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e e~ — y + missing neutrals: Neutrino versus photino production
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We have calculated the cross sections for the processes e*e™ — yvv and ete™ — y3. The local-limit
approximation for the W-exchange diagram was not used and the integration over the neutrino and pho-
tino phase space was done analytically. The use of polarized beams is discussed as a way to improve the
signal-to-background ratio of the supersymmetric process.

At present, there is great interest in the study of spon-
taneously broken supersymmetric gauge models (see Refs. 1
and 2 for recent reviews). In several of these models the
photino ¥ is the lightest supersymmetric particle. Hence it
was suggested early’ that the search for the reaction
ete”— yyy could provide a wuseful supersymmetry
(SUSY) signature. Since then other authors*® have calcu-
lated the exact cross section for this process using finite
photino and scalar-electron masses. On the other hand,
there are already some preliminary experimental results,’
and with improved sensitivity and running time these exper-
iments will give important limits on m; and m,.

Clearly, the observation of the reaction e*te™ — yX,
where X is invisible, does not imply the existence of pho-
tinos. More likely, X is a neutrino-antineutrino pair, and,
by measuring the cross section for e*e™ — yX, one is
counting the number of neutrinos.

However, the observation of a signal above the one
predicted by the standard model would certainly require
some ‘‘new physics.”” So it is important to calculate accu-
rately the neutrino cross section. Our aim was to calculate
this cross section and to compare it with the photino pro-
duction cross section. Despite the fact that the photino pro-
‘cess was studied in three recent publications, we think that
it is still useful to write this Brief Report. Rather than du-I

do?Z _  6CMz*(gv’ +g4%)

plicating the existing work we make this note complementa-
ry to the previous papers. The emphasis will be on the new
aspects of our calculation, which are the following: (i) the
evaluation of the neutrino cross section without the previ-
ously used 4-point approximation for the W-exchange dia-
gram, (ii) the exact analytic integration over the neutrino
and photino phase space, and (iii) the discussion of the use
of polarized beams as a way to improve the signal-to-
background ratio of the SUSY process.

First, let us consider the neutrino production cross sec-
tion. We denote by p; (p;) the momentum of the incoming
electron (positron), by ¢, (¢g,) the momentum of the neu-
trino (antineutrino), and by k the photon momentum.

After integrating over the neutrino phase space one ob-
tains the differential cross section d o/dx dy, where x is the
photon energy in units of the beam energy (vs/2) and
y =cos@, with 0 the angle between k and p,. We have

do da’ .
=3 —-": i,j=Z,W, W, ,
dxdy S axdy’ e

where we have split the W-exchange diagrams in two parts;
W, corresponding to the diagrams where the photon is cou-
pled with the leptons, and W, corresponding to the diagram
with a WWy coupling. The various contributions are
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FIG. 1. Feynman diagrams for the process e e ™ — $7y.
where A similar integral without the denominators, Ny, ..., de-
fines /[f(q1,42)]. Details of these integrations can be
- 2 3.2 _ 2 2.2 1,42
C =2Gra/lm’s’x (1 —y*+4m,%y?*/s)] , found elsewhere® and the values of the integrals are listed in
A=pi+p—k , the Appendix.

The mass and width of the Z boson are denoted Mz and
I'z, respectively, and in the numerical evaluation we have
used Mz=92 GeV/c?, T;=28 GeV/c?, g4=—+, and

and for each argument f(q,,q2) we have

d’q, d’q; 8*(q1+q2—A)

Ty . 1f(q192)]= £(q1.q2),

2E, 2E; NyNp - - gv=— +2sin’9y, with sin?9y =0.215.
. For the photino reaction the amplitude is given by the di-
with agrams of Fig. 1; with a similar kinematics and an obvious
Ny=Mp*— (pi—q;)? ij=12 . notation we obtain
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where

C =160/ [ns*x (1—y* +4my?/s)] , 2
and 106 (pb)

I, . =1y  [f(qug)=1],

Notice that we have consistently neglected the electron
mass and considered the approximation of degenerate 10
scalar-electron masses.

Our results are shown in Figs. 2-4. In Fig. 2 we plot the
total cross sections o (vvy) and o(3¥y) for my;=5 GeV/c?
and m;=40 GeV/c? using the cuts |y|=<094 and 1
0.2=x =1. As far as one can judge, comparing our curves
with the corresponding ones published by Grassie and Pan-
dita,’ the agreement is very good. Our photino cross section
is twice as big as theirs because we sum the contributions of 1
the two degenerate scalar electrons. The comparison with 10
the other two calculations is not so easy and we noticed
several misprints in the square of the invariant matrix ele-
ments listed in Ref. 6. Even for o(vvy) the agreement
with Ref. 5 is good despite the fact that the authors used 10-2
the local-limit approximation. In fact, for Vs =100 GeV,
this approximation overestimates the W contribution by a
factor of 1.2. But the effect on the total cross section is
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FIG. 2. Photino cross section as a function of /s for unpolarized

marginal, of the order of 2%, due to the overwhelming con-
tribution of the Z diagram. Clearly, this is not true if we
calculate do/dx dy far from the resonance. For instance,

(dashed curve) and polarized (solid curve) beams. The dashed-
crossed and dashed-dotted curves are the neutrino cross section for
unpolarized and polarized beam, respectively.
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FIG. 3. R as a function of v/s. The different curves have the
following meaning: dashed, unpolarized x = 0.2; solid, polarized
x 20.2; dashed-dotted, unpolarized x =0.5; dotted, polarized
x =0.5; dashed-crossed, unpolarized 0.2=<x=0.5; dashed-
double-dotted, polarized 0.2 <x <0.5.

for Vs =200 GeV and 0.2<x =<0.5 the local approxima-
tion overestimates o by a factor of 2.1.

The large-Z contribution to the neutrino cross section
completely washes away any signal of photino production
for Vs > 80,90 GeV. This feature is clearly seen in Fig. 3,
where we show the ratio R = o(yyy)/a(vvy). The dashed
curve represents R for the same kinematic cuts and the
same m; and m;. R is maximum for Vs =30 GeV and
drops below 0.5 for Vs 2> 80 GeV. For small energies R
decreases when Vs — 0 because the photinos are massive
while the neutrinos are massless.

mé(GeV/cz)

5 10 15

m s (Gevic?)
FIG. 4. Discovery limits corresponding to Vs =30 GeV and
L;=100 pb~!. Dotted curve, unpolarized; dot-dashed, eg ; solid,
ot
er € .

BRIEF REPORTS 33

Trying to increase R we were led to study the same reac-
tions with polarized beams. At high energy there are effec-
tively two polarization channels e; ez’ and eg e/*. They
both contribute equally to the photino production, but the
RL channel gives the minimum contribution to the neutri-
nos background process. The full curve in Fig. 3 represents
R for RL polarized beams, using again the same values of y,
x, mg, and m;. The other two curves display the compar-
ison between unpolarized and RL polarized values of R for
a higher cut in x (x =0.5). In all cases the use of polarized
beams improves R and for energies above the Z resonance
it can amplify R by an order of magnitude. This can be
seen on the right-hand side of Fig. 3, where the curves for
polarized and unpolarized beams were plotted for
0.2=<x =<0.5 (notice the different scale). However, one
should keep in mind that in this region R only reaches 0.7
at Vs =200 GeV. Below Mz, R can be larger than one and
the polarization of the beams enhances R by a factor of
2-3.

In this domain of Vs a larger cut in x could be a useful
way of extending the region of R > 1 towards higher values
of Vs. Obviously this gain has to be balanced against a
reduction in the total number of events. It is worthwhile to
point out that the same values of R can be obtained with a
R -polarized e~ beam scattering off unpolarized positrons.
The polarization of the two beams increases both cross sec-
tions by a factor of 2 and so it has no effect on R besides
giving better statistics.

Another interesting way of looking at our results is as
SUSY discovery limits in the m;m; plane. For this we need
some criteria for the minimum R necessary for an experi-
mental separation of the photino and neutrino processes.
Since o (y77y) is at most of the order of 10~! pb and a real-
istic integrated luminosity cannot be larger than 100-200
pb~!, the number of events will be small and the statistical
error relatively large. Leaving aside a sophisticated statisti-
cal anlaysis we consider, for illustrative purposes, that SUSY
would be discovered if

T—-JT =N+JN ,

where N is the predicted number of standard events and T
is N plus the predicted number of photino events. In Fig. 4
the area inside the curves corresponds to the values of m;
and m; which meet our discovery criteria for a e~et col-
lision with 30-GeV center-of-mass energy. The dotted,
dashed-dotted, and full curves refer to unpolarized, R polar-
ized electron, and polarized eg ,e;* beams, respectively, as-
suming an integrated luminosity L; of 100 pb~!. Again,
one can see that using polarized leptons increases the
chances of discovering SUSY.

APPENDIX

We obtain® the following recurrence relations:

Tym, .. [pi-af]

-Sifj,lm, .‘.[f]+ilm, [f]' k=.j;

__1 ~ ~

T QA-pi+8) yym, . 11— 1Im . If), k=j (AD
Iy lk-gul=(A-kly  +emdy . lk-q/2, (A2)
Iy . lk-ql=1iy, Ipr-ql+1, . Ip2-ql , (A3)
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- (pi,u)
1y, ... i[u 1= - &My, .. ..y—Ady .. 4 . (A4)
jr; time'sj (p;.p;) / nj;ltin'\é,s jr; ti'm'e'sj
IAU,_H,’ _”[uyquz-q ce u,,,-q]=(—1)"'lAU.,,,, o durcquacq - umeql, =g UEL L (AS)
r
with and
My?— m.?, neutrinos, R =(B*—A4D)? |
5= 2 2 2 :
mg"—me"—ms”, photinos, we obtain
en=(—1"*, g=q,—q; A;=8+A-p , 1,,=%1n[(A,+B,)/(A,-—B,)],

and u, denotes any 4-vectors but g;. For convenience we
define the “‘scalar product’” (a,b)=A-aA-b—A%-b.

. With a judicious use of these relations all integrals
Iy .. If] in Egs. (1) and (2) can be expressed in terms of
I, .. =1y [f=1]. Defining

M, 2“(1’:‘_‘1)2,
Ny [ y L ij=12,

T m— (o — g
1
'B={(1~4m,;2/A2)”2 :
Bi=B(p.p)"* ,
A =(A/—Ak)z—ﬁz(flpk—€/Pnflpk_€jpi) ,

B=A4*— A2+ B (pe,pi) — (pipi) ],

D = (A;+A)?— B*(e;pi + epr, pi +€pi)

%1/(A,2~Bi2), i=k j=1I
Iyj=
J%m[(D—A +2R)/(D—A4 -2R)],

In22,2=— 020, 1,22
Ie=—0l12 ,
Lo = Uiy + 1)/ (24;)

hiizo,2= a0+ 1i20,2)/(24))
where 9; represents the derivative with respect to A4;.
I=87/2 ,
ilu-q1=0,
Iu-qv-ql=pn(uv)/6 .
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