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We make a detailed study of the reaction e + e ~ v97. We derive the helicity amplitudes using the spinor product formalism and 
discuss the effects of beam polarization. Our exact and analytical results are compared with the ones derived using the local 
approximation for the W-exchange diagram. 

The importance of the reaction e+e - ~v97 to count the number of  neutrino species, Nv, was pointed out [ 1 ] 
several years ago. However, with the forthcoming operation of the SLAC and CERN colliders one sees a renewed 
interest in this reaction. Some of these latter works [2] study the general case of photon plus missing 
energy-momentum reactions in e+e - collisions while others address the question of a possible existence of 
extra Z-bosons [ 3], examine the various background reactions [4] or deal with radiative corrections [ 5]. 
Unfortunately, in all these papers the standard model calculation is done using the local approximation for the 
W-exchange diagram. 

In a previous publication [6], we have done, for the first time, an exact calculation of the e+e - ~v97 dif- 
ferential cross section and recently a similar calculation was performed by Chiappetta et al. [ 7 ]. Comparing 
their results with ours leads us to re-examine and extend our work. In doing so we have three aims. Firstly, 
we want to show that, in some cases, the error associated with the local approximation is larger than some 
predicted deviations characteristic of non-standard models. Hence, it is inconsistent to use the local approx- 
imation and try to learn about these extensions of the standard model. Our second aim is to point out the 
advantages of using our analytic expressions [ 6 ] for the differential cross section after the integration over the 
neutrino phase space. Finally, the third purpose of this letter is to consider the effects of beam polarization. 
Besides Chiappetta et al. [7 ], other authors [8] have also examined this problem. However, there is no agree- 
ment between them. In this letter, we derive the helicity amplitudes using the spinor product formalism [ 9,10 ]. 
Using them we have an alternative evaluation of the cross section which uses a four-dimensional numerical 
integration. As we shall see, both calculations are in excellent agreement. 

Let us denote by p~ (P2) the momentum of the incoming electron (positron), by ql (q2) the momentum of 
the neutrino (antineutrino) and by k the photon momentum. After integration over the neutrino phase space 
we obtain the differential cross section dtr/dxdy, where x=2og/xSss is the photon energy (09) in units of the 
beam energy and y=cos  0 with 0 the angle between k and p~. In our previous paper [6] we gave a complete 
expression for dtr/dx dy in terms of the integrals 

[,it,,, [f(q,,q2)] f d 3 q l  d3q2 ~4(ql + q 2 - / I )  
..... =d 2E~ 2E2 NijNl,,,... f(ql,q2), (1) 

with 

A=p~ +P2 - k  (2) 
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and 

N,j =M2w-  (Pi-qj)2 , i , j= 1, 2.  (3) 

Since these results are rather lengthy and are correctly printed in ref. [6 ] there is no need to repeat them here. 
However, we have found that the value of one of the integrals [ was missing. Hence, for completeness we list 
in the appendix the value of this integral. 

In our equations for da/dx dy it is very easy to include the effect of longitudinal polarized beams. In fact, 
all that one has to do is an appropriate redefinition of the vector (gv) and axial-vector (gA) coupling constants. 
However, for the general case it is simpler to calculate the helicity amplitudes M ( a _ ,  a+, 2) where a_ ( = _+ ), 
a+ and 2 ~ denote the electron, positron and photon helicity respectively. At high energy it is a very good 
approximation to neglect the electron mass and so the amplitudes M ( a ,  a+, 2) are easily derived using the 
spinor product formalism [ 9,10 ]. 
I f  u+ (p) are chiral spinors satisfying the equation 

u+ (p)a+ (p) = y +_ p ,  (4) 

with ?_+ = (1 + Y5)/2, the non-zero spinor products are 

s(pl,/32) = a+ (Pl)U_ (P2) = --S(p2, Pl ) (5a) 

and 

t(p,,  P2) = a (p,) u+ (P2) =s*(p2, Pl ) .  (5b) 

For the polarization vector of the photon we take the form originally presented by the CALKUL Collabo- 
ration [ 1 1 ] modified to be expressed in terms of spinor products [ 10], i.e., 

~_+ (k, p j, 172) =N_+ (y_+ kPlP2 - - P ; P l P 2 k - I - P l  "P2kYs) , 

with 

N+ =v/2/s(p, ,  k)s(p2, k)s*(p, ,p2)  , N = (N+)*,  

where p~ and P2 are arbitrary four-momenta not proportional to k or to each other. To simplify we take them 
to be the electron and positron momenta.  We should point out that contrary to the situation in ref. [ 10], the 
last term in eq. (6) gives a non-zero contribution to our process. 

From the Z and W exchange Feynman diagrams it is fairly easy to obtain the helicity amplitudes. Defining 

M~ o ~ M~w M~w 
Cz =4eGv A2_M~ + i M z F z  Cw, 8eGv M2w ' N--=22' Cw2-  - - ,  C w 3 = 8 e a v - - ,  (7) = - t~etrv NIt Nli N22 

where Mz and F z  denote the mass and width of the Z-boson, GF is the Fermi coupling constant, g A = -  1/2 
and gv=  - 1/2+2 sin20w, our results are 

s(p2, q2) 
Mz( +,  - ,  + ) = Cz(gv -gA)  s(p,,  k)s(p2, k) [s*(k, qa )s(p2, k) - s* (p , ,  q,)s(p2, p, )] , (8a) 

Mz( - ,  + ,  + ) = Cz(gv +gA) 
s(q2,Pl) 

s(p,,  k)s(p2, k ) [ s ( p , , p 2 ) s * ( q , , p 2 ) - s * ( q , ,  k)s(p, ,  k)] (8b)  

and 

~ + means right-handed. 
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Mw( - ,  + ,  + )={s (p , ,  qz)[Cw,s(p , ,p2)s*(q~,pz)-Cw2s*(q, ,  k)s(p, ,  k)] 

+Cw3[s*(k, q~)s(p,, k)s*(p2, k)[s(p, ,  k)s(p2, qz)+S(pz,p~)s(k,  q2)] 

+s*(q~,p2)s(p,,  qE)[s(p, ,pz)ls(p, ,  k) lZ - s (p , ,P2) l s ( k ,  ql)l 2 

+ s*( k, q, )s( q, , Pl )S(P2, k ) ] ] }/ s(pl , k )s(p2, k) . (9) 

Mz( +,  - ,  - ), Mz( - ,  + ,  - ) and Mw( - ,  + ,  - ) can be obtained from Mz( +,  - ,  + ), Mz( - ,  + ,  + ) and 
Mw( - ,  + ,  + ), respectively, with the replacements Cz--, - Cz, Cwi-, - Cw, 1.-+2 and taking the complex con- 
jugate, i.e., s,--.s*. The total amplitude for the reaction with electron-neutrinos is 

M ( a _ ,  a+ ,  2) =Mz(cr_,  e+ ,  2) + M w ( e _ ,  e+ ,  2) . 

It is interesting to notice that these relations among the helicity amplitudes can be derived on general grounds. 
In fact, the CP invariance of the theory implies 

CPIPl, 2L,p222 ) = [ - - p 2 - - 2 2 ,  --ffl--)]'1 ) , (10) 

where, in each ket, the first pair of variables denotes the momentum and helicity of  the e - .  Hence, recalling 
that the photon has C=  - 1, we have 

( q l - - ,  q2 + , k2l TlP121 ,p222 > ---- -- < - - q 2 - - ,  - - q l  q'-, - k - 2 1  TI - p 2 - 2 2 ,  --Pl--)]'1 > " (11 ) 

On the other hand, combining the T-invariance with the hermiticity of the Born amplitude TB one has 

(Pf2f I TB IPi2i ) * = ( - -p f2 f  [ TB I --Pi2i ) • (12)  

Finally, using this result in eq. (11 ) we obtain 

( q l - - ,  q2 + , k21TsIp12~,pz22) = - ( q 2 - ,  ql+, k-21TB [p2--22,  Pl--)]'1 ) *  • (13) 

The restriction to the Born amplitude explains why, in the Z amplitude, one does not take the complex con- 
jugate of Cz. 

Expressions for the cross section, for different beam polarizations, in terms of the helicity amplitudes can 
be found in ref. [ 10 ]. However, as an example, let us write the result for unpolarized beams. The spinor product 
s(p, q) as a function of the components of  the four-vectors p and q is [9] 

s(p, q) = (p2 +ip3)[(q0 _ q, )/(pO _ p  l)] 1/2 --  (q2 +iq3)[(pO _p l  )/(qO _q l  )] 1/2 (14) 

and the unpolarized differential cross section is 

de  x 
d x d y  d O * -  128(2zt) 4 Z~unp(X' y '  0" ,  ~0") , (1.5) 

where 

27unp=-¼{(Nv-1)[ I M z ( + , - ,  + ) lZ  + I M z ( - ,  + ,  + ) 1 2 +  I M z ( + , - , - )  12+ I M z ( - ,  + , - ) 1 2 ]  

+ [ M ( + ,  - ,  + ) 1 2 +  I M ( - ,  + ,  +)12 + I M ( + ,  - ,  - ) 1 2 +  I M ( - ,  + ,  - ) 1 2  } (16) 

and ~ is the solid angle in the center of mass of the neutrinos. To obtain a the four-dimensional phase space 
integration was done by Monte Carlo and Gauss. In table 1 the values obtained with both methods are com- 
pared with the ones derived from the analytic expression for da/dx dy. We used 16 points Gauss integration 
for dy, and for dx we divided the region of integration in three intervals in such a way that the central interval 
contained the peak of the cross section. Again, in each region 16 points were used. With this approach the 
results were stable up to five significant digits when we changed from 16 to 32 points. The agreement between 
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Table 1 
Comparison between the total cross section obtained by doing analytically the integration over the neutrino phase space and by using the 
helicity amplitudes and numerical integration. 

s a (pb) a (pb) a (pb) 
(GeV) analytical helicity amplitudes helicity amplitudes 

integration + Gauss integration + Monte Carlo integration 

50 5.1557)<10 -2 5.1557)<10 2 (5.158+0.004))<10 z 
100 4.3607 4.3607 4.363_+0.003 
150 5.3487 5.3487 5.350_+0.005 
200 2.3520 2.3520 2.352_+0.003 
750 5.230×10 ~ 5.23×10 ~ (5.23_+0.02))<10 

the calculat ion based on the helicity ampl i tudes  and the previous one [6] is excellent. Since they are quite 
independent  this is a powerful  check on both.  Compar ing  with the calculat ion o f  Chiappet ta  et al. [ 7 ] the agree- 
ment  is good with differences o f  the order  o f  a few percent.  Perhaps,  these differences can be a t t r ibuted  to 
round-off  errors. Not ice  that  Chiappe t ta  et al. [ 7 ] used Monte  Carlo for the integrat ion but  squared the ampl i -  
tude and used numerica l  methods  (Reduce)  to calculate the traces. Wi th  the helici ty formal ism the ampl i tudes  
are summed  before being squared. In general this gives a more  stable algori thm. After  establishing the accuracy 
o f  our  results, we believe that  the advantage  of  having an analyt ic  expression for da/dx  dy will be useful in the 
for thcoming da ta  analysis. Perhaps,  one of  these advantages can be felt compar ing  the amount  o f  compute r  
t ime needed to calculate each value in table 1. Wi th  the analyt ic  expression of  ref. [ 6] every entry in table 1 
took roughly 30 s while the p rogramme using the helici ty ampl i tudes  used nearly 3.5 h with 16 point  Gauss 
integrat ion and about  7 h with Monte  Carlo integration.  For  the numerica l  results we took M z = 9 2 . 0  GeV, 
M w = 8 0 . 7  GeV, sin20w = 1 - M ~ v / M  2 =0 .23  and F z = 2 . 7 8  GeV or  2.95 GeV for Nv=3  or 4 respectively. By 
expressing the final results in terms o f  Gv and a we took into account  a large part  o f  the radia t ive  correct ions 

[121. 
Let us now turn to the main  quest ion o f  our study. How good is the local approx imat ion?  The answer is 

given in fig. 1 where we plot  

IE = ( O'approx - -  O'exac t ) /O'exac t (17) 

20 100 
,~ (%) ~ (%) 

/ / t  
15 

6O 

\ L,O 

"~ / I s ? 0  

20 /~0 60 80~.,.~\ / 120 1[+0 160 180 200 

,J~s {GeV) 

Fig. l. Relative error o f  the local approximation. The dashed curve corresponds to 0.2 ~< x~< 1.0 and [Yl ~< 0.94 while the solid line corre- 
sponds to 2/[x/s (GeV) sin 0] ~<x~< 1 and 5 ° ~< 0~< 75 °. 
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Fig. 2. The quantity ~V defined in eq. (20) with the same cuts as in fig. 1. 

as a function o f  x/s, for two different kinematical cuts. The solid line corresponds to the cuts o f  ref. [ 7 ], i.e., 
k lv  > 1 GeV or 2/(x/} sin 0) ~<x~< 1.0 and 5 ° ~< 0 ~< 175 °, while for the dashed line we used 0.2 ~< x~< 1.0 and 
l YI~  0.94. As one would have expected ~ goes through zero in the vicinity of  the Z-boson mass. Obviously, 
in this small region the local approximation is very good. On the other hand, one should not forget that e is 
cut dependent. For instance, for the cuts shown in fig. 1, at v/~= 80 GeV we have e=  2% and 7% respectively, 
while at V/}= 200 GeV the corresponding figures are 84% and 33%. Clearly, at LEP-II energies no one would 
have used the local approximation.  However,  it is not  so widely felt that, even below the Z peak (x/} = 60 GeV 
for instance), the local approximation could induce an error o f  the order of  10%. This is certainly larger than 
any radiative correction and, in some cases, even larger than the effect o f  right-handed neutrinos or extra gauge 
bosons. Even the more modest claim for the existence of  a fourth left-handed neutrino could be misleading if 
based in the local approximation.  To stress this point we plot in fig. 2 the quantity 

A N =  [a  . . . .  , ( N v = 3 )  -ffapprox(Nv=3)]/[o" . . . .  , ( N v = 4 )  -17 . . . .  t ( N v = 3 ) ]  (18)  

as a function of  x/}. The curves correspond to the cuts used in fig. 1. Let us remark that, around 60 GeV, the 
difference between the local approximation and the exact result can be almost one half  of  the increase in the 
cross section due to the existence o f  a fourth neutrino. 

In fig. 3 we show the longitudinal polarization, 

Ait = (GR --O'L)/(O'R +O'L) , (1'9) 

where O'R(L) denotes the cross section for a right ( left)-handed polarized electron beam. The full and the dashed 
curves are for the cuts used before while the dash-dotted curve corresponds to the cuts o f  ref. [8] ,  i.e., 
4/x/~ ~< x < 1 and 3 ° ~</9 ~< 177 °. A tb changes sign around the Z peak but since the positive values are at most  o f  
the order o f  a few percent, this is o f  negligible interest. On the contrary, the large negative values obtained 
below and above the cross section peak can be exploited to distinguish this reaction from others where neutral 
supersymmetric particles are produced [ 6,7 ]. Within a few percent our results agree with those of  ref. [7 ] but 
are in disagreement with ref. [ 8 ]. In the region 90 GeV ~< x/~< 100 GeV our results are also in agreement, within 
a few percent, with Caffo et al. [ 4 ] who used the infinite W mass approximation. This is to be expected because, 
as can be seen from fig. 1, in this region the error in the approximation is less than 2%. 

Fig. 4 displays the behaviour of  the transverse polarization asymmetry A 1, namely, 
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Fig. 3. The longitudinal asymmetry. The dashed and solid curves correspond to the cuts of  fig. 1 while the dash-dotted curve corresponds 
to 4/ , f~ (GeV)  ~<x~ I. and 3 ° ~<0~< 177 °. 

A~ = _tr~  _ 2fdfp cos 2~ dtr/dq~ (20)  
a fd~o dtr/dq~ ' 

where the angle q is the azimuthal  angle o f  the photon using the electron spin direction as the y-axis. A simple 
calculation gives 

o'± = dxdyd..Q* 128(2~z) 4 Z'~ , ( 21 )  

where 
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Fig. 4. The transverse asymmetry as defined in eq. (22) .  The solid line corresponds to 2/[ x ~  (GeV)  sin 0] ~< x ~< 1 and 5 ° ~< 0 ~< 175 ° and 
the dashed line to 0.3 ~<x~< l and [y[ ,<,<0.4. 
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Z± =½ R e [ 2 M z ( + ,  - ,  + ) M ~ z ( - ,  + ,  + ) + 2 M z ( + ,  - ,  - )M"~z( - ,  + ,  - ) + M ( + ,  - ,  + ) M * ( - ,  + ,  + )  

+ M ( + ,  - ,  - ) M * ( - ,  + ,  - ) ] .  (22) 

In fig. 4 the solid line corresponds to the cut defined before and the dashed line corresponds to 0.3 ~x~< 1.0 
and [y[ ~<0.4. In agreement with ref. [7],  Aa is extremely small. To obtain large asymmetries A .  one needs 
cuts that exclude most of the forward angles but  then the cross section is also small. This is so because da • 
is proport ional  to sin20 and cancels the s in-20  behaviour  of the total cross section responsible for the large 
values of ~. For  instance, at x / s =  100 GeV, for the first cut we have g =  107 pb while for the other one the 
figure is 0.12 pb. With such a small G the transverse asymmetry will be unmeasurable  in the near future. 

Appendix 

io[u.qv.q]_ 

with 

3(u, p,)( v, p~) -B2(  u, v) 
2B~ [~J[P' "qPi "q] q- 

B2(  u, v) - ( u, p,)(v, p,) 
2B 2 / 0 ,  (A1) 

Bi=(Pi, Pi) l/z, ~ = M 2 - m ~ ,  e r a = ( - 1 )  "+I  , q = q l - q z ,  Ai=~+A'pi, (A2) 

u and v are any four-vector but  q~. For convenience we define the "scalar product"  (a, b ) =  A. a A. b - d  2a. b. 

We thank P. Chiappetta for discussions about the details of his calculation. 
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