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Generalizing our previous work, we calculate the helicity amplitudes for the reactions e+e ---,H), and e+e - ~Hix+~t - and using 
Kleiss' formalism of spinor products, we give the expressions for the cross sections, including beam polarization effects, in a form 
well suited for an event simulation programme. 

Despite the enormous successes of  the standard Glashow-Weinberg-Salam model [ 1 ], one of its basic ingre- 
dients - the Higgs sector [ 2 ] - remains untested. However, from a theoretical point of  view, the existence of 
this sector is crucial for the renormalizability of  the theory. Hence, searches for Higgs bosons will be one of the 
most important items of the experimental programmes to be carried out in the future e+e - colliders (see ref. 
[3] for a recent review). 

It is generally known that a light Higgs, i.e., with a mass mH, smaller than the Z boson mass if  it exists, will be 
most likely seen in the reactions e +e---,H~t+ ~t- and e + e -~H3 , .  Recently, we have published [ 4, 5 ] a complete 
one-loop calculation of  the unpolarized cross section for the H 7 channel. In ref. [4 ], we show the total cross 
section, tr, for several values of mH and we also compare our results with the ones corresponding to the ~t+lx-H 
channel. In this letter our previous work is generalized to include the effect of  the polarization of the colliding 
beams. The reason for doing this is two-fold. On the one hand, in the collider the beams will be almost trans- 
versally polarized, and, on the other hand, the expected number of  events is so small that the analysis of the 
experiments requires the simulation of  each event. In other words, transverse polarization effects are present in 
the differential cross section although they disappear from the integrated cross section. As we shall see, this 
remarkable fact is in agreement with a general result obtained by Hikasa [ 6 ]. 

Let us consider transversaUy polarized beams and let P denote the degree of  polarization of the electrons 
(which we take equal and opposite to the polarization of  the positron beam).  Then, the e + e - ~  H7 differential 
cross section in the centre-of-mass (CM) frame is 

(e + e -  --}HT) = 6 - -~2  s 2790,(0, ~), (1) 

where [ 71 

£'po, ( 0 , ~ ) = ¼ ( I M ( + ,  - ,  + ) 1 2 +  I M ( + ,  - ,  - ) I 2 + I M ( - ,  + ,  + ) 1 2 +  [ M ( - ,  + ,  _ ) [ 2  

+ 2 P  2 R e { ~ + ( p + , s + ) ~ * ( p _ , s _ ) . [ M ( + ,  - ,  + ) M * ( - ,  + ,  + ) + M ( + ,  - ,  - ) M * ( - ,  + ,  - ) ] } )  (2) 

is a sum over helicity amplitudes ~1, M ( t r ,  a+, 2), and ~b_ ( ~ + )  is the electron (positron) complex phase 
factor introduced by Kleiss [ 8 ] and given by 

t Permanent address: CFMC/CFN, Universidadc de Lisboa, Gama Pinto 2, P-1699 Lisbon Codex, Portugal. 
~'1 Jr means right-h~inded. 
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@(p, S) =S 2 - is 3 -- (S o -S  1 ) (p2 -- i p 3 ) / ( p 0  __pl ) , (3) 

where pU and s u are the four-momentum and the spin polarization vector of the particle, respectively. At high 
energy, it is a very good approximation to neglect the electron mass. Hence, the helicity amplitudes are more 
easily derived using the spinor product formalism [ 7,9 ]. For massless fermions with momenta PI and P2, there 
are only two nonzero spinor products, namely, 

S ( p l ,  P2) = bl+ (P l )U_  (P2) = - - s (p 2 ,  Pl ), t(pl, P2) = l i  (P l )U+ (P2) ~---S* (P2, P l ) ,  (3a,b) 

where u~(p) are helicity spinors satisfying the equation 

u+(p)~+(p)=y+ik : (4) 

with 

y_+ = (1 +-ys)12. (5) 

The invariant amplitude, T, corresponding to the Feynman diagrams evaluated in ref. [ 4 ] can be written in the 
form 

T=O(p+, s+)[Q+(R+y+ + L + y _ ) + Q _ ( R _ y +  + L _ y _ ) l u ( p _ ,  s_)  (6) 

with 

Q+ =k.p+ ~(k, 2) - p +  .e(k, 2)/e (7) 

and 

eg 3 eg 3 
Re -16~2M2 w ~ ( a i - b i ) G ~ ,  L+_ - 16~2M2 w ~ (a i+b, )G~.  (8a,b) 

In the last two equations the sum over i is a sum over the diagrams, the a,, bi and Gf  are given in table 3 of ref. 
[4], and 2= + are the polarizations of the photon with momentum k--- (o9, E). Following Kleiss [9], we write 
the photon polarization four-vector ~U(k, 2) in terms of spinors, i.e., 

eU(k, 2) = [4k.pl - taa(k)  yUua(p), (9) 

where p is any light-like four-vector not proportional to k. Once this is done, it is fairly easy to obtain from eq. 
(6) the helicity amplitudes. Our results are 

M( +, - ,  + ) =Ns(p+,  k)[s*(p_, p) Is(p+, k) 12 - s * ( p _ ,  k)s(p+, k)s*(p+, p)]R+, 

M( +, - ,  - ) =Ns*(p_ , k)[ s(p + ,p)  Is(p_ , k ) 12 - s ( p  + , k)s*(p_ , k )s (p_  , p) ]R_ , 

M(  - ,  +, + ) =Ns(p_ ,  k)[s*(p+, p ) [ s (p_ ,  k)[ 2 - s*(p+,  k ) s (p_ ,  k)s*(p_,  p)]L_,  

M ( - ,  +, - ) = N s * ( p + ,  k )[s (p_ ,  p) Is (p+,  k) l 2 - s ( p _ ,  k)s*(p+, k)s(p+,  p)]L+,  (10) 

with 

N=[4k .p]  -~. 

For the sake of completeness we also give the Value of the spinor product s(Pb P2) in terms of the kinematical 
variables, i.e. [7], 

s(p~ p2)=(p~ + i p ~ ) [ ( p ° - p ~ ) / ( p ° - p ] ) ]  m (p~ " 3 o ~ o ~ ~/2 , -- + l p 2 ) [ { P I - - P l ) / ( P z - - P 2 ) ]  • (11) 
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Fig. 1. Definition of the polar angles used in eq. (13 ). 

As was pointed out before [ 9 ], using a different vector p in eq. (9) corresponds to a different choice of gauge. 
Tis obviously gauge invariant [ 4,5 ] and so, one can use this gauge freedom to simplify the results. With p =p+, 
eqs. (10) give 

M( +, - ,  + ) =Ns(p+, k)s*(p_,p+ ) is(p+ , k) l 2R+, 

M( +,  - ,  - ) =Ns(p+, k)[s*(p_, k)12s(p+, p_)R_, 

M ( - ,  +,  + ) = N s * ( p + ,  k)[s(p_, k)]Es*(p+,p_)L_, 

M( - ,  +,  - )  =Ns*(p+, k)s(p_,p+)Is(p+, k) [ eL+. (12) 

Before we consider the other reaction, it is interesting to show that any polarization effect disappears from 
the total cross section. In fact, defining the angles 0 and 0 as shown in fig. 1, it is trivial to rewrite eq. (2) in the 
form 

27pol =2:unp -2p2o)2s  2 sin20 {cos 20 Re(R+ L_* +R_L*) - s i n  20 Im(R+L*_ +R_L* )}, (13) 

where 27unp is the sum of the first four terms in eq. (2). It is now clear that 
2 ~  

__1 
J d0 2~,ol =Su . , ,  (14) 2n 
0 

in agreement with the general theorem derived by Hikasa [ 6 ]. 
Polarization effects for the reaction e+e--- .Hg+g - were studied before [ I0]. However, we think that it is 

useful to give the helicity amplitudes since the present formalism is well suited for numerical computation. The 
differential cross section, da, is 

Q 
d o -  64(2z05sx//~ Spol dO d.Q* dm~, (15) 

where m ~ = (q_ + q+ )2 is the square of the invariant mass of the final fermions (ff), dO is the solid angle for 
the difermion production in the e+e - CM, dO* is the solid angle in the CM of the fi" system, 

Q= { [ s -  (mL +MH) 2 ] [S-- (mL --Mn)E]/(4S)} in, (16) 

and 

Z p o l = ¼ ( l M ( + - ;  + - ) I 2 + I M ( + - ; - + ) [ e +  [ M ( - + ;  + - ) 1 2 +  [ M ( - + ; - + ) l =  

+ 2P  z R e { ~ + ( p + , s + ) ~ * ( p _ , s _ ) [ M ( + - ;  + - ) M * ( -  +;  + - ) + M ( + - ;  - + ) 3 / * ( -  +;  - + ) ] ) ) .  
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For massless fermions the helicity amplitudes M( a _  a +; 2_ 2 + ) are 

M( + - ;  + - )  = C(g~,--g~A)(~v --geA)S(P+, q-)s*(P--, q+ ), 

M ( +  - ;  - + ) =  C(g~-g~)(gev +gfA)s(p+, q+)s*(p_, q_), 

M( -- +;  + -- ) = C(g~ + ~ ) ( g r v  --gfA)s(p_, q_)s*(p+, q+), 

M( - +;  - + )  =C(~v+g~A)(gfv+gfA)s(p_, q+)s*(p÷, q_), (18) 

where tr_ a +, 2_ and 2+ denote the electron, positron, f and ]~ helicities respectively, 

gf=½T~3-QfsinZ0w, g [ = ½ ~ 3 ,  C=(g/cosOw)32Mz/D(s)D(m2), 

with 

D(x) = x - M  2 + iMzFz .  

I f  the polarization of the final particles is not measured, the integration over d£~* gives [ 11 ]: 

d a ( e - e  + --.Hf-f) mLF(mc) dtr(e-  e + --,HZ*) 
d.Qdm 2 - r t  [D(m2) I ~ dl2 ' (19) 

where F(rnL) is the width for a virtual Z* with mass mL to decay into f fand  

d a ( e -  e + ~ H Z * )  1 Q 
dI2 - 32teEs x/~ Z~ol (20) 

with 

, 3 j. 
~po,---= 8/tm'---~L d.Q* I{IM(+-)I z+ I M ( -  +)12 + 2 p  2 Re[~+(p+,s+)~*(p_,s_)M(+-)_M*(-+)]}.  

(21) 

Now, the polarization of the beam appears in the effective amplitudes M(a_a+ ) which are 

M ( +  - )  = (g/cos Ow)2[2Mz/D(s)l(~v-~)s(p+, r2)s*(p_, r ,) ,  

M( - + ) = (g/cos Ow)E[2Mz/D(s)](~v +g~A)S(p-, rE)s*(p+, r~). (22) 

The four vectors r; ( i = 1, 2) were introduced in ref. [ 9 ] to express the polarization vector for a spin-one massive 
particle in terms of massless spinoirs. They must satisfy the requirements 

r~=r~ =0,  rl+r2=q++q_, 

and so a convenient choice is rl = q+ and rE = q_ or vice versa. In eq. (21 ) the integration is over the solid angle 
of  r~ (or r 2) in the rest frame of Z* and the factor 3/( 8 ~ m ~. ) is the normalization necessary for the t2* integration 
to correspond to the sum over the Z* polarizations [ 9 ]. 

In conclusion, we can say that, given any set of  kinematical variables obtained by a Monte Carlo event gen- 
erator for instance, our expressions above lead immediately to the differential cross sections for the reactions 
e+e --- ,H7 and e+e - - - ,Hg+ g  - with polarized beams. From the four momenta,  one evaluates the appropriate 
spinor products [ eq. (11 ) 1 and after that it is straightforward to compute the helicity amplitudes [ eqs. (12) 
and (18) or (22)].  Once this is done, eqs. (1) and (15) enable us to compute the cross sections in terms of a 
weighted sum of helicity amplitudes denoted by Zpo~. These are given by eqs. (2) and (17) for transversally 
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polar ized beams  but  in the general  case the corresponding expressions can be found in ref. [ 8 ]. 
Bearing in m i n d  the impor tance  o f  the Higgs searches at LEP, we th ink  that  it  is impor t an t  to include the 

effects o f  the beam polar izat ions.  This  is even more  so when min ima l  supersymmetr ic  extensions o f  the stan- 
dard  model  predic t  [ 12 ] that  the lightest neutra l  Higgs should have a mass  smaller  than  Mz. Therefore,  even a 
lower bound  on MH will be very interesting. 

We thank R. Kleiss for a very useful discussion. 
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