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The method of non-linear representations, when applied to the (super) conformal 
group, is shown not to be equivalent to the usual (super) conformal gravity theories. 
However, the requirement of invariance under the full (super) conformal group transfor- 
mations, uniquely leads to the usual theories. 

1. Introduction 

Giirsey and Marchildon [1 ] and Chang and Mansouri [2] proposed an approach 
to gravity and supergravity based on non-linear group and supergroup representa- 
tions. Starting from the Poincar6 (super Poincar6) group, and choosing 0(3,1)  as the 
linear subgroup, they showed that in a particular gauge, an appropriate linear combi- 
nation of  their Lagrangian reproduced pure gravity (Poincar6 supergravity). 

As Giirsey and Marchildon noted for the case of  Poincar6 supergravity, the choice 
of  a particular gauge makes the various possible Lagrangians non-invariant under 
transformations not contained in the linear subgroup. Requiring that, even in this 
gauge, the full Lagrangian be invariant under supersymmetry transformations leads 
to the usual Lagrangian for supergravity. 

When these ideas are applied to the conformal (SU(2,2)) and superconformal 
(SU(2,211)) groups, the number o f  possible Lagrangians is, as we shall see, very 
large. Furthermore, the vanishing of  the torsion does not follow from the field equa- 
tions but has to be imposed as a constraint [3,4]. 

In this paper we first show that if we start with the conformal group and take 
Lorentz × dilatations as the linear subgroup, then the most general Lagrangian writ- 
ten in the Gtirsey and Marchildon gauge is the Weyl Lagrangian [5] **. Staying in 

* Work supported by the Instituto Nacional de Investiga~a'o Cienfffica, Lisboa, Portugal. 
Submitted to the University of Chicago, the Department of Physics, in partial fulf'dlment of 
the requirements for the Ph.D. degree. 

** See also, ref. [5a]. 

535 



536 J. Orispim-Rom~o / Conformal and superconformal gravity 

this gauge, we require, next, invariance under special conformal transformations. We 
obtain then uniquely the Lagrangian of refs. [3,4]. Finally, we show.that when the 
same procedure is applied to the superconformal group SU(2,211), taking Lorentz × 
dilatations × chiral U(1) as the linear subgroup, the Lagrangian of ref. [6] is obtain- 
ed after requiring invariance under local special conformal transformation, their 
supersymmetric square roots, and local Q-supersymmetric transformations (the 
square roots of the momenta). 

2. Conformal gravity 

To each of the 15 generators of the conformal group SU(2,2), we associate a 
gauge field and a curvature in the following way: 

generator: Pa , Ka , Mab , D ,  

gauge field: eau , fat~ , COgab , Bt~ , 

curvature: Rtwa(P) ,  R u v a ( K ) ,  R twab(M) ,  R t w ( D ) ,  

where the latin (greek) indices refer to the tangent space (world) indices. We use the 
notation and conventions of ref. [4], but for convenience some of the formulae are 
summarized in appendix A. 

We also impose the torsion free condition 

Rtwa(P ) = O,  

which allows us to solve for the spin connexion in terms of eau and B u. 
We now write down the Lagrangian that is obtained by the method of non-linear 

representations of the group G = SU(2,2), the linear subgroup being H = Lorentz × 
dilatations. As we are only interested in the Lagrangian in a particular gauge [1 ], we 
do not have to introduce a parametrization of the coset space G/H. The Lagrangian 
is then given by all terms invariant under H and general coordinate transformations, 
that are built out of the curvatures and the gauge fields corresponding to G/H. As 
we do not want the special conformal gauge field, f a u ,  to propagate, we will not 
consider terms with R t w a ( g  ). If, in addition, we require the Lagrangian to be parity 
conserving, we obtain 

£ = e [al ( - f R  (0) + 2fuvR (°)uu) + a 2 ( f  2 - f ~ f f u )  + a 3 f u ~ f f u  + a 4 f u v f u  ~ 

+ as fuvR(O)  vu + a 6 f u v F  uu + a T F u v F  uu + a s R ( u ~ b R  (°)uvab] , (1) 

where the ai's are arbitrary constants and 

fu~ = eaufau , f =  gtWfuv , e = det(eau) , 

R(O) = e b, eaPR(O) ~ o (o )  = ouuR(o) - -  ~ - - u ~  ( 2 )  
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This form for the Lagrangian is the most convenient for our calculations. One can 
easily check that other terms that would seem possible, like, for  example, 
euVPOeabCaeco fdaRtwab(M), can be expressed as linear combinations of  the terms 
alread), in (1). 

Varying the Lagrangian (1) we get the field equation for the non-propagating fur 

~(o) + a.R(O) + a6Ft w + 2a2fg#u -algu~ R(°) + 2 a x ~  ~ v~ 

+ 2 ( a  3 -- a2) f v  # "l" 2a4flz u = O. 

It is convenient to separate fur in its symmetric and antisymmetric parts 
1 _ 1  

Then the solution of (3) is 

auv = la 1 (R~) - R(O)'~ 

1 (o) R(O)~ s ~  = ~fll(Ru~ + uu J +/32gu~, R(°) , 

f = gUVft w = floR(°), 

where 

2 a  I - a s + a 6 

a l  2(a2 + a 4  _ a 3  ) 
Go- 

2 a  I -- a 5 

6 a  2 + 2 a  3 + 2 a  4 ' 

al  - 2a2/3o 

(3) 

(4) 

(5) 

2121 + a 5 

~1 2(-a2 + a3 + a4) & 2(-a2 + a3 + a4) (6) 

When we substitute (5) into (1) we get the Lagrangian 

£w = e[  aR(°)2 + b R ~  )R(°)uu + cFu~ Fuu] , (7) 

where a, b and c are arbitrary and the R ( ~ b R  (°)uvab term was dropped since by the 
Bach identity [7] it can be written as a linear combination of  (R(°)) 2 and R(~°)R (°)u~ 
modulo an exact divergence. This Lagrangian is invariant under Lorentz, general 
coordinate and local dilatations transformations, but for arbitrary a, b and c it is 
not invariant under special conformal transformations. It  is equivalent to the Lag- 
rangian of  Weyl [5]. 

To have invariance under the full conformal group, we require then invariance 
under the special conformal transformations. It is easier to do this with the 
Lagrangian at the level of  eq. (1), that  is, before substituting back for fur as given in 
(5). 

Under a transformation with parameters e -4 (the index A runs over 15 values) the 
curvatures transform as 

A B -- C A ~(e )R~- f~ , . 4R~ve  , (8) 
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where f~A are the structure constants of  the group. Therefore, under a special con- 
formal transformation we have (Ra~(P) = O) 

6KRtwab(llO = 6KRuv(D) = O . (9) 

From the expressions for the curvatures given in appendix A, we can easily derive 

x (o)_ X K 6 Ru~ - (-2gu~ ~ f -  46 Lu) ,  

8KR (°) = --126K f ,  

8Kyuv = +zs r fuv  -- 28Kfvu. (10) 

By requiring consistence between the conformal transformation properties of  the 
left- and tight-hand sides of  eqs. (5) we find 

_ I l l ( 1 1 )  
oq = - ~ 1  - ~ ,  ~2 = ~ ,  ~o  = - i ~ .  

From eqs. (5), (6) and (11) we get then 
1 t o ( o )  f tw = - ~v,vu - X g ~ R (  °)) , (12a) 

and 

4a1+a2  = a s ,  a a + a 4 = 3 a s ,  a 4 - a a = a s - 2 a 6  . (12b) 

Now we calculate the variation of £ in eq. (1) under K transformations (special 
conformal transformations). We do not have to vary fur because the coefficient of  
8Kftw is the field equation for fur and it vanishes identically. We obtain (remember 
t~Kea# = O) 

8K£ = e [ - a x f S K R  (0) + 2 a l f t w f K R  (O)lav 

+ a s f w S K R ( ° )  vu + a6fm, SKF tw + 2aTFuv6KF m'] 

= e [ - a l R ( ° ) S K f  + (2al + 4a7 + ~a6) R(O)UvsKf w, 

1 "~o(O)vlaRK,t, ] (13) + ( a s - - 4 a 7 - - ~ u 6 ) ~ ' -  " suvJ , 

where use of  (10) and (12a) was made. Using the result (see appendix B) 

e [ - R ( ° ) S K f +  2R~)  8 K f  w] = exact divergence , (14) 

we get 

as = O, a 6 = - 8 a 7 ,  (15a) 

and from (12a) and (15a) we obtain finally 

a3 = --a4 = a6 = --8a7 , a2 = --4al . (15b) 

Eqs. (12a) and (15b) then imply 

aafuvJ a'u + a4 fuv f  vv + a6fuvF ~ + aT F ~ F  v'u = O, 
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and therefore the £ reduces to 

£ = eal [ - f R  ° )  + 2fuvR(°)u~ - 4 f  2 + 4 f u r l  u] 

• = - e  - 

1 euVPOeabCdRu~b(M) Rooca(M) = ---~-~a 1 

which is just the Lagrangian proposed in refs. [3,4]. 
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(16) 

3. Conformal supergravity 

The superconformal group [8] * SU(2,2I 1) has 24 generators. We use the nota- 
tion and conventions of ref. [6]. For convenience, the formulae for the curvatures 
and transformation laws are summarized in appendix A. The correspondence among 
generators, gauge fields and curvatures is as follows: 

generator: Pa, Ka, Mab, Qa, S~, D ,  A ,  

gauge field: eau, f a u  , 60pab , ~ , ~ BU , A u , 

curvatures: Ra~(P) Ra~(K) ab , , R ~ ( M ) ,  R~v(a ) ,  R~v(S),  R ~ ( D ) ,  Ruv(A ) . 

As before, we are imposing the constraint 

Ruva(P) = O, (17) 

which allows to solve for Wuab(e,B), but consistency requires also [6], a constraint 
on the curvatures associated with the Q-supersymmetry, namely 

R ~ ( Q )  7 u = 0 .  (18) 

This constraint allows to solve for Cu- It also implies [6], a self-duality type of rela- 
tion on Rtw(Q), 

1/~ R ~ ( Q )  + ~ tw(Q) 3's = 0 (19) 

where 

l~uv(Q ) = e euvooR°°(Q ) . 

Now we take as the linear subgroup H = Lorentz X dilatations × chiral U(1), and 
the most general Lagrangian invariant under this subgroup of G = SU(2,211) and 
built out of  the R~(M) ,  Ru~(D), Ruv(A), R ~ ( Q )  and R~(S)  curvatures and eau, 
fau, ~u and ~k u gauge fields has the form 

£ = eal( - f l~  + 2/~/~U~(M)) + ea2(.f 2 - f t ~ f  uu) + e a a f ~ f  u~ 

* See also, ref. [8a]. 
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+ ea4 fw f  vt* + easf~vRV~(M) + ea6f~vRW(M) + eaTftwl~W(D) 

+ easfuvRW(A) + ea9f-~uoaV~v + ealofw~poaV(~ 

+ eallflav-~UoVP~p + eax2fuv~VoVP(ap + ea13fw~poPU~b v 

+ eal4flav-~oolav(Y ° + ealsf~v~udp v + ea16f~v~vc~ 

+ eal 7f-~vq~ u + al 8f~veuv'°°~,o 7s $a + eal9fUvRpv(Q) ~/t~ t~ p 

+ eaeol~uv(D ) l~UV(D) + ea21t~w(D) R~.(A) + ea22Ruv(A ) RUV(A) 

+ ea2al~(D) ~ # ~  + a24e'avP°t~lav(D) ~p75~0 

+ ea2sl~tw(D) ~ooa"¢ + a26t~uv(D) ~VoVp~bp 

+ ea271~w(D) -~PotWq~p + a28emao%abCCll~uvabl~ooccl 

+ ea29Rtavab~aolaVdp b + eaaoRvvab~taoabdp v 

+ eaal/~uv(M) ~u~v + e a a 2 k u ~ v #  + eaaal~-~u ~ 

+ eaa4k-~uo~¢~, + eaasl~(M) ~ p ~ " #  + eaa6k~,(M) ~po'°~'¢ ' 

+ eaaTI~uv(M) ~UoVP~ 0 + eaaa/~m(M) ~oUP~p + eaa9/~v~(M) ~poUV~ 

+ ea40/~m(A) ~v$v + eaalRm(A) ~uTsSv + a42evVPaRuv(Q) 7sRpcr(S) 

+ ea46Rm,(Q) 7v. ~ bp ~ v #  + ea47Rpv(Q) 7~ $P ~VoVPd)p 

+ ea48Rm~(Q) 7v C 0 ~ evP dpp + ea49Rtw(Q ) 7u C O To oPv'¢ v 

+ ea soRpu(Q ) 7v CP-~p oaU¢ v + ea s 1Rpu(Q) 7v ¢P ~p our4 y° 

+ as2e-mOORuv(M ) ~o~/s¢o 

+ non-derivative terms. (20) 

In the last equation, non-derivative terms refer to all possible terms constructed 
out of two $'s and two if's, e.g., e-~uc%-~u4~ ~. The terms including fur were explicit- 
ly written in (20). A caret ( ' )  on the curvature, means the curvature with all terms 
that contain fro, set equal to zero. 
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As before,  we can solve the algebraic equation fo r fu  v. Requiring this equation 
to be consistent with the transformation properties of  the various fields, we get the 
following relations: 

F r o m  K - t r a n s f o r m a t i o n s  

4a I + a  2 = a  s + a  6 , 

a3 - a4 = a s  -- 3a6 + 2a7 , 

a 3 + a 4 = 3(a 5 + a 6 ) ,  

a9 = a l o  = a l  l = a12 = a13 = a14 = O , 

al5  = a 1 6 .  (21a) 

F r o m  S - t r a n s f o r m a t i o n s  

2al  - as  + a6 + a7 + 4ia8 + 4a19 = 0 ,  

ax s = a16 = a17 = a18 = 0 .  (21b) 

With these relations we can write 

1 " 1 ^ i a 2 / ~ ( A )  + (a l  + il l)  R o y ( Q )  7~ 4 ° f ~  = -7~(Rvu(M) -- ~guvR(M)) + 

+ ([31 - o q ) R o u ( Q )  %,~b '° + o t 3 ( 2 / ~ ( D )  +/~uv(M) - /~vu(M))  , (22) 

where 

a 1 9  

t~l 2(2a 2 + 2 a  3 - 2 a 4 )  

iaa 

c~2 2a 2 + 2 a  a -  2a 4 

From (21b) we can derive 

1 
~+ 4 a 3 -  4~2 + 8ax = 0 ,  

a 1 9  

8(2a I + a 5 + a6) ' 

- - a  7 

°t3 - 2(2a2 + 2a a - 2a4)" (23) 

(24) 

so there are only three independent parameters among the at,/~i, but ,  certainly at 
this stage, still more a{s. 

To determine further parameters, we require invariance of  £, eq. (20), under spe- 
cial conformal transformations. As in the conformal group case, we do not  have to 
vary fur  (the variation being multiplied by  its field equation that  vanishes identical- 
ly). When this is done we obtain: 

a l  = - 3 2 a 2 8 ,  a2 = - 4 a l ,  a8 = 4a21,  

a l  9 + 4 a 4 2  = 0 ~ a 2 4  = a 5 2  , a 4 5  = a 4 6  , 

a 4 1 ,  a 2 2  undete rmined ,  a 3  = - a 4  = a 7  = 8 a 2 0 ,  (25) 

all the others vanishing. 
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The Lagrangian can therefore be written in the form 

£ = a2aetWO°eabcaRtwab(M) Rooca(M) + a42euvOCrRuv(a) "),s/~oa(S ) 

+ ea21Rw,(D ) RU~(A) + ea2:Ru~(A ) R~(A)  + ea2oRu~(D) R~(D)  

+ ea41Ruv(A) ~uTs(~v + a24euvo°l~uv(D) foTs•a 

+ a24elWOo~tw(m) ~o,),sq~o + ea4sRov(Q) 7uqjo(~u~v + ~ v ~ )  . (26) 

While performing these transformation on the Lagrangian we did not consider the 
non-derivative terms (products of  two ~'s and two ~'s) because they could not can- 
cel the curvature terms. It is not difficult to  write down the most general linear com- 
bination of  such terms. We omit the details, but it is then easy to show that invari- 
ance under special conformal transformations alone, requires all these terms to van- 

ish. 
We now require invariance under S-transformations (the square-roots of  the spe- 

cial conformal transformations). We get then 

8a28 + a42 = 0 ,  a20 + 2ia21 - a42 = 0 ,  

2ia21 -- 4a22 + 3a42 = 0 , a24 = a41 = a4s = 0 .  (27) 

Thus, 

£ = a28etwo°eabcclRuvab(M)Rooccl(M) - 8a2aeuVO°Rtw(Q) 3,s/~oo(S) 

+ ea21Ruv(D) ~UV(A) + ea22Ruv(A ) RUV(A) + ea2oRuv(O ) RUV(D). (28) 

The four coefficients in (28) are not all independent but satisfy the two relations 

a2o + 2ia21 + 8a2a = 0 ,  2/a21 - 4a~2 + 24a28 = 0 .  (29) 

The Lagrangian in eq. (28) is invariant under M, D, K, A,  S and general coordi- 
nate transformations. To have invariance under the full superconformal group we 
still have to require invariance under Q-supersymmetry (the square roots of  the mo- 
menta). This will give one more relation 

a2o = 0 ,  (30) 

and all the coefficients are determined (except for an overall constant). We get then 

the final Lagrangian 

£ = a2 a (~vp~ [eabedR~.vab(M ) Rpoca(M) _ 8Ruv(Q ) 7s/~pa(S ) 

+ 4iRw(A ) R~a(D)] - 8Ruv(A) RUV(A)}, (31) 

which is precisely the Lagrangian proposed in ref. [6]. 
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4. Conclusions 

We have shown that the method of non-linear representations when applied to 
the conformal group SU(2,2), the linear subgroup being Lorentz × dilatations gives, 
in the Gtirsey and Marchildon gauge [1 ], the Weyl Lagrangian [5]. We had to further 
require invariance under Special conformal transformations before we were uniquely 
led to the Lagrangian proposed in [3] and [4]. 

When we apply the same method to the superconformal group SU(2,211), the 
linear subgroup being Lorentz × dilatations × chiral U(1), we obtain a fairly compli- 
cated Lagrangian. If  we then require invariance under the special conformal transfor- 
mations, their square roots (S-transformations) and Q-supersymmetry transforma- 
tions we are led to the Lagrangian of ref. [6]. 

We close by noting that the more general non-linear realizations of refs. [1,2] are 
n o t  equivalent to the simple conformal and superconformal theories. The precise 
content of these much richer "non-linear" theories is yet to be clarified. 

Following the completion of this work, we received a preprint by Dr. L. Marchil- 
don [9] on the non-linear realizations of the superconformal group. The emphasis 
of his paper is very different from ours and there is little overlap in results with us. 

I am very grateful to Professor Peter Freund for suggesting this problem to me, 
as well as for numerous discussions, suggestions and a critical reading of the manu- 
script. 

Appendix A 

(a ) T h e  c u r v a t u r e s  

We give below the formulae for the curvatures of the superconformal group: 

R u v a b ( M  ) = R~Ov)ab - -  2 [ ( e a u f b v  - a ~ b )  - ts ~" v] - ~#OabdPv + -~vCrab~tt , 

R u v ( D )  = - ~ u B v  + ~ u ~ v  + 2 f t w  - ( #  ~ v)  , 

l - -  
R u v a ( P  ) = - ~ u e a v  + COuab % v  + Z~ ~Jgt3[at~v + e a u B  v - ( #  ~ v)  , 

l -  
R u v a ( K  ) = - b u f a v  + COuaafov - 4¢uTa¢~v - f a u B v  - Oa ~" v)  , 

R u v ( A  ) = - O u A  u - i - ~ u T s ¢  v - (Is +~ v)  , 

R ~ v ( Q )  ( D v - ~ u . + ~ , T v  1 - a .  - a = + ~ B v t ~ u  - "~tAv~ku 'ys )  - (It  ~ v ) ,  

R ~ w ( S )  = ( D v - ~ ,  -~u , , /a fav  _ 1 - a . - a v)  - ~ B v ~ u  + ~lAvCuTs) -- (At .e. , (A.1) 
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where 

R ~ ) ~  = - a ~ a l ,  + ~uaC~cb - (U ~ v) ,  

Fur = auB v - avBu , 

- -  r20a ¢'Ovab) ~la" (A.2) D ~  u = (a~ 1 b 

To obtain the curvatures for the conformal group, set A u = flu = Cu = 0 in the previ- 
ous formulae. 

(b ) Transformation laws 

K-transformations (parameter ~a) 

6KR~w(p) = 6KRtw(Q) = 6KRuv(A) = 6KRuv(D) = 6KRuvab(M) = O, 

6KRuv(S) = R w ( Q )  7" ~ , 

6K ea u = 6K~u = 6KAu = 0 ,  

6KBu = --2~u , 8K¢u = ~bUT. ~. (A.3) 

S-transformations (parameter X a) 

~sRa~(P) = 8 S R ~ ( Q )  = O,  

6SRu~(A) = -~ iRuu(Q ) X ,  

6SRu,(D) = 6SRu,(M) = - ~Ruv(Q ) ~. . 

~8ea# = 0 ,  8S-~p = XTU , 8SAp = i~uTsX , 

1-- 1~, 

1 ab ½BuX + ~i~tsXAu (m.4) ~8¢# = (~U- 2OabWu ) ~ -- 

Q-transformations (parameter e ~) 

8ORwab(m) = --~OabKu~(S) , 

8QRtw(D ) = ~gRuu(S) , 

~QRuv(A ) = - i g T s / ~ ( S ) ,  

1- -  a 3 . -  I -  6QRm,(Q) = ~eRm,(D) - ~te~,sRuv(A ) + ieoabRuuab(M) , 
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Q R # v ( S )  = - e ~ / a R # v ( K )  , 

1 -  6Qeal.~ = ~e'),a ~l~ . 
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(A.5) 

Appendix B 

We want to determine the coefficients a, b and c such that the quantity 

J = a R ( ° ) 6 K f +  bR(° )uv6Kfu  v + c F ~ 6 K f u v  (B.la) 

is an exact divergence 

J = l , ' U .  (B.lb) 

Notice that we do not consider a term R(°)uu6kfuv  because that would amount to 
redefining b and c above. We need the following relations 

R (°) = R + 6Bu;u + 6BuB u , 

R ~  ) = R~v + 2Bv;u + g u v B ° w  + 2(guvB 2 - BuBv)  , 

6K/uv = ~#;v -- ~ B u  - ~uBv + guz,B" ~ , (B.2) 

where ~a is the parameter of  the special conformal transformations. Using (B.1), 
(B.2) we get 

J = VU;u + ( - aR(° ) ;u  - bR(°)u°;o + cFOU;o) ~u 

+ (aR(°)g ~ '  + b R  (°)~'  + c F ~ X g u v B  • ~ - ~uBv - ~uBu),  (B.3) 

where 

V u = (aR(°)~ # + bR(°)vu~v + cFVU~u ) . (B.4) 

We now prove that all the terms in the parentheses either cancel or give an exact 
divergence. We separate them according to the different powers of  B u and analyse 
each set separately. 

Zero B's 

j (o )  = ( - a R  ;u _ bRPU p) ~ .  

= [ ( - a  - R ( B . 5 )  

where we have used 

RPlZ;p = ~ R  ;# . 

We get, therefore, the condition 

b + 2a = O. (B.6) 



546 J. 07"spim-Rorr~o / Conformal and superconformal gravity 

Linear terms 

j ( 1 )  = [_6aBO' ;o . ; /~  _ 2bBV;U;v _ bBa;o;u + c(BP;U;p _ BU;P;p) 

+ (2a + b)  R B  u - 2bRPUBp] ~;# 

= [ -3 (2a  + b)  Bo;a ;u + (2a + b) R B  u 

+ c(BP;t~;p __ B#;p;p)] ~/.L = 0 ,  

which implies 

2 a + b = 0 ,  c = O .  

mod (exact divergence),  

(B.7) 

Similar calculations for the quadratic and cubic terms give the same relations 
(B.6) and (B.7). Therefore, 

J = e [aR(° )~Kf  - 2aR(°)#v~Kfuv] = exact divergence, (B.8) 

as used in the text.  
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