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It is shown that in a large class of supersymmetric SUe(3) × SUL(2) X U(1) models there is no spontaneous CP violation. 

The standard explanation of  CP violation through the Kobayashi-Maskawa (KM) model [1 ] has recently been 
pushed to the limit due to the new measurements of  e'/e [2]. There is therefore a renewed interest in looking for 
other sources of  CP violation besides the KM mechanism. 

One possibility is to have spontaneous CP violation. In the context o f  the SUe(3 ) X SUE(2 ) X Uy(1)  gauge 
theory it can be achieved if at least two Higgs doublets are introduced [3]. I f  in addition natural flavour conserva- 
tion (NFC) is required then one must have three Higgs doublets [4,5] or two Higgs doublets and one singlet. 

Supersymmetric (SUSY) SUe(3 ) × SUL(2 ) X Uy(1)  models (see ref. [6] for a review) need at least two Higgs 
doublets and incorporate NFC in a natural way. So it is interesting to ask if spontaneous CP violation can be ac- 
commodated in these models. 

The purpose of  this letter is to examine this question in a large class of  "minimal" SUSY SUe(3 ) × SUE(2 ) × 
Uy(1)  models where the breaking of  SUSY is accomplished through the coupling to N = 1 supergravity [6]. In 
these models the potential part o f  the lagrangian is (we follow the notation and conventions o f  ref. [7]) 

3 
~A ] Of l 2 - - ~  I(D'D)]+£SB, (1) 

~CP°t = -- ~ j=l 

where z A (XA) denotes the scalar (spinor) component  of  a general chiral superfield and the first sum is over all the 
chiral superfields. In the D terms the index] refers to the gauge group and we have 

D 1" = g] z*A TA BZB, (2) 

where g/are the coupling constants and T are the generators. I f  we do not introduce mass terms for the gauginos 
the supersymmetry breaking lagrangian is 

£SB=--m2/2 ~A z*AzA-m3/2((A--a)f(z)+Z'~-l 'Of OZA (3) 

where m3/2 is the gravitino mass and A is a parameter o f  order unity. 
As we are interested in studying the possibility of  having spontaneous CP violation in these models we want to 

consider the most general situation. Hence we include also the possibility that the scale at which supersymmetry 
is broken via eq. (3) is much higher then the low energy scale, O(Mw) , at which we want to study the models. 
Then radiative corrections will change the parameters in eqs. (1 ) - (3 ) .  

Different models are defined by the f-function. As is well known [7,8], it is not a trivial task to assure that the 
true vacuum of  the potential  does not break colour and electric charges. Let us assume that a set o f  parameters 
can be found where that is true. Then we have only to consider the Higgs sector. I f  we would get spontaneous CP 
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violation for some set of parameters, then we would have to check if the conditions for the non breaking of colour 
and electric charges were satisfied. 

In the minimal SUSY model we have 
t 

f(0) =/a e~t3h~ ht3, (4) 

where h and h' are scalar components of the two Higgs doublets chiral superfields and/~ is a parameter with di- 
mensions of mass. As these SUSY models incorporate natural flavour conservation (NFC), this gives a particular 
case of a potential for the standard model with NFC and two Higgs doublets, therefore this model has no sponta- 
neous CP violation [4,5 ]. 

Hence, if we want to have spontaneous CP violation one must include more Higgs fields. In many of the "mini- 
mal" models considered in the literature [6] one Higgs singlet chiral superfield is also introduced. Thus the pos- 
sibility of having spontaneous CPviolation deserves a careful study in this situation. To be specific we have studied 
the following three types of  models: 

f(1) = Xye~h~h'¢ _ ey ,  f(2) = Xye~hah'  ¢ + oy2 , /-(3) = Xyea~h~h' + X'y3, (5, 6,7) 

where y is the scalar component of the Higgs singlet chiral superfield and e, a, X and X' are parameters with ap- 
propriate dimensions (remember that f has dimension 3 in units of mass). The models with/'(1) and f(3) have 
been considered before [7,9]. The model with f(2) is considered here for completeness ( f i s a  polynomial in the 
fields of degree at most three). 

For these types of models we prove the following: 

Theorem. For the models specified by eqs. (1)-(3)  with an f-function given by eqs. (5)-(7),  and with radiative 
corrections, it is impossible to have spontaneous CP violation. 

Proof. Although we have proved the theorem for the three cases, let us outline the proof only for the f(3) case, 
since the other cases are very similar. Allowing for radiative corrections the Higgs potential is 

l(g2 g ' 2 ) (  v2 02) 2 + ^  VlV2 +gk' 3 +k  V3(V 1 - 2  2 2 204 2 2 2 2 1 2 2 1 2 2 2 2 
_ _ +o2)+~mlo I +~m2u 2 +~m2o 3 

+ 2XAm3/2OlUEU 3 cos (01 + 02 + 03)  + 6kX'm3/2OlO202 cos (01 + 02 - 203) + 2~'Bm3/2o ] cos (303), (8) 

where 

e 0 
(h>=(  01 oP(101)) , <h'> = (v2 exp(iO2)) , (y> = 03 exp(iO3). (9) 

At unification scale 

m 2 = m 2 = m 2 = m 2 / 2  , and B = A ,  (10) 

but due to radiative corrections they will be different at low energy. As we are going to demonstrate a no-go theo- 
rem we do not worry about the renormalization group (RG) evolution but allow the parameters to be arbitrary. 
Only if there was spontaneous CP violation for some set of parameters we would have then to check if they could 
be obtained via the RG equations. 

It is convenient to make the following redefinitions: 

V-(A4m4/2 /k2)  ~ r, oi==-(m3/2/k)Abi , 2 6 1 - O 1 + O 2 + O 3  , 2 6 3 - = 3 0 3 ,  ( l l a , b , c , d )  

then the potential can be written 

~r=al@2_~2)2+o102+ 41_ 2~4 i A2-2 1 -2a2  -2-2 Cl O 3 + gmlo 1 + gm2u 2+}m303 

+ 201t32t? 3 cos 2(91 + ClD1~32132 cos (261 -- 263) + c2[~33 cos 263 -- U(Oi) + W(f)i, 6 i ) ,  (12) 
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where all the quantities are dimensionless and can be related easily to the original parameters. 
The part of the potential that depends on the phases is 

W(fii, 6i) =- O12 cos 261 + O13 cos (261 - 263) + 023 cos (263) ,  (13) 

which is of the type studied in ref. [5]. This has a nontrivial minimum in the angle variable if ID12D13 I, ID12D23 I 
and ID13D231 can form a triangle [5] and if 

D12D13/D23 > 0 .  (14) 

Condition (14) implies in our language 

cl/e 2 > 0 .  (15) 

Let us assume that the parameters are such that a minimum with non trivial phases exists, Then 
^4 

-2^2+ lele203]. (16) w(f,i, 6; -- 6 mr" )  = - ½ [2 (e2/e 1) r'2 + 2 (e 1/e2) v 1 v'2 

If we introduce the variables 

Z = f q  2 +fi 2 , A = 6 2 - 6 ~ ,  (17) 

the potential to be minimized in the remaining variables is 

, 2 m 2 ) ~ + 1  2 m2)A , 2 P=alA2+1(X2- -A2) (1- -Cl /C2)+f2=+fa4~Cl(Cl -C2)+a, (m 1 + a ( m l -  +(~m 3-e2 /e l ) f )  2. 

(18) 

The extremum conditions are 

, - 2  rfi2)=O O ~ I O X = } ( I _ e I l e 2 ) Z + ~ 2 + g ( m l +  = 8 ~ r l O A = 2 a l A _ ½ ( l _ C l / e 2 ) A + g ( m l _  , * ^2 t~2) O, 

81~/002= '~c1(c I _ c 2 ) v 2 + ( Y . + ½ m 2 - c 2 / c l ) = O .  (19) 

These conditions can be easily solved, but they never yield a minimum because the hessian matrix 

2a --½(1 --el/c2) 0 0 )J 
1 (1 1 (20)  0 "~ -- el/C2) 

1 
0 1 ~ el(e 1 - e 2 

is not positive definite. In fact the conditions of positive definiteness are 

(i) 2 a 1 - ~ ( 1 - C l ] C 2 ) > 0 ,  (ii) ½ ( 1 - c l / e 2 ) > 0 ,  

(iii) c 2 > ClC 2 ~ (Cl/C2)2 > Cl/C2, (iv) (1 -- Cl/C2)(C 2 - ele2) > 4 .  (21) 

Condition (i) can be verified with arbitrary a I . However condition (iii) and eq. (15) imply 

Cl/C 2 > 1 , (22) 

which is in contradiction with condition (ii). This ends the proof of our theorem. 

We have checked, both analytically and numerically that a potential of the form (12) but without SUSY can 
have spontaneous CP violation. The requirement of SUSY amounts to fixing the coefficients of the second, third and 
fourth terms in eq. (12). If we allow, for instance, the coefficient of b12fi22 to be d, arbitrary (SUSY puts d = 1), 
then one can easily show that there is spontaneous CP violation if 

d > el/c 2 + 4/(c 2 - e lc2 ) .  (23) 
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Using conditions (ii) and (iii) of  eq. (21) one can verify that  in order to have a minimum one must have d > 1, 
which is in agreement with the theorem we proved. 

Although we have shown the absence of  spontaneous CP violation in these minimal SUSY models, there are 
many other  ways o f  obtaining additional CP violation. If  we consider the model  of  ref. [7] without radiative cor- 
rections, then we can give a phase to the parameter  A in eq. (3). This could still be thought of  as a kind of  sponta- 
neous CP violation in the hidden sector that performed the breaking o f  supersymmetry.  CP violating phases will 
then appear for the usual particles in the Yukawa interactions with the neutral Higgs, and for their supersymmet- 

ric partners in the w i n o - q u a r k - s q u a r k  coupling [10]. 
Another  possibili ty is to consider models with radiative corrections. Then the different evolution under the 

RG of  the up and down quark matrices gives origin to new phases. This possibility has been studied by  many 

authors [ 11 ]. 
In conclusion, we have shown that in some classes o f  supersymmetric extensions of  the standard model  no 

spontaneous CP violation can take place. One should however note that  our result was proved only for some 
classes o f f  functions. It remains an open possibili ty that more complicated f functions could produce spontane- 
ous CP violation. 

We would like to thank A. Barroso and G.C. Branco, who collaborated at the first stages of  this work, for 
many helpful suggestions and comments.  We would also like to thank A. Barroso for a critical reading o f  the 
manuscript.  
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