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Abstract. Trial ground state are constructed which 
for Z N gauge theories in D = 1 + 2 dimensions lead 
to phase diagrams which are in agreement both with 
theoretical expectations and Monte  Carlo results. 
The nature of the phase transition is correctly 
predicted for each N. 

I. Introduction 

Lattice gauge theories [1] have by now proved to be 
a good way, perhaps the only one known, to study 
the nonperturbative aspects of quantum field theory. 
The ultimate goal of such a formulation is to obtain 
non-perturbative quantitative results for the con- 
t inuum limit of the theory. At large couplings all 
lattice gauge theories are in a confinement phase. 
Therefore the first thing one has to do is to search 
for phase transitions when passing from the strong 
to the weak coupling regime. 

This program has been carried out either using 
numerical methods, as in Monte Carlo simulations 
or using analytical tools such as strong coupling 
expansions, mean field techniques or variational 
methods. Although the Monte  Carlo simulations [2] 
have by now confirmed many  theoretically anticipated 
features of these models, they have the drawback, 
besides the need for very large machines, of not giving 
analytical control over the nature of the solutions. 

In this paper  we want to report  on work done in 
Z N lattice gauge theories in d = 1 + 2 dimensions 
within the Hamil tonian formulation [3]. Our trial 
ground states are of a similar form to those proposed 
in [4] for U(1) and S U(2) gauge theories. 

Variational methods for lattice gauge theories have 
already been used in connection both with the Eucli- 
dean [5] and Hamil tonian formulations [6]. However 
for the trial functions that have been used matrix 
elements cannot in general be evaluated exactly 

and numerical computat ion implies a loss of analytical 
control over the results. If  a trial ground state is to be 
useful to define a theory, matrix elements should have 
simple analytical forms and, at least for weak and 
strong coupling, variational parameters  should dis- 
play an explicit analytical dependence on the coupling 
constant. 

The paper  is organized as follows: In Sect. 2 we 
define the Z s  gauge theory. In Sect. 3 we define the 
trial ground states and calculate the matrix elements 
for the Hamiltonian. Section 4 presents the results for 
N = 1, 3, 4, and in Sect. 5 the results for N > 4 are 
discussed. Section 6 contains a brief summary. 

2. The ZN-Gauge Model 

Z N lattice gauge theories are defined in terms of 
the elements U ,A of the gauge group. These U's 
live on the links of a hypercubical lattice and are 
parametrized by an integer (mod N) according to 

U,+~exp i-~p~,(n) , p~(n) = 0, 1, ... N - 1 (2.1) 

where the index n labels the sites and fi is the unit 
vector in the fi direction. The oriented product  of 
group elements around a given plaquette p --- (n, fi, ~) 
is a gauge invariant quantity that for simplicity 
we denote by BN(P) or U NUN * * U NUN(p) and it is 
defined by 

UN UN ~ gn,~t Un+ ~,~ n+ ~,~ n,v BN(P) "= U N U N * * U* U* .  (2.2) 

where U* is the complex conjugate of U, and the index 
N remainds us of which Z N theory we are dealing with. 

The Hamil tonian for the Z N model is then given 
by [7]: 

HN -- l;~s.,.~ INN (l) -~- PN (/)] p , a q  -~ 
(2.3) 
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where the opera tors  PN(1) live on the links and are 
defined th rough  the following relat ions 

(PN(/))N = 1, P](I)PN(I)= 1 

2n 
P~, (0 u,,(OPN(t) = e ~ UN (/), 6 = ~ -  

P~  (l) U* (1)PN (l) = e -  'a U~v (l) (2.4) 

Fo r  different links, l # l' the PN(l) c o m m u t e  with the 
g roup  elements  UN(l' ). 
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where Pl and P2 are the two plaquet tes  that  share 
link l and x'  means  p roduc t  over  all plaquet tes  
except for plaquet tes  p~ and P2. We get then 

< ~10.1 (/)1~> = (Ol(o~* --~ y* 0.3 0.3 0.3 0-3 (e l ) )  

�9 ((~* -4- 70.30.30.30.3(./72)) 

(~ -- 70.30.30.30.3 (p,))(a -- 70.30.30.30.3 (p2))10 > 

=(1~,12-177) 2 
=(1-21712) 2 (3.6) 

3. Trial Ground States and Matrix Elements 

Z2 

To  explain more  clearly our  "ans/itze" for the g round  
state we start  with the Z 2 case. Then  the Hami l ton i an  
is 

H =  - }-" 0.1(l)-- J~ E 0"30"30"30"3 (p)" (3.1) 
links plaq 

The star t ing point  it is then to notice that  in the 
2 = 0 limit the g round  state is an eigenstate of  a~, 
that  is 0.1 ]0 > = 10 > where 

Io> ~ , ~  ;<olo> = 1. (3.2) 

As it has been shown [8] that  the g round  state of  a 
lattice gauge theory  mus t  be gauge invar iant  we 
take for our  trial g round  state one that  has  a l ready 
this p rope r ty  built-in. M o r e  specifically we choose 

i ~r'~> ~__ H (0~ n I- 70.30.30.30.3)[0>. (3.3) 
plaq 

I t  we take our  state to be normal ized,  < f2lf2 > = 1, 
we obta in  (we are in d = 2 spatial dimensions)  

I~[ 2 + ]712 = 1 (3.4) 

This allows a simple in terpre ta t ion  for the var ia t ional  
pa rame te r  Y. In  fact t7[ 2 represents  the probabi l i ty  
of having an excited flux loop  in a given plaquette.  

The  pa rame te r  7 will be de termined as function of 
2 by  min imiza t ion  of the g round  state energy. Before 
we go into this, we have to find the mat r ix  elements  
for the "electric" and "magnet ic"  par t  of  the Hami l -  
tonian  in the g round  state If2>. We have for the 
"electric" par t  

<~10.~(o1~> = <olH'(~,* + 7" 0.3 0.~ 0.3 0.~(p')) 
p' 

"(~* + 7* 0.30.30.30.3 (Pl))( cr + 7" 0.30.30.30.3 (P2)) 
�9 0.1 (l)(c~ + '~ 0.3 0.3 0.3 0.3 (pl)(o( -t- 7 0.3 0.3 0.3 0.3 (P2)) 

" H t  (0~ -[-- ~ 0.3 0.3 0.3 0.3 ( p ' ) ) [ 0  > (3.5) 
p' 

where use was made  of the normal iza t ion  condition,  
(3.4). 

Fo r  the "magnet ic"  part ,  we have for a given 
plaquet te  p 

(o l0 .30 .30 .30 .3@[o> = < Ilq'(~* + 7"0.3 o30.30.~p')) 
p' 

'(0~* + 7" 0"30"30.30.3 (P))(0.30"30.30-3 (P)) 

"(0( -4- 70.3 0.3 0.3 0.3 (p ) )H ' (0~  + 70.3 0.3 0.3 0.3 (p")10 > 

where x'  means  the p roduc t  over  
except for p laquet te  p. Using the 
condi t ion (2.4) we get 

(3.7) 

all p laquet tes  
normal iza t ion  

<~1~3~30.30.3(p)10> : ~ ' 7  + ~7" = 2Re(~y*)  (3.8) 

The mat r ix  elements,  (3.6) and (3.8) will be used in the 
next section to get the g round  state energy to be 
minimized. N o w  we will generalize these results to an 
a rb i t ra ry  Z N. 

Z N (N > 2) 

Our  trial g round  states for Z N have  a small  difference 
depending on whether  N is even or odd. We take 

If2> = 1-[ ~ +  (B~+B;*)  IO>;Nodd 
p!aq r 

r~ N/2 

p!aq r = I N/ ~ 
N even (3.9) 

where B~ =-(UNUNr7 *v  N vN,tf*~ r is the r power  of  the 
or iented p roduc t  of  the g roup  elements a round  a 
plaquette.  One  can easily see that  this definition 
coincides with the one given before for N = 2. 

The  normal iza t ion  condi t ion ( O[ f2 ) = 1 gives now. 

[N/2] 
I~12 + E 17,12 = 1 (3.10) 

r = l  

bo th  for N odd and  N even. 
The  electric mat r ix  e lements  (f2[(PN(1) + 

P~, (/))In> can be easily calculated if we notice that  
for each p laquet te  that  contains  the link 1 we have 
(we take the case N odd for simplicity) 
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P~ 
/ 

= ( ~  § § (3.11, 
/ 

Using this result one can easily get 

\ / IN/2] >2 
~<f2I(P~(/) + PN(/))If2> = (1~12+ ~ 17,12 cos(g 0 

,=1 [N/2] )2 
= 1 =  E ILI=K~ (3.12) 

r = l  

v~here use was made of the normalization (3.10), 
and we have defined 

K --- 1 - cos (fir) (3.13) 

For the magnetic energy, we begin by noticing that 
the product by (B N + B*) amount to a redefinition 
of the ~ and 7': of that plaquette. In fact, for a given 
plaquette we have (N odd) 

~(B N + B*) or+ . . . .  * - - ( B  N + B N ) 
t" 

[N/2I ~ \ 

= ~+ ~=I~2(B's + B~*)) (3.14) 

where 

1 
~ ~ 7 1  

,/3 

~IN/2 ] - I  = 2 [N/21-2 § 2-7[N/21 

~tN/2~ = 17 1 (3.1 5) 2 IN/2]-  1 § 27[N/2] 

For N even we have a similar result: 

-~(B N + B~r + ~ tt~N + BN) + 7u/2BN * 7 r  ~ r  r* N / 2  

r=l d T  
/ N/2-1 4 \ 

(BN + BN) + ?m2 (3.16) ) 
where 

1 

ffl =+0~ § 
,/2 

1 
-- -- !Y + ~ 7 N / 2  ~N/2-1 2 N /2 -2  

1 
(3.17) 
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With these results (3.14-17) one can easily obtain the 
magnetic energy matrix elements 

IN/2] 

~(f2I(BN + B*)If2)=~*~ § ~ 7*?r (3.18) 
r=l 

The parameters L (r = 1 . . . .  IN/2] ) are to be obtained 
through the minimization of the ground state energy. 
More specifically we define a function F N in the 
following way 

(f2[HNIf2> = 1 ~ F~v(7, 2) (3.19) 
alinks 

Minimization of FN( 7, 2) will determine the functions 
7, =7,(2). Substitution of 7,(2) into FN(y,,2 ) will 
give the ground state energy functional F~i"(2). 
Phase transitions will be revealed by discontinuities 
in the derivatives of F~"(2). 

4. Results for Z 2 ,  Z 3 and Z 4 

Z 2 

Using the results of the previous section the function 
to be minimized is 

F 2  = _ (~2 _ y2)2 _ 2 ~  7 (4 .1)  

where we used the result, that can be easily pl'oved, 
that the parameters a, 7 are to be taken real to get the 
minimum of F 2 . Due to the normalization condition, 
it is better to choose another parametrization given 
by an angle 8, 

ct = cos 8/2; 7 = sin 8/2 (4.2) 

In terms of this parameter 0, the function F 2 is 

2 .  
F 2 = - -  COS 2 0 - -  ~ sm 0 (4.3) 

The minimum of F 2 depends on the value of 2. We 
get a minimum for the following values of 0: 

f s in0  2 f o r 2 < 4  4 

0 =-rr for 2 > 4 (4.4) 
2 

which in turn give for the ground state energy per 
link, F~ i" (2) the following result 

2 2 
- 1 - - -  2 < 4  

16 
Min F 2 (2)= 

2 
2 > 4  

2 

(4.5) 

The function rain F 2 (2)  and its first derivative dF~i"/d2 
are represented in Fig. 1. We see that both F~i"(2) 
and its first derivative are continuous, but the second 
derivative has a discontinuity at 2tc2)= 4, indicating 
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Fig. 1. The g round  s ta te  energy  func t iona l  F~in(~,) and  i ts  first 
der iva t ive  for Z z gauge  theory  in d = 1 + 2 d imens ions  

a second order  phase  t ransi t ion at this value of 
2. This  is in good  agreement  with k n o w n  results 
either f rom M o n t e  Car lo  [-9] or f rom other  analytical  
calculat ions [10, 11]. We r emark  that  our  results 
are very similar to those of  ano ther  var ia t ional  
calculat ion [10] and  were ob ta ined  with much  less 
effort. 

Z 3 

The ground  state energy per link to be minimized 
is given by 

2 
V 3 = - (1 - ~ x )  z - ~ ( x / 2 . , / x  - x 2 + ~ x )  (4.6) 

where we have defined the var iable  x by 

x = 7 2 (4.7) 

The  m i n i m u m  condi t ion  can be used to get the 
funct ion x =x (2 ) .  This can be done  analyt ical ly 
but  as x(2) is one roo t  of  a cubic algebraic equat ion  
the expression it is a bit complicated.  We prefer 
to present  our  results in graphic  form. In  Figs. 2a 
and b we show, respectively, the g round  state 

0 

-.,5 

2 3 
I I 

>, 

Fig. 2. The g r o u n d  s ta te  energy  func t iona l  F3Mi"(2) and  its first 
der iva t ive  for the Z 3 gauge theory  in d = 1 + 2 d imens ions  

functional  F~  i" (2) and its first derivat ive d F Min (2)/d 2. 
We see that  there is a discont inui ty  in the derivative 
revealing a first order  phase  t ransi t ion at 2(c 3)=  3. 
The  nature  of  the t rans i t ion it is in good  agreement  
with M o n t e  Car lo  results [9, 12] tha t  show that  
Z 3 has a peculiar first order  phase  transit ion. 

Z 4 

F o r  N = 4 we have for the g round  state energy per  
link 

2 

-I- x / ~ l  x 2 ) (4.8) 

where we defined x 1 = 712 and x 2 = 72 . 
Min imiza t ion  can be done  easily and one gets 

x f 2 4  for 2 < 4 (4.9) 
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and 

for 2 > 4 (4.10) 

-~ -  

Substi tution of  these values in (4.8) gives 

22 
- 1 - i g  ,~<4 

FMin (,~) (4.11) 
2 
2 2 > 4  

Which coincides exactly with F2Min(2). Therefore 
we have a second order  phase transit ion at 2 (4)= 4. c 
This is in agreement  with a known  relation between 
the Z 2 and Z 4 gauge models  in d = 1 + 2 dimensions. 
In fact it is known  that  for this case there is a duality 
between Z N gauge models and Z N spin systems [13]. 
It has been shown [14] that in d =  1 + 2  the Z 4 
spin theory  factorizes into two independent  spin 
systems and this gives by duali ty a relation between 
the Z 2 and Z 4 gauge theories. In  the Apendice we 
shown that  even with a simpler one parameter  
ans/itze, we can still recover the same relation between 
Z 2 and Z 4. 

5. Results for ZN(N>4) 

The general expression of  the g round  state energy 
functional is 

F N = -  1 -  ~ K 7  ~ - ~  c~a+ ~ 7,~, (5.1) 
r = l  r = l  

with all quantities as defined in Sect. 2. In Fig. 3, 
we show the results for a typical case, N = 6. In 
fact the results all have the same structure and can 
be summarized as follows: 

i) There is a phase transi t ion for each N. 
ii) This phase transit ion is always second order, 

that  is the second derivative of  Mi. F N (2) is dis- 
continuous.  

iii) The critical value of  2 at which the phase 
transit ion takes place can be given by a very simple 
expression. 

4 
2 (m (5.2) 

1 - cos (2 r~/N) 

valid for N >- 4. 
These results are in very good  agreement  with 

what  is known  for Z N is d = 1 + 2 dimensions. In  
fact for these theories it is expected a second order  
phase transit ion [9]. It  is also known  [7] that  for 
large N we get 2 ,-~ N 2 which is in agreement  with 
the simple result (5.2). 

To compare  our  results with k n o w n  data, we can 
take the large N limit. Then  we can have two limiting 

3 6 
I I I I I I I I 
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, ), 
I 

- - 2  

- - 4  

0 3 6 

- . 5  

X 
9 

Fig. 3. The ground state energy functional F NMin(2) and its first 
derivative for Z 6 gauge theory in d = 1 + 2 dimensions 

situations: 
i) 2 ~ 0% but the ratio K 2 = (4~z2)(j,/N 2) remains 

finite. Then the Z N gauge theory  is dual to a X - Y 
spin model  [7] defined by the Hami l ton ian  

1-1KZX~L 2 (5.3) H.=Z[1-cos(~.-~.)]+2 ~ p 

<pq> p 

As it is well k n o w n  [15], this model  has two phases: 
At K 2 ~ 1 the system is in an ordered phase while 
at K2>> 1 we have a disordered phase. This is in 
agreement  with our  results. In  fact for large N we 
have f rom (5.2) 

2 N2 2(c N) --~ ~ (5.4) 

and therefore 

2 
K 2 = 8 )~)  (5.5) 

Thus  for 2 ~ 2 c we have K 2 >> 1 corresponding to a 
disordered phase in the spin model  and to an ordered 
phase in the dual Z N gauge theory, which is precisely 
our  result. 

Fo r  2 ~ 2 c one should have K 2 "~ 1 corresponding 
to an ordered phase in the X -  Y model  and to a 
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disordered phase in the Z N gauge theory. Our  
variational approach predicts then a value of K 2 
at which the phase transition takes place in the 
X - Y model. This is for K~ ,-- 8. 

ii) 2 ~ 0 b u t  the ratio g 2 =  1 / f l=(Zn /N) (1 /x f~  ) 
remains finite. Then the Zu gauge theory (N ~ oo) 
is equivalent to P Q E D  [7]. As the only critical value 
for the Z n gauge theory grows with N 2 it is clear 
that in the g 2 variable the critical value goes to 
zero. Therefore there exists only one phase in P Q E D  
in d = 1 + 2 dimensions extending from the strong 
coupling to the weak coupling. This is in agreement 
with known results [16]. 

To compare quantitatively the critical values 
2 (m with the Monte Carlo B (m [9], seems to be c ~c 
difficult because the Monte  Carlo simulations were 
done in the Euclidean formulation while our results 
are obtained in the Hamil tonian formalism. 

Despite this fact, if we take the expression 

N 
fl = x / ~  (5.6) 

outside its range of validity, that is, for large N 
but not small 2, our results for 2 (m and those of c 
fl(f) from [9] agree within 15%. Because we are 
taking (5.6) outside the domain where it was derived, 
this agreement may just be an accident. 

100 

~ C  

10 

I t l J I I l l | l  ! I 

1 ! I I I I I I I I I I 21 
/ 6 12 18 4 

N 

Fig. 4. The critical values 2 (N) for Z N gauge theories in d = 1 + 2 c 
dimensions as a function of N. The curve represents the function 
4/(1 - cos(2n/N)) 
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6. S u m m a r y  

We have presented the results of a variational cal- 
culation for Z N gauge theories in d = 1 + 2 dimensions, 
showing that there is a single order-disorder transition 
at a finite value of the coupling 2. The critical values 
2~ are plotted in Fig. 4, 2No moves to 2 = oo as N 2 
for large N. We have shown that this implies that 
in d = 1 + 2 dimensions the U(1) theory has only 
one phase. We have also shown that our results 
are in agreement with what it is expected, for large 
N, from the duality between Z N gauge theories and 
the X - Y  spin model, that is known to have a two 
phase structure 

A p p e n d i x  

Comparison between Z 2 and Z 4 gauge theories. 
We want to show that the Z 2 and Z 4 gauge theories 
are related, having the same ground state energy 
functional F~i~(2) (for d = 1 + 2 dimensions). 

To do this 'we choose an ansfitze of type (2.9) but 
just with one variational parameter.  We write 

1 ~  ) = plaqH e x p  ~ [ B N + B *  ] x ~  (A.1) 

where B N have the same meaning as before. This form 
is a particular case of (2.9) for a well defined relation 
among the various Crs. 

The function Z(V) is defined by the normalization 
condition ( O [ O > = 1 ,  and for d = l + 2  we get 
easily 

oo 

Z(7) = I0(?) + 2 ~ /KS(?)" (A.2) 
k = l  

where li(7) are the modified Bessel functions of ith 
order. 

To get the ground state energy one needs to know 
the matrix elements for the electric and magnetic 
part  of the Hamiltonian.  We have for the magnetic 
part  for a given plaquette p 

~-4 ~2I(B~(p)~ + h.c)l ~2> 

] 7  ~ e(r/2) (Brr(p') + h.c) = < 01 ; ; ,  z 

(BN(p) + h.c.) e(r/2)(B,,(p)+h.~.)lO> 1 d Z  (A.3) 
2Z(7) Z(7) d7 

For  the electric matrix elements one uses the com- 
mutat ion relations (2.4) to get 

e~ (l) ~ e~/~) ( ~ ) +  ~. ~.~ 
P 

= 1-I e('/4)(B,,(p) + h.c.) l-[  e('/4)(e - '~n,,(p) + h.r PN(l ) 
p p' 

l (~ p l ~ p " 
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and 

P~ (I)F[ e (r (RN(p) +h'c')  

P 

= 1-[ e(~/*)~'(P)+ h'~') l-[ e(V/'*)~e~SN+h'e')P~ (l) 
p p '  

l e p  l~p"  

with these expressions one finally gets 

~< (ZI(P~(1) + P+(l))I(2) 
~e(WZ)tBN+h'e) e(~/2)IWI(QN+Q+) ] 0 )  :<o IJ p 
l r p l ~ p " 

(A.4) 

(E(~) )2 (A.5) 

where 

E(y)=lo(ylW[)+ 2 ~ ( -  1)klKN(yl W[)  (A.6) 
k = l  

and W = cos 6/2, 6 = 27tiN. 
Therefore with the one parameter  ans/itze of  

(A.1) one gets for all N the following expression to 
be minimized 

- /E(7 ) \21 /  2 1 dZ 
FN = \ ~ J  2Z]7)  d7 

(a.7) 

One can check this expression for the cases N = 2 
and N = 3 where it should give expressions equivalent 
to (3.1) and (3.6) because for these values of N the 
ans~itze (2.9) is also a one parameter  ans/itze. This 
can easily be done using the properties of  the modified 
Bessel functions. 

We do not  give the details but  the method  is the 
same that  we are going to use for N = 4. For  this 
value of  N we get 

Z(y) = Io(Y) + 214(Y) + 218 (Y) + "" 

_ 1 + coshv _ cosh2(7/2) (A.8) 
2 

and 

E (~) = I 0 (~//x/2) - 214 (~ /x~)  + 218 ( 7 / , f  2) + " "  
= cosh (y/2) (A.9) 

where we have used some properties of the modified 
Bessel functions [17]. We therefore get 

1 2 
F 4 = -  ( c o s h ( , / 2 ) )  - ~ t a n h , / 2  (A.10) 
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A simple change of  variables 

tanh 7/2 = Sin 0 (A.11) 

gives 

1 - 1  tanh 2~/2 1 sin 20 cos 20 
cosh 2 (y/2) 

(A.12) 

and we get for F 4 in this one parameter  approxima-  
t ion exactly the same expression (3.3) that  one gets 
for Z 2 Minimizat ion will therefore give the same 
result. 
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