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PREFACE

In the frame of the LEP 200 Workshop, a study group was set up to look into the problem of electroweak
radiative corrections. Since these corrections were dealt with at the earlier LEP Workshop [LEP 86] only as a side
issne, and since their relevance extends to the entire energy range of LEP, the study group decided to have a global
view of the matter, not confined to the high-energy regime alone.

The study group set itself three tasks: first, to review and discuss the physics reward of electroweak radiative
corrections; second, to attempt to unify the language and concepts in the calculation of electroweak radiative
corrections; third, to make progress in the practical applications of electroweak radiative corrections—in their
availability, in their technical implementation in the analysis of e’e” data, and in the way that data should be
presented.

This report summarizes the work of the study group. It also aims at familiarizing the non-expert reader with
the field. Several contributions to the subject, which are of a more technical nature, are appended as annexes.



1. INTRODUCTION
1.1 Overview of eleciroweak radiative corrections
One of the reasons for the current belief that the electroweak interactions are described by a spontaneously
broken gauge theory is the fact that such theories are renormalizable: for any observable quantity its theoretical
prediction can be calculated to-—in principle —an arbitrary order of perturbation theory, in terms of a finite set of
input parameters. The predictions to ‘first non-trivial order of perturbation theory’, the ‘Born approximation’
predictions, can usually be calculated fairly simply. In contrast, the effects of the higher orders of the perturbation
expansion, called ‘radiative corrections’ are usually complicated to calculate, and smaller in size. On the other
hand, it is the existence and consistency of the radiative corrections which give the Standard Electroweak
SU{2)L ® U(1} Model the character of 2 quantum field theory.
The physics motivation for the study of electroweak radiative corrections (hereafter called EWRC}) is twofold:
i) High-precision measurements of electroweak observables can test the validity of EWRC as implied by the
Standard Electroweak Model, and hence test the model at the quantum level. An experimental verification of
EWRC would constitute an important milestone in the tests of SU(Z) & U(1). In principle, although not
comparable in precision, this programme is analogous to the measurement of, for example, the Lamb shift in the
hydrogen atom, as a test of QED. Alternatively, while leaving the Standard Electroweak Model intact, a
discrepancy between measured and calculated EWRC may signify the existence of heavy unknown particles (see
Section 7).
ii) Possible ‘new physics’ in the sense of departures from the Standard Electroweak Model as a spontanecusly
broken gauge theory of the electroweak interaction of fundamental fermions (e.g. compositeness, technticolour),
or in the sense of the appearance of new particles and/or symmetries, will probably manifest itself as smali

deviations from the predictions of the model. Hence the latter have to be known accurately, including EWRC.

1.2 Why worry about electroweak radiative corrections at LEP?

The reason why we should worry about EWRC at LEP energies is simple: EWRC can be large, of O(1). Any
quantitative measurement at LEP energies, even at moderate precision, faces the problem of EWRC.

In e*e” physics, a sampie of events of the type e*e” — ab invariably entails another sample of
bremsstrahlung events of the type e’e™ — aby, abyy, .... These radiative events constitute part of the EWRC. The
trouble is their frequent occurrence, and that their relative amount strongly depends on the cuts applied to the data.
The importance of EWRC is shown in Figs. la,b, which compare the ratio R,, = a{e*e™ = p" " )/ 0poim, and the
forward—backward asymmetry Ags(e*e” — u*p7), as a function of Vs, in Born approximation and with O(a)
EWRC included. No experimental cuts are applied. The importance of taking EWRC into account for any
measurement at LEP seems apparent, although this argument chiefly applies to photon bremsstrahlung.

Another demonstration of the need of EWRC can be found in the Z energy region: the large peak
cross-section enables measurements with unparalleled precision: mz to £20 MeV [Altarelli 86], the polarized
left-right asymmetry Agr to +0.003 [Blockus 86]. It is & challenge to the computation of EWRC to match such

splendid experimental precision.

1.3 A guided tour through the terminology

This subsection recalls the main vocabulary used in EWRC, with the aim of arriving at a mote uniform
language. This scems the more appropriate when looking at the somewhat confusing terminology which is used in
the literature.

Physical observables are calculated in perturbation expansion. The lowest non-trivial order of perturbation
expansion is called ‘Born approximation’, also ‘tree level’ or ‘zero-loop level’. We prefer the term ‘Born

approximation’. The lowest non-trivial order of QED cross-sections is typically O() but not necessarily so.
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Fig. 1 The ratio R, = a(e*e”™ — p*p™ )/ 0point, and the forward-backward asymmetry Ags{e*e” — p*p7), as a
function of Vs, in Born approximation and with O(e) EWRC included. The input parameters are a, G,, sin® 8, =
0.225, my = 100 GeV, and m; = 35 GeV. No experimental cuts are applied.

If calculations include higher orders of the perturbation expansion they ‘include EWRC’. Rather than the
absolute order (because of the dependence of the meaning on the process under consideration) we prefer to give the
relative order with respect to the lowest non-trivial order:

‘M) corrected’ = Born approximation + Of{a} corrections;
‘0(a?) corrected’ = Born approximation + O(a) corrections + O(a?) corrections;
ete.
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The orders are always counted in powers of o (in contrast to older papers on QED radiative corrections where the
counting is done in powers of €). Virtual O(a) corrections are also called one-loop corrections; virtual O(o?)
corrections are also called two-loop corrections, and so on.

We now concentrate on O(c) EWRC. During the last few years it has become customary to divide them into
two classes: the first group contains those diagrams which involve an extra photon which has been added to the
Born diagrams, either in the form of a real bremsstrahlung photon, or as a virtual photon loop. They are called
“QED corrections’ or else ‘photonic corrections’. The other group contains all other diagrams. We call them
‘non-QED corrections’ or else ‘weak corrections’. The subset of those diagrams which involve corrections to the
self-energy of the gauge bosons, is frequently referred to as ‘oblique corrections’. This division is also shown in

Table 1, which lists in more detail the categories of radiative corrections within each class.

Table 1

Preferred classification of O(a) electroweak radiative corrections

EWRC
QED RC (Photonic RC) Non-QED RC (Weak RC)
[diagrams involving an extra real or virtual vj fall other diagramsj
Real v Virtual ~ v self-energy, Virtual Z, W,
(Hard bremsstrahlung, | (Fermion self-energy, | Z, W self-energy,| etc.
Soft bremsstrahlung) Vertex corrections, y-Z mixing
Box diagrams) [Obligue
correctionsf

There is a theoretical and an experimental reason for the above classification. Firstly, the QED radiative
corrections form a gauge-invariant subset within the totality of EWRC. Secondly, the QED radiative corrections
are dependent on the cuts applied to the data, whereas the non-QED radiative cotrections are not.

While the classification shown in Table 1 describes the consensus achieved within our study group we are
quite aware that not everybody will like it. The main point of disagreement concerns the photon self-energy which
we classify as a ‘non-QED correction’, whereas it is traditionally classified as a ‘QED correction’. For those who
prefer to stick to the historical classification, and consider the photon seif-energy as part of the QED correction, we
suggest the term ‘purely weak corrections’ (comprising Z and W self-energy, v-Z mixing, virtual Z and W, etc.) for
all corrections other than QED.

The QED corrections (in our preferred sense) are considered well known and not very interesting since they
contain no ‘new physics’. On the other hand, they give the largest contribution to the total EWRC. Once a suitable
renormalization scheme has been adopted (see Section 2) the effects of the non-QED corrections are typically much
smaller than those of the QED corrections. This experience motivates a simpler and restricted treatment of EWRC,
in which only QED corrections are applied (see Section 6).

For certain high-precision measurements, O(o) EWRC are considered inadequate, and O{a) EWRC have to
be applied. The calculation of O(e®) EWRC is a rather tedious enterprise because of the rapidly growing number of
diagrams to be considered. For practical purposes, no complete calculation of all O(c?) diagrams is made but an
approximation as shown in Table 2 is done which is considered good enough for all practical purposes. The
approach adopted in practice is that to 0O(a?), only the QED corrections are explicitly calculated.
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Table 2

Classification of O{a®) electroweak radiative corrections

O(e?) EWRC = O(a) EWRC ® O(a) EWRC

/N

O(e?) QED RC O(o?) non-QED RC
fapplied] [neglected]

Ofo) QED RC & O(a) non-QED RC
fin part implicitly included by a

suitable choice of renormalization schemejf

2. THE ‘BEST’ RENORMALIZATION SCHEME

The calculation of EWRC involves the choice of a set of independent input parameters, and the choice of a
renormalization scheme in order to deal, in a well-defined way, with various divergences (ultraviolet and infrared
divergences, mass singularities). Although all renormalization schemes are in principle equivalent, the results in a
given order of perturbation in different schemes will deviate from each other, because of higher-order
contributions, From a practical point of view it is preferable to choose a scheme where the O(a) corrections are
small, though this is no guarantee for small higher-order effects.

In QED, the favoured scheme is the ‘on-shell (OS) scheme’: the physical fermion (e, g, ...} mass is defined as
the pole position of the fermion propagator, and the only coupling constant o = €*/4q is defined in the Thomson
limit (Q® = 0) where the photon and the fermions are on mass shell.

In the SU2). ® U(1) Standard Model the situation is more complex. The Lagrangian has in its manifest
SU2). ® U(1) symmetric form the input parameters gz,g; [the SU{2) and U{1) gauge coupling constants], %X (the
second- and fourth-order coefficients in the Higgs potential), and gr (the fermion-Higgs Yukawa coupling
constants). Other than in QED, none of these parameters can be directly measured in present-day experiments. An

alternative set of independent parameters,
o, Mw, Mz, My, Mf (1)

has the advantage that each quantity can—in principle —be measured. The so-far unknown Higgs mass my is
treated as a free parameter. The fermion mass parameter my is a shorthand notation for the fermion masses and the
weak quark mixing angles.

The rencormalization scheme which makes use of set (1) as parameters, and establishes their physical meaning
by appropriate renormalization conditions, is called the ‘on-shell (OS) scheme’, in analogy to QED. It is the most
direct and natural extension of the QED renormalization scheme. All parameters are defined as on-shell quantities:
e in the Thomson limit, and the masses as pole positions of the corresponding propagators.

What is then the role of the popular electroweak mixing parameter sin® 6,? The simplest and most natural
definition of this parameter is in terms of the physical W and Z masses:

sin® fw = 1 — my/m% . (2)
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By definition, relation (2} is valid to all orders of perturbation theory. The parameter sin® 8y is not an independent
quantity and can, in principle, be avoided completely. However, for historical and practical reasons, sin® By is
retained as a bookkeeping device in the neutral-current phenomenology.
The advantages of the OS scheme are:
i) The input parameters have a clear physical meaning, and can be measured directly. Except mu and the top
quark mass my, all parameters are known.
ii) The Thomson cross-section formula from which « is obtained is exact to all orders of perturbation theory.
fii) The separation between the QED corrections and the non-QED corrections (which is important for the Monte
Carlo implementation of EWRC, see Section 4) is automatic.
The OS scheme also has drawbacks:
i) The experimental precision of mw is not as good (even assuming an error of + 100 MeV as can be achieved at
LEP 200) as to make the uncertainty in EWRC negligible.

i) The fine-structure constant o is defined as a low-energy parameter, at Q2 = {}, whereas mw and myz are
high-energy parameters. The renormalization of the Thomson « therefore induces large logarithmic corrections
from the photon self-energy, typically (o/=) log (mw/my), in the EWRC at the W mass scale.

The first drawback can easily be overcome: employing the OS scheme one can calculate the muon decay width

T, in terms of the parameter set {1}, including O{e) EWRC. On the other hand, T', is related to the Fermi coupling

constant G, by the following relation which includes— for historical reasons — () QED cotrections:

T, = (Ginl/1927%)(1 — 8mZ/mdH[1 + (25/4 — 7°) 0/2%] . 3)

Utilizing the thus-determined coupling constant,
G, = (1.16637 + 0.00002) x 107° GeV~2,
one obtains from I, = (o, mw, mz, my, mg) the relation
G, = (za/V2)[mi(l — mb/md)1 — A} !, 4

where Ar = Ar(x, Mw, mz, my, mf) is the O(a) non-QED correction of muon decay in the OS scheme. Relation (4)
allows replacement of mw by the precisely measured G,,.

We denote the Fermi coupling constant by G, rather than Gy, in order to underline the origin of its numerical
value from the muon-decay width. There are minor ambiguities in the literature about the extraction of G, from the
muon lifetime, owing to neglect of higher-order terms in the QED correction. The differences are, however,
numerically unimportant at the present level of precision.

The parameter set a, G,, mz, Mz, m¢ then comprises the best measured quantities, and only mu and the quark
masses give rise to a theoretical uncertainty in EWRC.

The second drawback of the OS scheme seems to be more controversial. On the one hand, the large
logarithmic corrections which are due to the definition of « at Q% = 0, can be ‘absorbed’ by replacing the Thomson

a by a running QED coupling constant, evaluated at the W mass scale:
afmiy) = a0/ [} — [, (@]

where I'IEED(QZ) denotes the fermion-loop corrections to the photon self-energy. On the other hand, this introduces

an uncertainty in the parameter o(m¥) from the quark loops in the photon self-energy, mostly from the unknown

m.. The contribution from light quarks is also uncertain because of the unknown gquark masses and QCD radiative
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corrections. Using a dispersion relation, it is customarily related to available data on e*e™ — hadrons at low
energies. The experimental error of these data may well be the ultimate limit of the precision with which EWRC can
be calculaied.

Another problem occurs in QED corrections where large cotrections arise from the soft real and virtual
photon emission. Here the Thomson « is more adequate than a(m#%). Also in Bhabha scattering at small angles the
Thomson « is more appropriate.

We favour the following procedure as a viable way out of this dilemma:

iy Calculate within the OS scheme the O(a) corrections to the gauge boson propagators,

v 1 I/q? = 1/[q* + Z(g™)]
W: 1/[02 — m¥& + imwlw] = 1/{q2 — m& + Z%(@)] (5
Z: 1/[q* - m3 + imzl'z] = 1/[¢®> — m& + E%gY)],

with the renormalized self-energies E(a®) in terms of o, mw, mz, mx, and m;.

ii) Replace in the Born approximation expressions each boson propagator by the expressions (5).

1i1) Use the relation (4) to replace mw by «, G,, and mz.

iv) Add the remaining non-QED corrections,

v) Add the QED corrections.
This procedure leaves the non-QED correctiéns small while retaining the Thomson o and G, as input parameters.
The effect of employing the *wrong’ renormalization schere can be seen in Fig. 1a, where o, G,, sin® 8y, my,

and ms have been used as input parameters: notice the large displacement of the Z peak due to O(x) non-QED
corrections.

3. QED RADIATIVE CORRECTIONS

As already mentioned above, the QED radiative corrections form a gauge-invariant subset of all EWRC.
They are considered not very interesting but are at LEP energies large in magnitude, and hence must receive a lot of
attention.

In calculating QED radiative corrections one usually restricts oneself to the O(x) correction. When the result
of this caleulation is not too large (say, 10% of the Born value), the O(a?) corrections are in general considered
negligible. It is known though that stringent cuts applied to the data, which leave little room for the emission of
bremsstrahlung photons, imply large and negative corrections. In such a situation one has to calculate the O(a?)
corrections. In the particular case of bremsstrahlung emission, there is another way of incorporating higher-order
corrections, namely by exponentiating a certain part of the O(a) QED correction, a technique pioneered by Yennie,
Frautschi and Suura [Yennie 61].

The ultraviolet divergences in EWRC, which arise from the high-momentum domain in loop integrals, are
removed by the renormalization procedure. The virtual QED and the non-QED corrections then modify the Born
cross-section {(which we take as an example of a physical observable) as follows: de/dQ =
(de®™/do + 6Q"§b + 5,.‘3,’.EQED). Both corrections are ultraviolet-finite. However, 65‘1:{‘13 still contains an
infrared divergence which has its origin in the low-energy region. The Bloch-Nordsieck theorem [Bloch 37],
generalized by Kinoshita [Kinoshita 62] and Lee and Nauenberg [Lee 64], ensures that the infrared divergences from
the emission of real and virtual photons cancel each other.

In practice, the bremsstrahlung emission of photons is divided into two classes: ‘soft” bremsstrahlung
(E, < ki) and ‘hard’ bremsstrahlung (E, > ki), where k; is an arbitrary cut-off energy chosen smaller than Eﬁ'i", the
detection threshold of the energy of photons in the experimental apparatus employed. The soft bremsstrahlung
correction, together with the virtual photon correction, leads to a finite correction of the cross-section. The hard
bremsstrahlung leads to events with additional photons in the final state. In the following, we concentrate on the
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bremsstrahlung part of the QED radiative correction. For the discussion, we refer to the specific case of muon-pair
creationz e*e” — ptu”.

In the Standard Electroweak Model the bremsstrahlung matrix element is described by eight Feynman graphs,
obtained by attaching photons to each e* or u* line in the y and Z exchange diagrams. The differential
cross-section is a complicated expression. For two specific kinematical situations, however, the expressions become
much simpler: in the ‘soft photon limit* (E, < E), where the single bremsstrahlung cross-section becomes
proportional to the Born cross-section, and for hard photon emission in the ‘ultrarelativistic limit’ (E. » m., m,).
Calculational techniques have been given in the literature [Berends 82] for these cases, and compact formulae exist
for all standard reactions.

Other than in the case of soft photon emission where the photon is emitted nearly isotropically, the analytical
integration of the differential cross-section for hard photon emission is only sometimes possible. When all kinds of
cuts are applied to the data the integration boundaries become too complicated for an analytical calculation of the

total cross-section.

4., THE IMPLEMENTATION OF ELECTROWEAK RADIATIVE CORRECTIONS

There are two approaches to obtaining the hard bremsstrahlung correction. The first is to perform a
numerical integration over the phase space allowed for by the experimental cuts applied to the data, by means of a
standard multidimensional integration routine [Berends 73]. Care must be taken that strong peaks in the differential
cross-section are adequately dealt with. The other approach is the use of a Monte Carlo event generator [Berends
81, 8l1a, 82a, 83]: a program generates a set of four-momenta of the final-state particles, including the real
photon(s), in such a way as to reproduce the differential cross-section for hard bremsstrahlung. The events are
either generated in the full phase space, or in a large part of the phase space which is restricted by one or two
‘natural’ variables only, such as 2 minimum scattering angle, or a maximum photon energy. Besides generating a
large number of events, the program should also yield the bremsstrahlung cross-section for the phase space covered
by the events. Since the events are not weighted the application of cuts on the event sample is simple: the events not
satisfying the selection criteria are rejected.

In practice, one not only considers an event generator for photons with E, > k; but one also generates a set of
four-momenta of the final-state particles without a bremsstrahlung photon when E, < k.. The generation is done
according to the analytical expressions which result after the O(«) non-QED, virtual QED, and soft bremsstrahlung'
(E, < ki) corrections have been applied. The event generator is normalized such that the ratio of soft- to
hard-photon events is given by the theoretically-known respective cross-sections.

Although an event generator allows a great flexibility in the implementation of EWRC, it has one
disadvantage with respect to a numerical integration program. In the latter there is more freedom to vary the cut-off
energy k;. The larger k; becomes, the less good is the soft-photon approximation of the bremsstrahlung
cross-section. On the other hand, the smaller ki becomes, the larger becomes the sum of the O(a) virtual QED and
soft-photon corrections. The latter sum is a (potentially) large negative correction, which is compensated by the
positive correction due to hard bremsstrahlung, so as to yield an overall QED correction of reasonable size. It may
even happen that if the cut-off energy ki becomes too small, the O{o) QED corrected cross-section becomes
negative in some part of the phase space. In order to generate events, however, a positive cross-section is
mandatory. If this problem occurs and no suitable k; can be found, one has to go beyond the O{c) approximation
in the Monte Carlo generator.

Another problem related to the intreduction of k; can arise when certain distributions are generated where
soft bremsstrahlung events play a dominant role. For example, consider the study of de/d{ in ete™ = utu”, where
¢ is the acollinearity angle of the muon pair. For very small { (i.e. nearly back-to-back muons) soft bremsstrahlung
events become predominant, and the O(w) approximation may not apply any longer. Since the sum of the O(a)
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virtual- and soft-photon corrections is negative, the number of events in the interval [0, {] is underestimated. This
means that in the angular interval [{, =] the number of events is overestimated, since the total number of events in
{0, 7] is adequate. In the case of a particular interest in the bin {0, {1, higher-order corrections should be taken into
account in the event generator, for example by extending the whole procedure to O(o), including the generation of
double bremsstrahlung events.

As an alternative to calculating the QED corrections to O(e®), techniques exist to re-sum the leading logarithmic
QED corrections to ali orders of perturbation. It was noticed by Greco and Rossi [Greco 67] that the so-called ‘coberent
state formalism’ not only reproduces the exponentiated form of the soft bremsstrahlung photon correction [Yennie 61],
but also vields a correction for hard collinear photons emitted from any external leg of a diagram, in exponentiated
form [Caffo 85). The latter feature is important because the emission of hard collinear photons is steeply peaked under

zero angle, which is difficult to deal with in a Monte Carlo generator with adequate precision.

5. HOW TO PRESENT THE DATA?

Once the theoretical calculation of EWRC is available, incorporating the special experimental conditions,
theoretical expectations can be compared with experimental measurements. If several experiments perform the same
measurement, there will be a sirong interest not only in comparing the physics conclusions but also the data from
which they have been obtained. This will be the case, in particular, when experimental results do not agree: is the
source of the disagreement in the data, or in the radiative corrections, or in the analysis of the data? So one wants to
see the data themselves published as has always been the case. The only question is: before or after radiative
corrections?

Before we turn to the situation at LEP energies, we recall the situation at PETRA energies. The experimenters
chose to publish data after the subtraction of O(c) QED corrections. That is the event sample was the one which
one would find if the photon radiation had been switched off. The theory could be compared with the thus obtained
‘data’ at the level of the Born approximation. Non-QED radiative corrections were too small to be considered if the
OS scheme was employed. The argument in favour of this procedure was that at the level of the Born
approximation the dependence of the data on the selection criteria was eliminated, and hence data from different
detectors could be directly compared. Moreover, the ‘interesting’ physics could be studied without disturbance
from the ‘known’ physics of the QED radiative corrections.

While this is a valid point of view it is not easy to see how this procedure could be continued at LEP energies
because there the QED corrections can be of O(1)! Are *data’ after 100% corrections stil} ‘data’? Secondly, the
radiative corrections applied by one experiment may for some reason be different from those applied by another
experiment although ‘they used the same program’. Needless to say, the problem of the correctness of the radiative
corrections is much aggravated by their magnitude.

We list in Table 3 possible ways of presenting data together with their pros and cons. The first column
suggests the presentation of ‘raw’ data, i.e. of data corrected for apparatus acceptance, bad channels, and
insensitive regions, but before any radiative correction. Although the data are model independent, they are strongly
dependent on the experimental cuts via the QED radiative effects, and hence a comparison cannot be made between
one experiment and another. We discard the option to present raw data.

The last column suggests the presentation of data after the totality of the EWRC has been applied, i.¢. in the
form to be compared with the Born approximation prediction. Whilst this procedure is transparent and hence
attractive, the fact remains that the applied radiative corrections are large and, chiefly via the non-QED corrections,
model dependent. We feel that data should not be published with EWRC applied which are calculated in today’s
accepted framework of the Standard Electroweak Model, with everyone’s preferred values for my and m.. We also
discard this option.

The third column, QED removed, is in essence the extrapolation of the PETRA procedure to LEP energies. A
slight model dependence would arise from QED corrections to Z exchange diagrams which rely on the Standard
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Table 3
Options of presenting data at LEP energies

‘Raw’ data | Canonical cuts applied® QED removed Born approximation
Pros | Model Mode! independent Insensitive to non-QED Clear, simple,
independent corrections, hence largely independent of exp.
model independent cuts

Analytical formulae

for EWRC possible?
Cons | Dependent Difficult since QED corrections are large, | Large, model-
oM exp. cuts consensus required slight model dependence dependent

corrections

a) Recommended procedure

Electroweak Model. Yet it would be a viable solution, in principle, if the QED corrections were not so large. Still, if
we adopted this procedure for LEP, could we accept even larger corrections at future ete™ colliders in the TeV
energy region? Since we feel that published ‘data’ should be close to what has actually been measured, we also
discard this option.

The consensus within the study group was a preference for the use of ‘canonical cuts’. Data should be
presented (see, however, the clarification below!) before EWRC but after an agreed set of canonical cuts have been
applied. Canonical cuts are thought to be cuts which satisfy the following criteria:

i) the phase space within the cuts is well within the acceptance of all relevant detectors;
ii) the cuts have a clear and unambiguous physical meaning;
iii) the cuts should be chosen such as not to cause O{e) QED corrections to become too large, so that the O(e?)
corrections may be assumed to be small and hence negligible.
The comparison between various experiments will be quite simple. Also the comparison between theory and
experiment may be facilitated: if a set of canonical cuts exists it becomes worthwhile to construct a numerical
integration program specialized to these cuts.

Our recommendation of the use of canonical cuts does not, of course, restrict anybody’s freedom to publish
whatever is deemed appropriate, with any cuts applied or with any method of analysis preferred. We only urge the
experimental teams to publish in addition their data with cancnical cuts applied. This implies no restriction
whatsoever to employing all the strong features of each detector in the main analysis.

Returning once again to the specific case of muon-pair production it scems that good candidates for a set of
canonical cuts are the acollinearity angle ¢, the muon momentum p,, and the scattering angle § with respect to the
beam line. Thus all events where the muons have a scattering angle 8 > 6", momentum p, > p;", and acollinearity

angle ¢ < ¢, fall within the canonical region.

6. APPROXIMATIONS AND ‘RULES OF THUMB’
Within the complete set of EWRC, the numerically most important contributions arise from photon
bremsstrahlung from the initial electron and positron legs (assuming that a convenient renormalization scheme has

been chosen such as to minimize the non-QED corrections). Hence the obvious approximation to calculating the
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entire set of corrections is to restrict oneself to the initial-state bremsstrahlung correction only. It depends on the
experimental precision of the particular experiment whether or not more elaborate radiative corrections are needed.

The photon radiation from the initial legs gives rise to a large logarithmic correction of the size (a/mt =
0.056, with t = In m2/m? = 24.2. Other terms in the perturbative series are of the size {(&/7)"". Since t » 1, the
effective expansion parameter (c/)t is also large, and the influence of orders beyond O(«) are to be considered in
experiments which measure quantities which vary strongly with ¥s. A typical experiment of this type is the
measurement of the line-shape of the Z resonance.

The ‘leading log approximation® just retains the leading logarithmic terms, often summed over all orders of
perturbation. The summation techniques are either based on the exponentiation of the O(w) QED correction
(excluding the photon self-energy part, according to our definition given above), or on QCD inspired approaches
employing the Altarelli-Parisi evolution equations for the injtial lepton states [Greco 67; Tsal 83; Kuraev 85;
Altarelli 86; Nicrosini 86}.

In the following, we give a few ‘rules of thumb’ on the approximate use of EWRC. Their justification is @
posteriori, i.e. from comparison with the result of exact calculations. Their numerical accuracy is at the level of
20%.

Rule of Thumb No.

Non-QED radiative corrections will be largely absorbed by the use of a(m¥), G,, mz {or, equivalently: G,,
Mw, M) in the Born approximation expressions. Remaining non-QED corrections are of the order of 1%,

Rule of Thumb No. 2

For QED radiative corrections, use the Thomson « in the QED formulae. If the O(e) QED correction changes
a cross-section by a fraction x (x = 0.3) then the O(c?) QED correction will cause a further change by a fraction
= x°/2.

Rude of Thumb No. 3

The peak cross-section at the Z pole gets reduced by QED corrections by a factor f = (I'z/ mz)® = 0.7, where
8 = (2a/7)(In m3/m? — 1) = 0.1. The position of the maximum of the cross-section is shifted to Vs = mz + AE,
where AE = x3lz/8 = 120 MeV.

Rule of Thumb No. 4

An observable @ changing linearly with Vs around the Z pole will change by initial-state QED corrections
from @(mz) to @(mz — 2AE), where AE = 120 MeV {see rule of thumb No. 3).

7. THE PHYSICS REWARD OF ELECTROWEAK RADIATIVE CORRECTIONS

The EWRC constitute a considerable obstacle between data taking and physics analysis at LEP energies. They
also merit attention in their own right because of their physics content. This latter feature has been highlighted
already at the LEP I Physics Workshop, in particular in the contribution of Lynn, Peskin and Stuart {Lynn 86].
Because of the importance of the subject, but also because of its relation to a precise measurement of the W mass,
accessible only at LEP 200, we recall here the main arguments.

The W and Z bosons couple to all particles which take part in the weak interaction. There is a fair chance that
expected but hitherto unobserved particles (top quark, Higgs boson) will be produced directly at LEP. However, if
these or other novel particles are too heavy to be directly produced, they might still be ‘observable’ through their
contributions to the EWRC. Actually the heavier the respective particles, or the larger the mass splitting within
isospin multiplets, the larger their effects. Hence the experimental measurement of EWRC provides a window on
‘new physics’ in the mass range above 100 GeV, which is otherwise not accessible at LEP and is complementary to
the searches for the direct production of new particles.

In order to profit from the physics reward of EWRC there is a price to pay: not the large QED radiative
corrections but the small non-QED corrections are the interesting part, with effects of relative size a/7 = 0.002.
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This means first that precision experiments are called for, and second that the logarithmically enhanced QED
radiative corrections of size (a/#) In m2/m? = 0.056 have to be handled with care. In the following it will be argued
that the measurement of the left-right asymmetry Aig, at the Z pole, and the measurement of mw have a
considerable potential for insight into ‘new physics’.

In a renormalization scheme with &, G,, mz, My, and m¢ as the input parameters, other precisely measurable
quantities such as Arr and mw can be calculated. As is shown elsewhere in these Proceedings [Roudeau 87], mw
can be measured at LEP 200 to + 100 MeV. The quantity Az = (o — or)/(oL + or) is the asymmetry of the
annihilation cross-sections of left- and right-handed electrons colliding with unpolarized positrons, and hence is
accessible with longitudinally polarized beams only. The feature which singles out Arg, as compared to other
measurable asymmetries, is that it is independent of the fermion type in the final state, at the Z pole:

AR (mz) = 2veac/(v: + al) .

Hence Az can be measured in an inclusive mode, rendering the statistical precision superior to any other
asymmetry measurement. Experimentally, an overall precision of AArr = +0.003 seems within reach
[Blockus 86]. QED radiative corrections — which are almost negligible for Arx [Bohm 32] because of its very mild
dependence on Vs are ignored in the following.

In terms of the precisely measured input parameters «, Gr, and mgz—the Z mass is assumed to be ultimately
measured to + 20 MeV [Altarelli 86} — the predictions for Avg and mw depend on m, and my when O(a) non-QED
radiative corrections are included, in the framework of the Electroweak Standard Model. The dependence of the
predictions on m; and my within the presently favoured domain are shown in Fig. 2, together with the expected

AR T T T T

0.221 4
Input parameters

&, G, my =92GeV

.19

. errors
017

Fig. 2 Variation of the predictions for the

left-right asymmetry Arg, and for mw, as a

805 §1.0 815 §2.0 function of my and my, in comparison with the
My (GeV) expected experimental precision of Arg and mw.
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experimental error. One concludes that each Ay and mw restricts the allowed range of m, and my considerably,
and even more so if both quantities are measured. Optimistically, mw ‘measures’ m, to + 20 GeV, and A; g narrows
the allowed range of my to +200 GeV. All this is made possibie by experimental errors which are expected to be
small as compared to the O{o) non-QED radiative corrections caused by the top quark and the Higgs boson.

Similarly, the effects of new heavy quarks and leptons, or of supersymmetric particles, would show up in the
radiative corrections of Arr and mw [Lynn 86). This discovery potential, however, can be fully exploited only if
polarized beams at ¥s = mz become available at LEP.

8. INVENTORY OF EXISTING CALCULATIONS

The study group saw as one of its main tasks a review of the likely measurements at LEP together with the
expected precision, and the preparation of Monte Carlo event generators for the various processes including EWRC
with adequate accuracy. Table 4 gives an overview of the availability of EWRC, as of October 1986.

For the process e*e~ ~ ff, where f is a light fermion other than an electron, many authors (including
Berends, Bohm, Greco, Hollik, Jadach, Kleiss, Lynn, Pancheri, Srivastava, and Stuart) have contributed to the
complete EWRC at O{e). The most versatile Monte Carlo generator which is available at present is BREMMUS.
Beyond O{c), analytic expressions exist for the distortion of the Z renonance shape due to initial-state QED
radiation (in leading log approximation at O(a:) by Kuraev and Fadin [Kuraev 85], and Altarelli and Martinelli
[Altarelli 86]; in leading log approximation to all orders by exponentiating the infrared divergent O(«) correction,
by Greco [Greco 86); complete O(e?) by Berends, Burgers and van Neerven, see Annex A, and by Nicrosini and
Trentadue [Nicrosini 86]).

For Bhabha scattering, e*e” -» e*e”, analytic formulae exist which are complete to O(a) {BShm 86], and
have large logarithmic contributions resummed to all orders [Greco 86a, and references quoted therein}. The
formulae, however, do not include hard bremsstrahlung, so their use is limited to essentially collinear e”"e* pairs. A
Monte Carlo gencrator, comprising the complete EWRC at O{c), is available (Berends, Hollik and Kleiss). At
present, the option of initial-state longitudinal polarization is being implemented in this Monte Carlo generator.

The process e*e” — 7' is of interest because it offers an easy way to measure the final-state polarization
asymmetry Apo. A Monte Carlo generator is prepared by Jadach, Stuart and Was, which will include the complete
O(e) EWRC, and all major r decay modes [Jadach 84; see also Annex B]. The attainable experimental precision is
such that ultimately O(a?) QED corrections may have to be included.

Electroweak radiative corrections to heavy fermion production, e*e” — FF, are being calculated by
Beenakker and Hollik (see Annex C). Analytical formulae for the one-loop corrections and soft bremsstrahlung
exist. A Monte Carlo generator, TIPTOP, which simulates O(«) initial-state bremsstrahlung effects in heavy
fermion production, has recently been made available by Jadach and Kiihn [Jadach 86].

The O(a) EWRC for W production, e"e* = W* W, is being worked upon by Gaemers and Kunszt, making
use of earlier work by Lemoine and Veltman [Lemoine 80], and Phillipe [Phillipe 82]. At present, only O(e) hard
bremsstrahlung corrections are available in the form of a Monte Carlo generator.

Higgs particle creation via e et — H%*x~ has been studied by Fleischer and Jegerlehner. A Monte Carlo
generator including complete O{w) EWRC is in preparation. Figure 3 shows the cross-section for Higgs-boson
production (mux = 50 GeV) before and after O(w) EWRC, where a cut-off E, < (.25 E. for bremsstrahlung
photons has been applied. A Monte Carlo generator including O(w) initial-state QED radiation has been used by
Berends and Kleiss [Berends 85].

Higgs particle creation via e"e* — H% has been studied by Barroso, Pulido and Romio, including one-loop
non-QED corrections [Barroso 86].

Radiative Z production, e*e~ — Zv, has attracted a lot of interest. This process was originally suggested as a
means of ‘counting’ the number of neutrino families [Ma 78, Barbiellini 81], via the cross-section for single-photon
production in e*e” — Zy, with Z — »». The question of O(a) QED corrections of the cross-section has been
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Table 4

)

Process Ol Ola?) Comments
EWRC EWRC

e*e” - ff Done® At work O{o): non-QED part needs to be checked.

(f = light fermion other than ¢; O{a?): QED part only; analytic formulae for the

injtial-state e can be Z resonance shape; a MC generator including

longitudinally polarized} Ol QED sheuld exist by the end of 1987.

ete” —»ete” Done Needed () | Also existing are analytic formulae in leading log
approximation.

ete” —g'e” At work Needed (7)

(Initial-state e can be

longitudinally polarized)

ete” = 77 Atwork | Needed O(w): QED part complete; non-QED part at

(Initial-state ¢ can be work; complete Q(w) should exist by the end

longitudinally polarized) of 1986.
One-prong 7 decays included.
O(o) QED corrections from e*e™ — fr
applicable.

¢*¢” — FF At work Not needed | One-loop corrections and soft bremsstrahlung

(F = heavy fermion other than 7) available in analytical form; hard bremsstrahlung
missing.
A MC generator with initial-state bremsstrahlung
is available.

ete” - WrW”T At work Not needed | Hard bremsstrahlung done; one-loop cotrrections
and soft bremsstrahlung in analytical form;
radiative corrections for decays for on-shell
W’s only.

ete” = H% p” At work Not needed | Hard bremsstrahlung done for the initial state;
one-loop corrections and soft brersstrahlung
done: a MC generator should exist by the end
of 1986

e*e” — H% At work Not needed | One-lcop non-QED corrections exist in
analytical form.

ete” — Zy At work Needed (?) | One-loop electroweak corrections as well as soft
bremsstrahlung exist in analytical form;
an estimate of hard bremsstrahlung is available
in the form of a MC generator.

efe” s eteTy At work | Not needed

&3]

a) The initial-state electrons and positrons are unpolarized unless stated otherwise.

b) ‘Done’” means ‘available in the form of a Monte Carlo generator’.
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addressed by Berends, Burgers and van Neerven [Berends 86], Boudjema, Dombey and Cole [Boudjema 86],
Igarashi and Nakazawa [Igarashi 86], Mana, Martinez and Cornet [Mana 86], and Bento, Romfo and Barroso
[Bento 86, Rom&o 87]. An estimate of O{x) hard bremsstrahlung corrections to the (dominant) Z exchange graphs

of e“¢* — »iyis shown in Fig. 4: the cross-section for single-photon production is reduced by a significant amount,
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Fig. 4 Photon energy spectrum from e*e™ — »py, in Born approximation (dotted line) and after O(wx) hard

bremsstrahlung corrections,
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on the scale of the 30% variation from three to four neutrino generations. The one-loop. QED and soft
bremsstrahlung corrections exist in analytical form only. Also, the O(a) non-QED corrections as published by
B3hm and Sack [Bshm 86a], and discussed by Boudjema, Cole and Dombey (see Annex D), exist in analytical form
only. The inclusion of Q) EWRC to e*¢” — vy in 2 Monte Carlo generator is an urgent task. Also, in view of
the large O(a} QED correction, 0O(a?) QED corrections may have to be considered.

The dominant background of the neutrino counting process is radiative Bhabha scattering, where both
final-state electrons remain undetected: e*e~ — (¢7¢* ). A Monte Carlo generator for the process ete” > eety
including O(z) EWRC is under preparation by Kleiss. Calculations of the cross-section of radiative Bhabha
scatiering at the Born approximation level have recently been performed by Caffo, Gatto and Remiddi (see Annex
E), Mana and Martinez [Mana 86a], and Karlen [Karlen 86]. Mana and Martinez, and Karlen, have developed a
Monte Carlo generator which is particularly designed to handle radiative Bhabha scattering at very small electron
scattering angle. At the Born approximation level, there is good numerical agreement between the three
calculations. However, Karlen points out that the O(c) QED corrections to radiative Bhabha scattering are sizeable,
and have to be taken into account in a quantitative analysis of the neutrino counting experiment. This claim is not
supported by Mana and Martinez, and obviously deserves clarification. Notice that radiative Bhabha scattering
might also be of interest for a luminosity measurement.

Finally, there is good news from a sector which has particular relevance to the energy range of LEP 200.
Lynn, Kennedy and Verzegnassi (see Annex F) have studied the shift in the W mass due to a very heavy top quark,
at O(c?). This question was triggered by the large influence of mq on the W mass at O(a), see Section 7. For m; =
200 GeV, the calculation yields an O(a?) correction of 13 MeV only, so that O(c?) corrections from m, can be safely
neglected, compared to the expected experimental precision of + 100 MeV.

9, CONCLUSION AND RECOMMENDATIONS

Electroweak radiative corrections, in particular their QED part, are large at LEP energies. Their application
by means of well-tested Monte Carlo generators is inescapable for any quantitative analysis.

Electroweak radiative corrections not only allow significant tests of the Standard Electroweak SU(2) &@ U{1)
Model beyond the Born Approximation level, but also offer an opportunity to spot particles which are too heavy to
be observed directly, through their virtual effect in loop diagrams.

Although a great deal of work has been done already to calculate O(a) [and'O(az) where needed] electroweak
radiative corrections, and to make them available in the form of Monte Carlo generators, a lot remains to be done.
This includes cross-checking of the results of different authors.

In order to make the comparison of the results of calculations easier, the use of the on-shell renormalization
scheme is recommended, with «, G,., mz, my, and mg¢ as input parameters.

Experimental teams should feel committed to also present their data with canonical cuts applied. We urge a
Workshop of experts to be held, in order to define such canonical cuts.

Finally, we urge the creation of a library of ‘standard’ Monte Carlo generators for events which have

electroweak radiative corrections included.
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ANNEX A
ON SECOND ORDER QED CORRECTIONS TO THE Z° RESONANCE SHAPE
F.A. Berends, G.J.H. Burgers and W.L. van Neerven

(Reprinted from Phys. Leit. BI85 (1987) 395 with kind permission of the North Holland Publishing Company)

Since the 0(&) correction to the Z resonance shape 1is sizeable,
higher order corrections have to be considered. This had been done in
the Physics at LEP report by Altarelli and Martinellil) and by Greco?l.
The former authors. present results for the first order corrections plus
second order leading logarithmlc correction whereas the latter takes
higher order effects into account by exponentiating the infrared singu-
lar part of the first order correction.

Here we present an exact O(az) calculation of the initial state
radiative corrections. Results are given for the total cross section of

the reaction
+ ~ + —
ee >y, I rpyp . (1)

Once an event generator is available experimental cuts can be considered
in the calculation.

Since we want to be able to make eventually an event generator for
O(az) corrections we have to lmprove on the ingredients of the O(a)
event generators. More specifically we need the following information:
1. The total cross section for (1} 1s needed with 0(&2] virtual correc-

tions and including single or double soft photon emission:

o = o [1+6,(e) + 5,(2)] (2)
where
2
0 a“az Z(S'MZ}SCVZ sz(cv2+cA2)
o (s) T [1+ >+ 7 (3)
fz(s)| fz(s) i
z2(8) = s—M2+ iMT (&)
5,(e) = B fa e+ le (3)
_ 2u s
8 ——n(ln—z——l) (6)
m
V= S s )
L TG 7773 2)

The invariant mass of the Y pair defines €:

2
LI = - 8
muu s(l-g) (8)



- 20 -

For single soft photon emission € = kl/E, where kl is the maximum soft
photon energy. For double seft photon emission the maximum total photon

energy is €E, neglecting €2 terms.

The 0(&2) correction is

1 .2 2 v v
62(6) E—ﬁ in"g + 351 in £ + 62 (9)

where (the results originate from ref. 3)

2
1 2
5, = & hf—m3%4[%%-xuﬂm‘%
m m
+[= BB 3 ey 4 3] & - Yo P
ﬂl
-2 e - 602y a2 - 1wy + 21 (10)

with £(2) = x2/6
2(3) = 1.20205

For small £ it has been shown that the corrections can be summed into

the form:
o= o (148," + 6,7 4. )eP (1)

Here we know élv and 62v , but not the higher order terms. We
assumed £ to be so small that the energy loss does not effect co(s).
When the energy loss matters other formulae can be used. Since we

will also consider hard bremsstrahlung, we can take £ as small as we

want.

The second Ingredient 1is d9 _ in some form.
ds’

In lowest order it is just another form of the single bremsstrahlung

spectrum
do 1+(l-k) 1422 ,
do g O 5 (s1) - 8 B2 o (s) (12)

where kE is the photon energy-

eq.

Considering wvirtual corrections to single bremsstrahlung and adding
the effect of the emission of a second photon, we get another distri-
bution

%%—, where S—-ﬂ l-v = z , which is an order in & higher than

(12):
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2 2
do 14z 1 .2 1 v o
&g Em v g8+ () Al

2
+ 4z () B+ 2(2) cloy(s') (13)

The full distribution do/dv {(lowest order plus first order correc-
tion) is the sum of eqs. (12) and (13). In eq. 13 we introduced the
quantities:

2

5. [Liz(v) - —;— in"z

2s
A An wi-ln z + fn mz

m

+lnz£nv+7/21nz]+%lnzzknv

1 1.3 3
TI‘iZ(V) n z — rs Tz + §(2) n z 5 Liz(v)

"g—lnzinv——l—?—ﬂ.nz+l£nzz-l‘-'lnzz
2 6 [ v

1 2 1 2
T —gv—lnz—;;-z-lnz (14)

B=fnl -3 (3mz-1)+m3
m

- [1 2 7]

Z—ﬁnz-£nz+7

+—3—Li3(v) =25, (- tav L, () - C2)

1 2 1 1 2 5
+a—£nz+§-1nzlnv—-[;ln v+§£nz

n v~ i} (15)
6

C=24n s——+£n—s—(an—£)+-]£C(2}
2 2 3
m m
B, - mla - by

3w -2ame- By} (16)

These formulae are based amongst others on results of ref. 4.
When v ig small, or z = 1 the %-term dominates and in the coefficient
of 1/v A can be negleted. This result is the same as differentiating
eq. {(11) with respect to £ and expanding the result up to 0[&2] « The
0{a) term is the same as eq. (12), the O(az) as eq. {13} in the
z + 1 limit.

We see however from eq. (i3) that for larger v values the dis-
tribution deviates from the one implied by soft photon emission alone
c.f. eq. (11). '
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By exponentiating the Infrared parts we may write for do/dv

2
%%—- B v5 l;%— [1+61v + ézv + ...]co(s']

+ (“)2 [1+zz A+ (1+ '
g B R ( Z)B+Zc]ob(s )

+(E)3 (] + .o an

By expanding eq. (17) in a the O(a) term equals eq. (12) and the
O{az) equals eq. (13).

We now have the ingredients to calculate the radiative correctioms
to do(s) for some energy s = 4E2 .

Up to 0(«2] the corrected cross section is given by

2
=4 do (18)
o= o [146,(e) + 6,(e) ]} + EI Lav,
where g%.is given by the sum of eqs. (12) and (13). The result of (18)

is the cross section including an exact evaluation of O(a) and o(az)
initial state corrections, due to virtual and real photons. It should be
noted at this point that in principle there is another O(az) radiative

correction namely due to the emission of an et

e~ pair instead of a
vY palr. We have omitted this contribution for the moment since It is

small with respect to the double bremsstrahlung correctlon.

We evaluate {18) numerically by subtracting in the integrand
do/dv , a distribution which behaves 1like do/dv for small v and which
can be easlily integrated analytically.

In fact we evaluate (18) for a number of cases:

a. Only 0(a) i.e. &,(c) = O and %{- given by (12).

b. 0(a) and O(az) i.e. 8 and &, , %g given by the sum of eqs. (12) and
(13).

c. An expomentliated form of O(c) i.e. the first term of eq. (18) is
replaced by eq. (11} with 62v = 0 and %% is given by (17) with

62v = 0 and the explicit (%] term omitted. In this case one could
directly take € = 0 because (17) is integrable.

d. An exponentiated form of O(az] i.e. the first term of (18) 1s re-
placed by (11) and do/dv is replaced by (17).
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The numerical results are shown for the resonance region in Figs. 1
and 2. Also results are given for an energy above resonance. Here do/dv
in lowest order is compared with a first order corrected dg/dv (Fig. 3).

In the region of the resonance the small v region is most important
in the integral, since o{s') falls off sharply with decreasing energy.
So in this case the most important terms in (13) are the B%and 3 terms.
Since the first order exponentiated expression, listed under case ¢, takes
these terms into account it is not surprising that the results do not differ

very much quantitatively.

r T 1 T ]
B 1
- Vs = 100 GeV b
0
1 _
z 10 i
. i
1=
] ]
100 3
i 1 | | i
0 0.25 0.50 0.75 1.00

s'/s
Fig. 3: The energy loss spectrum do/dv in Born approximation (dashed line)

and with 0(a) corrections (solid line), at c.m.s. energy 100 GeV.

In fact a comparlson between cases b, ¢ and d gives an indication
of the theoretical accuracy of the radiative corrections.

We find that for a peak value In nb. of 1.38 the uncertainty due to
radiative corrections is 0.0l nb. For the position of the peak we find
similarly an uncertainty of 15MeV. The peak values for various assump-
tions are {(in nb):
lowest order : 1.86

+ O(a) : 1.32

+ o(a?) : 1.38

The position is in these three cases respectively (in GeV): 93.020,
93.204,93.116. All calculations were performed with

Mz = 93 GeV, Tz = 2.5 GeV and sinzﬁ = (.223 .
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ANNEX B
SYSTEMATIC UNCERTAINTIES IN THE MEASUREMENT OF A, (mz) WITH 7 PAIRS
S. Jadach and Z. Was

The strategy of precision tests of the Standard Electroweak Model is to predict theoretically the value of some
precisely measurable quantities —including electroweak radiative corrections — using for example «, G,, and my as
input parameters, and to test their consistency with the measured values. Besides the left-right asymmetry Aig,
which offers the best sensitivity but requires polarized beams, and the forward-backward asymmetry Agg, the 7
spin polarization asymmetry Ape in the reaction e*e”™ — 777 is of particular interest [1]. It offers the same
sensitivity to ‘new physics’ as Apg, and requires no beam polarization. Hence the measurement of Ay is of great
importance although the precision of its measurement cannot match that of Apx. All the quantities discussed are
measured on top of the Z resonance. This note discusses briefly the systematic uncertainties of the measurement of
Apol (mz), in particular O(x) QED radiative corrections. The systematic uncertainties may be divided into three
categories: i) QED bremsstrahlung, i) imprecise knowledge of the physics of r decays, and iii) contamination due to
background from unwanted r decay modes or other processes.

It was shown [2] that the value of (P, in the case of unpolarized beams, is not directly affected by QED
bremsstrahlung. In fact (P, is changed by less than 0.005, very little in comparison with its value (P,} = 0,16 and
very little in terms of sin® @.. One could expect a larger effect due to initial-state bremsstrahlung and the related
reduction of Vs if {P,} was strongly dependent on vs. This is, however, not the case here. To some extent, however,
this happens for polarized beams, see Ref. [2]. Let us note that this mechanism, owing to the strong dependence of
Arp on Vs, shifts Apg by —3.5%7, a very large amount as compared to Ars ~ 2%, and in terms of sin® 8. The
experimentally measured value of (P} is influenced by QED bremsstrahlung indirectly, and in a different way from
Agpg. The (P, is measured ({P»)
owing to the loss in the c.m.s. energy Vs (both the initial- and the final-state bremsstrahlung contribute), the
different from (P, by about —0.03. This
effect, when compared with (P,) = 0.16 (sin? 8., = 0.23), and in terms of sin? 8., is much less dramatic than the shift
of Ags.

In conclusion, we would like to stress that in order to obtain sin? #,, with comparable precision from {P,) and

) using the slope of the pion energy distribution in the 7 = wv decay channel,

meas.

« momentum distribution gets distorted (more steep) leading to (P},...

Apg, the QED bremsstrahlung effect must be known in the case of Arg with much higher precision than for (P}, So
far, no study has been done on the dependence of the QED bremsstrahlung effects on (P, on kinematical cut-offs,
but it seems that they should diminish with stronger cut-offs, as opposed 1o the situation in the case of Axn. As for
radiative QED corrections to the 7 — #» decay, to our knowledge there is nothing in the literature, but generally
these effects are expected to be of the order of « In (m./m,} and therefore very small. The strongest QED
bremsstrahlung effect may show up in r — evv decay. Here many analytical results from p — evd may be used, but
nothing in the form of a Monte Carlo event generator exists as yet.

Figure 1 shows a comparison of the # momentum spectrum in 7 — =v decay, in Born approximation and after
O(et) EWRC are applied. The cut-offs used in the latter case are rather strong, vielding closely similar values for P,
if analysed in Born approximation, or after O(e) EWRC.

The main uncertainty due to the unknown aspects of the r decay mechanism is related to the fact that the
V — A nature of 7 decay is not confirmed by experiment precisely enough. Let us note that if r decay is used as a spin
polarimeter then one obtains as a result not really {P,} but rather p{P.} where ¢ = —2gvga/(g¥ + gi), v.a being
charged-current couplings in 7 decay. If (P is to be measured model independently then the value of ¢ must be

*) This is countered by another contribution from the interference of initial- and final-state bremsstrahlung, which
changes Agp typically by +1.5% to + 3%, depending on cut-offs.
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Fig.1 1 Normalised = momentum spectrum in 7 — 7v decay, in Born approximation, and after O{a) EWRC are
applied.

known from independent sources. Most probably the experimental error on ¢ will still be large by the time of the
LEP experiments, and we will have to assume ¢ = 1.

The background problems depend on the quality of the detector and we are not entering into these questions.
Here we limit ourselves to some rather general and detector-independent aspects of the background problems. First,
it should be noted that, in comparison with PETRA/PEP experiments, backgrounds from other processes, namely
from Bhabha and yy physics, are fortunately much less important. On the other hand, the problem of the
contamination of one r-decay channel by another will look similar. The common assumption that it is not worth
including the decays = = e, urb, ov as spin analysers, because the reduction of the statistical error on (P} is less
than a Ffactor of 2, might have to be reconsidered. The inclusion of these other 7 decay modes in the P2
measurement may significantly reduce not only the statistical error but also the overall systematic error [3].

For the analysis of  pair events, a Monte Carlo generator is required which includes all the features discussed
above. A good step in this direction has already been made [4], and some results presented here were based on the
results from this program. However, it is still not complete and requires inclusion of some missing O(a) non-QED
corrections, of some multipion decay modes of 7, and a more refined QED bremsstrahlung. A study of the impact

of changes of the Higgs mass, etc., on (P, is in progress.
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ANNEX C

ELECTROWEAK ONE-LOOF CORRECTIONS TO HEAVY-FERMION PAIR PRODUCTION
W. Beenakker and W. Hollik

The one-loop corrections to e*e~ — FF for charged heavy fermions F can be classified in the following way:

i) QED corrections, consisting of initial- and final-state bremsstrahlung, together with the virtual photon
corrections; vertex corrections and box diagrams with internal photon lines. It is sometimes convenient to
include the fermionic part of the photon vacuum polarization in this subclass. These corrections have been
calculated in Refs. [2-4] and, partly, in Ref. {1].

i1) Non-QED corrections (sometimes also referred to as ‘purely weak corrections’), consisting of the Z boson self
energy, the yv-Z mixing energy, vertex corrections not from virtual photon exchange, and massive ZZ and WW
box diagrams [5-10].

For a completion of the fermionic sector in the Electroweak Standard Model the top guark has still to be
discovered experimentally. In the case of a fourth generation also a new sequential heavy lepton may be around in
the energy range covered by LEP II. For the experimental investigation of cross-sections, forward-backward
asymmetries, polarization asymmetries, etc., and for comparison with the model predictions, it will become
necessary to extend the radiative-correction calculations to the case of a heavy fermion pairine*e” — FF.

Finite mass effects give drastic reductions of cross-sections and asymmetries if one is near to threshold. But
also the calculation of radiative corrections becomes more cumbersome for the following reasons:

1) The evaluation of the vertex and box diagrams with heavy fermions vields lengthy expressions which are less
transparent than in the light fermion case, where one has only vector and axial-vector form factors in a compact
and handy form (see, for example, Ref. [11]).

it} The coupling of Higgs bosons to heavy fermions is no longer negligible. Therefore one has to respect the Higgs
contributions in the vertex corrections and fermion self emergies. For a renormalizable gauge also with

unphysical Higgs bosons ¢*, x, the additional vertex and fermicn self-energy diagrams are depicted in Figs. 1

aAa\
3

-l
-6.”/ \\‘9'
-t

LY
RVANS
-
NG

z . A

H h z

w o,

o Y Fig. 1 Vertex corrections from the
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Fig. 2 Fermion self-energy diagrams from the Higgs bosons H, ¢ =, and x.

and 2. In box diagrams the exchange of virtual Higgs bosons can again be neglected since they have to couple
also to the electron line leading to a suppression factor me/mw. The renormalization is performed in the on-shell
scheme, as described in detail in Ref. [11] for the light fermion case, now extended to the heavy fermion one
(12]. .
The renormalization conditions are the on-shell subtractions of the self energies, the vanishing of the y-Z
mixing for on-shell photons, and the definition of the electric charge in the Thomson limit. The input quantities are
therefore the physical masses

mw, Mz, My, Ms

and the fine structure constant o in the Thomson limit.
In Figs. 3-5 we display the case of tt productions with either m, = 40 GeV or m: = 50 GeV in terms of the
integrated cross-section ¢ and the forward-backward asymmetry

App = (170) §_y»odo — §cose <0 4t § = a ,F).

ole*e 111/,
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Fig. 3 Cross-section ratio o(e*e™ — tt)opoin, as a function of Vs, in Born approximation and after O{w)

corrections are applied [m: = 40 GeV).
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Fig. 5 Forward-backward asymmetry of e*e~ — tt, as a function of Vs, in Born approximation and after O{a)
are corrections applied, for m¢ = 40 GeV and m, = 50 GeV.
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As in the case of a light fermion pair the weak corrections are dominated by the Z boson self energy, where

the Jargest part could be absorbed by defining a running a({s)
afs) = a(0)/[1 — [T ()]

with the QED photon vacuum polarization IT) The residual corrections are of the order of 1-2% depending

ED"
slightly on the Higgs mass. They can best be exl?ibited on top of the Z peak (if my < mz/2), where the large Z boson
self energy vanishes owing to the on-shell renormalization condition. .

Large corrections arise from the QED subclass, in particular from initial-state bremsstrahlung together with
the virtual photonic vertex correction. The dominant initial-state radiation is the same as in the case of light fermion

production. Since the QED corrections depend on the experimental cuts they have not been included in Figs. 3-6.
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ANNEX D
RADIATIVE Z PRODUCTION AT LEP 1
F. Boudjema, J, Cole and N, Dombey

1.BORN APPROXIMATION

At tree level the e*e -+ Zv cross section is given by

4 .

devg wa? F( S0 52 +M, 2.2
—— = i 2 - -
dx 5P (s MP) 10 R | (3T ]

2 1

25{.\ - sg'e +T

where x =cosd, s, =sin®d,, F(s,) s—
s.{1-s5.)

1

and v = (1 - 4m? /s) ,neglecting the electron mass in the denominator.

2. RENORMALISATION SCHEME

We outline the renormalisation scheme (RS) we have used in the
caleulation of the radiative corrections (RC) to the process
ete” - < Zy.
In this paper we use the RS based on Ref.[1]. The merits of this
scheme are

(1) it is an on-shell, gauge invariant scheme,
(ii) all Green's functions calculated in this scheme are finite,
enabling their wvalues to be taken from previous calculations,
{iii) the counterterms are readily divided into photonic and weak

parts enabling the corresponding Green's functions to be similarly
divided.

The outline of the scheme is as follows. First the parameters of
the electroweak Lagrangian are rescaled, generating counterterms in
the usual way. Then rencrmalisation conditions are chosen such that
the renormalised masses are equal to the physical masses, the value of
the Weinberg angle is defined by cosf, =M, /M, .

The other coupling is the rencrmalised electric charge is egqual to the
physical value determined at low energy by Thomson scattering. In
other words the values of M,, M, and o are used as input parameters.
In addition the scheme gives us rules for renormalising external lines
t.e any diagram. The details may be found in Ref.[1].

The RC for the processes we are considering can be divided intc
several groups. First we can separate the photonic and weak
corrections defined in the following way: photenic RC are those
diagrams inveolving either virtual photons or Bremsstrahlung diagrams
whereas weak RC are any other diagram. Our scheme enables each set to
be calculated as both infrared (IR} and ultraviolet (UV) finite.
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Next the wvirtual RC of each of these groups is divided into
subgroups consisting of

(i) electron self energy corrections (Fig.1l).
(ii) vertex corrections ( Fig.2)
(iii) box diagrams ( Fig.3)
and two groups which apply only to the weaklcorrections
{iv) boson self energy corrections and the Zvy mixing amplitude
(Fig.4)
(v) fermion triangle diagrams {(Fig.5}

Fig. l: Electron self energy corrections

" ;

Fig. 2: Vertex corrections

=
%
£

Prurnt
3=
y

Fig. 3: Box diagrams

SRR,

Fig. 4: Boson self energy corrections, and the Zy mixing amplitude
Il
f’
Fig. 5: Fermion trlangle diagrams
v -1
®
e Unless marked
w~@__< sl | otherwise
W —e
H v

Fig. 6: W self energy diagram
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This last group of diagrams requires additional consideration
since they are diagrams which generate the well-known ABJ anomalies,
although they are finite and so are not scheme dependent in the usual
way. The treatment of such diagrams is given in Ref.{[2] using symmetry

arguments and in Ref.[3] using dimensional regularisation.

3. WEAK CORRECTIONS

A large RC comes, perhaps surprisingly, from the weak
sector.This is the contribution of the Z° self-energy {see Ref.[1])
which is of order 7%. This diagram has a large value because of the
fact that its counterterm contains the value of the unrencrmalised
photon self energy evaluated at q? = 0. This is essentially because the
79 and the photon are renormalised at different scales and yet are
components of the same boson in the SU(2)}xU(1) Lagrangian. Since M; is
taken as an input parameter the Z° is renormalised at the energy scale
M, whereas o is rencormalised at zero energy.

Should we have a scheme in which o was renormalised at a scale M,, the
calculated value of the Z° self energy would not be large. Thus, as
emphasised by Altarelli [4], this large weak correction is egquivalent
(at least to leading logarithm) to the running of the electromagnetic
coupling constant o. Calculation of the RC to muon decay gives

the same term in the W self energy diagram of Fig. 6. This in

turn affects the calculation of the Fermi constant G, (c¢f the 4r of
Sirlin [5]) .80, if the formula for the differential cross section is

written down in terms of G,, for example in e*te” -+ Zv we have
T
dre GuMy «Flsa )y, s* M 2,
= - (=-
dx 52(5*M3) ..Ll-vzx2 2 A

where Fzsn)::JZF(SH)ER(l‘Sg)

We have also calculated the weak corrections to e*e” -~ Zy. Apart
from the scheme dependent large correction mentioned above {(which
becomes small if G, is used for the differential cross section
formula) the weak corrections are small {(of order 1%) in the standard
model .

4 _ELECTROMAGNETIC CORRECTIONS
We show in Ref.[68] that there is a low energy theorem for this

process.This allows for a simple derivation of the IR contribution
near threshold {(where LEP]I will be operating)as well as giving the
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dependence of the threshold amplitude in In(M, /m) where m is the
electron mass.Adding the soft bremsstrahlung contribution in the ustal
way leads to the full one loop radiative correction

da/dx:dgc/dx(l—(m/w)(1n{s/m2)1n(s/4m0)—31n(Mz/m))

where 3, signifies the photon encrgy resclution.
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ANNEX E
EXPECTED COUNTING RATES FOR e*e™ — (e*e " )y
M. Cafifo

The availability of the neutral vector boson Z has open the possibility of counting
the number of light neutrinos. A definite measurement of this number could be done in
LEP stage 1 experiments through the investigation of the process

(1) ete™ — oy

whose cross section is dominated by the Z° diagrams [1]. Signal (1) has to compete with
a large background due to the process

(2) ete™ — (ete )y

for the kinematical configuration in which the final positron and electron go undetected
in forward and backward cones of half opening angle #.,,. around the beam line, and
the emitted photon is detected in an angular range gmin < 8, < (180° - "), where
B0 > fepne.
”y cone
The knowledge of this background could be relevant also at higher energies where
processes of the kind

(3) ' ete™ — X~

where X is missing energy-momentum, could take place.

An accurate description of the kinematics and of the cross section for the process (2)
is therefore given and recent results are rewieved,

In the following we shall use the notation:

{4) e (pi)et(p2) — e~ {q1)et(g2)v(k)

electron mass; m;

electromagnetic coupling constant: «;

beam energy: E, 8= —(p1+ p2)?=4E2% p?=E?-m

photon energy: w, z=w/E, s;=—(q1+¢2)*=3s(1~z);

photon angle with the direction of the incident electron: §.,, y= cosfly;
half opening angle of desappareance cone: #,,,.;

minimum angle of photon detection:4m";

final electron energy: E,, p?=E?-m?,

final electron angle with the direction of the incident electron: 4,;
azimmuthal angle of final electron: ¢,;

angle between photon and final electron directions: #
other invariant variables:

t=—(p2—g2)%, ti=-(p1—q)* u=—(p2—q)% ui=—(p:—q)?

k_ = —p]_.k, k-i- = —pg.k, h_= —-q’l‘k, h+ = '—Q'2.k .

In the kinematical configuration relevant for the discussion of the background the
invariant quantities s, s and the absolute values of u,u; are always large and the fermion
propagators ki, ho are never too small in absolute value because of the restriction on the
photon angle. On the contrary the other two invariant variables t and ¢, can reach very
small values: in a typical configuration they can run over 15 orders of magnitude. So an
accurate study of their behaviour is crucial for a correct integration. The variables ¢ and
t1 are prevented from vanishing by the non zero values of the photon energy w and angle
¢, and can be appropriately written as function of the variables z, 8,0, and ¢,. The
expression for ¢, is

&7
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2 2
(5) ¢~ _mf:, z2E(1+ Cosae,'r) ;- 4B B, sin? (26_)
4E [1 — £(1 — cosl.,y)] 2
where
— 2
(6) E, =~ E(1-7z) mizcost, .

T [ - E(L~cosbey)]  4E(1-2)

cosl, . = cosl cosd., + sind sinbcos
1 9 ¥ c

The very steep dependence on #, in the second term of ¢, is very clear, but the first
term, although very small is never vanishing for the indicated conditions. A corresponding
‘expression holds for ¢, when the electron variables are consistently replaced by the positron
ones. Therefore, when the photon is radiated in the positron hemisphere (cosf.,; < 0) the
minimum of the absolute value of ¢, is much lower than the minimum of the absolute value
of t, although for values of the electron angles

zgind.,
2[1— £(1+ cosd,)]’

(M) 8, =~ 2arctg =17

the positron lies on its initial direction. Obviously, when the photon is radiated in the
electron hemisphere (cosf,,, > 0) the roles of t and ¢y are exchanged.

As a last observation the value of 8, in Eq. (7) shows that, for not teo small values
of z and 0., the absolute values of ¢ and ¢, are not simultaneously pathologically small.

In this kinematical configuration, therefore, the dominant contribution is given by
the t-channel with virtual photon exchanged, so that the calculation for the background
actually reduces to the evaluation of the QED part only. Indeed the contributions coming
from Z° exchange have been computed and found to be negligible [7,9]. For hard (w > m,),
non collinear (4., >> m./E.) photons the QED bremsstrahlung formula simplifies into {2,3]

dzo—gv)ED aa Soone . in EE;:C
9 % p
(®) dzdy 78 Jo sind.dbe 0 d¢°2 Zz(1 —cosbe )
1
Xo= 1 A Wir
 [ssi(s? + ) Hea P+ e]) + uuq(u? + ul)
B 585t
_ 4 L _ t - tl U U
Wir = [k+k_ T hohD kahs ks kpho | kohy

Note the lucky absence of double poles in ¢ and ty, which should be expected for a
square matrix element. To obtain the background the integration of Eq. (8) has to be
done also for the above specified range of y = cosfly and for some chosen range ofz =w/E.
The whole operation requires a numerical treatement and much caution, even if the angle
of the emitted photon is large enough for avoiding collinear singularity problems.

First attempts used an available Bhabha scattering Monte Carlo program (3], which
requires a minimum scattering angle of both the final states et and e, whereas the
photon angle is unrestricted. The program is claimed to work correctly down to minimum
-scattering angles of 0.001 degrees. However, since the cross section is peaked very much
near zero angle, the Monte Carlo generation technique becomes extremely inefficient and
is limited by the available computer time. While for large photon energies results {4] in
agreement with the more recent ones were obtained, for small photon energies such results
(5] turned out to be too small. In Ref. [5] a sequence of minimum scattering angles were
chosen and plotted against the number of accepted single photon events in arder to obtain
an extrapolation to zero minimum scattering angle. While this procedure is in principle
correct, it suffers very much from lack of statistics and hence does not allow a precise
extrapolation.
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A different attempt with a newly written Monte Carlo program and using a square
matrix element keeping also the electron mass gave too large values, but a revised version
seems to give results more in shape [6). ,

An approach that overcomes all such difficulties has been developed [7| using the
Monte Carlo program RIWIAD (8]. It consists on integrating only on a reduced region of
the phase space, where the photon energy w, the photon angle 6., and the electron angles 8,
and ¢, are good integration variables, and then to exploit the symmetry of the integrand
to recover the full value of the integral. In fact, as the differential cross section for photon
emission is symmetric for 8, ~ (180° — @), the integral over 87" < 8., < 90° is equal
to the integral over 90° < 0, < (180° — §7°**). In this second range of 8., the integration
variables accurately map the peak due to 1/t,; less well they map the secondary peak due
to 1/t, but this contribute much less to the integral. One integrates only in the region
90° < 8 < (180° - #7%") and then one multiplies the result by a factor of two. With this
prescriptions the indicated integration variables are suitable for properly accounting for
the dominant contribution of the region of very small values of 4..

Furthermore Eq. (8) is s0 compact that numerical contributions can be kept under
control in every situation. In the expression for X the square braket in A is composed of
terms which are always positive and so can not originate loss in precision. On the contrary
the expression for Wy in the very peaked region of small t and ¢; exhibits quite large
cancellations, checked to be of 8 digits at most. Since VAX double-precision arithmetic.
with 15 decimal digits has been used, this can not spoil the requested precision of one per
cent.

All a2 termns have been dropped from the numerator in Eq. (8), but they were kept
in the careful evaluation of the kinematical variables. It was also observed that no term
with 1/t%, which has the leading behaviour in the chosen configuration, is present in Xg.
An explicit calculation, done by subtracting from the square matrix element exact in m,
the value of Xy, shows that, in the considered kinematical region (where the electron is
almost aligned with the beam line and the photon in the positron emisphere) the leading
m2/t? term is given by

milsi+uf s2+4u? N t2 — 258) — 2uu,;
23] k2 A2 kihy

) X =

an analogous formula holding for the leading m?/t? term in the symmetric situation with
the gamma in the electron emisphere.

Xm is very strongly peaked at 8, = 0, where it almost compensate the X, peak, and
its contribution to the cross section has been approximately evaluated analytically and is
always negative, usually very small (a few percent at most) against that of Xy, to which
it has to be summed, and its contribution to the cross section is

(10) 0352 (Zmaz) — OREFP (min) = %iz{ [22(z — 4) + 8 1n(z)] (y:::ai'_l)

Tmax

—z(z — 2} In(1l ~ ymaa) + 2Li; (ii%(z - 1)) —2Lis(z — 1)}
max

Zmin

with ymez = cosﬂ,’r’“"‘ and Li; the Euler dilogarithin, the limit of applicability being

(11) w < B&Meone.
singmin
b

For values of w larger than in Eq. (11), the value of Eq. {10) is however an upper limit.
Numerically the X, contribution amounts to a few percent of the X contribution at most.

One has to note that this method uses very simple formulae, some known for a long
time and all very easy to check. In the numerical treatement the region of integration
is accurately described and the very limited number of terms allows a good control of
precision loss.
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For annihilation-channel dominated processes like ete~ — Dr-y the choice of @ renor-
malized at the square Z° mass (a=1/128.5) is the obvious one. On the contrary for the
amplitude of the process ete™ — (¢Te™)y, strongly peaked corresponding to extremely
small values of the momentum transfers t,t; (exceptional momenta in the terminology
of renormalization group), the value a = 1/137 seems to be more natural. In the first
of Ref.s {7] the value a = 1/128.5 was used for simplicity for both the neutrino count-
ing reaction and the electromagnetic background. Guessing that the use of a = 1/137 is
more appropriate for the electromagnetic background, due to the dominance of the lowest
transferred momenta, one has only to uniformly decrease the cross-section by the constant
factor 0.825. . : o :

Recently some other calculations of the process ete™ — (e+e~)4 have been completed.
One [9] is done with the helicity amplitude technique and with a mapping of the phase
space variables in.order to absorb the peak of the square matrix ¢lement. According to Ref.
[9] a discrepancy of 10-20 9% for photon energy over 1 GeV and larger for smaller photon
energy exists with the values reported in the first of Refs [7]. A part from the different
choice for the value of o {@=1/137 in Ref. [9]), the discrepancy is no Jonger claimed
after the Aachen Conference. Finally an event generator program [10] and a Monte Carlo
program [11] have provided results in agreement with Ref's [7].

In conclusion the results of Ref.s [7], confirmed by Ref:s [9,10,11] fix the values for the
background process e+e— — (e*e~)v in Born approximation. _

However in Ref. [10] is given also an estimation for the order a correction which comes
out to be larger than the lower order, As this estimation is obtained by keeping only the
contributions supposed to be dominant, a complete calculation is required and a cross-
check would not be superfluous. A confirmation of this result implies & reevaluation of the
praposed experiments on neutrino counting.

References. _

[1] E.Ma and J. Okada, Phys. Rev. Lett. 41 (1978) 287; K.J.F. Gaemers, R. Gastmans
and R.M. Renard, Phys. Rev. D19 (1979) 1605.

[2] F.A.Berends, R. Kleiss, P.De Causmaecker, R. Gastmans and T.T. Wy, Phys. Lett.
103 B (1981) 124.

[ 3] F.A.Berends, R. Kleiss, Nucl. Phys. B 228 {1983) 537.

| 4] G. Barbiellini, B. Richter and J.L. Siegrist, Phys. Lett. 106B (1981} 414.

[5] E. Simopoulou, in Physics at LEP, edited by J. Ellis and R. Peccei, CERN 86-02,
Volume 1, p.197. o S

[6] K. Tobimatsu and Y. Shimiza, Progr. of Theor. Phys. 74 (1985) 567; D. Perret-Gallix
private communication. o : _ .

[ 7] M. Caffo, R. Gatto and E. Remiddi, Phys. Lett. 173 {1986) 91; preprint UGVA-DPT
1986/09-514 (1986). o

[ 8] B.Lautrup, RIWIAD, CERN-DD Long Writeup Di114.

[ 9] C.Mana and M. Martinez, preprint DESY 86-062 (1986) and communication by F.
Dydak, ECFA-Workshop LEP 200, Aachen 29 September 1986.

[10] D. Karlen, preprint SLAC-PUB 4121 (1986).

(11] H. Veltman, Michigan University.



- 40 -

ANNEX F
O(c’)W MASS SHIFT FROM A VERY HEAVY TOP QUARK
B.W. Lynn, D. Kennedy and C. Verzegnassi

One of the most sensitive tests of the Standard Model! (and of electroweak
theories in general) to one loop level will be the precision measurement of the W
mass to better than 1% accuracy. As is known, the latter is related to the Fermi

constant, the Zy mass and the electric charge by Sirlin’s one-loop formula:?

2

T MZ) T VRG, 1-A, (1)
where A, is the radiative correction, evaluated to one loop. A, contains the still
unknown parameters My g, and M;,p, so that its numerical value can only be
given for fixed values of these quantities. Normally, one assumes M; ~ 30 GeV,

Mg =~ 100 GeV and finds®
Ay (M; =30 GeV , My = 100 GeV ) =~ 0.07 . {2)

In practice, this important correction stems mostly from oblique corrections,
particularly fermionic vacuum polarization diagrams. More precisely, the value
of Eq. (2) is mainly determined by renormalization of the running electric charge

where in Euclidean metric with ¢* = g2 — ¢f = —~M%

0)
“ME) = o . 3
with a~1{0) =~ 137.036 and A,(—M2) ~ .06 Actually, one can write
2
A, = Aa(—ME) - 32— A,(0) + small contributions (4}

where ¢ = Mw /Mz, s} =1 ¢2. The parameter A,(0) gives the correction to

the p parameter
p=1+4,0) |, (5)

and, if the top mass is equal to 30 GeV, A,(0) is sensibly smaller than A, (—M2).

In fact, Aa(—M3) gives the leading logarithmic contribution ~ ¢n(M3/ m})
to A,. This is not the case of A,(0), which is quadratic in the fermionic mass
and proportional to m}/M3. Thus for m}/M} < 1 one can discard A,{0) and

approximate A, by its leading logarithmic term A,. In this case, renormalization
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group arguments first introduced by Marciano and Sirlin* allow us to compute
next order effects in Eq. (1) by simply expanding the A, content of A, through
the related geometrical series. Thus, one easily computes the contribution to
leading log to Eq. (1) from O(A32) and finds that it is small; s.e., much smaller
than the O(Ag) term. This is a welcome indication that, as far as Eq. (1) is con-

cerned, assuming m =2 30 GeV, higher order effects can probably be neglected.

The situation might be rather different if the top guark turned out to be
substantially heavier; e.g., of the order of ~ 200 GeV. This is still not ruled out
by the existing experimental evidence. A straightforward computation shows
that in that case the numerical contribution of A,(0) to Eq. (4) becomes almost
of the same size {and opposite) to that of Aq{—M3):

2 2 2

¢ . (top) c; 3o mi

— = 8;,°7(0) ~ - [—-—— = —0.05 . (6)
33 =200 GeV 33 16133 CE Z

If this were the case, one would have strong motivation to fear that next
order contributions to A,, e.g., of the kind ~ AZ2(0) and Aq (~M3)A,(0)
might be relevant. Since these contributions are not of the leading logarithmic
kind, their coefficient will differ from that of A2, In this case it is not correct to
expand Eq. (1) including terms ~ (A,)? with A, given in Eq. {4). The relevant
terms must be evaluated by application of perturbation theory to the proper
oblique corrections contributions involving the various vacvum polarizations in a
renormalization scheme independent way. We have done this starting from a
general approach wihch evaluates higher order corrections which will be illus-
trated elsewhere.5 Here we only deal with the specific case of the 0O{a?) heavy
top corrections to the precise W= mass which will be of special interest for the

W mass measurement to be carried through at LEP II.
Here we work in the renormalization scheme which uses (0}, the muon
lifetime coefficient, G,{0) and the physical Z° mass Mz as physical input param-

eters and start from the coupled Dyson’s equations for the various gauge bosons

propagators:
1
Gww = =
ML+ ¢ —Fww(d®)
1
GZZ = Mz R 2 F {qz) ]
+¢' -7 e ey om
2 +q* —%22(9%) Py o)

)
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- ~ 72 (¢%)
g’ — WAA(qz) 2 F ¢ — 7z2(00)
7z4(q®)
[4* — Faa(a®)] M2 + ¢* — F22(d%)] — 73 ,(¢°)

Gza =

where the #;’s are the 1P/ vacuum polarizations for vector bosons

i;7 = W=, Z, A (photon) which we write as

Myj = iy + counterterms , (8)

with xy; calculated with the bare coupling constants. The specific choices of
physical parameters are then used to fix the numerical value of diferent quantities

which enter the oblique radiative corrections. In particular, we find:

Fza(—M2 Ap (—M3 Ap (—M2
Re "“(§ z) _ "a(m z) [1+ ;’E_23gz)+0(a’)] ;
(9)
A, {-M3) ~__"3_°3 [Q (-M3) - A (0}]
P z2) = 1—283 a Z 4

Defining the W mass as the pole of the W propagator and using consistently

Eq. (7) leads us then to the following result:

v o & M} % Mz -G
My =& Mz _1“1_253 Aa(- z)——EA,(O)

_ (138 + 334 &1 - 33)

27 242 2
(1 — 23-:)3 Aa( MZ) + (1 — 253)3' Ap(o) (10)
2¢3 53 Aa(-M})Ap(O)} .
(1 -25)° ’
2132 1 ___dom
Ca =1 80 2 (1+ 1 ﬁG“Mz ) . (11)

which allows us to compute those effects coming from a heavy top quark to 0 (a?)

(one loop x one loop) terms."

Note that the coefficient of A2 in Eq. (10) is, as we expected from Marciano

and Sirlin’s arguments, that which corresponds to the geometrical series

#1 One particle irreduicible two-loop effects within A ,(0) have been computed®
and found to be negligibly small.
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expansion of the A, content of 1/(1 — Ay). But the coefficients of A3 and of
AgA, are, as one might expect, quite different. For a top quark mass of 200 GeV,
we find from Eq. (11)

AMgraPiO(“’)l = +18 MeV , (12)

and of these ~ 18 MeV, ~ 10 come from the interference ~ Aad,, while ~ 8
come from AZ. This O (e®) contribution should be compared to that coming, for
the same value of m: = 200 GeV, from the O(a) term, which is of approximately
41 QeV.3%7 Thus we conclude that such O(a?) effect is completely negligible
even at the required level of accuracy, which we assume to be of the order of
~ 50 MeV. This result is rather important since, a priori, a larger effect might
have been found® and thus it may be feared that a large uncertainty in the

Standard Model prediction for the W% mass could come from higher order effects.

2 An incorrect calculation done by expanding Eq. {1} including terms
~ (A,)? with A, given in Eq. (4) would have yielded the incorrect result

AM‘l:rOPSOf“ﬁ)] ~ —40 MeV.
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