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An action principle for a superconformal gauge theory based on the supergroup
SU(2.21N) is constructed using a graded Weyl-like geometry. The internal symmetry is
U(V). The theory unifies gravity with other gauge interactions. The explicit gauging of
conformal transformations is explored.

1. Introduction

The gauging of supersymmetries, just as that of ordinary symmetries, is geometric
in nature [1]. In addition to the early super-Riemannian theories [2], supergravity
[3] has recently been recast in geometric form [4,5]. A genuine unification of ge-
ometry and internal symmetry is expected in theories [6] that start from the super-
conformal SU(2,2|N) supersymmetries [7,8]. In ref. [6] we have described the al-
gebraic structure of such theories. Here we construct a superconformal geometry
and use it to write down action principles for our theory. We shall also consider the
geometry of extended ordinary (i.e., not superconformal) supergravity. Our ap-
proach is rooted in superspace just like that of Wess, Zumino, Volkov et al. [4]. We
shall briefly comment on conformal theories in an ordinary space setting a la Mac-
Dowell and Mansouri [5].

2. Superspace formalism and extended supergravity

We start from a superspace with 4 Bose space-time coordinates x™ (m =0, ..., 3)
and 4N Fermi coordinates 048 (u=1, ..., 4 is the Majorana spinor index, f = 1,...,N
is the internal symmetry index). On the bundle of bases of this superspace we define
[4] the solder form (supervierbein) e# = dz¥ efy. Here capital indices run over all
4 Bose and 4N Fermi values and the collective notation z# is introduced for x" and
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OKi, We next define a connexion form b8 = d:""tl)yAB valued not in the whole
GL(414N) superalgebra (or we would be worse off than in super-Riemannian theory)
but only in a subalgebra S thereof. The choice of S then determines the theory.

For the moment, with extended supergravity in mind, we choose S as the direct
sum of the Lorentz and of the internal O(A) algebras, so that the connexion coeffi-
cients are given by

with

Dara” = wpra® + Sara®
5 ~ A ~
D106 = §oata® (v, YeloP 867 + A% Ak’ + Saras™
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The As generate O(N). The here vanishing and superfluous $’s have been introduced
solely for future convenience. The w’s and A’s are functions of x™ and 048 The co-
variant differentials of the solder and connexion forms yield [4] torsion and curva-
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(C = charge conjugation matrix) are invariant tensors. These invariant tensors to-
gether with the curvature and torsion tensors (3) can be used to construct invariant
actions. As an illustration, we consider the simple invariant action (a gencralization
of the N =1 ansatz of Volkov et al. [4])

A =f(]4+ W 2 det(en X 1PTECQCAR B (5)

It leads to field equations which for N = 1 after some straightforward algebra and
suppressing the (for & = 1) irrelevant internal index take the form:

Ty (EPY=0, (-1 TupP=0, Rup* =0, (6)

where (27 = (1/2i)CP®(0*),”, with C the charge conjugation matrix. These
equations are compatible with those from which Wess and Zumino [4] derived or-
dinary supergravity.

For N > 1 it seems paradoxical that we should have gauged internal O(N) sym-
metry without a cosmological term. This is due to an unorthodox contraction of the
de-Sitter superalgebra. One usually associates the internal O(V) with the de-Sitter
like OSp(NV14) superalgebra and then contracts OSp(A14) to get the physical algebra.
The contraction proceeds as follows (see the first paper of ref. [7]): multiply all
Fermi charges by /A and the de-Sitter boosts by A, thereby the latter become trans-
lations and together with the Lorentz generators span the Poincaré algebra. Now,
this stili leaves open the contraction factor of the internal O (V) charges. Were one
to contract these with the same factor A as the de-Sitter boosts, they would become
central charges and the theory would have a decent flat space limit according to the
theorem of Haag et al. [8]. On the other hand, if one chooses nor to contract the in-
ternal O(N) charges (i.c., to multiply them with A%= 1 rather than with A) one gets a
superalgebra containing the direct sum of the Poincaré and O(V) algebras as its Bose
part. The internal charges are thus O(V) and not central. The theory again has an
admissible [8] flat limit. With this contraction the cosmological term vanishes as
can be cross-checked e.g., for N = 2 by explicitly contracting the OSp(2/4) Lagrangian
of ref. [9]. It is this type of theory * that is covered by the ansatz (1), (2). It is
an interesting problem to see whether this formalism can be adapted for full
OSp(N|4) gauging. For now, we prefer to go on to superconformal theories.

3. Superconformal theories

As was pointed out in ref. [6], the step from supergravity to superconformal the-
ory is analogous to that from Einstein gravity to Weyl theory [10]. In Einstein the-
ory the connexion is valued in the Lorentz algebra, whereas in Weyl theory it is val-
ued in the direct sum of the Lorentz and Weyl-dilatation algebras. No connexion co-

* See note added in proof.
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efficients (i.e., gauge fields) are introduced for the conformal boosts (for an alterna-
tive see sect. 4). Similarly, in the graded case we leave conformal boosts and their
fermionic *“‘square roots” the superconformal boests ungauged and value the con-
nexion in a subalgebra of the superconformal superalgebra SU(2,2|V): the direct sum
of the Lorentz, Weyl-dilatation and internal U(A)-symmetry algebras. The latter has
the A2 generators [6]

A 50.‘3 )\éﬁ it A is an antisymmetric matrix
HlgPP = ')
(vs)oP2G*P if A is a symmetric matrix .

Here N provide a basis for the hermitean A’ X A’ matrices. The #’s without a ys gen-

crate the O(NV) subgroup of U(N).
The connexion coefticients dy; 4 8 how have again the form (1) but with

WMab = —WMba

Sma® =Dy 8," Sr1a8"P = 3Dr1648085" (2a)

replacing eq. (2) (here H' are those defined by egs. (7)). The superficld Dy is the
generalization of Weyl's gauge field. The formulae (3) still define torsion ‘mAd curva-
ture. To generalize the invariant tensor Q”’B one may replace the factor 585 on the
right-hand side of eq. (4) by a matrix R3B_Invariance under internal SU(V) gauge
transformations then requires for the traceless A”’s the matrix equations RA + XTR =0.
For ' = 2 this specifies R = io,, but for N 2 3 such an R-matrix does not exist (R-
reflection is an ouser automorphism). Thus internal SU(V) gauge symmetry cannot
be insured this way (we shall presently give a method for insuring U(V) symmetry!)
except for N =2, and even then full U(2) symmetry fails. We may nevertheless use
the invariant tensor (4) to increase the gauge symmetry at least to the extent of
Weyl dilatations. Indeed if instead of (2) and (2a) we consider the intermediate case

Whgah = —WMba -

Aflg;ﬁ‘j =asineq. (2),

. 85 _ 1 B

Sara® = Dy18," Saac®® = 1Dy16"86" (2b)

then Q% of eq. (4) is a tensor of Weyl dilatation weight 1 (the transformation of
tensors under gauge transformations follows [4] from the prototypes

4=,B A = s B .
Svi=v XB . 504—--/\,1 Vg .
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Weyl dilatations correspond to
= Aol = ) A&
Xp=£8,7 . Xop®™ = 3885°85%

and all other components of X vanishing).

Constructing the c,urvaturc tensor R4 8 from the connexion (2b), we find that
R=(-1)""" QR 1 gc? (with Q given by (4)) is a scalar of weight 1. Since
det(eyy) has weight 2(2 N), the product of R with a suitable Jordan-Brans-Dicke fac-
tor |4] can serve as a labrangmn for tlm modest intermediate case (for N =2 even SU(2)
can be achicved by replacing 568 by B in Al AW)

To deal with the full superconformal case (2a) we circumvent the necessity for
invariant tensors by introducing new superfields ¢ & transforming like a graded an-
tisymmetric tensor density of weight 2(V -2).

\;'/AB - __(_l)ab 1,’/8/1 , 5&,-’/'48: ‘f"'/CHXCA + k!/CB . TT(X)WAB .
The action (u is a real parameter):
A= a9 2 det(ey W PP YR 4pc® + (=1 D4 WE Tep™) (7)

is invariant under the x- and §-dependent Lorentz, Weyl and internal U(N) transfor-
mations. The specific tensorial nature of ¢ allows the appearance of the second term
in eq. (7) which plays the role of a kinetic term for v, a pure kinetic term being un-
available on account of the absence of invariant tensors. The 4%;’s now involve
U(N) Yang-Mills fields. Yet the variation of the action (7) leads to second order de-
rivatives even in this “first order” formalism. This can be corrected by using an aux-
iliary vectorial superfield x* of Weyl-weight N -2 instead of ¢ B. Then an invariant
action is (v; are real parameters):

A =fd4+ Wz detley™(=1P" P X x* Ranc?
+ (=D Dy xBDpx* + (=1 Pvy D x* Dpx®] . (7b)
The superfields x and ¢ are graded tensorial counterparts of the scalar field used in
Dirac’s approach to Weyl theory [10].
The actions (7a) provide examples of superconformal gauge theories with inter-
nal U(V) symmetry.

4. The problem of conformal gauge fields

As in Weyl's ungraded theory, in our superconformal theory we gauged Weyl dil-
atations but not conformal and superconformal boosts. Conventional wisdom has it
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that conformal boosts are ungaugeable because the conformal current - the source
of the envisioned conformal gauge field s explicitly x-dependent and its appear-
ance in the theory would wreck its translational invariance. We want to reanalyze
here briefly this argument in the light of recent work by McDowell and Mansouri [§]
(MM). For simplicity, we restrict our discussion to the ungraded case. We consider a
principal tibre bundle with the conformal group O(4,2) as a fibre and a 4-dimen-
sional space-time manifold at its base. We thus have gauge fields (connexion coetfi-
cients) corresponding to translations, Lorentz transformations, dilatations and con-
formal boosts. The O(4,2) structure constants then define a curvature tensor Rlﬁ,
(W, v=0,...,3.4=1, ... 15isaconformal index) in terms of the gauge ficlds. Gen-
eralizing MM we postulate the action

Ap= f A% HPIRARE My (8a)
where parity conservation again forces the MM choice

€ad' b’ for A =aa’, B=bb" Lorentz boosts ,
Map= l (8b)
0 otherwise .

After separating out the topological invariant part (exact divergence in the integrand)
we again get first order field equations for the gauge fields (the dilatation gauge field
drops out altogether for the action (8), although it could be made to appear at the
expense of parity conservation). This theory is manifestly translationally invariant

(x does not appear explicitly in the lagrangian). However, to prove its local con-
formal invariance, one needs constraints that, unlike the de-Sitter case treated in
MM, do not follow from the field equations. This is the reason why in the graded
case we used directly superspace methods rather than the very elegant MM method.
As has been noted [9], the latter loses much of its geomnetrical simplicity alrcady in
the case of extended supergravity.

Following the completion of this work, Professor P. van Nieuwenhuizen kindly
informed us that he, P.K. Townsend and M. Kaku have also considered the matters
covered in the last section of this paper.

Note added in proof

The superspace action (5) has zero cosmological term and was interpreted in
sect. 2 as corresponding to an unusual (Haag-topuszanski-Sohnius admissible) con-
traction ot OSp(V|4) gauge theory. [t was found that e.g., the OSp(2(4) theory [9]
looses its cosmological term when contracted this way. It may happen though, that
after contraction, the OSp(V[4) gauge transformations themselves become singular
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so that in the limit of full contraction the theory is not gauge-invariant. Alternative-
ly, when reduced trom superspace to ordinary space the action may develop a super-
cosmological term as in the uncontracted OSp(N14) theories of the last paper of

ref. [3] and of refs. [4,9]. The action principle (5) was considered in sect. 2 asa
preliminary illustration of our methods. In view of these possibilities it now appears
that this theory may be interesting in its own right and we are further investigating
it. One of us (P.G.0.F.) would like to thank the participants of the Aspen Workshop
on Supergravity, especially Drs. M. Kaku and P. var. Nieuwenhuizen for their stim-
ulating remarks.
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