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Abstract .  The requirement of integrability in all 
light-like superplanes yields the proper kinematical 
constraints for the three-dimensional supergravity 
theory formulated in superspace. The theory with 
the Breitenlohner set of auxiliary fields is obtained. 

1. Introduction 

When supergravity [1] theories are formulated in 
superspace [2-5] a certain number of constraints 
has to be imposed on the torsion or curvature coef- 
ficients. 

It has recently been suggested [6] that the so-called 
"kinematical" constraints could be viewed as integra- 
bility conditions on light-like superplanes. This simple 
geometrical ideal proved to work well both for Super- 
symmetric Yang Mills theories and for the pure 
(N = 1) supergravity theory. In this last case, the 
constraints obtained from Superplane Integrability 
were those corresponding to the Breitenlohner set 
of auxiliary fields [7]. 

In this paper, we show that superplane integrability 
also gives the correct kinematical constraints for 
the three dimensional supergravity formulated in 
superspace. Again we obtain a formulation with the 
Breitenlohner set of auxiliary fields. 

The paper is organized as follows. In Sect. 2 we 
derive the kinematical constraints from superplane 
integrability. In Sect. 3 we solve these constraints in 
terms of the physical and auxiliary fields. The"Breiten- 
lohner set" of auxiliary fields is found in Sect. 4 and 
contact is made with the auxiliary field structure 
presented in Sect. 3. A short discussion of the results 
is given in Sect. 5. Our notation and other useful 
formulae are collected in Appendix A, while in 
Appendix B a derivation is given of the vector super 
multiplet for two and three dimensional spacetimes. 
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2. The Kinemat ica l  Constraints  

As a Majorana spinor in three dimensions has two 
independent components, we embed the three dimen- 
sional spacetime in a five dimensional superspace. 

The geometry of superspace is described [2] by 
the vielbein E A and the Lie algebra valued connec- 
tion q)M a B" The local tangent space group is chosen 
[2] to i~e a Lorentz group operating in the usual 
way on the vector and spinor tangent space indices. 
Therefore, the infinitesimal generators JCa B will have 
the form 

. . . . . . .  (2.1) Xa B I * c 
', 2(7) Lc 
i 

Our index conventions are the same as in [6]. The 
conventions for the 7-matrices and other useful 
formulae are given in Appendix A. The inverse of the 
vielbein, EA M, gives the covariant derivatives 
D A -EAMDM.  Tfieir (graded) bracked is given by 
the  well-known formula 1-8] 

[D A, DB] = -- TApC Dc + RAp, CDXDc (2.2) 

where  we introduced the torsion coefficients TAp c 
and the curvature coefficients RAn CD" 

The connections ~M A p and t~e curvature RcD A B 

are Lie algebra valued'and can therefore be written 
as follows 

RCD,a b =- ~abe RCD,e 
Rco,~p l_, e, R -- 2 tY )~p CO,e 
~M,ab ~ ~'abe~M,e 

_ 1, ~, ~b (2.3) qT)M,afl = 7[7 )aft M,e 

We now apply the idea of Superplane Integrability 
1-6] to this case. Given any c-number Majorana 
spinor p= we form a light-like vector r" 

ra =-- P~(T")=~Pt~ ; r"r~ = 0 (2.4) 

Corresponding to the null directions p~ and r" we 
have a pair of tangent space directions 
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D=-r~Da; Q-=paD a (2.5) 

(D, and D a are the components Of DA). Every Majorana 
spinor pa determines through (2.5) a tangent "Super- 
plane". Integrability on these superplanes gives 1-6] 

1-D a, De] = - (ya)aeD a (2.6) 

for the graded bracket of two fermionic covariant 
derivatives. 

Comparison between (2.2) and (2.6) implies the 
following kinematical constraints 

T~e~ = (7~)~ (2.7a) 

Taer= 0 (2.7b) 

Ra~,c = 0 (2.7c) 

One can use constraints (2.7 a-c)  plus the Bianchi 
identities (see Appendix A) to get further relations 
for other torsion and curvature components. A 
straightforward calculation gives 

L[3 D = (ya)~ a Ga D (2.8a) 

R a l L d  = (G)eaHa,a (2.8b) 

where Ga D and Ha. a are arbitrary superfields. 
As we do not obtain T j  = 0, we are not going to 

get the minimal component theory as in I-9]. In 
fact we will show that the theory that corresponds to 
the choice of constraints (2.7) is supergravity with 
the Breitenlohner set of auxiliary fields. 

3. Solving the Constraints 

The set of constraints (2.7 a-c) can be solved. By 
this we mean that some of the components of the 
vielbein EM A (or its inverse EA ~) and of the connection 
~Ab(~Ab~EAM~)Mb ) can be written in terms of 
otiler c~Jmponents of the vielbein and/or connection, 
thus reducing the number of independent components. 
We will do this in two different ways. 

We begin by looking at (2.7b). Using the expressions 
of Appendix A we can write 

0 = - Ca~ ~ - 4~(~,~) ~' (3.1) 

where 

CaJ = 8 (a E e) M EM7 (3.2) 

NOW, one can write (3.1) in the form 

+ �89 = - G / .  

This last expression can be easily solved for O~,a with 
the result 

~aa t(.~t~ C ~ l r , ~  (3.3) , = - -  ~ / a l ~  a~ - -  ~ t F M a  C e,~ ~ 

This solves constraint (2.7b) by expressing @ a as 
a function of the vielbein. Now we look at (~.7c). 
It can be written as 

0 = 8(~ 4~,),c e + (7~)a~ ~ e 

+ ~/'(a.S ~b~,~ a + ~(~,c ~ ~ ) , a  (3.4) 
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A straightforward calculation gives 

C~a,b = (Ta) ae EOa ~fl,d + l (]]d)e? r q~7,b 

4~ ~a q (3.5) -2~a ,~  t~,a b- 
Therefore (2.7 b-c)  completely determine the con- 
nection 4~ a a in terms of the vielbein (and its inverse). 
The vielbeii~ itself is not completely arbitrary because 
constraint (2.7a) implies 

(Y~)ae = - O(a E~) M EM ~ (3.6) 

We succeeded in reducing the independent super- 
fields to just the vielbein E M  a .  However, the vielbein 
still contains far too many fields. We can use its gauge 
freedom 

(~EM a = ~N ~NEM a + OM(~N)EN A + EMBXB A, 

where xBA(z) are the parameters of the tangent 
space Lorentz transformations and ~M(z) are the 
parameters of general coordinate transformations 
in superspace, to gauge away most of the superfluous 
fields appearing in the vielbein. This can be done 
while still preserving normal (three dimensional) 
spacetime, general coordinate transformations of 
parameter fro(X), supersymmetry transformations of 
parameter e"(x) and local Lorentz transformations 
of parameter e"b~l~(x), where fm(x),eU(x) and lc(x) 
are the 0-independent pieces of the superfields 
r ~U(Z) and L ( z )  respectively. After doing th.is, 
the fields that could not be eliminated from EM A 
should be the physical fields, plus the auxiliary 
fields. 

Instead of carrying out this programme, we prefer 
to make contact with the work of Gates [10] and 
use some of his results. To this end, he will solve the 
constraints (2.7 a-c) in a different although equivalent 
way. 

We begin by solving (2.7c) exactly as before. 
We obtain again (3.5), that is, the connection ~ ,b  
can be expressed in terms of 45 b and EaM(Sa -- Ea M 8M). 
Knowing ~a b and Ea M one can construct the spinorial 
covariant de]~ivative 
D ~, = Ea M 8 M -- 1 I~) Xx cd 2 o:,cd 
= Ea M ~M -- ~- q~ 8 b j?~a 2 a,b cd 

Now, constraints (2.7 a-c) imply (see 2.6) 

D IDa' De] = - (~)~e 

(3.7) 

(3.8) 
Equations (3.7) and (3.8) imply then the relation 

14~ , b,~EN -- (Yc)~eEcN = E(~MdMEp) N + ~ e,bt7 )a 
[ 1  I~ " b" OE N (3.9) 

which can be solved for E N 

Ec = [GM MG + �89 %,b(?)e' (3.10) 

We conclude, therefore, that instead of taking 
Ea M as independent fields, we can take E~ M and 
~a b and express E M and ~5 o b as functions of them 
through (3.5) and (3.10). " 



J. Cr i sp im R o m e o :  Superp lane  Integrabil i ty and  Three  D imens iona l  Supergravi ty  

As it was shown by Gates [10], we can use the gauge 
invariance of the theory to write E M and ~b, b in the 
form 

E m =  1 . . . .  lo~rx[ " (3.1 la) -~-(0y )~a ~-X 
E # = b # - �89 ~a)c t ~/a # + 10 0 ~ t  'u (3.1 lb) 

b co �88 (3.1 lC) ~e ,a=  --~(031)~ b,a-~- 

where 

m l ( . a ? b  e m 2~"=Z~ - ~ ~  ~a)~ b (3.12a) 
~ # = ~)t  # ~- 2~tbOb # - -  �89 coa,b (3.12b) 

^ aco (3.12c) ~,,~ = ~,~ + L a,~ 
In these expressions ea M is the "dreibein", ~ ,  the 
Rarita Schwinger field, co b a the Lorentz connection 
in the three dimensional 'spacetime and Z~, 4~ff 
and (a b are the auxiliary fields. The remaining gauge 
freedo~ is that of general coordinate,, transformations 
of parameterf  m, local supersymmetry transformations 
of parameter e" and local Lorentz transformations 
of parameter e ab~ I~ wheref  m, eu and I c are the 0 indepen- 
dent components of the super fields ~m(z), ~"(Z) and 
Lc(Z ). All the other components of ~M(z) and L~(z) 
were used to gauge away the superfluous fields in 
E f t  and �9 d" 

Using (3'.5) and (3.10) one can express E f t  and 
~a,b in terms of E f t  and �9 , and therefore any 
quantity appearing in the theory can be expressed 
in terms of the physical and auxiliary fields. 

4. The Breitenlohner Set of Auxiliary Fields 

Our next task is to show that the auxiliary fields 
obtained with the constraints given by Superplane 
Integrability correspond to the so-called "Breitenloh- 
net set" [7]. To this end one has to find the auxiliary 
fields that constitute the Breitenlohner set for three 
dimensional supergravity. To do this, one needs to 
know the vector supermultiplet in three dimensions. 
In Appendix B we find the vector supermultiplet, 
both for two and three dimensional spacetimes embed- 
ded, respectively, in four and five dimensional super- 
spaces. The result for the three dimensional spacetime 
is that the vector supermultiplet consists only of 
a vector field and a Majorana spinor, no scalar field 
is needed to close the algebra. Therefore Breitenloh- 
ner's argument 1-7], will lead us to an auxiliary field 
structure consisting of the following fields: X~ b, cb B 
and ~ b" 

We 'fiave used the same notation for these auxiliary 
fields and those of (3.12) because, as it was shown in 
1-10], the supersymmetry algebra closes, in the Breiten- 
lohner sense, on those fields, allowing, therefore, the 
identification of Z~ b, ~ B  and ~.b with the Breitenloh- 
ner set. The last thing we want to show, is how these 
auxiliary fields relate to the arbitrary superfields 
G ~ and H d introduced in (2.8) giving the most 

o general solui~ion for the torsion T,e and curvature 
RaB.d components. As we know 1-9] that for three 
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dimensional supergravity without auxiliary fields 
these components vanish, they should be related 
to the auxiliary fields introduced above. In fact, 
the auxiliary fields are the P-independent components 
of those superfields as we now show. 

To do this one needs to calculate E f t  and 4~a, b 
through (3.5) and (3.10). But as we want to evaluate 
T,B/~ and R ao d only to the lowest order (P-independent), 
it is only l~cessary to calculate E y and ~ba, b up to 
a given order. The necessary results are 

(2) 
m m 1 c m 1 m E m E a = e ,  +~(0~ Oa)ec -~-(0V, Z ) +  a (4.1a) 

l.t l o d # 1 b # ea" = ~a + 7( ~ 4'a)~'. -- ~(OTaz )~'~ 
(2) 

-}- } (o•b)#  O)a,b - -  �89 -1- E a "  (4.2a) 

and 
Ci~a,d 1 ~ 1 "8 c', 09 : g O a , d - - 2 ( O ) ) a )  ~ c t . b - - 2 ~  ])a )~ ) c,d 

(-2) 
l i p  c t  xco 

-}- 2 [  ~) ~lla) c,b "~- ~ a , d  (4.2b) 

where we have used the obvious notation ~ M a to 
indicate a term with the ith power of 0 a. 

The quantities to be evaluated are 

(0) d (0) d 1(0) db 
Ta B = - Carl - ~ - ~  B,bC, a (4.3a) 
(o) ~ (o) ~ 1(~ , .b~ ,~ 
T a B  = - -  CaB - -  ~ ) a , b [ ~  )# (4.3b) 
(o) (o) (1) (o) (1) 
RaB,d = EaU~u ~ B,d - E B"Ou ~a,a 

(o) (o) e49 
- CaB e,e (4.3c) 

Using (3.11) and (4.2) a straightforward calculation 
gives then 
(0) 

1(  x ~  d 
T a S  = - -  ~ Ya)B Z~ 
(0) ~ 1~ x ~ b  6 
T.B = - 2tYa)B 
(o) 

RaB,d = 2 (~)a)fl ~a,d 

(4.4a) 

(4.4b) 

(4.4c) 

thus showing that the 0-independent components 
of the superfields Ga D and H d given in (2.8) are, up 
to normalization, the auxiliary fields that close 
the algebra in the Breitenlohner sense. 

5. Conclusions 

We have shown how superplane integrability [6] 
can be used to derive the kinematical constraints 
needed to formulate three dimensional supergravity 
in superspace. As it was the case for supergravity in 
a four dimensional spacetime [6], the kinematical 
constraints obtained from superplane integrability 
give origin to formulations with the Breitenlohner 
I-7] rather than the minimal set of auxiliary fields. 

It is an interesting open question to find out if 
the simple geometrical idea of Superplane Integrabi- 
lity also gives the correct kinematical constraints 
for supergravity theories in higher dimensionality 
spacetimes. The case of the 1 1-dimension spacetime 
[-1 1] would be particularly interesting. 
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Appendix A 

a) Three Dimensional Spacetime 

Our metric convention is 

t/,b = d iag  ( - ,  + ,  + ) ;  7a~)bW'YbTa=2t]ab'~ (A.1) 

We choose a representation where 

7a -- (ia2, a3, e l )  (A.2) 

"75" -- 7o7172 = ~ (A.3) 

Other useful expressions are 

7aTb = qab~ __ F abCTc ; e012 = _~_ 1 

S,b _ �88 ?b] = ~e,b~ (A.4) 

the full set of Dirac matrices is 

~, ~," ; a = 0 ,  1,2 (A.5) 

Spinor indices are raised and lowered with the charge 
conjugation matrix 

C .~. 70 ; C -  1 = C r = __ C (A.6) 

It is useful then, to define a spinorial metric 

q~P-CaB= - 1 0  --- q~'p (A.7) 

and to use Chang's sum convention[ 12] : 

Q A _ C ~ Q . B  = ( _ 1 ) b Q B q ~ A  

Q~A ~ QBqBA = ( -- 1)btIABQ n (A.8) 

where 

tl AB ( ~-~--i- _0_ ~ . qAB 1)ab rlBA = \  0 ! t/'P] ' = ( -  (A.9) 

b) Superspace Curvature and Torsion 
The torsion coefficients are given by 

TAS c = -- CAB c -- 4)tA,~IC (A.10) 

where 

CAB c ==- OtA EBIM EMC; (~ A =-- EA M C~ M (A. 11) 

the curvature coefficients are given by 

RAB,C o ~ ~tA ~B],C D -- CAB E I~E,C o 

"-~ (IItA.C E (I)B] ED (A. 12) 

the Bianchi identities are 

O A T~c ~ + TAS T~c D + RA~,C ~ + g.c.p. = 0 (A. 13) 

DaR~c,D ~ + TAB~Rec,o ~ + g.c.p. = 0 (A.14) 

g.c.p.= graded cyclic permutation. 

Appendix B 

In this appendix we will use the superspace approach 
to study the vector supermultiplet in two and three 
dimensions. A globally supersymmetric superspace 
lagrangian will be given. 
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a) Three Dimensional Spaeetimes 
In this case we have a five dimensional superspace. 
Following [13], we will call vector supermultiplet, 
the superfield that contains spin 1 as the maximum 
spin of its component fields. 

The most general such supermultiplet is 

Va = Za "4- (07m)~ Vm 2v O S --~ O0~t (B.1) 

where ~, and ~ are Majorana spinors, V m is a vector 
and S is a scalar field. We want the vector field to 
have gauge transformations and we will define them by 

3 V~ =- D V (B.2) 

where 

D = ?  --~(07 m) 0 (B.3) 
2 a m 

and A is a scalar superfield 

A = A + 0 ~  + OOF (B.4) 

Although our choice (B.2) is different from that for 
the four dimensional case [13], it is going to work 
in a similar way. 

We can use the gauge transformations (B.2) to 
gauge away some of the components of V. We have 

D A = ~ + 2 O F - ~ ( O ? " ) ~ m  A 

i m t~ -~(07 L0 a..% (8.5) 

Comparing (B.1) and (B.5) we see that the choice 
Ca = - ) / ,  and F = - � 8 9  will gauge away Z~ and S 
while redefining ~, and giving V the usual abelian 
gauge transformations 

6 V~(x) = - iOmA(x ) (B.6) 
z 

We can therefore choose a "Wess and Zumino" gauge 
where 

V~ wz = (07re) V,, + 00r (B.7) 

We conclude then that the vector supermultiplet 
in d B = 3 consists only of a vector field and a Majorana 
spinor, no scalar field is needed to close the algebra. 
This can also be explicitly checked using the global 
supersymmetry transformation laws 

6 Vm = ieT,, ~h 
6~h = - ( Z , ,  e) F m" (B.8) 

We can now construct a superfield that contains the 
field strength Fro, = 3m A,  - -O,A m. It is given by 

W~ =- DP D V~ (B.9) 

and it gauge invariant (DPDDt~ = 0). A straightfor- 
ward calculation gives 

i . . . . . .  F 200(7@0)~ (B.10) w=-20.+~ ~,7~ ran+ 
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and the last component of 1 5 W  W~ will give the 
correct lagrangian 

1 i 
~W~Wctloo = -- ~ 7 " ~ 0  -- 1FmnFmn = ~ ( x )  ( B . 1 1 )  

b) Two Dimensional Spacetime 
Repeating the same steps, we have now 

V = Za + (o~m) vm-+- O S + (O~5) P + O0@a ( B . 1 2 )  

therefore we have an additional pseudoscalar P. 
1. The gauge function being the same 

A = A + 0 ~  + OOF (B.13) 2. 

We can only gauge away Z~ and S, not P. Therefore 
the vector supermultiplet in the "Wess and Zumino" 

3. 
gauge is 

V wz "0 m, V = t Y )~ m + (0?s)~P + 0 0 g ,  (B.14) 

In a similar way 4. 
5. 

W~ =-DAD Vp = - 2 ~ -  i(07m) em"~ P 

+2em"(oTs)~Fm,+200(y'(r (B.15) 6. 
7. 

and 
8. 

! W ~  W = 2 a 0 0  - -  Z @ 7" C3 ~ / - -  �89 - ~F''-lymn ( B . 1 6 )  9 
10. 
11. 

We have now a pseudoscalar field but it is not an 
auxiliary field. This is to be expected, because the 12. 
number of degrees of freedom has to balance between 13. 
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fermions and bosons, and for that we need a propagat- 
ing scalar field 

B = ( d -  2) + 1 = 1 
F = 2 d / z -  1 = 2 ~ = 1 (B. 17) 
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