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Two algorithms for numerical multidimensional integration are described, which handle efficiently
(integrable) singularities lying in arbitrary regions of the integration volume while keeping the
memory requirements at the same level as in interval adaptation methods.
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The need to integrate numerically functions with (integrable)
singularities occurs frequently in computational work. For
simple functions and one-dimensional integrals simple standard
techniques of truncation of the interval, change of variables,
subtraction of the singularity, etc. are applicable (Davis and
Rabinowitz, 1967). However for multidimensional integrals
and when the functions are so complicated that their behaviour
is essentially unknown, it is convenient to use an integration
procedure that automatically adapts itself to the rate of varia-
tion of the integrand at each point.

An algorithm (RIWIAD) of Monte Carlo integration with
automatic interval adaptation for multidimensional integrals
has been developed by Sheppey (1964), Dufner (1970) and
Lautrup (1971) and successfully used, in particular, for the
computation of higher order corrections in quantum electro-
dynamics (see for example Calmet, 1973).

The RIWIAD algorithm is fairly appropriate to handle
integrals with (integrable) singularities lying on the boundary
of the integration volume, which is taken to be the unit
hypercube. In each iteration the algorithm computes the
variance in the slices of the integration volume associated to
the subintervals in each integration axis, i.e. for the n’th
interval of the i’th axis
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In the following iteration the interval sizes are adapted (fixed
number of points per interval) to ensure that regions of higher
variance will have a higher density of sampling points.

From the very nature of the algorithm it clearly follows that
in general it will handle well integrands with singularities or
fast rates of variation lying in hyperplanes perpendicular to
the integration axis. However if the singularity hyperplanes lie
obliquely to the axis (skew singularities) not much improvement
should be expected from interval adaptation. In simple cases
one might work out a change of variables to put the singular-
ities in the boundary of the integration volume, or at least in
hyperplanes perpendicular to the axis. In general, however,
this is not possible if many singularity planes exist and in any
case it is not practical nor in line with the automatic integration
philosophy.

To construct an algorithm to handle skew singularities the
obvious brute force method would be to keep in store from
iteration to iteration information about the subintegrals and
variances ¢, , in all subvolumes of the integration domain
(instead of just in the hyperslices perpendicular to each axis)
and adapt the number of points in each subvolume accordingly.
Notice however that, if m is the number of intervals in each
axis, the number of subvolumes grows as m? whereas the
number of hyperslices grows only as m x d with the dimen-
sionality d. Thus, for high dimensionality integrals and a fine
interval division this method would be too demanding in

memory requirements. This is the reason why in RIWIAD
the interval adaptation method was preferred.

In the following we will describe the main features of the
FORTRAN program TSAIR (Two Step Adaptive Integration
Routines) which contains two algorithms that handle satis-
factorily skew singularities or fast rates of variation in skew
hyperplanes and keep the memory requirements at the same
level as RIWIAD. All integrations to be executed by the
program should be normalised to the unit hypercube.

Algorithm 1

In this algorithm one aims at computing the integral with
minimum variance for a fixed total number L of sampling
points. If one allows for variable number of points in the
subvolumes, mathematically the problem consists of mini-
mising the function*
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by variation of L, with the subsidiary condition
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L, is the number of sampling points in the subvolume V,, N
is the total number of subvolumes and

‘ xn=<f2>n_<f>3 (4)
is the second-order moment of the function in the subvolume n.
Applying the Lagrange multiplier method the result is as follows
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Practically what the algorithm does is to start with a certain
number of iterations where one proceeds to interval adaptation
as in RIWIAD. The number of such iterations is never smaller
than a number chosen by the user and supplied in a data card
to the section CONSTANTS AND COUNTERS (see below).
Typically we have been using five such iterations. After these
iterations if the variance is still decreasing at a rate faster than
a certain amount (10% in our program) the algorithm continues
automatically to make interval adaptations until this limit is
reached.
Starting with the last of the fixed RIWIAD iterations the
program computes and keeps in the memory the value of
N

L,= (L—N)+1 (5)

I V,Jx, Once the interval adaptation step is completed the
n=1

program switches to a second step where the interval structure
is kept fixed and the number of points per subvolume L, is
allowed to vary to approach the ideal value of Equation (5).
However to apply Equation (5) one needs information on

*For the general mathematical background of Monte Carlo adaptive integration see Lautrup (1971).
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Fig. 1 Variance and number of sampled points per iteration for a
typical test of algorithm A

V,/x, for each subvolume and, as discussed above, to keep
these values from iteration to iteration would overburden the
memory requirements.

The procedure we used is the following: each time the program
starts sampling inside a subvolume it first computes a small
number y of points. Estimates for V,/x, and L, from Equation
(5) are then computed from these points. If the estimate for
L, is greater than the number y of points already sampled the
computer samples L, — y more points (up to a maximum Z
fixed by the user), otherwise it skips to the next subvolume.

The present algorithm combining interval adaptation and
variable number of points per subvolume with essentially the
same memory requirements as RIWIAD shows itself as
fairly effective in obtaining small variances in the integration
of arbitrary functions.

For the operation of Algorithm 1 the user should supply:

Data

NDIM = number of dimensions of the integral

NSUB = total number of subvolumes

IX = initial value for the random numbers subroutine
RANDU. The last digit must be odd*

ACC = value of relative error to be obtained. When it is
reached the program stops

BL = number of points per subvolume in the interval
adaptation iterations

Z = maximum number of points allowed in each sub-
volume

BLZ = number of points one uses to estimate V,./x,
and L, in each subvolume when the total number
of points (N,,) is BL,NSUB. Related to the
number y in the text by

y = BLZ,/N,,,/BL.NSUB + -5
Constants and counters
op =1

ITMAX = minimum number of interval adaptation iterations

NMAX If after the interval adaptation step one wants to
use all remaining points at one time one uses
NMAX = maximum number of points. Other-
wise one uses NMAX =1 and the computer

*The random number subroutine RANDU is supposed to work
satisfactorily for machines of arithmetic similar to the IBM 360/370
series (UNIVAC 9300/9400, XD5 sigma 5/7/9, etc). For other
machines, because of the size of the integer constant involved, it
should probably be replaced by some other appropriate subroutine.

executes successive iterations until it uses the time
allowed in the JOB CARD. The number of points
sampled in these iterations is approximately equal
to the number of points used in the interval
adaptation iterations (i.e. NSUB,BL)

Algorithm 2

Together with algorithm 1 an alternative was developed which
could be used with a minimal change in the program: the
replacement of two cards.

The point of view in this algorithm is the computation of the
integral for a specified variance with the minimum possible
number of points. The mathematical problem to be solved is
then the minimisation of the function

N
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with the subsidiary condition
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By variation of L, and the Lagrange multiplier method the
resultis:

N
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In this algorithm a uniform interval division is used. In the
first iteration one computes the integral, the variance and also
N

the sum X V. /x,. On the second and last iteration, by the
i=1
same procedure as described for Algorithm 1, one computes
an estimate for V,./x, in each subinterval using the first few
sampled points in each subvolume. From this estimate and
Equation (6) L, is then computed and the rest of the necessary
points sampled in the subvolume n.
Instructions for the use of Algorithm 2:

Data
Same as in Algorithm 1 with BL now being the number of
points in the first iteration.

Constants and counters
IOP =2
ITMAX =1

The program TSAIR* has been tested and used for the integ-
ration of several types of functions. For illustration purposes
we display in Fig. 1 the behaviour from iteration to iteration
of Algorithm 1 in the case of a typical 2 dimensional function:
filey) = —log{lx — yl.Ix = 1 .|y = 1].12x + y — 2|.
l4x + y — 31}

which possesses both skew singularities and singularities in
lines perpendicular to the axis.

The upper plot shows the variance normalised for the same
number of points per iteration. As expected in the first few
iterations one obtains some improvement ( ~6%) with interval
adaptation. However after the third iteration no further
improvement is observed. After the fifth iteration the interval
adaptation ceases, the second part of Algorithm 1 becomes
active and a new significant improvement in the variance
(~24%;) is obtained.

The lower plot displays the number of sampled points per
iteration. After the fifth iteration this number is no longer
fixed, however it is seen that it deviates very little from the

*IFM program library
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Table 1 Integration of f;(x,y)f f; = 5.806852. ..

Iteration Estimated Actual
error error

(x 1072 (x 1072

Estimated
error

(x 1072)

Iteration

Table 2 Integration of f,(x,y)f f, = 4.466666 . . .

Actual
error

(x 1072

3:06
3:02
2-85 -
3:02
2:84 -
2-88 -
2:27 -
2:34 -
2:36 -
10 2:39
11 2-39 -~
12 2-59
13 2-45 -
14 241 -

0-018
1-89
1-20
1-39
270
1-69
2:97
3:80

OO0 W Hh WN -

7-05
10-90
8:18
7:27
6-58
8:32
3-64
423
517
5:09
11 474
577
13 499
5:16

O 00N WNPH WK =

- 907

0-52
—10-09
—11-55
— 954

1-49
—10-35
- 525
- 769
— 492
—11-17
- 582
—10-44
— 818

[NSUB = 100; BL = 20; BLZ = 10]

value used in the interval adaptation iterations. This is a good
check of the reliability of the method used to estimate the
quantities V,/x,.
In the Tables 1 and 2 we compare estimated and actual
errors for integration of f;(x,y) and

Lxy) =Ix+yp =112 4+ |x — y|712
For these simple functions, which we have chosen because
their exact integrals are easy to compute analytically for
comparison, one sees that the RIWIAD algorithm (first 5
iterations) leads to actual errors not very different from our
Algorithm 1; however, the crror estimation is on average
somewhat more accurate in the latter.
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Book reviews

Linguistic Structures Processing, Fundamental Studies in Computer
Science, Volume 5, edited by A. Zampolli, 1977; 585 pages.
(North-Holland, Dfl. 110-00)

There is little doubt that those who carry out research in artificial
intelligence and even those who restrict themselves to ‘ordinary’
computational linguistics face problems of an extraordinary com-
plexity. As far as computers are concerned it is well known that
provided valid requirements can be expressed unambiguously to
the computer then correct results may be expected but, of course,
the major and as yet unaccomplished task of linguistics is to define all
the rules of language and speech behaviour concisely and un-
ambiguously. The proverbial man in the street feels that speech is
formed almost instinctively and he is totally unaware of any hidden
‘rules” which might govern his utterances. Add to this the fact that
those who have tried to formulate rules to be used as a sort of
algorithmic basis for computation involving language data find that
their rules are broken constantly and in many different ways; they
find, in fact, that they are unable, by and large, to penetrate through
to what might be called the algebra of language. To ask a specific
question: what goes on in the brain as an utterance is formed ? This
question begs, of course, two further ones: firstly, what are the
parameters of the channel of communication between two humans
in contact with each other; and secondly, how does a person on the
receiving end of a message perceive it and interpret it? Only when
we know more of the highly structured thought processes and of the
equally complex linguistic data structures which model them shall
we be able to make advances in the field of human understanding in
general and in the field of artificial intelligence and computational
linguistics in particular.

Research in this field is being carried out in several countries,
notably in the United States, and there are obvious advantages in
having specialists get together and if, at the same time, they can
pass on their knowledge to students so much the better. Professor
Zampolli provides such a setting by organising a summer school at
Pisa every two years which is now justifiably regarded as the best of
its kind. Those lecturers who attended the school in 1973 have
contributed to this volume. Some wrote papers, whilst others
submitted the text of lectures. They are not all “articles’ as stated in
the preface and it is suspected that not all ‘reflect the research
activity of the author in the period following the school’.

About one matter, however, there can be no doubt: the ‘nominal
roll’ of those contributing to this volume is an impressive list of
names. It includes those who are recognised to be at the forefront
of research in their particular sector, scholars such as Fillmore,
Hays, Kay, Wilks, Winograd, and Woods. Kay’s exposition of the
state of the art as far as morphological and syntactic analysis is
concerned occupies something like one fifth of the book .and is a
valuable contribution. Winograd’s contribution on artificial
intelligence is of similar length and can also be highly recommended.
Wilks performs a useful service by contextualising natural language
understanding systems within the AI paradigm. Woods gives the
reader a valuable account of the performance and potential of

358

natural language question answering systems. The remaining eight
authors contribute the last 40%; of the book, so to speak, and from
amongst them one must single out Allen for his description of how
to synthesise speech from unrestricted text.

The editorial standards of this book are high but are not impeccable.
There are quite a number of instances of odd English and spelling
errors. Errors of this sort and the presentation of text that is not
right-justified should not occur in a volume that costs so much.
These minor blemishes notwithstanding, this text can be recom-
mended to students of artificial intelligence and computational
linguistics, especially to those students who are searching for a
general orientation or state of the art report. What a pity it is,
however, that it took four years to publish this book. A 1977
publication that represents a state of thinking in 1973 is an un-
fortunate occurrence which correlates negatively with this rapidly
developing field.

JoaN SmiTH (Manchester) and F. E. KNOWLES (Birmingham)

Microprogramming Primer, by H. Katzan Jr., 1977; 254 pages.
(McGraw-Hill, £13-45)

This is a practically oriented treatment of microprogramming and
machine emulation. Based on the reasonable assumption that the
reader is familiar with the basic concepts of computers, program-
ming, operating systems and language translators, the book first
presents the concepts of microprogramming by relating them to the
organisation of a modern computer. The concepts of emulation are
introduced, including a description of a suitable model computer
and its microcode. Throughout the book, examples are given, and
exercises set, based on a simple machine, called the D-machine. By
the end of the book this machine is being used to emulate more
complex machines, with stacks and multiple registers.

Because of its style and content, this book is most suitable for
readers at a final-year degree level. Indeed, it would make an excel-
lent course text for a study of microprogramming and emulation.
The subject matter is well ordered and the text well supported by
many examples. Each chapter ends with a list of questions and
exercises, together with an up-to-date vocabulary list. I would
strongly recommend that readers tackle the problems before
proceeding to the next chapter.

It is, of course, possible to find things wrong with the book. The
use of a particular model computer will not please everyone, but
critics should note that the author has made available an instructors’
guide and an emulator/translator package written in FORTRAN
(remember FORTRAN ?) which should be easily transportable to
any real computer. My own major criticism is the price. I know
that £13-odd is not a lot by some standards, but why cannot
publishers produce cheaper (paper) editions that students will buy?

To sum up—an excellent introduction to the field of micro-
programming, which makes a worthwhile addition to any computer
science library.

ALAN E. CHANTLER (Yelvertoft)
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