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Abstract. The contribution of the fermion triangle
diagram responsible for the ABJ anomaly to the
ZZvy vertex is calculated paying particular attention
to the symmetries which must be satisfied. Contrary
to previous calculations no static electric dipole mo-
ment of the Z is found. Two other P-violating but
CP-conserving couplings are demonstrated as is a
new anomaly condition.

1. Introduction

The recent discovery at CERN [1] of the Wand Z
particles with the masses predicted by the standard
electroweak model SU(2)x U(1) including radiative
corrections [2] provides the most powerful conlir-
mation of the model so far. Yet the question of
whether the model is fundamental or simply phe-
nomenological remains open. If the former is true
then the W and the Z can be considered as elemen-
“tary in the same way that the photon is elementary:
if the latter, they are simply composite particles of
spin-1. At low energies it is difficult to distinguish
between these two possibilities: we can expect, how-
ever, that any composite structure of the W and Z
will show at higher energies in deviations from the
standard model. In particular radiative corrections
should provide a sensitive test of the standard model
compared with composite models.

Our aim in this paper is to examine one of these
higher order processes which will be of interest when
LEP and other electron positron machines have suf-
ficient energy to produce a pair of Z’s. In particular
we want to consider the Z coupling to photons via
the fermion triangle diagram. This diagram has al-
ready been studied by Renard [3] who reached the
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conclusion that the Z boson would have an electric
dipole moment (EDM). Motivated by this surprising
conclusion, which would violate the time reversal
invariance of the theory, we have re-examined care-
fully the ZZy triangle coupling. We shall prove that
for real on-shell Z’s and virtual photons the only
coupling is a parity-violating anapole moment. This
anapole moment, f{irst examined by Zeldovich [4]
for a spin-% particle, is a coupling of the Z spin with
the external electromagnetic current which violates
parity but conserves CP-invariance.

We have organised our paper in the following
way. In Sect. 2 we review the calculation (5) of the
triangle graph with one axial current coupled to two
photons and the Adler-Bell-Jackiw (ABJ) anomaly
[6]. In Sect. 3 we generalise these results to obtain
the fermion triangle contribution to the ZZ+y three-
point function and point out the existence of yet
another anomaly. In Sect. 4 we consider the particu-
lar case of one Z and the photon on-shell and the
other Z off-shell. We show that, in this case, there is
an electric dipole transition, but time reversal In-
variance is preserved since it does not lead to a
static EDM for the Z. Finally in Sect. 5 we consider
the Z anapole moment.

2. The Zyy Three Point Function

In the standard SU(2), x U(l)-electroweak model the
Z boson fermion coupling is
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where the neutral current J* of fermion f is
Ji=yy(gl v —gh v ¥y (2)

with
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gl =%3T{ —Q;sin* By, (3a)
gh=1T/. (3b)

T/ and Q, are the third component of the weak
isospin and the fermion charge respectively. In the
interaction Lagrangian, L, there is no direct Z-
photon coupling. Hence, in lowest order, the Zyy
three point function, G#**, is represented by the dia-
grams of Fig. 1, with fermions in the loop. Evaluat-
ing these diagrams we obtain:
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Notice that the only contribution to G*** is pro-
portional to g/ since, by Furry’s theorem, the tri-
angle diagram with three vector vertices is zero.

The evaluation of the integral in (4) is by now
well known [5]. After evaluating the trace one im-
poses the Ward identities, resulting in the conser-
vation of the electromagnetic current

ki, G =0, (5a)
ky, GPe=0 (5b)

and obtains:
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A=mj+x;(x, = 1) ki +x,(x, — 1) k3 —2x; x3 ky - ka.
(6b)

We note that if we had only applied one of the
conditions (5) the other would automatically follow
from the necessary symmetry arising from the identi-
cal nature of the two photons. [t is now easy to see
that G*"* also satisfies the relation:
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The presence of a mass independent term on the
right hand side of (7) constitutes a break-down of
axial current conservation for massless fermions.
This is the well-known ABJ anomaly [6]. Clearly,
with the standard fermion multiplet assignment, the
anomaly vanishes since

> g4 0}=0.
I

It is worthwhile remembering (6) that the 4-momen-
tum integral defining the triangle is linearly diver-
gent. So the value of the triangle graph is ambiguous
and depends on the labelling convention of momen-
ta and the method of evaluation of the integral

‘However this ambiguity is removed by imposing the

two constraints given by (5). On the other hand the
different terms in (6a) are not all independent. In
fact, using the identity

(a-b)[cdef]—(a-c)[bdef]+(a-d)[bcef]
—(a-e)lbcdf]+(a-f)[becde]=0 (8)

where [abced] is a shorthand notation for
e, by dg, it is easy to re-write (7) as
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This expression is precisely the one derived by Ro-
senberg [5] and later used by Adler (6) in his seminal
paper on triangle anomalies.

Using (9) one can immediately write down the
amplitude F for Z decay into two photons, i.e.
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Again we obtain a well-known result: Bose statistics
forbids a spin-1 particle to decay into two photons.
We note that if one photon is off-shell the amplitude
F(Z —vyyy) does not vanish.

3. The ZZy Three Point Function

We shall now use the results ol the previous section
to calculate the ZZy three point function T*** For
this it is convenient to have an expression for G**#
using g and k, as the independent variables. After
some manipulations, which involve the use of the
identity (8), we obtain:
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with

A =mi+kdx (x;—1)
g2 xa{x, — 1) +2x; x5 k. (12)

To obtain the expression G”*#(q,,q,,k) with onc
photon replaced by a Z, where ¢,,¢q, and k(=g,
—y,) are the incoming Z, the outgoing Z and pho-
ton 4-momentum respectively, we must make the
relevant momentum substitutions and the replace-
ment

q

102, 13)
¢ 0yl cosly °© (
so that

J = mi+qix(x,—1)

+ TN (o= 1) F2x, X2, - q5. (14)

In this case, however, the two electromagnetic cur-
rent conservation conditions, (5a, b) no longer apply.
Instead we only have the one condition

k, TP =0,

This is not sufficient to determine T”** uniquely. In
addition we must apply the condition that the two
Z's are identical. This implies that TP is symmetric
under p— v, ¢, - —q,. We therefore write

Tp\l“(ql’ q2, l\)

=GP gy, 42, K+ G (= g2, =i, L), (15)
We postpone the evaluation of this quantity till later

and consider now the triangle diagrams of Fig. 1.
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but with two axial currents, i.e. assume that the
currents with 4-momentum k,; and k, are axial cur-
rents and the third is a vector current. Then
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1

and if the loop fermions are massless, we have
Gy (m=0)= G =0.

On the other hand, evaluating the trace in (16) and
separating the terms proportional to m? it is easy to
obtain
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Since now all the integrals are convergent, a change
of integration variable, p—g—p, in the second term
proves that G7%, =0.

Having proved that the triangle with two axial
currents is zero, let us now proceed with the calcu-
lation of T*"*. From (15) we obtain:
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It is easy to check that T#** satisfies the following
relations:

k, TP =0, (19a)
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We should emphasize here that (19) show that nei-
ther of the quantities q,, T?"* or g, T*** vanish
even in the limit of massless fermions when it would
seem that both the vector and axial currents coupled
to the Z are conserved. This is because both the
quantities ¢,, T?** and ¢q,,T?"* have anomalous
contributions: in the ZZy coupling one of the Zs
must couple to an axial current and by symmetry, it
is not possible to say which Z couples to the axial
current and which to the vector current. We stress
that it is the presence of these anomalies which show
that it is not correct to calculate T#"* by imposing
naive current conservation for the current coupled
to the Z. Renard [3] does not use (19) in his calcu-
lation: he seems simply to have evaluated the ampli-
tude F(Z—yy,) of (10) above with ki=M3%. Our
results therefore are different and in particular we
will show later that, contrary to Renard’s claims, we
do not obtain a Z EDM.

At this point we would like to point out a new
anomaly. Clearly, for a massless fermion loop, one
would expect that the difference

=Gy, 4y, k)~ G (—q,, —qy, k)

would be zero. However, using (11) to evaluate x”*#
we obtain
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with A" given by (15). Like before, there is a mass
independent anomalous term which again vanishes
in the standard model since

ZgﬂgéQFO-
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4. The Electric Dipole Transition of the Z

Let us consider the particular case where the initial
Z and the photon are on-shell and the final Z is off-
shell. Using the on-shell conditions

q:l)‘ :‘M%,
elpqpl :0’
k=0

2

and defining ¢3 =35 we obtain

TrH (g = M3, g3 =5, K =0)
2e g \?
= ——n_z (COSH Zg{184 Qf(awﬂ"‘ha‘[zlxqz I(s. M7%)
11 f

(22)
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where I(s, M%) is an integral defined in the appendix
(A9). In the appendix we prove (A1l) that the com-
bination

A=sl(s, M3)—M3iI

Swz [ =52 7))

s—M3272
o([5aT)

+ M2
where f(u?) is given in the appendix and p=m;/M;.
We note that the second term in (22) is an apparent

EDM term since it gives rise to a non-static parity-
violating electromagnetic coupling of the form

(MZ, s)

(23)

ef(s)(s—M3)e” e, 01, kot (24)

In the static limit this is proportional to E-(e, x e,),
where E is the electric field, but vanishes as s— M3,
(since B(s) is finite in this limit). Thus this term is an
electric dipole transition but not an EDM. Thus we
find that the Z does not have an EDM in con-
tradiction to Renard [3].

The electric dipole transition, however, contrib-
utes to the amplitude for the process Z—e*e™y as
in Fig. 2. this contribution being:

e
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Recalling that s—M2= —2M w, in the rest frame of
the Z, where w is the photon energy, one sees that
apparentiy F has the w™"' behaviour characteristic of
a bremsstrahlung process. However, this is not the
case since the square bracket on the right hand side
of (25) is also proportional to s— M3 on account of
{23). Equation (25) therefore shows that there should
be hard photon radiative decays of the Z. The ra-
diative decays of the Z seen recently at CERN [7]
may therefore be connected with an electric dipole
transition of the form given in (24) and we have
taken up this matter in a recent preprint [8]. Gou-
naris et al. [9] have also suggested a similar cou-
pling to explain these unexpected decays.



A. Barroso et al.: Electromagnetic Properties of the Z Boson. [

We also note that the first term in (22) does not
contribute when both Z’s become real since e,-¢,
=0 in this case.

5. The Anapole Moment of the Z°

In the previous section we have considered the cou-
pling of Z’s to real photons when one Z is real and
the other virtual. In this section we consider the
coupling of a real Z to virtual photons. We show
that this leads to an anapole moment for the Z. To
examine this it is convenient to write down the
matrix elements of the current J* between an initial
and final Z. Starting from the general expression
given by (18) and introducing the relations

2_ 2 ag2
1=q2=Mz,

€1-qy=¢e-q;=0

R
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where the integral I' is
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0 0
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]) l\/[%—.\'l A N
[n agreement with our previous analysis. (26) shows
that the coupling vanishes for a real photon. Nev-
ertheless for a virtual electromagnetic field. A‘, crea-
ted by an external conserved current, J;*. 1.

/\,2 A“ :J;.ﬂ

one obtains an eflective current-current coupling of
the form

L= —eF(k?) e I e, ey (4, +4q2), (28)
with

o2
FR)=—y 5 Y el O, (k). (29)

n*cos® Oy 5
Hence. in the static limit. ¢, +¢, —(2Mz, 0) we have

L= =2eaM (e, xe.)-J g

where a=F(0) is the Z anapole moment. From our
results for the integral I', given in the appendix, it
can be seen that for M, >2m, the anapole moment
Is a complex number. This is because Z is unstable
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and can decay into an ff pair when Mz>2m;. We
thus have

——S
" 7% cos OW;gAgéQf 6MZm (m})

(30)
using the anomaly condition (21), where the function
S is given in the appendix.

The current J} is not a directly measurable quantity.
If, for instance, one looks at the simplest process of
electron-Z elastic scattering one realises that there
are other diagrams of the same order that can con-
tribute. What is observable are the e~ Z—e~ Z and
the e* e™ —ZZ cross-sections and not the Z anapole
moment by itsell. A complete discussion of the latter
process will be given in the next paper of this series.

Appendix

In this appendix we collect a few expressions useful
to calculate the parametric integrals and give the
results for those integrals that appear in (22) and
(27).

Our definition of the Spence function, Sp(x), fol-
lows that of Lewin [8], namely

“n(l =2z) Pln(l—=x2)
Sp{x)=— | ——dz=—f ———— d=. (A1)
0 - 0 -
Consider the integral
Ldy )
S/f):[—I11(1—-/3.\'(1—.\')+H-:J, (A2)
o N
Writing | = fx{l=x)=(1—a, x){1 —2_x) and split-
ting the logarithm n (A 2) we obtain (10)
1 v
[ (In(l —2, x)+In{l —a_ x)
0 v
—2in0(ff~4) In(min(x,, «_)) (A3)

where 0(x) is the step function and min(x.,x_) is
the minimum of z, and «_ with

=36V (B> =4P).

We can now write S(f3) in terms of Spence functions.

and the result is:
o 2281
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Now consider
1
L(B)=[dxIn(l—Bx(l—x)+ie). ©(A))
0 .
Integrating by parts we obtain
1
Bx(1—2x)
Lp)=|d . A
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On the other hand, from (A2) we have
dS 1 I—x
‘ =—= — d
SB=55 ({ T Bx(l—x)+ie
. }d 1 (AT)
T2y x 1—-Bx(l—x)+ie
and, writing the numerator of (A6) as
—2(1=fx(1—=x)+2—fx
we obtain
L= =2+(=4 S (A8)

The integral defined in (22} is

1 -y
I(s, M3)=[dx, | dx,

0 0
Ny, +x,—1)
my—sx (1 —xq)+x, xa(s—M3)

which can be written in terms of the functions L and
S:

R l 1 m2 M3 s
=y el )53
(s, Mz) s—=M3Z\2 s—Mj my mj
M3 M3
)
2(s—M3z) my my
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2(—M3) (Mz—3) my my
Fs+ M3 M2 s
p= v Rl
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From this equation it looks as if 4 has a pole at s
=M3. However it is easy to check that this is not

Hence

(A10)
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true. In fact, writing s—MZ%=em}, one can check
that the terms in ¢~* and £° vanish and that the first
non-zero term of the expansion is of order ¢, i.c.

s—M?2
A="—Z1 =302 f (e + 3t S (1]
6M3

s—M372
+O([_M§ ] ) (A11)
with
(N A CT
1/——(4'”_2—13 tan ! (2#2__1> if ,u>‘%
-2 if #=’if
f?= 2 (2u2—1+v(1—4u2))
——— In 5
Y1447 2u
2in . |
(A12)

and p=m;/M . The imaginary part of f(u*) goes to
infinity as p approaches § from below. However this
behaviour was artificially introduced by our expan-
sion and it signals the breakdown of the Taylor
series. Directly from (A10) one can check that for u
=1 the value of A is finite.

Consider- now the integral I'(k?) introduced in
(27). In the limit k=0 and after the change of
variable x; —» 1 —x; —x, we obtain

X3

mi— M3 x(l—x)

_ ! i [3_2M§—3mf 5 (ﬁ”

12M37 m my

1 i
I'(O):g [dx
0

(A13)
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