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The requirement of integrability in all light-like superplanes yields the proper constraints for 
ordinary (N = 1) and extended (N = 2, 4) supersymmetric Yang-Mills theories (SSYM) and for 
ordinary (N = 1) supergravity. It is suggested that this geometrical principle yields the proper 
constraints for all ordinary and extended SSYM and supergravity theories in all space-time 
dimensions where such theories exist. 

1. Introduction 

W h e n  supergravi ty  [1] is fo rmula ted  in superspace [2-5] ,  the need  arises to impose 
constraints  on the geometr ical  objects  of the theory.  Recent ly  there  has been  some 

work  [6, 19], on  the origin of  these so-called "k inemat ica l"  constraints.  

The  idea of superplane  integrabili ty [6] is to identify the kinematical  constraints 
with integrabili ty condit ions on light-like superplanes.  This idea is closely related 

with previous  work  by Wit ten  [7] who derived the supersymmetr ic  Yang-Mi l l s -  

Dirac  field equat ions  f rom similar integrabili ty conditions.  It is mainly a geometr ical  

idea and differs f rom the approach  of ref. [19]. 

In this paper  we will s t rengthen the relat ion by showing that  the kinematical  

constraints  needed  to formula te  the supersymmetr ic  Yang-Mil l s  (SSYM) theories  in 
superspace can also be ob ta ined  f rom superplane  integrability. We  will also show 

that  for  supergravi ty  theories  the constraints  ob ta ined  f rom superplane  integrability, 

are those cor responding  to the Bre i ten lohner  set of auxiliary fields. We must, 
however ,  r emark  that  bo th  for SSYM and for  supergravity,  superplane integrabili ty 

only give us the kinematical  constraints.  A lagrangian is still needed  to obtain  the 
dynamics.  

The  paper  is organized  as follows. In sect. 2 superplane integrability is explained. 
In sect. 3 we apply it to SSYM theories  and in sect. 4 to supergravi ty  theories.  Finally 
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in sect. 5 we discuss our results and briefly comment  on other approaches to the 
problem. 

2. Superplane integrability 

Here  we review the superplane integrability proposed in [6]. We begin with some 
notation. As usual, we collect the four Bose coordinates x m and the four Fermi 
coordinates 0 r (Majorana spinor) into a set of eight ~uperspace coordinates Z M 

(M = 0, 1 . . . .  7). Lower case letters from the latin (greek) alphabet will describe 
vector (spinor) indices. Letters from the beginning (end) of both alphabets will be 
used for tangent space (world) indices. Capital letters will be used to describe both 
vector and spinor indices [A = (a, a) ,  a = 0 . . . . .  3, a = 1 . . . .  ,4 ;  M = (m,/z),  m = 
0 . . . .  3 , ~ = 1  . . . . .  4] .  

The geometry of superspace is described r l]  by the vielbein E~t A, and the Lie 
algebra valued connection CM.A B. The local tangent space group is chosen [1] to be a 
Lorentz group operating in the usual way on the vector and spinor tangent space 

indices. Therefore  the infinitesimal generators of the tangent space Lie algebra )~A B, 
will have the form 

~AB=(Xab__l 0 -~ 

o I • 
(2.1) 

The inverse of the vielbein, EA M, gives the covariant derivatives DA -~ EAMDIvt. 
Mathematically they correspond to the basic horizonatal vector fields of the super- 
bundle and they obey the well-known relation [10] 

[DA, DB ] = - TABCDc + RAB.CDXDc (2.2) 

where we introduced the torsion coefficients TAn c and the curvature coefficients, 
RAB.CD. In eq. (2.2), and in the following, the bracket  is to be understood as a graded 
bracket,  which is equal to a commuta tor  in all cases except when both bracketed 
quantities are fermionic, in which case it is an ant icommutator .  Our  notation is given 
in the appendix. 

Given any c-number  Majorana spinor p: ,  we can form a light-like vector r a : 

r a ----p~(ya)~t3pa, rara = 0.  (2.3) 

Corresponding to the null directions p~, r ~, we have a pair of tangent space directions 

D =- raDa, O ~ p ~D~, (2.4) 

D being Bose and Q Fermi (D~ and De are the components  of DA).  Every Majorana 
spinor p"  determines, through (2.4), a tangent "superplane" .  Integrability in each 
superplane requires the algebra of D and Q, to be the same as in the absence of gauge 
fields, i.e. for fiat superspace, 

[Q, Q] = D ,  (2.5a) 
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[D, Q]  = 0 ,  (2.5b) 

[D, D ]  = 0.  (2.5c) 

Eq. (2.5c) is an identity, and eq. (2.5b) follows from (2.5a) and the Jacobi identity 
[Q, [Q, Q]] = 0. Having to hold for arbitrary p~, eq. (2.5a) implies 

[D~, D 0 ] = -(ya)~t~D~. (2.6) 

This simple result can be generalized first to accommodate  a cosmological term 
and then to extended supersymmetr ies  when the superspace has 4 N  fermionic 
coordinates O'~'(/z = 1 . . . . .  4; i = 1 . . . . .  N) .  

To include a cosmological term, we note that starting f rom the Majorana  spinor p ~ 
we can construct not only a null vector, r a, but also a null antisymmetric tensor 

tab = p a  (,~ab)c/~pO ' tabtab = 0 .  (2.7) 

Now replace the tangent direction D by 

- raDa + 2~ tabffab' (2.8) 

where )Cab are the Lorentz  generator  directions in tangent space and A a cosmologi- 
cal radius. Now we use the algebra of (2.5) for D and instead of (2.6) we get 

1 ab A 
IDa, Do] = - ( y " ) ~ D ,  - ~ -  (~)~ t~Xab.  (2.6') 

There  are several ways to generalize the idea to extended supersymmetries,  

depending on how one defines r ~ in this case. Our  definition is chosen to provide the 
correct supersymmetr ic  extended Yang-Mills results, as will be shown in sect. 3. It is 
more  transparent  to use the two-component  spinor notations. We will follow the 
conventions of [11]. Then 

zM=--(X "~, 0~, gin), DA---(D,,D~,I~<,,) 
(2.9) 

p~-~(p~,#~), r ~ = -p~(o-~)<,ofi ° , r~r~ = 0  ; 

the tangent space null directions will then be 

D = r~D~, O' = p~D'~, t~, = fi°15o,, (2.10) 

Integrability in each superplane requires the algebra of D, Q' and (~s to be the same 
as in the absence of gauge fields, that is 

[ o ' ,  o ' ]  = [o , ,  0 3  = 0 ,  

[Q', Q,] = 6jD,  

[Q' ,D]=[(~, ,D]=O,  

[D, D] = O. 

(2.11a) 

(2.11b) 

(2.11c) 

(2.11d) 
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Having to hold for arbitrary p*, ~ ,  eqs. (2.11 a) and (2.1 lb)  imply 

[-D~,, De,] + [Dt,,, fix,] = o ,  
l l t [D~, D e ] + [D e, D~,] = 0 ,  (2.12) 

[D'~, 1)o,] , a = -6 , ( t r  ),t3D, • 

In the following sections, we will apply these results both to supersymmetric  
Yang-Mills and supergravity theories and show that the kinematic constraints can be 
obtained from (2.6), (2.6') or (2.12). 

3. Supersymmetric Yang-Mills theories 

Consider a n -pa ramete r  Lie Group G with generators Yr (i' = 1 . . . . .  n). Then the 
bracket  of two covariant derivatives is given by 

IDA,  D B  ] = - T A B C D c  - F A j Y r  , (3.1) 

where TAn c is the flat superspace torsion and FAn r are the (super) field strengths or 
curvatures. We will treat  the N = 1 and N > 1 cases separately. 

3.1 N = I  SSYM 

Superplane integrability (SI) gives for this case [eq. (2.6)] 

T~B ~ = (Y~)~e, T,,~ ~ = 0 ,  (3.2a) 

F~e r = 0 ; (3.2b) 

therefore,  we obtain torsion constraints which are consistent with the superspace 
being fiat and a constraint on the spinorial components  of the superfield strengths. 
Eq. (3.2b) is precisely the "kinemat ic"  constraint necessary to formulate the 
N = 1 SSYM theory in superspace [12]. 

3.2 Nt>2 SSYM 

Superplane integrability, eqs. (2.12) and (3.1) give 

T'~o, c = 6~(o'C)~B, (3.3a) 

= ~", [,~o3, (3.3b) 

F,~,o, r = N[~a[, S , (3.3c) 

F '~ I  r = 0 .  (3.3d) 

Eq. (3.3a) gives correctly the non-vanishing component  of the flat supertorsion. Eqs. 
(3.3b)-(3.3d) are a set of constraints on the Fermi-Fermi  components  of the 
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superfield strengths. These are precisely the constraints needed to formulate the 
N = 2 [11] and N = 4 [13] SSYM theories in superspace. Eqs. (3.3b)-(3.3d) are not, 
however, the full content of the N > 1 theories. They are simply "kinematical" 
constraints that express geometrical quantities in terms of the propagating and 
auxiliary fields of the theory. We still need a lagrangian to get the field equations for 
these fields [11, 13]. We believe the same results hold for N = 3 (there are no N > 4 
SSYM in 4 space-time dimensions). 

4. Superspace supergravity theories 

4.1. SUPERGRAVITY (N= l) 

Superplane integrability, eq. (2.6), and the definition of the bracket of two 
covariant derivatives, eq. (2.2), imply 

T~0 c = (3,c),,0, T~o TM = 0 ,  (4.1) 

R~a.co = 0 .  (4.2) 

These constraints are weaker than those of Wess and Zumino [1], even those for the 
minimal auxiliary set of fields. Therefore,  we expect to obtain an SG formulation 
with more than the minimal set. It was shown by Gates and Shapiro [14] and by 
Taylor et al. [15] that constraints (4.1), (4.2) imply a formulation of SG with the 
Breitenlohner set of auxiliary fields. Just as for SSYM theories, one still needs a 
lagrangian to get the equations of motion. 

This result can also be obtained in a different way. It is straightforward to show that 
the Bianchi identities, plus the above constraints imply 

Tec~ d = ( 'yeXd),x , (4.3a) 

T e , f  = ( 2 / e M ) c f  , (4.3b) 

Reo~, cd = (~eXCd)a , (4.3c) 

where )C~, M~ t3 and k,~ a are arbitrary superfields. Now if we compare eqs. (4.3) with 
table 7 of Brink et al. [3], we see that they are precisely the superspace equations of 
motion for supergravity with the Breitenlohner set of auxiliary fields. The inclusion 
of a cosmological term (finite de Sitter radius) presents no problem. As said above, 
eq. (2.6) should be replaced by (2.6') and therefore we get instead of eq. (4.2), the 
new result 

1 
R,~t3.cd = -~ ( Xca ) ~  , (4.2') 

in agreement with the results of Brink et al. [3]. 
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4.2 E X T E N D E D  S U P E R G R A V I T Y  ( N > I )  

The generalization to N > 1 can be made along two different lines. We can use an 
extended superspace [ Z  M = ( x " ,  0" ' ) ] ,  as we did for SSYM theories, or we can begin 
with the N = 1 theory in a higher dimensionality superspace, that is, with Bose 
dimension dB> 4. One would then compactify the extra Bose dimensions, and end 
up with an N > 1 theory for da = 4, [16]. Specially interesting would be the dB = 11 
case, [17]. 

An obvious difficulty from the outset, is that we do not expect to get minimal 
theories; that is, theories will the minimal set of auxiliary fields. One will have to find, 
in both approaches,  the corresponding "Brei tenlohner"  sets and then compare  the 
results with what one gets f rom superplane integrability. Work along these lines is in 
progress. Here  we note that one of us (J.C.-R.) has derived from SI the constraints 
corresponding to Breitenlohner auxiliary fields for N = 1 supergravity in three-  
dimensional space-time (dB= 3). 

5. Conclusions 

We have shown how superplane integrability, a simple geometrical  idea, can be 
used to derive the kinematical constraints needed to formulate supersymmetric  
theories in superspace. SI works equally well for SSYM theories and for supergravity 
theories. We emphasize, however, that neither SSYM nor supergravity can be 
"der ived"  from SI. In both cases one still needs a lagrangian to obtain the dynamics. 
Nevertheless, a simple geometrical idea provides us with all the kinematical con- 
straints for all these theories. It is interesting that in all the cases studied above, the 
constraints with the Breitenlohner [9] rather than the minimal set of auxiliary fields 
appear.  It is an interesting open question why this is the case. Moreover,  it would be 
interesting to know whether  the constraints with other sets of auxiliary fields can also 
be derived from geometrical ideas. As our idea is mainly geometrical it differs quite 
substantially from the interesting approach proposed in ref. [19]. 

Appendix 

Our metric convention is 

r/ab = diag ( - + + + ) ,  

We use the definitions 

-Zob -- ¼E'/o, vb] ,  

The charge conjugation matrix is 

C = y  ° , 

3'~Yb + Yb'r,  = 2~Tab ~ • (A.1) 

C -1 = C T= - C .  (A.3) 

0123 e = + 1 .  (A.2) 
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S p i n o r  i nd i ces  a r e  r a i s ed  a n d  l o w e r e d  by  t h e  sp ino r i a l  m e t r i c  r/~ a : 

1 __lT~ab {{0 "~ (_ 1 )ab,.~B a 
, , B  = -o- - ' , , IJ  , = • 

C h a n g ' s  s u m  c o n v e n t i o n  [18]  is u s e d  t h r o u g h o u t .  

T h e  t o r s i o n  coef f i c i en t s  a r e  g i v e n  by  

T A B  C --_ _ C A B  C - -  ~)[ A.B ] C , 

w h e r e  

C A B  c ~ "  C3IAEu]MEM c , OA ~ E A  M OM ; 

t h e  c u r v a t u r e  coe f f i c i en t s  a r e  g i v e n  by  

R A B , C  D = - o  O C E ~ D +.I.  Ea. O [ A ~ J B ] , C  - -  A B  ¢11E, C t l ) [ A , C  t l ) B ] , E  • 
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(A .4 )  

(A.5) 

(A.6) 

(A .7 )  

(A .8 )  
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