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An action principle for a superconfornlal gauge theory based on the supergroup 
St J(2.21.a, ') is constructed using a graded Weyl-like geometry. The internal synlmetry is 
I JiN). The theory unifies gravity with other gauge interactions. "l'he explicit gauging of 
conformal transformations is explored. 

I. Introduction 

Tile gauging of  supersymmetries,  just  as that of  ordinary symnaetries, is geometric 
in nature [1 ]. In addit ion to the early super-Riemannian theories [2], supergravity 
[3] has recently been recast in geometric form [4,5]. A genuine unif icat ion of  ge- 
ometry  and internal symmet ry  is expected in theories [6] that start from the super- 
conformal  SU(2 ,2 IN)supe r symmet r i e s  [7,8]. In ref. [6] we have described the al- 
gebraic structure of  such theories. Here we construct  a superconformal  geometry 
and use it to write down action principles for our theory. We shall also consider the 
geometry of  extended ordinary (i.e., not  superconformal)  supergravity. Our ap- 
proach is rooted in superspace just  like that of  Wcss, Zumino ,  Volkov ct al. [4]. We 
shall briefly comment  on conformal  theories in an ordinary space setting '~ la Mac- 

Dowell and Mansouri [5]. 

2. Superspace formalism and extended supergravity 

We start from a superspace with 4 Bose space-time coordinates x ' "  (m = 0 . . . . .  3) 
and 4N Fermi coordinates 0 v~ (/1 = 1 . . . . .  4 is the Majorana spinor index, ~ = 1 . . . . .  N 
is the internal  symmetry  index). On the bundle  of  bases of  this superspace we define 
[41 the solder form (supervierbein) e A - M_A = Oz t'M- llere capital indices run over all 
4 Bose and 4N Fermi values and the collective nota t ion  z 'al is in t roduced for x m and 

* Work supported in part by the NSF: contract no. PHY744)8833. 
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Our. We next define a connexion form (1)A B = dZM(I'MA B valued not in the whole 
GL(4 [4A r) superalgebra (or we would be worse off  than in super-Riemannian theory) 
but only in a subalgebra S thereof. The choice of  S then determines the theory. 

For the moment,  with extended supergravity in mind, we choose S as the direct 
sum of  the Lorentz and of the internal O(N) algebras, so that the connexion coe[Ti- 
cients are given by 

cl)A, lab = (,OMa b + SMa b , 

^ =  I e f ~ , d  A . . A 

Cl)M,~8 t3p g¢o..'ad t t  , 7e]~P88 p + AlwAY8 p~ + SMa8 t3~', 

A 

(1)Ma 33 = ~Mc,8 h = 0 ,  ( 1 ) 

with 

G)Mab = -¢',)Mba , 

AgS"~" = 5c~ ~/~" ~,~" . . . .  ~ i = 1 ~N(N l) 

A 

SM~ b = Sgc,8 ~ = 0. (2) 

Tile ~i's generate O(N). Tile here vanishing and superfluous S's have been introduced 
solely for future convenience. The w's and A's are functions o f x " '  and Oar. Tile co- 
variant differentials of  the solder and connexion forms yield [4] torsion and curva- 
ture forms T A and RA B. The coefficients are, (notation: a in (- 1) a means the grade 
o fz  A ) 

TBC A = ( _ l ) a O , , + c ) .  M. ,  ~ ' ~  ~ A ),', ,~e ~I e C t B UNC M - -  ( - . 1  c c N O N e M  A 

N ",be' ~ N d )  A +e B <])N,C A --(-  l) ec" 'N,I~ , (3) 

RDCA B= [(-1)a('"+C)ecMeD N (._l)C'"eDMeC N ] 

X [aNCbM, AB+ (--l)n(m+a~e)dPg, Al:'(l)N,E B] . 

Kronecker's 5A B and the quantities 

C':'~6 6"~" for A = a~,, B =/3~, 
QAB= { 

0 otherwise,  
(4) 
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(C = charge conjugation matrix) are invariant tensors. These invariant tensors to- 
gether with the curvature and torsion tensors (3) can be used to construct invariant 
actions. As an illustration, we consider the simple invariant action (a generalization 
of the N = 1 ansatz of Volkov et ah [41) 

A = / d  4' 4..x' z det(eM n X 1 )h~ t,~. QC'A RAI3C, I* . (5) 

It leads to tield equations which for N = 1 after some straightforward algebra and 
suppressing the (for N = 1 ) irrelevant internal index take the form: 

7~.r,1 (,,:,,/)¢z-r = 0 ,  ( -  1 )t, T a n n  = 0 , R , , ~  ~ =- 0 ,  (6) 

where (5.' ef)~7 = ( l / 2 i ) C ~ a ( o e ¢ ' ) O  ' with C the charge conjugation matrix. These 
equations are compatible with those from which Wess and Zumino [41 derived or- 
dinary supergravity. 

For N > 1 it seems paradoxical that we should have gauged internal O(A'3 sym- 
metry without a costrlological term. This is due to an t, northodox contraction of  the 
de-Sitter superalgebra. One usually associates the internal O(N) with the de-Sitter 
like OSp(NI4) superalgebra and then contracts OSp(A:I4) to get the physical algebra. 
The contraction proceeds as follows (see the first paper of ref. [71): multiply all 
Fermi charges by x/k and the de-Sitter boosts by k, thereby the latter become trans- 
lations and together with the Lorentz generators span the Poincard ~dgebra. Now, 
this still leaves open the contraction factor of the internal O(/~,O charges. Were one 
to contract these with the same factor k as the de-Sitter boosts, they would become 
central charges and the theory would have a decent fiat space limit according to the 
theorem of Haag et ah [8]. On the other hand, if one chooses not to contract the in- 
ternal O(N) charges (i.e., to multiply them with k ° = 1 rather than with ~) one gets a 
superalgebra containing the direct sum of the Poincar6 and O(A r) algebras as its Bose 
part. The internal charges are thus O(N) and not central. The theory again has an 
admissible [8] fiat limit. With this contraction the cosmological ternr vanishes as 
can be cross-checked e.g., for N = 2 by explicitly contracting the OSp(214) Lagrangian 
of ref. [9]. It is this type of theory * that is covered by the ansatz (1), (2). It is 
an interesting problem to see whether this tormalism can be adapted for full 
OSp(N[4) gauging. For now, we prefer to go o11 to superconform',d theories. 

3. Superconformal theories 

As was pointed out in ref. [6], tire step from st, pergravity to superconformal the- 
ory is analogous to that from Einstein gravity to Weyl theory [10]. In Einstein the- 
ory the connexion is valued in the Lorentz algebra, whereas in Weyl theory it is val- 
ued ill tire direct sum of the Lorentz and Weyl-dilatation algebras. No connexion co- 

* See note added in proof. 
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cfficicnts (i.e., gauge fields) arc introduced for the confk)rmal boosts (fk)r an alterna- 
tive see sect. 4). Similarly, in the graded case wc leave conlormal boosts and their 
fermionic "square roots" the superconformal boests ungauged and value the con- 
ncxion in a subalgcbra of  the stlpercon formal supcralgebra SU(2,2IN): the direct sum 
of  the Lorentz, Weyl-dilatation and internal U(N)-symmetry algebras. The latter has 
the g 2 generators [6] 

it" X i is an antisymmetric matrix 

if X i is a symmetric matrix . 
(7) 

Ilere X i provide a basis for the hermitean N X A" matrices. The t l ' s  without a 7s gen- 
erate the O(N) subgroup of UffV). 

The connexion coefficients ¢1~..~t4 t¢ now have again the fornl ( 1 ) but with 

COMa b = --COMb a , 

^= ! D SMab = DM~a b ' S.~'1a~1313 2 M~a [ 3 ~ '  (2a) 

replacing eq. (2) (here H i are those defined by eqs. (7)). The superfield D,u is the 
generalization of  Weyl's gauge field. The formulae (3)st i l l  define torsion and curva- 

A B a~'~ ture. To generalize the invariant tensor Q~ one may replace the factor 6 on the 
right-hand side of" cq. (4) by a matrix R c~F. Invariancc under in tcrn:d SU (N) gauge 

tratlsformations then requires for the traceless Xi's the matrix equations Rxi+ XiTR = O. 

For N = 2 this specifics R = i02, but for N/>  3 such an R-matrix does not exist (R- 
reflection is an outer automorphism).  Thus internal SU(N) gauge symmetry  cannot 
bc insured this way (we shall presently give a method for insuring U(N) symmetry!)  
except for N = 2, and even then full U(2) symmetry fails. We may nevertheless use 
the invariant tensor (4) to increase the gauge sylnmctry at least to the extent  of  
Wcyl dilatations. Indeed if instead of  (2) and (2a) we consider the intermediate case 

~)Mab = --~OMba , 

A i J  ~ = as in eq. (2 ) ,  

i A  | A 

Sma ~ = D.~16a b SMa~ ~ = 2DM 6c,~66 ~ , (2b) 

then QAB ofeq .  (4) is a tensor of  Weyl dilatation weight 1 (tile transformation of  
tensors under gauge transformations follows [4] from the prototypes 

5V A = oB X B  A 6 0  A = . X A B O B  : 
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Weyl dilatations correspond to 

X~, "=  ~,Sb", X ~  "'~" = ~ 6 ~  ~ - " ,  

and all other components of  X vanishing). 
Constructing the curvature tensor ,IQyDA B from the connexion (2b), we find that 

/~ = (._ l)h + t,,. QcA/~A t~C t~ (with Q given by (4)) is a scalar of weight 1. Since 
det(~,'M) has weight 2(2 N), the product ot'/~ with a suitable Jordan-Brans-I)icke t'ac- 
tor 141 can serve as a lagrangianfor th~modes t  intermediate case (for N = 2 even SLI(2) 
can be achieved by replacing 6 a~/ by e a~ in Ai~t3~'). 

To deal with the full superconformal case (2a) we circumvent the necessity for 
invariant tensors by introducing new superfields ~ AB transforming like a graded an- 
tisymmetric tensor density of weight 2(N 2). 

~ , ln  = _ (_ l ) ah  ~t~A , 8~9Ai~ = ~C'BxcA + the ~ _ Tr(X)qjAL~ . 

The action (~ is a real parameter): 

A =fd"+~"~z det(eMA)(( - l )b+hc$ c/t RAnC 8 +(--1)apDA ~BCTcBA)  (7) 

is invariant under the x- and 0-dependent Lorentz, Weyl and internal U(N') transfor- 
mations. The specific tensorial nature of ff allows the appearance of  tile second term 
in eq. (7) which plays the role of a kinetic term for 4,  a pure kinetic term being un- 
available on account of the absence of invariant tensors. The AiM's now involve 
U(N) Yang-Mills fields. Yet the variation of  the action (7) leads to second order de- 
rivatives even in this "first order" fommlism. This can be corrected by using an aux- 
iliary vectorial superfield X -'A of Weyl-weight N -2 instead of ~AB. Then an invariant 
action is (vi are real parameters): 

A =fd4+4x z det(eMA)[(--1 )h+hcxCx/t RABC B 

+ (--l)a Vl D A x B D B x  A + (--1) a+h V 2 DA X A DBX B ] . (7b) 

The superfields X and ff are graded tensorial counterparts of  the scalar field used in 
Dirac's approach to Weyl theory [10]. 

The actions (7a) provide examples of  superconformal gauge theories with inter- 
nal U(N) symmetry. 

4. The problem of conformal gauge fields 

As in Weyl's ungraded theory, in our superconformal theory we gauged Weyl dil- 
atations but not conformal and superconformal boosts. Conventional wisdom has it 
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that con formal boosts are ungaugeable because tim conformal current - the source 
of  the envisioned conformal gauge field is explicit ly x-dependent and its appear- 
ance in the theory would wreck its translational invariance. We want to reanalyze 
here briefly this argument in the light of  recent work by Mcl)owell and Mansouri [5] 
(MM). [:or simplicity, we restrict our discussion to the ungraded case. We consider a 
principal fibre bundle with the conformal group 0 ( 4 ,  2) as a fibre and a 4-dimen- 
sional space-time manifold at its base. We thus have gauge fields (connexion coeffi- 
cients) corresponding to translations, Lorcntz transformations, dilatations and con- 
formal boosts. The 0 (4 ,  2) structure constants then define a curvature tensor Rffv 
(/2, u = 0 . . . . .  3, A = 1 . . . .  1 5 is a conformal iildex) in terms of  the gauge fields. Gen- 
eralizing MM we postulate the action 

A 13 A C = f d 4 x  ew'°'~R~,,RooMAt~ , (Sa) 

where parity conservation again forces the MM choice 

( C.aat bb F 

M A B =  I 0 

for A = aa', B = bb' Lorentz boos ts ,  

otherwise.  
(8b) 

Alter  separating out the topological invariant part (exact divergence in the integrand) 
we again get first order field equations for the gauge fields (the dilatation gauge field 
drops out altogether for the action (8), ahhough it could be made to appear at the 
expense of  parity conservation). This theory is manifestly translationally invariant 
(x does not appear explicitly in the lagrangian), llowever, to prove its local con- 
formal invariance, one needs constraints that, t,nlike the de-Sitter case treated in 
MM, do not follow from the field equations. This is the reason why in the graded 
case we used directly superspace methods rather than the very elegant MM method. 
As has been noted [9], the latter loses much of  its geometrical simplicity already in 
the case of extended supergravity. 

Following the completion of  this work, Professor P. van Nieuwenhuizen kindly 
reformed t,s that he, P.K. Townsend and M. Kaku have also considered the matters 
covered in the last section of  this paper. 

Note added in proof 

The superspace action (5) has zero cosmological term and was interpreted in 
sect. 2 as corresponding to an unusual (Haag-Lopt,szanski-Sohnius admissible) con- 
traction of  OSp(N]4)gauge theory. It was found that e.g., the OSp(214) theory [9] 
looses its cosmological term when contracted this way. It may happen though, that 
after contraction,  the OSp(N]4) gauge transformations themselves become singular 
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st, tha t  in the l imit  o f  full c o n t r a c t i o n  the theory  is no t  gauge-invariant .  Al ternat ive-  

ly, when  reduced from superspace  to ord inary  space the ac t ion may develop a super- 

cosmological  te rm as in the u n c t m t r a c t e d  OSp(N[4)  theor ies  of  the last paper  t)f 

ref. [3] and of  refs. [4 ,9] .  The  ac t ion  pr inciple  (5)  was cons idered  in sect. 2 as a 

p re l iminary  i l lus t ra t ion o f  our  me thods .  In view of  these possibi l i t ies  it now  appears  

tha t  this  theory  nlay be in te res t ing  in its own right and we are fur ther  invest igat ing 

it. One  o f  us (P .G.O.F. )  would  like to t h a n k  the pa r t i c ipan t s  of  the Aspen Workshop  

on Supetgrav i ty ,  especial ly Drs. M. Kaku and P. van N ieuwenhu izen  for their  stim- 

ula t ing remarks.  
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