in fig. 17 for ~ = 0.3 and Xz 
adjusted such that either hR or ~L vanishes. As a result it will be rather difficult to 
distinguish anomalous WW3, from WWZ couplings. 

In principle, experiments with longitudinally polarized beams can measure f R  
and f L separately. However, since I..¢¢+ 12 is much smaller than I..¢t'_ [2 (the former 
is typically 10 -2 of the latter at ¢~ = 190 GeV after integration), the accuracy of the 
f R  measurements will be severely limited by statistics. 

The best way out is provided by transverse beam polarization. When the e ~ 
beams have natural transverse polarizations P ~ ,  the differential distribution 
eq. (5.4) changes to 

do ~ I~t'+ 12 + l J r  12 + e~-e v (2 Re(_Ct'*Jt' ) cos2~  + 2 Im(Jt*..Cc'_)sin 2 ~  ) ,  

(5.6) 

where • denotes the azimuthal angle of the W -  momentum about the e -  beam axis, 
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Fig. 17. Deviation of da/dcosO from the standard model value at ~/s = 190 GeV. For ~., =0.3, k z is 
chosen such that either ~'R (the combination of Xy and hz entering the amplitude for right-handed 
electrons, solid line) or hE (dashed line) vanishes. The error bars show statistical errors expected for 4000 

W-pair events with either W- or W" decaying leptonically. 

measured  f rom the e -  polarization direction in the e+e - c.m. frame*. The (I)-depen- 
dent  terms contain  the interference of the large neutrino-exchange ampli tude with 

the f ight -handed ampli tude (5.5a). One will thus obtain a much better measurement  

of  f R ,  which allows separation of  fY from f z .  

5.5. ENERGY DEPENDENCE 

So far we have discussed various angular distributions only at a fixed beam 

energy 2 E b =  V/s = 190 GeV. Actually their sensitivity to anomalous  couplings 

s trongly depends  on v C ~ / m w ,  i n  particular near threshold. At low beam energies the 

p h o t o n  and Z amplitudes are down by an extra factor of /3 compared  to the 

neutr ino exchange graph (see eq. (3.4)). Thus a small deviation of these amplitudes 

f rom their s tandard  model values will be difficult to detect, with a notable exception 

o f  the CP-violat ing couplings f v  as mentioned earlier. When the beam energy and 

therefore ~/= E b / m  w becomes large, the anomalous  couplings will enhance the W 
pair  ampl i tude  because the subtle gauge-theory cancellation is switched off. How- 
ever, 7 2 is only  = 1.5 even at vfs " = 200 GeV, the highest energy that LEP-II  will be 

able to reach. Hence this enhancement  effect will not  be observable at LEP-II  for 
the small ( O ( ~ ) )  deviations from the standard model couplings that we are 
interested in. 

* The distribution (5.6) can easily be obtained from the general expression in ref. [42] (see eq. (7.15) 
therein) by choosing the x-z  plane to be the W pair production plane, as was done in sect. 3 to 
present explicit forms of the helicity amplitudes. It also can be directly read off from eq. (3.8) in ref. 
[53] with the replacement p2 ~ p.~ p~. The difference in the sign comes from the different phase 
convention used. 
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p b - l  and  assuming  that  40% of  all the W pairs  can be used to de te rmine  angular  

d i s t r ibu t ions ,  we have plot ted  the devia t ions  A~ z (fig. 18) and  A~ z (fig. 19) needed 

to p r o d u c e  a l o  effect in the most  sensitive angular  dis t r ibut ions .  As is clearly seen 

f rom these figures, going beyond  200 GeV with ¢~ does not  lead to a large increase 

o f  sensi t ivi ty.  In  the case of  CP-conserving real anomalous  coupl ings  such as x z and  
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Fig. 19. Same as fig. 18 but for h z. The curves give the sensitivities of do/dcos19 (solid line), 
(F  4 -ff4)/Fl  (dashed line), the coefficient of cos(q~- ,#) (dash-dotted line), and the forward-backward 

charge asymmetry of W decay products ( F 3 - if3 )/1:1 (short-dashed line). 
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h z, the total angular distribution d o / d  cos ~9 (solid lines) is found to give the most 
sensitive measure. Other distributions are still useful to distinguish among effects 
from different anomalous couplings as discussed earlier in this section. If one uses 
only d o / d c o s O ,  we find almost no improvement beyond v~ -=  190 GeV. More 
generally, we find that a factor of 4 increase of luminosity at ~ = 190 GeV is more 
valuable for measuring anomalous couplings than an increase of yeS - to 200 GeV. 

Figs. 18 and 19 show that X or x can be determined with an accuracy of +0.1 
within one year of running at v~ = 190 GeV. Thus a measurement of the "magnetic" 
moment of the W at the 5% level seems to be possible up to the yZ  ambiguity 
addressed in subsect. 5.4. Similar results hold for the other couplings fi (i = 4 . . . . .  7). 
After one year of running one is sensitive to variations A f, of roughly + 0.1 except 

for f5 which can be determined with an error of + 0.2. 

6. Conclusion 

In this paper we have made a systematic study of observable experimental 
distributions connected with the process e'~e - ---, W - W - ,  which could serve as tests 
of possible anomalous three-vector-boson couplings. Since the W's decay into 
fermion-antifermion pairs, one may make use of the decay distributions as polari- 
meters to efficiently analyze the produced W helicities. Because the W decay 
properties are well known, a careful study of the reaction e - e -  ~ W +W- ~ fl (2f3 f4 
therefore reveals information on the W-pair production process and the associated 
three-vector-boson couplings, through the particular correlations produced for the 
final fermions. 

More specifically, we have shown that at LEP-II it is feasible to search for 
anomalous moments ~ -  1 or h connected with the WWZ (or WWy) vertex. For 
these couplings, whose presence does not violate any conservation laws, the most 
sensitive experimental measure turns out to be the differential angular distribution 
of the produced W's. For a sample of 104 W pairs at ¢~ = 190 GeV at LEP-II one 
should be able to measure deviations in x - 1 and X at the 10% level. More specific 
angular correlations involving the final fermions are not as sensitive to those 
deviations. However, these distributions get affected differently by ~ - 1 and X (see, 
e.g., fig. 9) and supply information complementary to that provided by the W 

differential cross section. 
The situation is radically different when one considers the effect of CP-violating 

anomalous three-boson couplings or imaginary parts of the form factors indicating 
strong WW rescattering effects. In these circumstances, even for sizable couplings, 
these effects are not particularly visible in the W angular distributions. However a 
careful study of the polar and azimuthal distributions of leptons and antileptons 
produced in W decays can be used to isolate these phenomena. If 0, ~ and 0, q, are 
the polar and azimuthal angles of the produced leptons and antileptons in W -  or 
W + decay, respectively, we have found that the terms proportional to sin 0 sin q~ + 
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sin/Tsin ~ (lepton asymmetry with respect to the scattering plane) provide the most 
sensitive distributions for C P  violation (+  sign) or rescattering effects ( -  sign). 

Our detailed calculations considered the relevant processes e + e - ~  W +W - ,  
W ~ ff  only in the lowest order in the electroweak interactions. Obviously, a 
detailed study of possible anomalous contributions must include electroweak radia- 
tive corrections to be really significant. Because in our considerations we have 
treated the production process separate from the decay and mostly studied kine- 
matical effects, it should be relatively straightforward to perform radiative correc- 
tions separately for the W +W- production and the decay. These corrections should 
modify our amplitudes in detail but not in overall structure. As an example, in 
appendix C, we have already indicated what modification arises if the hadronic W 
decay is not into qcl but qclg. At any rate, we believe that our calculations do 
indicate the approximate size of measurable effects at LEP-II. 

We are grateful for many useful suggestions on these matters by the members of 
the LEP study group on high energies: G. Barbiellini, M. Davier, H.U. Martyn, B. 
Schrempp, F. Schrempp, and S. Yamada. K. Hagiwara wishes to thank J. Cortrs for 
collaboration in the early stage of this work. K. Hikasa would like to thank 
Hidenaga Yamagishi for a stimulating collaboration carried out at the University of 
Tokyo, from which some of the results in this paper were obtained. He is also 
grateful to members of the DESY Theory Group for their hospitality. His work was 
supported in part by the University of Wisconsin Research Committee with funds 
granted by the Wisconsin Alumni Research Foundation, and in part by the US 
Department of Energy under contract DE-AC02-76ER00881. 

Appendix A 

CONSTRAINTS ON THE FORM FACTORS PARAMETRIZED BY GAEMERS AND GOUNARIS 

The most general WWZ coupling for on-shell W's parametrized by Gaemers and 
Gounaris [12] (GG) contains nine form factors whereas we keep only seven in 
eq. (2.4). Explicitly, we find 

F~P~'I(m = F~fl~'l(2.4) + f v - i f V p ' ~ [ P O ] ~ ' / ~ +  f v + i f V p a [ P O ]  ~" (A.1) 
m2w m~v ' 

where Q~ = (q - ~)~, and [pQ]~,a is a shorthand notation for e""o°PoQo. 

Spin counting and rotational invariance tell us that there are only seven indepen- 
dent helicity combinations, which are given explicitly in table 4. It is then clear that 
our seven form factors are enough to make all the helicity amplitudes arbitrary*. 
The nine form factors in eq. (A.1) should therefore be redundant. 

* Note added in proof. The same observation was made by M. Gourdin, as communicated to us by 
K.J.F. Gaemers. 
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This can easily be seen as follows. Since no rank-5 completely antisymmetric 
tensor exists in four dimensions, 

g h l ~ e a ~ p o  - -  g k a e ~ g p o  + g h g e ~ a o o  - -  gxoe~apo + gxoe~aao = 0. (A.2) 

By multiplying the above equation by pXpoQo and QXppQo, we find 

- P~[ PQ ]~o + Pt~[PQ]~. = se..¢oQ°, (A.3) 

P,[PQ]~#+ Po[PQ]~,=sfl2e,aooP p - Q~[PQ]~o. (A.4) 

Here we used p 2 =  s, P .  Q = 0, and Q2= _sfl2. Terms proportional to P~, q~, or 
~# have been set to zero, because they correspond to the scalar component of the 
vector bosons and do not contribute to the process e~e---~W+W -. Using the 
above equations in eq. (A.1) and recalling that 

f¢ 
F~'0~'1~24) . . . .  +ifve~'"/~°Qo-fve~'"/~°P'- wm--T-Q~'[PQ]"/~' (A.5) 

we immediately find 

fsv= ( f v  + 47zfsv)lc;(i, (A.6a) 

f v  = ( f v  -- 4y2fl2fv)lGG, (A.6b) 

f v  = ( f v  + fv ) [c~"  (A.6c) 

With the above replacements, all the amplitudes presented in ref. [12] agree with 
O u r s .  

Appendix B 

K I N E M A T I C S  O F  e ' e -  ---, W + W  -- ---, ( ~ v ) ( ? ~ )  

Purely leptonic decay modes of a W pair, although small in rate, give the cleanest 
signal of the W-pair production process in e+e - collisions: 

e - ( / , )  + e ÷ ( T , )  - o  w - + w + 

L ~ l ( I ) + ~ ( p ~ ) L i ( f ) + v ( p ~ ) .  (B.1) 

This is observed experimentally as 

e-  + e ÷ ~ g+ f +  missing energy-momentum, (B.2) 
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where the final lepton pair can be either one of ee, e#, #e, or gg. The four-momenta 
of the particles are given in parentheses. The observable dilepton distributions were 
studied rather extensively by Dicus and Kallianpur [28]. 

Because of the cleanliness of the signal, this process deserves close attention. A 
simple kinematical analysis, presented below, shows that the two unobserved 
neutrino momenta can be determined from the observed lepton momenta up to a 
twofold discrete ambiguity, in the limit where the W width and photon radiation are 
neglected. Under certain circumstances, e.g., when the contribution from one of the 
two kinematically possible configurations is negligible compared to the other, this 
makes it possible to perform the full angular correlation studies, as presented in 
sect. 5, even with this purely leptonic signal. Such an approach has been shown to 
be useful [39] in the W~, production studies at hadron colliders, where the use of the 
W leptonic decay signal is inevitable to avoid large backgrounds and the neutrino 
longitudinal momentum can be determined up to a twofold discrete ambiguity. 

The kinematics of the process (B.1) is determined by six angles, two for the 
scattering, and two each for the W decays. Since we observe the two three-momenta 
of the leptons, generically we have sufficient observables to fix the whole configura- 
tion. A twofold ambiguity occurs, however, because the solution involves a quadratic 
equation. Here we present an explicit solution for the two unobserved neutrino 
momenta pr and p~ in terms of the observed lepton momenta l and /~ We work in 
the e+e - c.m. frame and assume massless neutrinos. 

It suffices to solve for the three-momentum p; because p~= IPrI and p~ is given 
by momentum conservation. As the W-  energy is equal to the beam energy E b, we 
have 

pO = Eb _ lo ' (B.3) 

o r  

= - 1o) ( s . 4 )  

A similar equation holds for the W + --* iv  decay: 

= ( E .  - / o )  =. ( s . 5 )  

Using momentum conservation p,  = - ( p ~  + I + 1) and eq. (B.4), this last equation 
can be rewritten in terms of p~: 

(1 + i ) " P r  = Eb(lo-- ]o) -- lo 2 -  l - i  + ½(m~+ m2). (B.6) 

The third constraint comes from the condition that the lepton-antineutrino system 
should have the mass of the W: 

(I +p~)2 = m2w, (B.7) 
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which gives 

1.p~=Eblo-I~-~mwl 2 +~mtl 2. (B.8) 

Eqs. (B.6) and (B.8) lead to 

i . p ~ = - - E b / -  0 - 1 . ] + l  2 + 1  2 (B.9) 2row 2me; . 

The three conditions (B.4), (B.8), and (B.9) provide the solution for p~. We rewrite 
the right-hand sides of these equations for the sake of clarity: 

p2 = L ,  (B.4') 

l-v  = M, (B.8') 

i .p~ = U. (B.9') 

Let us assume, for the moment, that the two three-momenta 1 and ] are not 
parallel. Then we can expand p~ in terms of the lepton momenta 

p~= a l  + b] + el × ] .  (B.10) 

The two linear equations (B.8') and (B.9') constrain p~ to lie on a line in 
three-dimensional space. They give 

a l  E + bl .1 = M, 

a l . i  + b ]  z =  N ,  (B.11) 

which can be explicitly solved: 

1 ( ~ 2 - I - I ) ( M )  (B.12) 

The remaining variable c is determined using (B.4'): 

1 
c 2= - - [ L -  a212-  b2i 2 -  2 a b l . i  I. (B.13) 

I l X ] l  2 

The sign of c cannot be determined. This explicitly exhibits the twofold discrete 
ambiguity we mentioned earlier. The inequality c2> 0 is expected to be violated 
only by finite W-width effects and by radiative corrections, and hence may serve as 
a test of the W-pair signal. 

In the exceptional case where the two lepton momenta are parallel, one obtains a 
one-parameter family of solution for which the azimuthal angle of p~ with respect to 
the lepton momentum is left undetermined. 
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Appendix C 

HELICITY AMPLITUDES FOR EVENT SIMULATION 

The angular correlation formulas presented in sect. 4 are quite useful for obtain- 
ing theoretical insight into the problem, and correctly take into account the 
correlations caused by W boson spins. However, they are still far from satisfactory 
if they are to be used as a basis for a realistic event generator*. In order to achieve 
the goal of precision tests of the standard model at LEP-II such as an accurate 
measurement of mw, a test of electroweak radiative corrections in W pair produc- 
tion, and a direct measurement of the Cabibbo-Kobayashi-Maskawa matrix ele- 
ments, it is essential to understand the event topology of each W decay mode as 
much as possible. 

First of all, it is important to include final quark mass effects for the W--- ,  bt 
mode. At least one hard gluon emission should also be incorporated exactly in 
addition to the leading logarithmic multigluon emission which can easily be simu- 
lated at the classical level by using a QCD shower Monte Carlo program [54]. 
Although it is possible to present a complete polarization-summed cross section 
with the above effects included in the usual density matrix technique, the results 
turn out to be quite cumbersome since we need the double density matrix for W- 
and W + decays. We find it most convenient to present our results for helicity 
amplitudes in the formalism [42] recently developed by two of us, where the final 
expression allows efficient and straightforward numerical evaluation in an arbitrary 
Lorentz frame. In this approach, it becomes trivial to incorporate an arbitrary 
polarization of the colliding beams (in particular the natural transverse polarization 
in storage rings), and it is easy to add new contributions such as a t-channel 
exchange of an excited neutrino [55] or a contact eeWW interaction. It is also 
straightforward to include final state polarization effects, e.g. of top quarks [56]. 

In order to render this paper self-contained we first briefly review the basic 
ingredients of the helicity basis calculus. Further details can be found in ref. [42]. 

For fermions we use the chiral representation of Dirac matrices and go to 
two-component notation. Spinors ~k (-- u( p, h) or v( p, ~,)) are given by 

with 

u(p, x)±= 

v(p, X)±= +Mo:~x(p)X_x(p ) . (C.2) 

Here X denotes the helicity of the on-shell fermion with four-momentum p~=  

* An event generator based on the formulas of this appendix is available from one of the authors 
(D.Z.). 
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(E,  p~, py, p~), Xx(P) is a normalized helicity eigenspinor, explicitly given by 

X+(P)  = [21PI(IPl +P~) ] -  1/2(Iplp~ ++PZ]ipyj, (C.3a) 

x - ( p )  = [21pl (Ipl + p~)]-x/2( -PXlpl +p~ + ipy ]'] (C.3b) 

and 

~ ± ( p )  = [ E +  IPl] a/2. (C.4) 

Given the explicit form of y-matrices 

0 ' 
(c.5) 

with 

( a ° y r a 3 T ( a l - i a 2 ) )  (C.6) 
~± =  -T-(a l + i a  2) a °-ka 3 ' 

an arbitrary product of v-matrices with spinors at both ends can be expressed by 
the basic quantity 

S(p~, al . . . . .  an, Pj)x, xj =X~,(Pi)(~l)a(~2)-a(~3)a' ' ' (~n)~aX~j(P. t)  (C.7) 

for a = + [here e = ( -1 ) " -x ] .  Arbitrary polarization amplitudes are then expressed 
in terms of the basic quantity S, which is easily evaluated by 2 × 2 matrix 
multiplication*. 

Analogous to eq. (C.2) for spin- ½ fermions, polarization vectors for vector bosons 
are defined such that they depend only on the vector boson four-momentum 
q = (qo, qx, qy, q,). We define the rectangular polarization basis by 

1 
e ~ ( q , X = l )  = (O, qxq~,qyq~,-q2) ,  (C.8a) 

Iqlqx 

1 
e~'(q, X = 2) = - - ( 0 ,  -qy ,  qx,O), (C.8b) 

q'r 

= - - ,  qx, qv, q~ , (C.8c) 
q~-Iq[ q0 " 

1 
e~(q, X = 4) = ~ ( q o , q x , q y ,  q~), (C.8d) 

*A simple FORTRAN program to evaluate the complex number S as a function of an arbitrary 
number of four momenta and three indices (a, h i, hi) is available from the authors of ref. [42]. 
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with qT (q2 2 1/2 = + qy ) . In the usual helicity basis, the polarization vector (C.8c) 
describes longitudinally polarized vector bosons with helicity X = 0, and helicity 
eigenvectors for )` = + are given by 

# ( q , A =  +)=f~2 [ T # ( q , A = l ) - i e ~ ' ( q , A = 2 ) ] .  (C.9) 

The ), = 4 component, which is proportional to qa, corresponds to the scalar part of 
a virtual vector boson. Its coupling to fermions is proportional to fermion masses 
and hence will be important only in the bi decay of virtual W's. We find no 
advantage of using the helicity basis for intermediate W's in numerical simulation 
and will choose the cartesian basis (C.8). One can, of course, obtain identical final 
cross sections using the helicity basis ()` = + ,0,4) in summations. 

In terms of the fermion strings S and the polarization vectors (C.8) or (C.9), we 
can now give the polarization amplitudes for the production process 

e - ( k ,  ° )  + e+ (~:, 8) --+ W - ( q ,  )') + W+(C/, •), (C.10) 

which in contrast to eqs. (3.2)-(3.6) are Lorentz covariant. For the neutrino 
exchange graph depicted in fig. lc we obtain 

e2(g_We') 2 

(k._- 7 8o, _Ss, + 2 ~  S(~:, e*(X),  k - q, e*()`),  k)_-_. 

(C.11) 

The analogous expression for s-channel vector exchange is 

V ~  

eg° gwwvso._~2 kv/~--rS(k, r v ( X ,  X). k) o. (C.12) ,.It' v(o,  t~; )`, X) s - m2v 

for V = ' / and  Z. The four-vector FO is obtained from the tensor F~fl ~ of eq. (2.4) by 
contraction with the W polarization vectors 

ro()', X) = F(,a~(q, gt, P)e*(q, ) ')e~(~, X). (c13) 

The WW'/ and WWZ couplings gwwv are given in eq. (2.6). The left- and 
right-handed fermion couplings to vector bosons are defined by the interaction 
lagrangian 

-vflf27 . p .L V ~ (C.14) "~Vld2 = - e  ~ $x ~tlflrl~ x~f'f2 , 
h - + _  

where e denotes the positron charge and Px = 21(1 + )''/5) is the chiral projection. 
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Fig. 20. F e y n m a n  diagrams for the decay processes (a) W -  - .  fl {2 and (b), (c) W -  ---, fl f2 g at tree level. 

The couplings we need are 
gvee__ __ 1, + - -  

1 
g Z ~ _  + tan Ow, 

2 sin OwCOS Ow 

g ~ =  tan Ow, 
I 

gW,~= gW~, = W-sin Ow' 

g ~ . , ~ , =  (gw~:,). = qJ  
~/~-sin 0 w , (C.15) 

where (u 1, u2, %) = (u, c, t), ( d ,  d 2, d 3) = (d, s, b), and U,: denotes the Cabibbo- 
Kobayashi-Maskawa matrix elements for three generations. 

Using the same notation as before, the decay matrix elements for W ± ~ f1{2 or 
flf2g depicted in fig. 20 can easily be written down. Denoting the fermion momenta 
and helicities by (Pt ,  ol) and (P2, o2) one finds for the W -  decays 

.~¢(w-~ ffl~)(X; o 1, 02) = egWhhCw_o~( pt)Wo~(pz)ozS(Pl, e(q, X), P2)~.-o~, 

and 

(C.16) 

,Arc, v--" f, f2~)()~; ol , o2 , ~) 

= egWhf2g,C,w _o,(Pl) loo2( P2)O2 

× {  e*(Ps'~)'PtPs "P~ e*(Pg'~c)'P2] "P2 

1 
+ - - S (  px, : (  p,, ,,), pg, e(q, X ), p~)~, 2pg.pl -°~ 

2 p . p2 S (  P~ , e( q, X ), P v  : (  P v  ~ ), P2 ) ~. -o~ • (c.a7) 
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Here we employ the gluon polarization vector e~(pg, x) with x = 1, 2 or + for 
massless gluons, gs = ~ is the QCD coupling constant, and the effective color 
factors are 

C = { 1¢N- = v~- for quarks, (C.18a) 
for leptons, 

C '  = ~ v N  = 2 for quarks. (C.18b) 

These factors automatically take care of color summations in the final states. For 
W ÷ decay one merely needs to substitute e(q, ~)-o e(~, X) in both eqs. (C.16) and 
(C.17). Formulas (C.16) and (C.17) are valid for arbitrary masses of the fermions ft 
and f2. When fermion masses can be neglected, the w-factors simplify to 

(C.19) 

We should note that the simple formulas (C.11) and (C.12) contain all the 
information regarding the process e + e - ~  W+W - in lowest order, and that the 
formulas (C.16) and (C.17) alone include the complete description of polarized W 
decay into a quark pair of arbitrary masses and an additional hard gluon. In sect. 3, 
we have shown explicit analytic expressions of the production amplitudes in the 
e÷e - c.m. frame, whereas in sect. 4 we evaluated (C.16) in the W rest frame for 
massless fermions. The implicit expressions given in this appendix allow, however, a 
direct numerical evaluation of all the amplitudes in an arbitrary Lorentz frame. 
Since the individual amplitudes transform nontrivially under boosts, the Lorentz 
invariance of the polarization-summed squared amplitudes gives an excellent test of 
a numerical program [42]. 

The procedure to evaluate cross sections from these amplitudes is essentially the 
same as that explained in sect. 4...¢t 1 is just the sum of ~t'" (C.11), J¢v and .A ' z  
(C.12), -'¢¢2 and -'¢¢3 are either (C.16) or (C.17) depending on whether one wants to 
include the possibility of hard gluon emission. Only one further complexity appears 
when one deals with the decay mode W ~ bi. In this case the scalar (~ = 4) 
component of the W polarization cannot be neglected for off-mass-shell W's and the 
W polarization sum should be extended to 

q2 _ m2w u 
E -' E + E - - - E ,  (c.2o) 

~ 1 , 2 , 3  ~=1,2,3 h - 4  m 2  X 

which arises from the Proca (or unitary gauge) spin projector -g~, + q~qJm:w. 
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As an example, we give the exclusive cross section for the case 

e - ( k , o )  + e + ( k , a )  + W - ( q ,  •) + W+(•, X), 

W - ( q ,  X) --* b( Pl, °1) + t (P2,02)  + g( P3, %) ,  

w+(q,  Y,) o,) + o,). (C.21) 

The full amplitude can be written 

¢¢t'= J¢(o, & oz, 02, 03; 04, as) 

= Dw(q2)Dw(~12) E u E  
x X 

x Jr', (o,  if; X, X) ¢¢[2(X; 01, o 2, %)..¢t'3 (X; o 4, %) ,  (C.22) 

where we show only particle polarization indices to denote each amplitude. For a 
given set of four-momenta of particles and their polarizations, all Jr '  i and hence the 
total amplitude ./¢ is just a complex number. 

The polarization-averaged cross section for the process (C.21) is then obtained 
simply by the following formula: 

1 
do = 2-7" ¼ EI'Aq2 dq~5' (C.23a) 

with d ~  5 being the invariant five-body phase space 

( ,)h d pi d ~  5 = (2~')43' k + k -  E P/ , (C.23b) 
i-1 i=1 (2~r)32Ei 

and 

2 

EI-/¢I 2= E E E E [Jll 2- (C.23c) 
o-+ %=+ ~ = +  %-1 

Here we used the fact that ./¢'~ is proportional to 3o. _~ (see (C.11) and (C.12)), and 
that J¢'3 is proportional to 3°,, _8o,, ~ ((C.16) and (C.19)). If we can neglect the b 
quark mass, summation on the b spin is reduced to a single value o~ = - for the 
standard V - A interactions. In the Monte Carlo event generation, one can perform 
not only the phase space integration but also the polarization sum on a statistical 
basis. 
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Fig. 21. Feymnan diagrams for the processes e+e - ~ ZZ and e+e - --, Z3, in the standard model. 

Appendix D 

HELICITY AMPLITUDES FOR c ' e -  --* ZZ AND c ~e- ---, Zy 

Unlike W + W  - production, ZZ and Z3, production proceed only by well known 
fermion-vector-boson couplings in the leading order of the standard model (see fig. 
21). Effects of the WWV coupling (2.1) appear only at the O(a)  level [57,58]. 
Anomalous interactions of three neutral bosons [59], however, may contribute to the 
reactions. Z3' production can be studied already at LEP-I /SLC at energies above 
the Z resonance, and ZZ production is within the reach of LEP-II. The latter 
reaction contributes [1] as a background to the Higgs boson search using the ZH 
final state when m H - m z. 

In this appendix we present helicity amplitudes for these processes 

e - ( k ,  o)  + e+(/¢, ~) ---, Vl(q,, ~,1) + V2(q2, ~.2), (D.1) 

where V~V 2 denote ZZ or Zy. We include the most general ZZZ, ZZy, and Z yy  
couplings in the same spirit as that of our WWV coupling studies. We also give the 
Z -o ff  and Z --* ffg decay amplitudes with arbitrary fermion masses. By combining 
these amplitudes, it is straightforward to make numerical simulations for processes 
such as e+e - --* (Z ~ gL) + (Z --* tig), with full polarization correlations included. 

In the standard model, only t- and u-channel electron exchange contribute to the 
processes. The corresponding production matrix element is 

..¢¢(o, ~; Xl, M )  - 2 v,¢~ V2eeo _o2vC~6~o - -  e g o  g o  °o ,  

- , x , ) ,  k ) L  x S(k'e*(q2'X2)'k(k - qlql)f*(q" 

S(k', E*(q 1, •1), k - q2, e*(q2, X2), k)~o 
( k -  q 2 )  2 

(D.2) 

As before (see eqs. (C.14) and (C.15)) g~ee denote the left- and right-handed 
couplings of electrons to the vector boson V,. 
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The explicit form of the helicity amplitudes for e+e ----, ZZ in the e÷e - c.m. 

f rame reads 

j t , (e+¢-_zz) 4 v t ~ e 2 ( g ~  2 ~x'x~(@) Jo 
----- ) •laol, +1 4fl2sin2 O + y-aed~o.ax(O), (D.3) 

where ~, = v ~ / 2 m  z, fl = (1 - 4m2z/S) 1/2, AX = h 1 - ~2, and e = Ao( - 1) x2. Other- 
wise the notation is the same as that for e + e - - o  W+W - (see subsect. 3.1). The 
coefficients ~¢ are listed in table 8. Note that the divergent B terms which exist in 

W + W -  production (see eq. (3.7c)) are absent here because of cancellations between 

the two diagrams. 
Similarly for the amplitudes for e+e - ~ Zy  we find 

= ~" 2 ~da:g a x ( O ) ,  "AC(~+~--'zv) 2vf2e2g~eSla°l'+' ( 1 - r  )sin O ' (D.4) 

where r = m z/~/s-  The coefficients .~ are shown in table 8. The apparent singular- 

ity at cos O = + 1 in (D.4) is cut off by the electron mass, which leads to a finite 
total cross section. 

In general, one may expect nonvanishing interaction of three neutral vector 
bosons,  which contribute to V1V 2 production via a photon or Z in the s channel. 
However,  due to Bose symmetry and electromagnetic gauge invariance, the form of 
such interactions is restricted to a smaller number of couplings than in the WWV 

c a s e .  

For  ZZ production, i.e. for two Z's on-mass-shell, Bose symmetry allows only two 
couplings. The most general ZZV vertex (V = Z or ~,) for on-shell Z's is given by 
(see fig. 22) 

F"a" ( q,, q2, P ) =  s - m2v Pag"" • zzv -rot z [if4zzv(p"g~'a+ )+i fszzve~'" 'P(q,-q2)p]  (D.5) 

TABLE 8 
Coefficients for the helicity amplitudes for the processes 

e ' e  --, ZZ and e + e -  --, Z3' 

,ah (hlh2) da,x~ ~x,x2 

_+2 (+_ ~) - ~ ( I  +f12) ¢~ 
+1 ( + 0 )  3' I [ A o . A ~ ( I + B  2 ) - 2 c o s 8 ]  
_+1 (0 ~ ) 3'-I[Z~o'AX(1 + f12)_ 2 c o s 8 ]  2 r (cosO + 3 o - X  2) 

0 ( 4- 4- ) - y " 2COS 8 r 2 (COS 19 + ~ o -  ~k 2 ) 

0 (00) - 2 3' 2COS O 
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. V l  (x 

V~ ~ q l  P ~ 2  
~ ' V 2 1 3  

Fig. 22. Feynman rule for anomalous VIV2V vertices. 

ctl3~ 
= i gvlv2 v I-vlv2 v (ql,q2,P) 

As in sect. 2 any terms proportional to P~ have been neglected, since they do not 
contribute in e+e - annihilation (for m e - * 0  ). For V = y  such terms can restore 
gauge invariance, however (cf. eq. (2.10)). The vertex functions vanish at s = mE 
because of gauge invariance for V -- y, and Bose symmetry for V = Z. The interac- 
tions thus should come from dimension-six operators. CP invariance forbids f z z v  
and parity conservation requires f5 z z v =  0. If at least one of the final Z's are 
off-shell, five other couplings are possible, as in the WWV vertex. They are, 
however, proportional to q ~ -  m~. 

Z7 production may have a contribution from anomalous ZTV couplings, where 
V = ~, or Z is the virtual boson in the s channel. The most general anomalous Z'yV 
coupling (for on-sheU Z and ,/) is given by 

hV 
~ p ) =  s-rn2v hV(q~g~a_q~g~a)+ "~22P~(P.q2g~a-q~P~ ) 

F~r~(q~'q2' mTz m z 

h V 
+ hVeu~a°q2o + ~P~e~B°°Poq2o I, (D.6) 

mz ] 

where terms proportional to P~' or q~ are omitted because they do not contribute to 
the reaction. The above expression is manifestly gauge invariant for the final 
on-shell photon. The couplings h v and h v are P-even, h v and h v are CP-even; all 
couplings are C-odd. 

The overall factor s - rn~, in (D.6) comes from gauge invariance for V = ,/, Bose 
symmetry for V = Z. Because of this factor, there are no corresponding operators of 
dimension four. If we restrict ourselves to dimension ~< 6 operators, only h v and h v 
remain; the other two receive a contribution from operators with dimension 8 and 
higher. 

The consequences of the two dimension-six interactions in the radiative decay 
Z--* di-/ have been studied by several authors [60]. LEP-I /SLC is actually best 
suited to limit these couplings using radiative Z decay events. The reaction e ' e -  ---, 
Z3, in the presence of these couplings was discussed by Renard [59]. 



K. Hagiwara et al. / e * e - --. W ÷ W - 305 

It is interesting to note that the four Z ' /Z* interactions in (D.6) and the two 
ZZ-/* interactions in (D.5) are completely independent. If we keep all the three 
bosons off-mass-shell, there are seven couplings altogether. Four of them survive for 
e÷e  - ~ Z-/, while two different ones contribute to e+e - ---, ZZ. 

The contribution of the anomalous ZZV vertex (D.5) to ZZ production can be 
read off from eq. (C.12) by an appropriate change of the couplings: 

with 

Vee 

.,¢t'zzv(o, 6; hi, X2) = ego gzzv o 
s~m'-~v 3o._s2 k~ff6S(~c, Fv(Xl ,  X2) ,k  )oo, (D.7) 

r~,(Xl, X 2 ) = F ~ ( q l , q 2 ,  P)e*~(ql,hx)t~(q2, X2). (0 .8)  

Similar results with an obvious change of Z to -/ apply for the process e+e ~ Zy. 
Without loss of generality, we may choose 

gzzz = gzzv = gzyz = gzyy = e. (D.9) 

Note  that the s-channel pole in (D.7) is cancelled by the zero in the couplings (D.5) 
and (D.6). 

With all the contributing amplitudes given in eqs. (D.2) and (D.7), it is straight- 
forward to calculate arbitrary polarized cross sections for the processes e ÷e-  ~ ZZ 
and Z-/. In order to study the angular distributions and correlations of the Z decay 
products, one further needs the Z decay amplitudes for 

Z( q, h ) ~ f( p,  o ) + f( ~, 5 ) ,  (D.10) 

Z(q,  h) ~ f( p,  o)  + f(/5, t~) + g( pg, x).  (D.11) 

The Z ~ ff decay amplitude reads (see fig. 20a) 

jC(z--, th(X , o , 6 ) =  e ~ ztf - ~, - g~ CtO, o ( p ) ~ o _ ~ s ( ~ ) a 6 S ( p , e ( q , X ) , p ) o _  ~ (D.12) 
a ~ - t -  

and the amplitude with gluon radiation reads (see fig. 20b, c) 

- -  - e  E 

Ps" P -~g~ P 

1 
+ - -  

2pg .p 

1 

S( p ,e*(pg,  X), pg, t ( q , X ) ,  P)~o.-s 

2ps----~S( p'  ~( q' x )' Ps' e*( Ps , K )' /~) 2.-~} " 

(D.13) 
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The color factors C and C' are given by (C.18). The above two formulas are 
applicable to any value of the fermion mass. For massless fermions, the expressions 
simplify significantly by the condition (C.19). The angular distribution of the final 
lepton for the process e+e - ~ Z), in the standard model was calculated by Hayashi 
and Katsuura [61] and by one of us [58]. 
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