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We study several problems associated with the perturbative expansion of the electroweak theory
in the nonlinear gauge. In this gauge a consistent quantization can be obtained if we generalize the
usual Faddeev-Popov method. The new ghost vertices are displayed and we show that a more com-
plicated ghost sector derogates some of the merits attributed to this gauge-fixing term.

I. INTRODUCTION

After the discovery at CERN (Ref. 1) of the W and Z
bosons and with their forthcoming operation of LEP the
Glashow-Weinberg-Salam (GWS) theory is entering an era
of detailed experimental checking. This, in turn, implies
the evaluation of several measurable quantities beyond the
tree level. The amount of work involved in the calcula-
tions is not trivial but it is a worthwhile effort since it
will, hopefully, prove that a non-Abelian gauge principle
is at work in nature.

Following the leading work? of almost 15 years ago it
became normal practice to quantize the GWS theory us-
ing a gauge-fixing term . gf ¥ which cancels the mixing be-
tween the gauge fields (W »Z,) and the scalar fields
(¢*,67). The study of these R§ gauges is by now well
known (e.g., Ref. 3) and for practical calculations the use
of the ’t Hooft—Feynman gauge £=1, has clear advan-
tages. From .7, the Faddeev-Popov* (FP) procedure
gives the ghost Lagrangian and once this is obtained we
have the correct effective Lagrangian to start perturbation
theory. Feynman rules can be simply written down and a
renormalization program can be implemented. It is in-
teresting to point out two important properties of £ ¢
that greatly simplify the renormalization scheme. The
linear gauge-fixing term is not renormalized and it has a
global SU(2) X U(1) invariance.

Recently, several authors5 8 have advocated the use of
a nonlinear R gauge zn gf> first introduced by Fujikawa.’
The reason to recommend this gauge-fixing condition is
essentially the simplification that it introduces in some
calculations, especially those that involve the photon A4*
couplings. Using . "f the Feynman rules are slightly
simpler and in partlcular there is no A“W ¢ vertex.
Furthermore, in this approach the electromagnetlc u(1)
symmetry is preserved and this might be of some advan-
tage since the Ward identities for the electromagnetic ver-
tices are the ones known from quantum electrodynamics.
Finally, let us remark that the study of a gauge-fixing
term of a spontaneously broken theory that preserves the
unbroken gauge symmetry could be of a more general in-
terest. In fact, when (and if) any spontaneously broken
grand unified theory is taken seriously its gauge-fixing
term must preserve the standard SU(3) X< SU(2) X U(1) in-
variance.
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All these favorable attributes of the nonlinear gauge are
well known. However, the study of the GWS theory using
7 gf 18 also full of difficulties. To expose them and to
show how the problems can be overcome is the aim of this
work. The first difficulty, which is not generally appreci-
ated and has to be balanced against the simplification of
having fewer Feynman diagrams, concerns a more com-
plicated structure of the counterterms. In Sec. II we give
an example that illustrates this problem and at the same
time indicate how the full counterterm Lagrangian can be
derived. The remainder of the paper deals with a more
serious difficulty that one has to face if the GWS theory
is quantized with . fg'lf Using an example we show that
the FP method does not give a renormalizable theory. We
then continue to prove that a sensible theory is obtained if
one adopts the point of view that the quantum Lagrang-
ian is a local functional of the classical and ghost fields
invariant under the Becchi-Rouet-Stora (BRS) transforma-
tions.!® This unorthodox way of quantizing perturbative
gauge theories has been summarized in a recent review ar-
ticle.!! Our work here may be regarded as an application
of this method.

II. PROBLEMS WITH THE NONLINEAR GAUGE

In order to do a perturbative expansion of a gauge
theory it is necessary to add a gauge-fixing term .# "4 such
that one can define the gauge-field propagators. For the
GWS theory and working in the ’t Hooft—Feynman
gauge the nonlinear gauge fixing is

Lh=—3F L —3F =T |? (1)
with

F 4 =0,4", (2a)

F7=0,Z*~Mzdz , (2b)

F =" +ieAMW  —iMy¢™ . (2c)

Notice that the same set of equations but without the
term proportional to the photon in Eq. (2c) defines the
usual (e.g., Ref. 3) linear gauge. From Eq. (1) the FP
prescription leads to the following Lagrangian for the
ghosts fields (C4,Cz,C %)
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Lo=—C3F 4—Cz0F;—C 35, —CoF_, ()

where s is the Slavnov operator which is related to the
BRS transformation by

Sgrs(any field)=us(any field)6 ,

where 6 is a space-time-independent anticommuting pa-
rameter. In the Appendix we summarize some of the
properties of s and give the results of operating with s on
each field of the GWS model.

A. Structure of the counterterms: an example

The renormalization of the GWS theory has been stud-
ied by different authors using several alternative schemes
(see Ref. 12 for recent reviews). Here we follow an on-
shell renormalization procedure where the parameters that
characterize the theory are the electric charge e, the
gauge-boson masses My, and Mz, and the Higgs-boson
and fermion masses My and my, respectively. In the
linear gauge the global SU(2) X U(1) symmetry of .# ;¢ and
the fact that .#;; does not need to be renormalized
reduces the number of renormalization constants and sim-
plifies the structure of the ghost counterterms. Even so,
the complete list of counterterms is somewhat lengthy.!3
Hence, it should be clear that, to present this list in the
case of & g} is beyond the scope of the present work.
Nevertheless, let us give an example that will be sufficient
to illustrate one of our conclusions. The simplification of
not having the vertice A“Wﬁq&i is clearly overbalanced
by the complication of the renormalization program.

Let us consider the kinetic terms for 4, and Z, in the
classical Lagrangian for the GWS theory. Introducing
the relation between bare and renormalized fields, i.e.,

ZA 172

0 |+8Zz4

A
z

78Z,2 4,

Zy

m
) (4)

172
n Zz

it is easy to obtain the counterterms
J
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L= —18Z4(3,4,—3,4,)(3*4*—3"4")
—+822(3,Z,—9,Z,)(*Z*—3"ZH)
— 5 (8Z2,4+8Z47)(0,4,—3,4,)(HZ"—d"ZH)
+5(8Zp +8Z2)IMZ?Z, ZF + 8Z 7 ;M Z, A" .
(5)

Notice that the corresponding expression for the linear
gauge is simpler!? since in this second case there are only
two wave-function renormalization constants for the
fields A4 u» Zyu, and Wf. This is an example of the global
SU(2) x U(1) symmetry that we have already referred to.

To proceed we have to evaluate the gauge-boson self-
energies 24" with i,j =4 or Z, and impose the on-shell
conditions. Most of the results are not important for
what follows and will not be given here, except the Z-
boson—photon renormalization constant which is
8Z,,=0. Instead, let us examine the ghost sector corre-
sponding to ¥ 4 and .¥ z: namely,

j:—%yAz-—%yzz—éAéyA—ézéyz. ’ (6)

where s should be understood as the renormalized Slav-
nov operator and the renormalized fields and constants
are

C, Z, 8Z,;|[Cy4

Czlo |6Zy Z ||Cz)’ @
($2)0=Z4' bz, Ho=Zy'"H ,

¢ =Z,+'¢*, C5=Z +C*, ®)

80=2;8, g0=2,8 .

Using these equations and the Slavnov relations given in
the Appendix it is straightforward to obtain the counter-
terms corresponding to the piece of the effective Lagrang-
ian given by Eq. (6).

These are

jc: —(SZA —%SZA )(_:ADCA _(SZAZ_%SZAZ )EADCZ

—ie(—58Z 4+ 5cotOy8Z 47 +8Z,sin’0py +8Z,cos’ Oy + $8Z
—(8Z7—+8Z;)C,0C, —(8Z 44 —+8Z7,4)C,0C,

ot +8Z +)CMC W —CHWw,)

+ig cosOy [ — $8Z7 + (1+5in’0y )8Z, —sin’0y 8Zy + 3tanby8Z 74 + 3824 +8Z . +1C,*(C~WiE—CHW )

—8Z 5, M;*C,C — SoE - Coi ™

M28Z7,C7C H—(58Zy — 58Zy, +8Z7 — 58Z7)M*C7C,

(162, —+8Z4, +8Z;—+8Z; +c05’0y8Z +5in’0y8Z,)C,CoH

T2 cosOy

+182,,CCoMp*+162,,—8 —C,C,H—162,,8C,(C~¢T+C+¢™)
w

2 cosf

2

+ %Mz(szg +8Z 1+ — 5827+ $8Z 2 —78Z4,)C2(C ¢ +C*¢7) . 9)

After such a long equation we believe we have convinced our readers that the nonlinear gauge is not so simple. On the
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other hand, for those that might wonder why the ghost counterterms could be important let us add one last comment.

Consider the ZHy one-particle-irreducible Green’s function T°*. In a previous paper'*

linear gauge, T7* obeys the Ward identity
k,TPt=0,

we have shown that, in the non-

(10)

where k, is the photon momentum. On physical grounds this is to be expected since 7 gf is invariant under the elec-

tromagnetic U(1).
energy 27, we obtain

R (21 2 ,. €g cosOyy 1
24P =(pP =Mz = — [, dxn
Imposing the on-shell conditions
R, 0)=38,(M;»=0 (12)
and recalling the previous result 8Z ;4 =0 we get
~ eg cosf
6Z24=22Y r(es2) . (13)
16

Finally, inserting this equation mto Eq. (9) one obtains the
C,C 4 H counterterm used before.'*

B. Failure of the FP prescription

From Eq. (3) and using the results of the Appendix it is
easy to write the FP Lagrangian corresponding to the
nonlinear gauge-fixing term. Rather than doing this we
show in Fig. 1 the vertices that are different from those in
the linear gauge. For completeness, and having in m1nd
future users, we also list the vertices resulting from f
Notice that the ghost vertices of type (b) do not exist 1n
the linear gauge.

We are now prepared to show the second difficulty as-
sociated with .#4. L Let us consider the Green’s function
T=(0|TC*C~ C+C_ |0). In Fig. 2 we display the
divergent diagrams which contribute to this Green’s func-
tion in lowest order. A straightforward application of the
Feynman rules given previously leads to

29 )T (e/2)+finite terms ,  (14)

i.e., T is divergent. Hence one needs a quartic ghost in-
teraction which is not present in the original Lagrangian.
It is interesting to see why a similar problem does not
arise in the linear gauge. From a technical point of view
the reason can be traced back to the fact that in the linear
gauge the vertices of type (a) are independent of the in-
coming momentum. A simple calculation will show that
this is sufficient to make T finite. On more general
grounds our example illustrates the failure of the FP
prescription. In fact, one can prove!! that the FP method
is stable under renormalization if and only if the gauge-
fixing condition is linear. So, the study of the GWS
theory using 7 gf immediately implies an alternative way
to deal with perturbatlve gauge theories.

III. EFFECTIVE LAGRANGIAN
WITH A NONLINEAR GAUGE

After pointing out the inconsistency of the FP method
we address ourselves to the problem of finding an alterna-

However, to prove Eq. (10) we need to know the C;C,H counterterm. Evaluating the C;C, self-

2
5 1
—A;sz(l—x) —8Z,4(p =MV +16Z,,p7 . (11)
w
& Ct
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FIG. 1. Feynman rules for the vertices contained in A.¥"q [cf.
Egs. (1), (3), and (35)].
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tive one. For this we follow the work of Baulieu'' and
since the full complexity of the GWS model is not crucial
for the argument we consider a non-Abelian gauge theory
based on a simple group G. The effective quantum action
is

Seff:Scl+AS’ (15)

where S is the classical action and AS the extra terms
needed to have a well-defined perturbative expansion.
The usual path to obtain AS is widely known and, as we
have seen, does not work in our case. Instead, we assume
that the BRS invariance is the quantum version of the
classical gauge symmetry. So, we find AS by imposing
the condition

&Seff-':O . (16)

In terms of the gauge fields AZ, with @ =1, ...,n where
n is the number of generators of G, ghost C® and C*° and
auxiliary fields b¢ the Slavnov operation is

A5 =03,C—gf*C’45, ,
JC“:%gf‘abcchC , (17)
3C%=b° 4b°=0,

where f°* are the structure constants of G and g is the
coupling constant. Recalling that s is nilpotent we write

AS= [d*x sK;(x), (18)

where K is the sum of all monomials invariant under G
with mass dimension 3 and ghost number N, = —1. For
the case of a pure gauge theory one can easily see that the
most general form of K is

1?32_Ea(_%ba+ayAz+afabchch
+BdA,A) (19)

where d% is the group symmetric tensor and « and 3 are
arbitrary constants.
For simplicity let us take G=SU(2) and define G as

Ge=fabeCbce . (20)

Then, using the Jacobi identity, the effective Lagrangian
can be written

feff:jcl+-91_<3
=L a+3b%b*—b% A, +2aG?)
—C%(#Ay,)+agGG* . 21

Finally, using the equation of motion of the b field, name-

ly,
|

ZJEm% 0= [ 2(45,C%C Yexp

+
A7 S AN <. . LEhLEALLST
+ wg % W+ wjkkliw + WUW
c- CA c~ c CA c” ’ - 7 C'
St ¢l T W
c- c™ c* ca c~

ct W ct

..... AnNase
’.".‘.

Pt AN .

cT W c~

<+ Finite diagrams

FIG. 2. Divergent diagrams that contribute to the Green’s
function (0| TC*CC +*C ~|0).

be=0rAL +2aG =57, (22)

we obtain

Lgg=L g—3F°F*—C%F+2a7°G*—agG*G" .
(23)

This equation can be interpreted as a quantization of the
SU(2) theory using the nonlinear gauge-fixing condition
specified by Eq. (22). If we had followed the usual FP
prescription the last two terms in Eq. (23) would not be
present. Clearly this effective Lagrangian includes quar-
tic ghosts couplings. When a goes to zero the gauge fix-
ing is linear and Eq. (23) coincides with the FP result. In
this case the gauge independence of the renormalized S
matrix can be proved (e.g., Ref. 15). However, this proof
assumes that the gauge fixing is independent of the ghost
fields. So we generalize it here for .Z . given by Eq. (23).

Consider the generating functional for Green’s func-
tions,

iSese+1 [d*x(J-4 +7C+Cn) |, (24)

where J};, 7°, and 7 ¢ are the sources for the fields A, C*, and C°, respectively, and the subscript a reminds us of this a
dependence. The BRS invariance of the integration measure and of S gives

f@(AZ,C“,C‘“)fd“y(J—aA +7 %3 C*— Fn?)expli (Sg +source terms)] =0 (25)

and taking a functional derivative with respect to 7% x) we obtain the Ward identity (we are assuming an anomaly-free
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theory)
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f.,@(AZ,C”,C'”) [7“+i6“fd4y(J-JA +%-5C —Fn) |expli (S +source terms)]=0 . (26)

From Eq. (24) and for Aa infinitesimal we write

Zoina—Zo=iba [ D(A5,C%C [ d*x(—25°G +gG°G*)expli (S -+ source terms)] , 27

which, using Eq. (20), becomes
5 5
idn® isme

Zorsa—Za=iBa [ d*x f2¢

f@(A,C,C‘)ZFAexp[i(Seff+sources)]

+iha [ 2(4,C,C) [ d*x gGGUexpli (S +sources)] . (28)

Applying Eq. (26) to the first term on the right-hand ride of Eq. (28) it is possible, after some algebra, to obtain

Zorsa= [ 2(4,C,Clexp

with
AP =A%) —iha [d*x s45(»)T ¥x)GA(x)
€Up)=C%y)—iAa [d*x 5C%y)CTYx)GAx), (30)
T y)=C(p)+ida [ d*x Fy)T bx)Gx) .

Equations (29) and (30) show that a change in a corre-
sponds to a change in the source terms. Recalling the
equivalence theorem!® this is sufficient to prove that the
renormalized S matrices calculated with Z, and Z, 5,
are equal. Hence, the amplitude of any physical process is
independent of a.

IV. £ FOR THE GWS MODEL

After the discussion of the previous section it should be
clear how to proceed in the case of the GWS theory.
Writing

°geffzhfcl"*‘Auf: (31

it is easy to verify that Egs. (1)—(3) are equivalent to

This, in turn, gives

iSer+i [ dy(JALE+TC+F 0 |, (29)

{
AL =3K, (32)
with
Ky=—Cyl—3bs+F 4)—Cz(—5bz+F2)
—CH—3bt+F,)—C(—3b~+F_). (33

This is the A.Z obtained with the FP methods which,
clearly, does not give the most general BRS-invariant ac-
tion. Rather than writing a general K; we would like to
propose a minimal modification of Eq. (33) that will lead
to a consistent theory. We base our result on the observa-
tion that for a linear condition no quartic ghost interac-
tions are generated in perturbation theory. So, there is no
need to modify the terms involving % 4 and .¥ . On the
contrary, such modification is necessary for the other two
terms, and instead of K3 we write

Ki=—Cy(—3bs+F 1)—Cz(— b +F 7)

—CH(—3b*+F  +iaC ~C,+iBC ~Cz)
—C (—3b~+5_—iaC*C,—iBC*+Cz). (34)

AL =AL,+2i*W, (aC +*C4+BC +Cz)—2id" W, (aC ~C4+BC ~Cz)+2My¢*(aC TC,+BC *Cz)
+2My ¢~ (aC ~C4+BC ~Cz)—2eA*W [ (aC *C4+BC *Cz)—2eA* W, (aC ~C,+BC ~Cz)

+2g(asinfy —Bcoshy)C TC—CHC—,

where A.Z contains the couplings already shown in Fig.
1, and the new ones, depending on a or (3, are explicitly
given. In particular, notice the quartic coupling which is
indispensable to absorb the divergency of T discussed in
the second paragraph. In Fig. 3 we display the new ver-
tices of the GWS model in the nonlinear gauge.
Obviously, our previous proof of the gauge indepen-
dence of the S matrix is applicable to the present theory.
Hence, physical quantities are independent of a and f.
Nevertheless, if, from the beginning, we set a=3=0 the
renormalization program cannot be carried out. It is also

(35)

fair to say that for physical processes, i.e., with physical
particles in the external lines, at the one-loop level one can
use AL =A% i.e., one can effectively ignore the a and
B terms. In fact the divergent quartic ghost box diagrams
contribute to the ghost self-energies at two loops, which
means that they are relevant for physical processes if the
calculation is taken beyond two loops.

V. CONCLUSIONS

In this article we have considered in detail the perturba-
tive expansion of the GWS model using a nonlinear
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FIG. 3. Ghost vertices depending on the parameters a and . Vertices of type (a) existed already but are now modified and vertex

(b) is new.

gauge-fixing term.

At first sight it seems that this gauge simplifies most
calculations because the vertices A"W;-rqﬁi are not
present. However, we have shown that the extra difficul-
ties associated with the renormalization program and the
existence of a more complicated ghost sector derogates
some of the merits of ¥ glf

On the other hand, the study of this problem reveals the
need to generalize the usual FP approach. This is done
promoting the BRS invariance to the level of guiding
principle to be followed in order to establish the quantum
action. We hope that our example will give further sup-
port to this Feynman'®-Baulieu'! method.

APPENDIX: THE SLAVNOV OPERATION

1. Action on the fields

The Slavnov operation has the following action on the
fields:

3A4,=0,Cq+ie(C~ WIS —-CYW,),
32Z,=3,Cz—igcosby(C~ Wi —CtW.),
s Wi =0,C*FigC*(cosOyZ, —sinfy 4,,)

tigW;f(cosGWCZ —sinfy Cy) ,

0826
st =ig W 4+ C, —iedtCy+iMyCH+iS HCT
2 cosOy 2
—£4,c*
2 ’
sbz=——"L—HC,—M,C,+E(C ¢+ +C+o7),
2 cosOy 2
g (A1)
8 c—at +4—
H=——"—¢,C = —-C
2 20059W¢Z Z+12(C ¢ )

2C4=ieCTC~, sCz=—igcosOypyCTC™,

3C*T=+igC*(cosBy Cz —sindy, C,) ,
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2. Properties

(a) If B and F are bosonic and fermionic fields the fol-
lowing properties hold:

s(BB,)=sBB,+B 3B, ,
3(BF)= —sBF +BsF ,
3(FB)=u4FB +FsB ,
3(F\Fy)=—sF \Fy+FsF, .

(A2)

J. C. ROMAO AND A. BARROSO 35

(b) The operator s is nilpotent. Using Eqgs. (A1) and
(A2) it is easy to verify that

s?(any field)=0 . (A3)

Notice that this is only true if we include the auxiliary
b fields. After substituting the b fields by their equations
of motion we have

2% ghosts C)=£0 . (A4)
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