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A systematic search is made for all renormalizable theories of heavy vector bosons. It is argued that
in any renormalizable Lagrangian theory highwnergy unitarity bounds should not be violated in

perturbation theory (apart from logarithmic factors in the energy). This leads to the specific
requirement of "tree unitarity": the N-particle S-matrix elements in the tree approximation must grow
no more rapidly than E' " in the limit of high energy (E) at fixed, nonzero angles (i.e., at angles
such that all invariants p,. ~ p, , i +j, grow like E ). %e have imposed this tree-unitarity criterion on
the most general scalar, spinor, and vector Lagrangian with terms of mass dimension less than or equal
to four; a certain class of nonpolynomial Lagrangians is also considered. It is proved that any such
theory is tree-unitary if and only if it is equivalent under a point transformation to a spontaneously
broken gauge theory, possibly modified by the addition of mass terms for vectors associated with

invariant Abelian subgroups. Our result suggests that gauge theories are the only renormalizable theories
of massive vector particles and that the existence of Lie groups of internal symmetries in particle
physics can be traced to the requirement of renormalizability.

I. INTRODUCTION

The only systems of heavy vector bosons which
are known to be renormalizable are spontaneously
broken gauge theories' (SBGT's) and "conserved
curr ent" models. In an SBGT the field var iables
can always be chosen so that the Lagrangian is
locally gauge-invariant. The vector bosons ac-
quire mass through the mechanism of spontaneous
symmetry breaking. Massless vector bosons
have conserved source currents. On the other
hand, conserved current" models always contain
at least one massive vector boson rvhose source
current is conserved. Massive quantum electro-
dynamics (QED) is the simplest system of this
type. The general prescription for constructing
conserved-current models can be stated as followers:

(1) Begin with a Lagrangian which is invariant
under a nonsemisimple group of local gauge trans-
formations (i.e., a group of transformations con-

taining an invariant Abelian subgroup). (2) Arrange
for spontaneous symmetry breaking (if any) such
that the vacuum expectation values of the scalar
fields are invariant under at least one invariant
(single-parameter) Abelian subgroup (thus, at
this stage the corresponding Abelian vector is
massless and coupled to a conserved current).
(3) Add an arbitrary mass term for the same Abe-
lian vector. Notice that the Lagrangian is invari-
ant under the entire group of global gauge trans-
formations and under the semisimple subgroup
of local gauge transformations.

Most massive vector Lagrangians are not re-
normalizable because the k„k„ term in the vector
propagator induces "bad" high-energy behavior
in the scattering amplitudes. Conserved-current
and SBGT models are renormalizable because
this "bad" high-energy behavior is vitiated by the
symmetry of the vector couplings which multiply
the "bad" k„k„ factors. For example, in conserved-
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current models the k„k„ factor is multiplied by
and eliminated" by the conserved source current
of the massive Abelian vector. In the SBGT case
massive vectors couple to source currents whose
conservation is violated by spontaneous symmetry
breaking. However, this nonconservation is sys-
tematically implemented so that the "bad" effects
of k„k„cancel out among the various diagrams
contributing to any one S-matrix element. To
summarize: In all heavy-vector-boson theories
which are known to be renormalizable, the vector
fields are coupled gauge invariantly; this gauge
invariance seems to expedite the proof of renor-
malizability by removing "bad" high-energy be-
havior.

This leads to the following conjecture: Perhaps
gauge invariance is a necessary property of any
renormalizable theory of heavy vector particles.
Such a connection would suggest that the origin of
Lie groups of internal transformations in particle
physics can be traced to the criterion of renor-
malizability. This paper describes a systematic
search for renormalizable theories of heavy vector
bosons; the results indicate that the above conjec-
ture is true. First, we define a theory to be "tree-
unitary" if the N-particle S-matrix elements in
the tree approximation diverge no more rapidly
than E' " in the high-energy limit (i.e., in the
limit in which all angles are fixed and the over-all
energy scale E increases to infinity). This means
that S-matrix elements in the tree approximation
"scale" at high energy; alternatively, tree uni-
tarity can be considered to be a generalization of
the usual "unitarity boundedness" criterion. ' A
dimensional argument makes it plausible that any
perturbatively renormalizable theory must be
tree-unitary. This connection is consistent with
the fact that all known renormalizable models
have been proved to be tree-unitary. ' Roughly
speaking, tree-unitary behavior is the most di-
vergent high-energy behavior which is likely to be
reproduced when trees are combined to form loop
diagrams. If the tree approximation diverges
more rapidly than E4, the n-loop diagrams,
which are higher and higher iterations of the
trees, will diverge more and more rapidly and
cannot be renormalized (with a finite number of
counterterms). For this reason we believe that
all theories which might be perturbatively renor-
malizable can be found by making a systematic
search for all tree-unitary theories. Such a
search was initiated but not completed in earlier
publications by the present authors4 and by
others. "This paper' describes the first com-
plete derivation of all tree-unitary models.

We have studied a class of Lagrangians con-
structed from arbitrary numbers of scalar, spinor,

and massive vector fields. This class includes
the most general scalar, spinor, and vector field
interaction with mass dimension less than or equal
to four. A wide range of nonpolynomial Lagran-
gians is also considered. Imposing tree unitarity
on all multiparticle amplitudes results in an in-
finite set of relations between the coupling con-
stants and masses of the theory. The problem
then is to find all solutions of this infinite set of
conditions. This task is simplified by exploiting
the great freedom which is associated with the
possibility of changing field variables. It is known'
that two I agrangians which are related by a point
transformation of field variables have the same
S matrix; in particular, the S matrix in the tree
approximation is independent of the field coordi-
nates in terms of which the Lagrangian is ex-
pressed. This suggests that constraints on the
S matrix, like tree unitarity, can be written as
constraints on the Lagrangian, which are inde-
pendent of the choice of field coordinates. In order
to construct such field-coordinate-independent
statements, we define a Riemannian geometry on
the manifold of fields which represent scalar par-
ticles and longitudinal modes of vectors. It turns
out that the infinite set of tree-unitarity conditions
is equivalent to a finite set of covariant (in the
Riemann sense) differential equations to be obeyed
by certain tensor quantities of the Riemannian
manifold associated with the Lagrangian. We have
found all solutions of these covariant tree-unitarity
conditions. The results are as follows: If a La-
grangian describes a tree-unitary S matrix, then
there must be a choice of field variables which
puts the Lagrangian into the form of an SBGT,
possibly modified by the addition of mass terms
for vectors associated with invariant Abelian sub-
groups. We also prove the converse, namely, the
covariant equations are sufficient so that all of the
above theories are, in fact, fully tree-unitary.
Hence, our central conclusion: Any Lagrangian
of our class describes a tree-unitary 5 matrix
if and only if the Lagrangian can be transformed
into a gauge theory (modulo Abelian vector mass
terms). Notice that all of the resulting models
are invariant under global (and, possibly, local)
groups of internal transformations. The gauge-
invariant Lagrangians can be viewed as a set of
"standard" forms into which any tree-unitary
Lagrangian can be transformed. In this sense the
criterion of unitarily bounded high-energy behavior
imposes internal symmetry on heavy-vector-boson
interactions.

The set of all tree-unitary Lagrangians can be
divided into SBGT, conserved-current, and "hy-
brid" ' categories. The conserved -current and

hybrid models correspond to SBGT's for nonsemi-
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simple groups, modified by the addition of mass
terms for vectors associated with invariant Abe-
lian subgroups. For example, suppose the gauge
group contains just one invariant Abelian subgroup,
and the Lagrangian contains a mass term for the
corresponding vector boson. In the conserved-
current case that Abelian subgroup is not spon-
taneously broken; the corresponding massive
Abelian vector couples to a conserved current.
In a hybrid model the Abelian subgroup is spon-
taneously broken; then the Abelian vector can mix
with other vectors and need not couple to a con-
served current. These hybrid theories have not
received much attention. Since they are unitarily
bounded, they may represent a ne'er class of re-
normalizable theories of heavy vector bosons.

This paper is organized as follows. Section II
is a discussion of the connection between renor-
malizability and the specific constraint of tree
unitarity. In Sec. III we introduce the general
class of Lagrangians to be studied and record the
Feynman rules. In Sec. IV we discuss the con-
sequences of tree-unitary behavior for the four-
point scattering amplitudes of vector and spinor
particles in the theory. These are relations among
coupling constants showing that the purely vector
terms in the Lagrangian must have a Yang-Mills
structure associated with some compact Lie group
and that the vector-spinor terms must have a
gauge-invariant (minimal) form under the same
group. In Sec. V we perform a generalized
Stuckelberg-type decomposition of the massive
vector fields; this amounts to an ordinary Stuckel-
berg decomposition followed by an unspecified
point transformation. The net effect is to replace
the massive vector fields with "Stuekelberg vec-
tors" (having "good" propagators of the Feynman
type) and an equal number of "Stiickelberg sca-
lars. " The proof that the tree approximation for
the S matrix is unaffected by such changes of vari-
ables is relegated to Appendix A. Next, the entire
Lagrangian is shown to be invariant under a group
of nonlinear gauge transformations; this gauge
invariance is a direct consequence of the form of
the Stuckelberg decomposition. Point transforma-
tions of the (physical and Stiickelberg) scalar fields
are conveniently treated in terms of an invariant
geometry of the Riemann type which is naturally

induced on the manifold of all scalar fields. In
particular, the nonlinear gauge invariance of the
Lagrangian is translated into a set of covariant
(i.e., field-coordinate-independent) differential
constraints on the Lagrangian. In Sec. VI a second
set of covariant equations is derived by imposing
tree unitarity on multiparticle amplitudes with
scalar particles in the in and out states. In Sec.
VII we show that the full set of covariant equations,
which we have derived from tree unitarity, implies
that the Lagrangian is equivalent under a point
transformation to an SBGT, conserved-current,
or hybrid Lagrangian. These results are sum-
marized and discussed in See. VIII. Some of
the lengthier derivations are carried out in ap-
pendixes. In Appendix A we prove the equivalence
theorem stating that the S matrix is invariant under
a generalized Stuckelberg decomposition and a
point transformation of the scalar fields. Appendix
8 contains the proof of a lemma used in Sec. VI
to obtain covariant equations from the tree uni-
tarity of scalar interactions: The necessary and
sufficient condition that a purely scalar Lagran-
gian of the form —,'g~, (w) B~ w~s" w' have a vanishing
T matrix is that the metric g„(w) is flat.

II. TREE UNITARITY AND RENORMALIZABILITY

The criterion of tree unitarity is central to our
work. In this section we give a precise definition
of this criterion. We also discuss the reasons
why we believe that a quantum field theory based
on a classical Lagrangian (i.e., a "conventional"
perturbative quantum field theory) is meaningful
only if it is tree-unitary. In particular, tree uni-
tarity may be a necessary condition for renormal-
izability.

The 8 matrix can be expressed in terms of a, T
matrU" by

(flSli) =i+i(2w) P (I' —P)fi;&&(flTli) ~

Here, P, P' are the initial and final four-momenta,
and N;, Xz are products of the normalization fac-
tors for the initial and final particles [(2E,) 'i'
for each particle] . These "invariant" T-matrix
elements satisfy the unitarity relation

lm&fl2'li) =-,' (2w)'-'" 2„' . . ~ 2~" ~' g&;-& &ii f. l &lf) &ii
d3k, d3k„

tl 10 ffo

The summation is understood to run over all pos-
sible sets of intermediate particles and their he-
licities.

Let T„„„denote a T matrix for n incoming

particles with four-momenta P„.. . , p„and helic-
ities A. „.. . , A. „and N- n outgoing particles with
four-momenta —p„,„.. . , —p„and helicities

In the center-of-momentum frame
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choose fixed values for the incoming variables

and for the analogous outgoing variables. For
given values of these "fixed variables" each four-
momentum p& grows as E as the total center-of-
momentum energy (E) approaches infinity. A field
theory will be called A ee-unitary if in the tree
approximation all amplitudes T„„„grow at most
like 84 " as E-~; in this limit the "fixed vari-
ables" are taken to have values such that all kine-
matical invariants of the type

(p; +p, + ~ ~ +p;,)', 2 &7 &iv-2

grow like E'. Roughly speaking, we are consider-
ing the limit in which all squared momentum trans-
fers and subenergies grow like E'.

The origin of this simple asymptotic boundedness
condition is essentially the notion that high-energy
unitarity bounds should not be grossly violated in
perturbation theory. To see this, consider an am-
plitude T„, , for two particles going into N-2
particles. For any Lagrangian theory a tree graph
for this process has the asymptotic form

(T&, ,)„„~Esx(function of "fixed

variables�

"),

the exponent p being independent of the values of
the "fixed variables" unless these values are
"exceptional, " i.e., such that some invariant of
the type (1) does not grow like E'. This is because
then the squared four-momentum of some prop-
agator may not grow like E'. Now the partial-wave
amplitudes T~, , are obtained from T„, , by an
angular integration over the fp, ); therefore, in
the limit E-~ we have

( Ttv -2, a)tree

apart from factors of lnE which may arise from
integration over a neighborhood of "exceptional"
values of the "fixed variables. " [The deviations
from the power behavior are at most logarithmic
because the singularities in the variables of Eq.
(1) are simple poles. ) Unitarity, however, de-
mands that the exact T~, , satisfies the inequality

da„, i TN', , i
'& fmT~, & constant.

Notice that the phase space Qg ~ grows like E

Consequently, if we require that the tree approxi-
mation does not violate this bound except by fac-
tors of InE, we must have '*tree unitarity". 2N
—8+2P «0 or P «4 —

¹ Observe that for X=4
this is just the Kinoshita-Loeffel-Martin bound, "
T, , & (lnE)' ', applied to trees.

It is important to bear in mind that in non-tree-
unitary theories the violations of unitarity at high
energy must become georse in the one-loop ap-
proximation. This is because the imaginary part
of an amplitude in the one-loop approximation is
completely determined by the tree approximation.
Thus, for example, if (Ti,)„„~E~,with P) 0,
then except for factors of lnE

lm(T, ,), „„~(2-particle phase space) i(T...)„„i'

CCg'8 .

Evidently, non-tree-unitary theories increasingly
violate unitarity in higher-loop approximations.

Our basic objection to non-tree-unitary theories
is their lack of perturbative unitarity at high en-
ergy. Tree unitarity is a property of the S matrix,
and we have not been able to relate it to renormal-
izability in a rigorous way. But we can at least
make it plausible that tree unitarity is necessary
for a renormalizable theory by constructing an
off-mass-shell version of the above argument.
Suppose, for example, that we are dealing with a
non-tree-unitary theory, and (T, ,)„„~E'. Then
the corresponding amputated off-shell Green's
function in the tree approximation grows at least
like p' as the external four-momenta P; approach
infinity according to p, = pp,', p- ~, p =fixed.
This behavior leads to a quartic divergence in the
one-loop expression and requires a nero counter-
term growing like p'. Continuation of this (ad-
mittedly superficial) argument to higher-loop
approximations shows that there must be an ever-
increasing number of new counterterms which can-
not be multiplicatively absorbed by the terms of
the original Lagrangian. Therefore, it seems that
non-tree-unitary models are not renormalizable.
No such difficulty is forced on us by a tree-unitary
theory: On the mass shell (T, ,)„„-O(1),and one
can envisage a choice of field variables such that
the off-shell amplitude behaves like p' in the tree
approximation. As a consequence, the one-loop
integral can diverge only logarithmically, and a
counterterm behaving like p is sufficient. Nothing
a pÃ'ori prevents such a counterterm from being
multiplicatively absorbed in the original Lagran-
gian. Thus, it may not be a coincidence that all
kaolin renormalizable theories are tree-unitary
since tree unitarity may be a necessary property
of any renormalizable model.
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III. INTERACTION LAGRANGIAN AND FEYNMAN RULES

( 2( v., v,.) )= -in. ,( ""v "v™'
k'2 -M,

In this section we define the class of Lagrangian
field theories to be subjected to the criterion of
tree unitarity. These theories involve any number
of Hermitian scalar fields P„(mass i(,„), spinor
fields j; (mass m;), and Hermitian vector fields
W, (mass M, &0}. The associated propagators in
momentum space are"

(T(y, y, )&=,, ", (T(C,.S„)&=
k' ps(

(2&

External spinor and vector particles are associ-
ated with the usual wave functions, u, „(k) and
e,„(k); note that the longitudinal vector wave func-
tion has the form

e,"(k) =-
M,

%'e consider all interactions whose vertices are
described by the cubic and higher terms in the
following Lagrangian:

~(Wyl Nst 4gy 0) a (S((Wav ev Wap) e (+abc p WapWvv Wax Habca Wap Wpv Wa k Wap}

—Qava Bv Wap Wa Wa —Davaa WapWa W~v Wa+Psi(fi+ifVaA }$J(+|I(g$(P +fQ a I }gg

+ .'sp~,-s"~,P„(~)+W,Wv F. (~) W..s-" ~.G"(~} V(~-} ~.H(~) ~. 4H'-(~}~' (4)

Here, A„„B„«,C„„and D, «are real con-
stants such that

F,b(0) = aM, '5„, E„(p)= F„(p),
G.,(0) = 0, V(@)= 'i, 'y, '+0-(y'),

Pa((0) = &a( Pa((4) =P(a(4'& .

(5a)

A abc +ace

8„«= totally antisymmetric,

Dabcd Dbacd Dcdab

R ' and L~' are any constant Hermitian matrices
on the space of (suppressed) internal spin indices.
P»(p), F„(g), G„(p), and V((f() denote real power
series in p and satisfy

H(g) is a complex matrix in the space of internal
spinor indices and obeys

H„(0)=n~;5„.
It should be emphasized that Z is nothing more
than a summary of the vertices in the Feynman
rules; it is not necessarily meant to describe a
canonically quantized operator field theory. The
functions P„(Q), F„(Q), G„(f), V((f(), and H(f)
denote (possibly infinite) series of powers of p,
which need not converge at any point. In other
words, each term in these series (but not the sum
of terms) has a well-defined meaning as a vertex
part.

These Feynman rules can be used to construct
the Green's functions

G[y, ( )k. li, (k,) ~ W,„(k,) ](2v) 5'(k, +k, +k, + )

dg~ de dg3 ' exp —l k~xg+k'p x2 +~g &3

x(0[T f(k, g„)Q (,) ~ ~ ~ [(k, -p%)()(;(x)] (k M}W,„(x) ~-~ }]0& . (6}

Pe shall use the symbol R(P„~ ~ g« ~ ~ W,„~ ~ ) to
denote the above Green's function when all external
lines are on the mass shell. Every T-matrix ele-
ment of Sec. II is given (up to a multiplicative con-
stant) by an amplitude of the form JR(p» ~ ~ u, g, ~ ~ ~

xc, W, . ). Our problem is to characterize all
tree-unitary S matrices constructed from the above
prescription. Notice that tree unitarity is a purely
on-mass-shell property which bounds the high-en-

I

ergy behavior of the % amplitudes only; no explicit
constraints are placed on the off-shell Green's
functions. Since the mass dimension of the N-
field % amplitude is 4- N, % is tree-unitary if
and only if it scales at high energy. However, only
the sum of all diagrams (not individual diagrams)
in % needs to display this scaling behavior.

Our class of Lagrangians is quite general. As
a special case [P»(Q) is constant in P, F„=q d-ua
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ratic, G„=linear, V =quartic, H =linear] it in-
cludes the most general Hermitian, Lorentz-in-
variant interaction with mass dixnension less than
or equa, l to four. By allowing the quantities P»,
I,b, G„, V, and H to be arbitrary power series
in the scalar fields me have a priori included a
wide class of nonpolynomial interactions. In fact,
it turns out that tree unitarity excludes all terms
of dimension higher than four within our class of
Lagrangians; more precisely, tree unitarity im-
plies that high-dimension terms can be trans-
formed amay by a change of variables.

Gur class of interactions could be enlarged in

two mays. First, it is possible to include inter-
actions mhich contain higher pomers of 8'~ ~„S'„,
or ~„p. Such eouplings must have dimension
greater than four. It may be that high powers of
W~, e, W„, and s„p (like high powers of p) either
violate tree unitarity or can be transformed away.
On the other hand, there is a small possibility of
genuinely nem tree-unitary models of this type,
in which the bad high-energy behavior of the high-
dimension interactions cancels out in any 8-matrix
element. A second way of broadening the scope
of this work is to include massless vectors in the
particle spectrum. There is some reason to be-
lieve that this will not lead to the discovery of
any nem tree-unitary interactions. For example,
in an earlier publication me found all tree-unitary
models with a particle spectrum of one massless
vector, three massive vectors, and one scalar.
The result is that the only tree-unitary interactions
of this type are equivalent to the mell-known' Vfein-
berg [SU(2))B)U(1)], Georgi-Glashow [SQ(3)], or
Higgs [U(l)] SBGT's.

It is useful to discuss the high-energy behavior
of the Feynman rules. In general, me shall say
that a propagator, wave function, or vertex is
"good" if that diagram part "scales" at high energy
For instance, a propagator is good in the limit
E-~ if it behaves like E ' for bosons (scalar or
vector) and like E ' for spinors. A wave function
is good if it behaves like E for bosons of any spin
and like El™for spinors. Good vertices are those
with dimension less than or equal to four. It is
clear that any single diagram, constructed from
good (i.e., individually scaling) parts, must also
scale and, therefore, be tree-unitary. Now, all
of the (W, ))), p) Feynman rules are good except
for bad vector propagators (-k„f/f)~E)'), bad
longitudinal vector wave functions (-k„~E), and
bad vertices from the higher-order terms in P»((t)),
F„(p), G„(p), V(P), and H(p). Even if the bad
vex'tlces ax'e ignored~ a single dlagramy contallllng
longitudinal vector modes, mill usually display
bad high-energy behavior (i.e., nonscaling behavior,
behavior more divergent than E' "). Thus, a

massive vector theory mill be tree-unitary only
if the bad k„ factors are "eliminated" in individual
diagrams or cancel out in the sum of all diagrams
for each sca'ttering process. This can happen only
if the vector-boson source current, which multi-
plies each k„ factor, is conserved or at least con-
strained in some may. Indeed, it turns out that
the vector-boson source currents satisfy the tree-
unitarity constraints if and only if the vector bo-
sons are coupled according to a gauge-invariant
prescription.

IV. TREE UNITARITY OF VECTOR AND VECTOR-
SPINOR FOUR - POINT AMPLITUDES

We begin our search for tree-unitary Lagran-
gians by considering, in this section, the four-
point trees mith only vector and spinor external
particles. A straightformard but tedious calcula-
tion' ' shows that the scattering a.mplitudes for
W, W, —W, W' and 8', g; -8', g, are unitarily
bounded (by E') only if

(Vb)

C„,= totally antisymmetric, (7c)

Cabe Cede Cece Cbde ade Ccbe

Debcd Cace Cbde + Cede Cbce (7e)

(Ba)

[f (a) g(b)] fc f (c) (Bb)

Equation (Vd), the Jacobi identity, implies that the

C„,are the structure constants of a Lie algebra.
Equation (Vc) shows that the Lie algebra corre-
sponds to a, Lie group (G) with the form G = U(l)
Is ~ ~ (8 U(l) ()()S, where S is a compact, semisimple
subgroup. Thus, the purely vectorial vertices are
determined in terms of C„,by Eqs. (Va), (Vb),
and (Ve); as a result the corresponding terms of
the Lagrangian must have the gauge-invariant
Yang-Mills" form, corresponding to the group G.
Equations (Ba,) and (Bb) show that the matrices
A~' and I. ' form representations of the Lie al-
gebra on the spaces of internal indices of g~ and

PJ, respectively. This means that the purely vec-
tor-spinor interactions must have the (minimal)
gauge-invariant form. So far, tree unitarity im-
plies that the Lagrangian of Eq. (4) looks like
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Notice that the gauge-invariant structure of the
purely vector and vector-spinor couplings lies
very near the surface; it is a direct consequence
of unitarily bounded high-energy behavior at the
four-point level. In principle one could go on to
derive an infinite string of relations between cou-
pling constants and masses by setting equal to
zero the coefficients of all powers of F. higher
than E' " for all J)(-particle amplitudes (N
=5, 6, . . .). This straightforward procedure is
forbiddingly laborious. ' ' Instead we have been
able to derive the complete set of relations by a
more elegant method, to be described in Sec. VI.

The structure of the underlying group G is most
apparent in a "Cartesian" basis, which separates
the generators of the semisimple component from
those of the invariant Abelian subgroups. First,
define y„=-C,~, CM, . Since y, ~ is real, symmetric,
and non-negative, it is diagonalized by an orthog-
onal matrix 0„; i.e., (0 'yQ)„=y, 5„where y, » 0.
If y, =0, the index a is called Abelian; if y, &0,
a is called semisimple. I.et f„,denote the struc-
ture constants in the Cartesian basis: f,)„

C 'b' ' ' Oa'sO ~,. It follows that y~ ~aa =fauef~ue
Therefore, if a is Abelian, then f„,=0 for all b
and c, and a labels the generator of an invariant
Abelian subgroup. On the other hand, when a, 5,
and c are semisimple indices, the f„,are the
structure constants of the semisimple subgroup 8.
Let t, denote the imaginary, antisymmetric ma-
trices defined by (t,)„-=—if„, It follows. from the
properties of f„,that Tr(t, t,]=y, 5„danthat
[i„i,]=if„,t, Thus, .the 1, generate the adjoint
representation of G in a Cartesian basis. Notice
that if a is Abelian, then t, =0. On the other hand,
for semisimple a the matrices t, are linearly in-
dependent.

V. STUCKELBERG VARIABLES

A. Stuckelber3, rules

Tree unitarity led directly to the gauge invari-
ance of the purely vector and vector-spinor cou-
plings. It was easy to recognize this gauge invari-
ance because tree unitarity implies that the physi-
cal vector and spinor fields (W,„,)l„;,gz;) form
basis states for representations of the gauge
group G. It turns out that tree unitarity does not
imply that the physical scalar fields ((j)~} couple
in any simple way or form a complete basis for a
representation of the gauge group. '' Bather, as
might be expected from experience with SBGT's,
tree unitarity will impose a simple form on Z only

U(o) =-e "',
(10)

After transforming to the Cartesian basis, the
exact decomposition rule is

0 '„W,„=—U(o)„A,„+Q(o)„s„o, .

Define a new set of spinor fields, q„and q~, by

(12)

where Ei' ' and I. ' generate the spinor representa-
tions in the Cartesian basis:

~((I) —0 - I +(e)
ae

I( ) =O-I L( )
+e

[g( ) ff(&)] —if~ Jf( )

[I ~) I(')] =if,

The Stuckelberg Lagrangian is defined by

I

when 2 is expressed in terms of new field vari-
ables, which represent the physical scalar and
longitudinal vector degrees of freedom. Specif-
ically, tree unitarity will require that these new
scalar field variables form a complete basis for a
linear representation of G and couple via gauge-
invariant vertices of dimension less than or equal
to four. In other words, the entire Lagrangian
has a "hidden" symmetry which is unveiled only
when the longitudinal modes of vectors are ex-
plzcitly described by the vector field formalism.
Stuckelberg" has given such a prescription for
describing a heavy vector particle, which is
equivalent in every way to the spin-1 formalism
used in Sec. III. Each massive vector field (W,„)
is replaced by a combination of a "Stuckelberg vec-
tor field" (A,„}and a Stiickelberg scalar field (&r,);
the latter explicitly describes the longitudinal
mode of the massive vector. In this section we
adopt the Stuckelberg representation for vector
fields. No new physics is introduced; the nezo

formalism is simply a different kinematical rep-
resentation (a change in Feynman rules), zohicI)
does not change the S matrix. The Stuckelberg
prescription provides a convenient language, in
which the tree-unitarity constraints on scattering
amplitudes are expressed as simple statements.

Define an orthogonal matrix function U((r) and
another matrix function Q(o) by
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&s(» qR, qi 4' o}

-=g{O(U(a')A+@(o)&o), e '
qs, e ' '

q~, p) .

(13)

Because of the gauge invariance of the purely
vectorial piece of 2, no second derivatives of o

appear in Z8. The "Stuckelberg rules" for con-
structing diagrams include the propagators

O„D, ~ (T(A, „A „))=

=3g(e ~ W u ( P ) (18)

Let all the vector wave functions e, be longitu-
dinally polarized; then Eq. (3}gives

1
e, A, — h, A, —io, = —i(o, +i(, A,),

M, O„M~ 0~~ (T(o,.o~ )) =
h2

The propagators of q„, q~, and p have the usual
form. The vertices of the Stuckelberg rules are
taken from the cubic and higher terms of Z~. In

Appendix A it is proved that the Feynman rules
of Z and the Stiickelberg rules of S~ lead to the
same 8 matrix in the following sense: The on-
mass-shell scattering amplitudes of S;„modes,
calculated from the 2 Feynman rules, are equal
to the on-mass-shell scattering amplitudes of
O„.(A, „+S„o,.) modes, calculated from the Ze
Stuckelberg rules. In other words, in terms of
the rotated fields, A,„-=O„.A, .„and 0, =-hf, O„~, ,
we have

Aop+ ~p&a ' ' 'Q~n '

(15)
Thus, the Feynman rules of Sec. III and the
Stuckelberg rules of this section are physically
equivalent since they describe the same on-mass-
shell Green's functions and the same 8 matrix.

The next step is to translate the statement of
tree unitarity into the Stuckelberg Language. Since
e k =0, we have

JR(e A . - W q P )

-3g(e .W . g g. ~ ~ y ~ ) . (16}

Equation (2) shows that each external W, &
line in

3g(W,„}carries a factor of

Spv ~ 2
a

Since this factor is eliminated by dotting it with

k,", it follows that

Equations (16)-(17) imply that

where (," is some function of k," such that F„" ~ E '.
Equation (18) can now be rewritten as

3g(- i(o, +t(, A,} . s7; q; ~ @„)
=3g(e W u q' y ) (1&)

Therefore, in the Stuckelberg language tree uni-
tarity implies the high-energy bound

3g (cr, + i $, A, ~ ~ u, q; ~ ~ @„~~ ) & E (20)

B. StUckelberg gauge invariance

At this stage we have no information on the cou-
plings of the physical scalars (p„) in the original
Lagrangian 2, and this arbitrariness is reflected
in the Stuckelberg Lagrangian Z ~. At the same
time, Ze depends on the longitudinal modes (o)
in a very systematic way. This is because Z~
was derived by replacing the fields of Z by gauge-
transformed expressions, in which o plays the role
of a local gauge parameter. In this subsection we
deduce from these facts that Z~ is automatically
invariant under a group G of local gauge trans-
formations, realized nonlinearly on the u fields.

First, we review the group property of the usual

It is worth discussing the high-energy behavior
of the Stuckelberg rules. All of the propagators
and "wave functions*' (t'„u, ) in Eq. (20) are good.
However, Z ~ contains many bad vertices associated
with the exponential and nonpolynomial functions:
U(o), Q(o), e "",e "', P.~(4), +.~(4) O"(4»
p(y}, and H(p). A big advantage of the Stilchelberg
formulation is that all bad behavior i s nose isolated
in the vertices. Therefore, if all the bad vertices
can be transformed away by a point transformation
of the Stuckelberg and physical scalar fields, then
the 8 matrix will be tree-unitary. In Sec. VI we
will prove the inverse relation: If the 8 matrix is
tree-unitary, then there exists a special set of
field coordinates in terms of which Z~ has no bad
vertices. Furthermore, in the language of these
special field variables, the physical scalars and

longitudinal vectors combine to form the complete
basis of a linear representation (of O) which cou-
ples in a gauge-invariant way.
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v(As) (~)A,„=U(A, ),~A „a@+(A,),a S„A, (23)

where A, is defined by U(A, ) = U(A, ) U(A, ).
Let A~'l(x) be any real function; then, define

&,[o(x), A(x)] to be the following function of o', (x)
and Ai'~(x):

local gauge transformatinns. Let A~,'l(x) be any
real function. The transformation of A,„under the
element of G, which corresponds to U(A, ), is de-
fined to be

Aa~ '-- U(A, ) aaAa~ + Q(A, ) aas q
A~, . (21)

Now, consider the effect of applying U(A, ) and then

U(A, ):

A,„- U( A) ~a [ U( A)~ aA aq
+ Q(Aa) aa sq Ai la]

+ q(A, }., s„A& (22)

The transformations of Eq. (21) obey the group
multiplication law of G in the sense that Eg. (22)
is the same as

e ""q„=e '~'"q
(26)

Therefore, Zz is invariant under a group (G) of
local gauge transformations, vrhich are realized
nonlinearly on the 0 fields'4:

v(h. )
&4 = &4 y

v(A)
A4p

-
A4p

v(A) „
v(A)

(28)

From Egs. (13), (25), and (26) we have

&s(A, qs ~ qi~ q» &)

=~(O(U(o}A+@(d)so),e ""qs,e "'4, q}

=Z,(A(A, A, sA), q„(q„,A), q, (q„A), 4, o(o, A)) .

(27)

U(&) =- U(o) U(A),

o, =o, +A, (a =Abelian index).
(24a)

v(w)

Take A,„(A, A, & A), q„(q„,A}, ql(ql, , A) to be de-
fined by

The differential statement of this "Stuckelberg
gauge invariance" is

A, q
—= U(- A),aA, q

—Q(- A),a S„AI ~,

(24b)

6&a(» qs~ qi~ 4» o)
()gh(4)

6Za(A, q„, q~, y, d)
5~ A'

(29a)

(29b)

The equivalence of Eqs. (22) and (23) implies the
identity

U(o)aaAbfl+0(o)ab boa = U(o)abAap++o}ah saoa .

(25}

In a similar way the group properties of the ma-
trices e'A'" and e'A'~ lead to the identities

The last bvo equations can be translated into
constraints on various terms in L~. It is conve-
nient to put the physical and Stuckelberg scalars
into one array m~":

~lr 4A w ~4

Then, Eqs. (13) and (4) imply that Zz has the form

~g(A qs qz &) =&s(A, qs, ql. , P, &z)

—,
'

(8„A,„—s,A,„f„,A,„A„)'+q-„ i(p'+i A', R'l) q„+q~ i(y'+i g, Z~'~) q~

—,
' s s s" g~,(v) +A,„s"s~Id; &(v) + ,'A, „At'S&"'(-v) —V(v) —q Y(v)q —q„Y(v) q . (30)

Here, g~,(v), K~i'(v), S~"'(s), V(s), and Y(s) de-
scribe complicated exponential and nonpolynomial
vertices [containing factors of U(o} Q(&), P»(Q),
E,„(p), G„(@), V(p}, and H(p)]. T e explicit
forms of these functions mill not be needed in this
paper. Define w~(w, A) to be the gauge-transformed
7P ~

&&=&&=%a

Let J 'l~(w) denote the generator of gauge trans-
formations:

A= (}A=O

In the above and in the following equations, 6/6A
and 6/6S„A are evaluated at A =B„A=0. The dif-
ferential forms of Eqs. (24a) and (24b) are
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f)(S„wa) q.),

P

~ay
dA{a) k(fa)kc+c)i

)ic ak

~—(a}
~A( {2} EA gg

(~)
~A( tm ) SLi g I ~

Equations (29a), (30), and (33) yield

Z„J& + k gaa ..J + (p —q) = 0,
Z" Z{"'+P"'ff{'+i(t ) ft{') = 0P,e ,P q 5 C{3 P

-'S{")J{'»+f(f,)a S{"')+(a-I)=0,
V J'"=0
fi{')Y- fry') —Y,P'» =0 .

Equation (29b) gives

g ({2) — J({2}4f

P +Pelf

g{ak) P a)a &{k)

(33)

(34a)

(34b)

terms of which Z~ has no bad vertices. It should
be emphasized that tree unitarity gives the ex-
istence (but not the explicit form) of the trans-
formation of variables, w- w(w'). The problem is
to combine the St6ckelberg gauge identities, which
constrain the scalar couplings in the n system,
with the tree-unitarity constraints, which prohibit
bad vertices in the n' system. This must be done
without knowing the explicit form of the trans-
formation: w-w(w'). The transfer of the Stiickel-
berg gauge identities from the m system to the m'

system can be accomplished if these identities can
be expressed in a "generally covariant" form (a
form independent of the choice of field variables).
In order to construct such "generally covariant"
statements, it is convenient to use a geometric
notation for handling transformations of field co-
ordinates.

At each point in space-time the scalar field co-
ordinates mP can be taken to describe a Riemannian
manifold. " In Eq. (30) define gk, (w) to be a gen-
erally covariant tensor, Kk{'(w) to be a vector, and
S{")(w}, V(w}, Y(w) to be scalars. Now consider
the effect of a transformation of field variables
w- w(w'). The new Lagrangian, Pw(A, q„, q~, w(w')),

is obtained from the old Lagrangian, Zw(A, qs, q~, w),

by substituting ~„mP -B„n~ and by replacing each
covariant object with its transformed representa-
tive:

These identities are consequences of the invariance
of Z~ under the nonlinear local gauge transforma-
tions of Eq. (28); this invariance followed auto-
matically from the fact that Z~ was defined by
making gauge-type substitutions in 8 [see Eq. (13)].
Essentially, Eqs. (34a) and (34b} are expressions
of the fact that the 0, fields are longitudinal modes
of vectors and appear in Z~ in a systematic pattern.
When the above gauge-invariance identities are
combined with the constraints of tree unitarity,
it will be possible to prove that Z~ can be put into
a linearly gauge-invariant form, containing good
vertices only.

C. Geometry of field coordinate manifold

In this subsection we introduce a geometric
language for describing the transformation of field
variables. This step is necessary for the follow-
ing reasons. So far, the only restrictions on the
scalar couplings in Z~ are given by the Stuckelberg
gauge identities [Eqs. (34a) and (34b)]. This infor-
mation is expressed in terms of the w (or {)),o)
field variables. In Sec. VI it is proved that the
tree unitarity of scattering amplitudes with scalar
external particles implies the possibility of chang-
ing to a new set of field variables, w' = w'(w), in

g„(w)-g,',(w'}=8 ",
Z

', g„(w(w')),
PP Xq

Z"(w) -ff{' (w') = ' f~" (w(w'))

&{"'(w) 8'"' (w') =-&'"' {w(w'))

V(w) —V'(w') = V(w(w')),

Y(w) —Y'(w') = Y(w(w')) .
Thus, in the geometric language" a change of
field variables is the same as a change of coordi-
nates on the field manifold. Generally covariant
(coordinate-independent) statements about Z

w

express properties of S~ which are independent
of the choice of scalar field variables. The sym-
metric tensor gP, can be taken to define a metric
on the field coordinate manifold. Equations (30),
(13), and (4) show that g~,(0) has the following
positive-def inite form:

gk l(0} ~k i s

gk. (o) =g.k(0) = o,
g.,(0) =O,.O„M, ' .

Therefore, gk, (w) is positive-definite in a neighbor-
hood of the origin. In the same neighborhood of the
origin it is possible to define an inverse matrix



DEB IVATION OF QAUQE IN't}t AR IANC E FROM HIGH- ENERGY. . . 1155

g '(w) such that g~'g = 6~,. Then, the affine con-
nection I"P"„and the curvature tensor A „have
the usual forms

~pq 2 g (gest gsp. e Zpe, s) &

K' K' '-K' E"'+~ E'=0P;a P:a J &bc P

S( b) ~( )P&(b)
P

V. Z(')P =0,:P

il."Y-zYA" —Y Z')P=0
eP

(37b)

(37c)

(3'ld)

(37e)

Since the above expressions are generally covari-
ant, they constrain S~ when Z~ is written in terms
of any field variables. In other words, the
"StGckelberg gauge invariance" of Zs, which was
derived in the n coordinate system, persists for
any choice of scalar field variables. This is not
too surprising for the following reason. The orig-
inal gauge-invariance identities [Eqs. (34a} and

(34b)] express the invariance of gs under gauge
transformations of A, q„, q~, and p. e.g. ,
w~

' '= w~(w, A). Suppose that some new scalar
variable, w'= f(w}, is used to rewrite Zs. In terms
of the new m' variable, Z ~ should be invariant
under the corresponding gauge transformations of
Ay gg, QLy and 7T ~

e.g. ,

w -ft,w[f '(w'), A]) .
-

In other words, the gauge invariance of C~ in the
z system guarantees the invariance of Z~ under
the corresponding realization of the gauge group
in the m' system. Thus, the Stuckelberg gauge
invariance is a coordinate-independent property
of Z~, and the gauge-invariance identities should
be expressible in a generally covariant (coordi-
nate-independent} way.

Equations (37a) and (37b) can be given a more
specialized mathematical meaning. The Stuckel-
berg gauge invariance of Zs implies that g~, (w) is
form-invariant under the group of global, nonlinear
coordinate transformations: w~

vt"'-
w~(w, A),

where A ' is constant in space-time. The gen-
erator of such a transformation (in this case,
J ' =K ' ), known as a "Killing vector, ""must

Covariant differentiation with respect to field co-
ordinates is denoted by a subscript preceded by
a semicolon; for example, if A~(w) is a covariant
vector, then

A, , =- A, , —rP",A„.

With these definitions it is possible to put the
Stiickelberg gauge-invariance identities [Eqs. (34a)
and (34b)] into a generally covariant form:

(37a)

satisfy Eq. (37a) (Killing's equation). Equation
(37b) expresses the fact that the Kt'~ generate a
group G of transformations under which the
Riemannian manifold is form-invariant.

VI. TREE UNITARITY OF SCALAR AND LONGITUDINAL
VECTOR PROCESSES

In Sec. III we noted the result: A set of Feynman
rules with good propagators, wave functions, and
vertices will automatically lead to a tree-unitary
S matrix. In Sec. VA it was observed that the
"Stuckelberg rules" prescribe good propagators
and wave functions; however, the vertices of the
Stuckelberg rules are very badly behaved since
Z~ contains exponential and nonpolynomial func-
tions of ~. It is clear that, if there is a change
of field variables which transforms away all these
bad vertices, then the S matrix will be tree-uni-
tary. In this section the inverse relation is proved:
U the S matrix is tree-unitary, then there exists
a change of field variables, w- w(w'), which trans-
forms away all bad vertices. In other words, tree
unitarity requires the existence of a special n'
coordinate system in which gP, is constant in m',

KP" is linear, S'" ' is quadratic, V' is quartic,
and Y' is linear; stated in the equivalent geometric
language, we shall show that tree unitarity implies
the following generally covariant conditions on Z~:

ft'„,(w) = 0,
z&', ~..(w) =o,

sI .&.„(w) =o,
V.~, . ..(w) = 0,
y. ..(w) =0,

(38a)

(38b)

(38c)

(38d}

(38e)

where m ranges over a neighborhood of the origin.

A. Flatness condition

In order to prove Eq. (38a), it is necessary to
discuss the high-energy behavior of individual
graphs which are constructed from the Stuckelberg
rules. Consider any tree diagram contributing to
R(A,„~.a, ~ ~ P„~ ~ ). Let the diagram contain

8, A'-tyPe vertices, 9,A'-tyPe vertices, 9gpa-
type vertices, X KP')-type vertices, 8 S ' -type
vertices, and 'U V-type vertices. In any tree dia-
gram the total number of vertices must be one
more than the total number (I) of internal lines;
therefore

I+1 =83+8~+9++8+'0 .

On the other hand, adding up the energy depen-
dence from propagators and vertex parts [see
Eqs. (14) and (30)], we find that any graph in

%(A .a' p .) «E~, where I'= —2I+9, +29+X.
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Eliminating I from the last two formulas gives {a) {a)pK„.E.q
= —QPqyaEK (39)

P=2- g~ —29~-X —28 —2'U .

This means that P «1 for all graphs except those
which are constructed with g~,-type vertices only
("pure-g" graphs). For pure-g graphs, P=2; at
high energy the leading (E') piece of a pure-g dia-
gram is a "massless pure-g" graph, which is ob-
tained by setting all internal and external masses
equal to zero.

Now consider the tree approximation for Jg(a,
+i), A, ~ p, ~ ). Since E ~ E ', the preceding

g-+ ao

discussion shows that any graph for this amplitude
diverges no more rapidly than E' at high energy.
The leading (E'}piece comes from the massless
pure-g diagrams. But tree unitarity, as stated
in Eq. (20), requires that Sg(o, +i(, A, ~ .P., )
be bounded by 8' "«E' at high energy. There-
fore, the sum of all massless pure-g graphs in
this same amplitude must be zero. However, since
a pure-g graph cannot have a A external line, it
must be that the sum of all massless pure-g dia-
grams in %(a, ~ ~ ~ Q, ~ ~ ) is also zero. Notice that
the sum of all massless pure-g graphs in
JR(&r, ~ ~ p, . ~ ~ ) is the same as the T-matrix ele-
ment for 0, (II) scattering, which would be calculated
from the Lagrangian g, -=-,' S„wp S"w, g~,(w). Hence,
tree unitarity requires that the T matrix of Zg

be zero. In Appendix B it is proved f.hat if the T
matrix of Z~ is zero, then R,(w) =0 for w in a
neighborhood of the origin. Therefore, the tree
unitarity of the S matrix of Z(W, gs, gl„q) implies
the flatness condition, Eq. (38a). This result is
easy to understand in the following way. We know

that if R,=0, then there is a transformation,
w-w(w'), which changes g~, (w) into g~,(w') = con-
stant and changes Z» into a free Lagrangian. Thus,
if R~, =0, the T matrix of 8, must vanish. In

Appendix 8 the inverse statement is proved.
A few remarks should be made at this point. The

requirement that there be no E ' behavior in al/
multiparticle amplitudes 1.ed to the condition that
the curvature tensor vanish in a neighborhood of
the origin. Actually, the vanishing of the curvature
near the origin (or„equivalently, the vanishing of
the curvature tensor and al/ its higher derivatives
at the origin) corresponds to an infinite set of tree-
unitarity conditions. It can be shown that this
correspondence takes the following specific form;
The vanishing of the nth ordinary derivative of the
curvature tensor at the origin is the tree-unitarity
condition that the (4+ n)-particle scattering ampli-
tude has no E' behavior. "

With the help of Eq. (38a) it is easy to derive
Eqs. (38b) and (38c). Since K~' is a Killing vector
[according to Eq. (37a)], we have"

Then, Eq. (38b) follows from the application of
Eq. (38a). Equation (38c) is a consequence of Eq.
(38b) and the gauge-invariance identity, Eq. (37c).

B. Quartic character of V and linearity of Y

The conditions on V and Y' are most easily de-
rived in a Euclidean coordinate system. Equation
(38a) implies the existence of a transformation,
w- w(w'), which maps the origin into the origin
[w(0) = 0] and which maps g~,(w) -g~, (w') = constant.
Since g~,(0) is positive-definite, g„(0) must be
positive-definite. Therefore, by rotating and
scaling the fields, the m' system can always be
chosen so that g~,(w'} = 6P, and so that

w,
'= p, +O(w'), w,'=o, +O(w') . (4o)

The "flat" StGckelberg rules for constructing dia-
grams in the m' system include the propagators

&T(w,'w,')) =„,

The A, q~, and q~ propagators are the same as
before. The vertices of the flat StGckelberg rules
are taken from the cubic and higher terms in

Zs(A, q„, ql, w(w')). The first equivalence theorem
of Appendix A shows that the "flat" Stuckelberg
rules of this section and the "curved'* Stiickelberg
rules of Sec. VA lead to the same on-mass-shell
Green's functions in the tree approximation:

Sg(w,'+i(, A, ~ w,' ~ ri;q; ~ ~ }~E' " . (42)

Notice that all propagators and wave functions in

Eq. (42) are good. Because of Eqs. (38b) and(38c),
E~' ' is linear in m', and S ' ' is quadratic. There-
fore, all vertices in Zs(A, q„, q~, w(w')) are good,
except for terms in V'(w') which are O(w") and
higher and terms in Y'(w') which are O(w") and
higher.

Equation (42) requires

%(A .w' w' q . )ap b 0 ia

=II(A ~ ~ o ~ ~ y ~ ~ ~ q . ) (41)

Heuristically, this equivalence relation follows
fl'olll the fact 'that the quadratic teI'Ins ln Eq. (40}
have no single-particle poles in the tree approxi-
mation and do not contribute to the on-mass-shell
Green's functions. The tree-unitarity constraint of
Eq. (20) implies that amplitudes constructed ac-
cording to the "flat" Stiickelberg rules obey the
high-energy bound
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3R,(v,'+i), 4, v,' ) -E ', (43)

3R,(v,' ) &E ' . (45)

Every diagram contributing to 3R,(w~'. ) satisfies
Eq. (45} except for the single diagram, which is
constructed from the five-point contact term. The
latter diagram is proportional to (S'V'/S'v'),
and approaches a constant at high energy. Hence,
Eq. (45) requires that (O'V'/&'7(')„, =0. We may
now proceed by induction to show that the tree
unitarity of the n-point amplitude (n ~ 5) implies
(&"V'/{)"(('), O=O; i.e., in the explicitly "flat"
system V'(){') is a quartic polynomial. Therefore,
tree unitarity requires that Eq. (38d) is true in any
coordinate system. "

The linearity of P can be derived in a similar
fashion. We now know that all vertices of the
"flat" Stockelberg rules are good except for terms
in Y'()(') which are of order ){"and higher. Tree
unitarity, Eq. (42), implies the high-energy bound

3R«()(,'+i], A, ~ ~ ~ v~' ~ ~ u;q, q&{«,.) cE', (46)

where A, contains exactly two boson and two
spinor external lines. Because the left-hand side
has four external lines, the only bad vertex which
can appear is the four-point contact term, q(S' Y'/
{)'v'), Oq){". If an individual diagram does not
contain this contact term, it is automatically
bounded by E'. The left-hand side of Eq. (46) can
be divided into terms which do or do not contain
A external lines:

3R ( I' «){{)7(q; qg(cy) + ' ' '

where %, has exactly five boson external lines.
Now, we know that any individual diagram, con-
structed from good propagators, wave functions,
and vertices, automatically satisfies the above
tree-unitarity condition. Since the left-hand side
has exactly five external lines, the only bad ver-
tex which can appear is the five-point contact
term from x' '(O'V'/S'({'), , Therefore, if an
individual diagram does not contain this contact
term, it is automatically bounded by E '. The
left-hand side of Eq. (43) can be divided into terms
which do or do not contain A. external lines:

3R (v' ~ ~ )+ ~ ~ ~ +3R (i( A ){' }+~ ~

5 p a a p

(44)

Any term with an A external line has no diagram-
matic contributions which contain the bad five-
point contact term. Therefore, all terms but the
first term in (44) are automatically bounded by
E '; it follows that the first term must satisfy
Eq. (43) separately:

Terms with A external lines have no diagrammatic
contributions which contain the bad contact term,
and are automatically bounded by E; therefore,
the first term in Eq. (47) must separately satisfy
Eq. (46):

DR,{mp' ~ u; q; q, u,.) ~E'. (48)

VII. DERIVATION OF ALL TREE - UNITARY THEORIES

A. Solutions of covariant conditions

We have derived a set of necessary conditions
[Eqs. (37) and (38)] which any tree-unitary La-
grangian must satisfy. In this subsection we find

all solutions of those conditions; these solutions
turn out to be SBGT's (modulo Abelian vector mass
terms).

First, Eqs. (37) and (38) are studied in the ex-
plicitly flat coordinate system (){'). Equation (38b)
means that K~{"(v') is linear:

g() ~D() +g()
P Pq a P (48)

where D~' is an imaginary matr ix and A.
' is a

real vector on the space of all scalar indices.
Equation (37a) implies that D{' is antisymmetric
and, therefore, Hermitian. Equation (37b) re-
quires

[D(c) D{«)
]

—(f D(c)

D(a) g(&) D(&) y(a)
g

f' ) ((-)~f atpc

(50a)

(50b)

The first condition means that D ' represents the
Lie algebra of G on the space of )(~ fields (com-
binations of physical scalars and longitudinal vec-
tors). If Eq. (50b) is multiplied by D{' and then
summed over a, the result is

Every diagram, contributing to 3R«(w~ ~ R; q; q) u,.),
is bounded by E except for the single diagram
constructed from the four-point contact term. The
latter diagram is proportional to (O'Y'/S'v'},
and diverges as F. at high energy. Therefore, the
unitarity bound of Eq. (48) requires that (O' Y'/
S'v'), ,=0. The inductive method shows again
that the tree unitarity of amplitudes with n external
boson lines (n ~ 2) implies that (6" Y'/6" v') 0= 0.
Hence, Y'(x') is linear in the v' system, and Eq.
(38e) is true in any coordinate system.

Note that Eqs. (38d} and (38e), which are valid
for m in a neighborhood of the origin, are equiva-
lent to infinite sets of tree-unitarity constraints.
Also observe that it is not surprising that tree-
unitarity conditions, being purely 8-matrix con-
straints, can be expressed as field-coordinate-
independent statements on Z~ [like Eqs. (38a)-
(38e)] .

+ 3R«(f)«'A~' ' w)I' ' '17; q( qg(«g) + ' ' . (47} K&(«) D{t) (D{«) ),(«)) (51)
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where &(=D'-) D('. The w' coordinates can always
be chosen such that each D ' is a block-diagonal
array of irreducible representations (D&(', )& for the
ith block). Decompose )&&" and w into correspond-
ing blocks ()&I';I and ««)). Then, Eqs. (50a), (50b),
and (51) are true block by block:

(&2) (&) ( &)
(&)i D&&)] &faocD(()

t&I) (y) (y) (a) (C)
D(~() «(() D(() ~(&) ~f~) ~~(&)

(') "(&) =D«) (D(&) ~(&)}(&) (~) (41) ( )

(52a)

(52e}

~(&) ~D(&) %&) ~

(~) ~ (~) (53}

where ))&;) = —i&(«) '(DI(C X«I). On "neutral and
redundant" blocks each D(', )

must be zero, and Eq.
(52b) yields

(i,)„&&I;)=0 . (54)

Since the Abelian t, are zero and the semisimple
t, are linearly independent, we deduce that A(',

~
= 0

Equation (52a) implies [K(&)~ D(;)]=0. S1Qee the
D(';) matrices are irreducible, Schur's lemma
shows that (&«) is a constant (depending on the
block number i) times the unit matrix. If w&;& &0,
i is said to denote a "charged" Mock; if ~(;) =0,
i denotes a "neutral or redundant" block. On
"charged" blocks «&;)

' exists, and Eq. (52c) gives

SBGT case

Consider the ease )&&' = 0 for a =Abelian and

p =neutral or redundant (N. B.: This condition is
automatically true if G is a semisimple group).
In this case it can be shown that all solutions of
Eqs. (37) and (38) describe SBGT's. Since D '
vanishes on neutral and redundant blocks, Eq. (55)
becomes

Kp')' =iD~',&(w'+&)), (56)

for al/ indices p.
Let w~ be the translated field, w~ =(w'+)7}~, and

define V(w) and 7(gw so that 7(t) = V'(w') and 7(w)
-=r'{w'). Using g' =5 EC

' ' =i(D(' w), and S '" '

=E ' 'Id~ )' [Eq. (SVc)], Zw can be rewritten as

for a = semisimple and i = neutral or redundant.
Most of the above information is summarized by

Q&') on neutral or redundant blocks,

iD(,;))( w'+))), on charged blocks,

(55)

where q~ is the real vector with blocks q«). In the
above equation we already know that )&

') is zero
for a equal to any semisimple vector index. In the
following we first find all solutions in which &)

'
is also zero for all Abelian indices a; then we
find all solutions in which g' 40 for some Abelian
vector indices.

Zw(A, q„, q~, w(w)) =--,'((&„A,„—&)„A,~-f„,A»A, „)'+q„i(/+i+, TY')qs+qii(/+i+, I,")ql,

+ ,'[( &)„+iA-.„D")7w]' —7(f) —
q&. 7(w) q„—qs F (w)qg, (57)

Here, Eqs. (38d) and (38e) and Eqs. (37d) and
(SVe) tell us that 7(w) is a quartic polynomial,
7(w) is linear, and that

(58a)

(58b)

Observe that 7(Ã) has a local minimum at w~ =)7~
since V(p) has a local minimum at $=0.

The Lagrangian now contains only good vertices.
Furthermore, Eqs. (5V} and (58) guarantee that
Z~ is invariant under local gauge transformations
which are realized linearly on the scalars:

A, q U(- A), ),A» —&))(- A),&, a~A~,
&A'Ã

O'I. ~

(59)

where A ' (x) is a real function of space-time The.

gauge symmetry is spontaneously broken by the
vacuum expectation value of the scalar field:
(W~), =)7~. These properties tell us that Zw is an
SBGT Lagrangian. Therefore, if A~(') =0 for Abe-
lian indices a, it has been proved that every solu-
tion of Eqs. (SV) and (38) describes an SBGT. Note
a special case of this result: If the structure con-
stants C„,describe a semisimple group, then the
only tree-unitary Lagrangians, which are listed
in Eq. (4), are equivalent to SBGT's.

It is worth recapitulating how, in the above argu-
ment, the SBGT structure emerged from a com-
bination of gauge-invariance identities [Eq. (37)]
and tree-unitarity constraints [Eq. (38)]. In Sec.
VC it was noted that the Stuckelberg gauge invari-
ance of Z~ persists for any choice of scalar field
coordinates. The tree-unitarity equations imply
the existence of a special ("flat" ) coordinate sys-
tem in which Z~ has no bad vertices. In that spe-
cial coordinate system the gauge invariance of
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2z is realized linearly [Eq. (59)] on the space
(F~) of physical scalars and longitudinal modes
of vectors. For example, the gauge-invariance
identities in Eqs. (37a)-(37c} show that the g',
E', and S' terms of Z~ take the form of the scalar
kinetic energy after a Yang-Mills (minimal} sub-
stitution. The other gauge-invariance identities,
Eqs. (3'ld) and (37e), guarantee the invariance of
the scalar potential (7) and the Yukawa term
(qFq) under linear gauge transformations.

2. Possible addition of Abelian vector mass terms

We now consider the remaining possibility:
Suppose G is a nonsemisimple group and suppose

is nonvanishing for some Abelian vector index
a and some neutral or redundant scalar index P.
In this case it can be demonstrated that every
solution of the covariant conditions describes an
SBGT, modified by the addition of Abelian vector
mass terms corresponding to invariant Abelian
subgroups. Let lq„(l)t„& 1) be the number of Abe-
lian indices, and let the vector indices be labeled
so that a =1, . . . , N& denote Abelian indices. Let
N„„be the number of neutral and redundant scalar
indices, and label the scalars so that p=1, . . . , NNR

denote neutral and redundant indices. Consider
))t') (a =Abelian, p = neutral and redundant) to be a
rectangular matrix with N„R rows and N„columns.
It is always possible" to transform the neutral and
redundant scalar fields by a rotation and to trans-
form the Abelian vector fields by a (different)
rotation so that A~' is zero except for diagonal
matrix elements; i.e., X~(' can be taken to have
the "diagonal" form

For the remaining (Abelian and semisimple) in-
dices a~A~

A~(') =0, P =neutral and redundant

0, p = redundant

E~~') = 0, p =neutral

iD~i', )(w'+)))„p = charged .

(61b)

It is convenient to use the notation: 6)~ =m~ for
p =redundant and w~ =(w'+)))~ for p =neutral and
charged. Since D~', ) vanishes on neutral blocks,
Eqs. (6la) and (6lb) can be rewritten as follows:
For 1 «a «N0

M(') 5, , p = redundant

i(D"F)~, p = neutral and charged

and for a No

(62a)

where M ' &0 and 8 satisfies 1 N0-8&, N N».
We now distinguish between three types of scalar
indices:

redundant for 1 «p «8, ,

p = neutral for N0&p «N~R,

charged for P &N~R .

For the subset of Abelian vector indices a such
that 1 aa &bt„we have [Eqs. (60) and (55)]

M(0') e„, p =redundant
)(&)—

0, p = neutral
(61a)

p =redundant

K~')'= 0, p =neutral

iN~;)(w'+)))„P = charged

~(N0)
0 (60) 0, P = redundant

i(D~')F)~, P =neutral and charged .

{62b)

Let V(w, 8) -=V'(w') and 7(F, 8) -=Y'(w'). Using gp,
=6~, and Eqs. (62a), (62b), and (37c), the Lagran-
gian of Eq. (30) becomes

Zs(A, q„, qI, w(F, 8)}=——,
' (s„A,„-8„A,~ f„,A,„A„)'+q-s (y' t+tATY{') q+nq~i(p+iA', J~')')q~

N0 2

+~ [(8 i',+„D '))F]' —7(F, 8) —qLY(F, 8)q„-q„Y(F,8)q~+Q '2M'')' A,„+ (,) 8~8,
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Equations (36d) and (36e) and (37d) and (37e) show
that 7(F, 8) is a quartic polynomial, 7(F, 8} is lin-
ear, and that

It follows that

v(-, e)=t
~

exp „, —.O, e„e„.. . ),
0 I

ay
V i(D&'qv + M&'=0

,P P gg 0 (64a)

;7'& i T, i(D& ~q«, — M&'& =O.BP
p Bg 0

(64b)

The next step is to prove that 7(F, 8} and 7(F, 8)
are independent of the redundant scalars 6},. First,
let p stand for the combination

7(F, 8) = exp

x exp {I) (65b)

Y(&&, 8„8„
—ij '0

. . . ) = exp
0

x Y(n, 8) exp
I 0

For a =1 Eqs. (64a) and (64b) imply

(
ay
ee, „-„„

(
BP
~(91 &f-.d

—&D~" e,
exp pi) & ~

L 0

Define the functions V(&&, 8„8„.. . }= V(F, 8) and

Notice that the right-hand sides depend on 8, only
through the matrix elements of unitary matrices.
Since these matrix elements are bounded, V(F, 8)
and Y(F, 8} are bounded functions of 8, for fixed
values of F and 8, (a ~ 2). However, it has already
been demonstrated that 7(F, 8) and 7(F, 8) are
(quartic and linear) polynomials in 8, for fixed
values of F and 8, (a ~ 2). Since the only bounded
polynomial is a constant, we conclude that V(F, 8)
and 7(F, 8) are independent of 8,. The repeated
application of this argument shows that 7'(F, 8) and

7(«, 8} are independent of alt 8,: 7(F, 8) = V(F) and

7(F, 8) =7(F)
Thus, the Lagrangian has the form

&e(& qs. qs «(F~ 8})= - k (8& &au Sv&a« -fa&„&&&-&.u)'+qe t(&7+i@ ft")qs+qci(&f+ikZ ")qr,
X0 2

+2 [(sq+iA, ~D&' )F] —V(F) —q~Y(F)q sq„Y (F)q~+ Q ~MD&'~ A,q+ &,) Sq8,

(66)

V, i(D&'&sq, =0,

iX&'7- f7''& -7, i(D'&F), =0 .

(67a)

(67b)

Note that V(F} has a local minimum at F=rt since
V(P) has a local minimum at p =0. Except for the

M,"terms, Eqs. (66) and (67) are the same as
Eqs. (57) and (56). Therefore, the Lagrangian of
Eq (66) descr. ibes an SBGT, modified by the ad-
dition of M0' terms; this Lagrangian character-
izes all solutions of the covariant conditions, Eqs.
(37) and (36), when d' is nonvanishing. Except
for theM, ' terms, Z~ is invariant under the local
gauge transformations of Eq. (59); the entire La-
grangian is invariant under the global version
(A&'' = constant) of the same transformations.

It is easy to show that the M,' terms are equiv-
alent to mass terms for the Abelian vector fields

Here, V(F) is a quartic polynomial, and 7(F) is
linear; these functions satisfy Eqs. (64a) and (64b):

A.,&. Let A&' (x) —= (1/Mo' ) 8, for 1 ~ a ciqo and

A ' (x) =0 for a &fqo Next, make th. e substitutions
of Eq. (59) in the Lagrangian of Eq. (66). Since
Z~ is invariant except for the M,' terms, the net
effect of the substitutions is to replace

0 1
N

1 {a)2 + ~
1 (a)2 2

2M0 A,~+ (~) ~ 8, . 2M0 A.N~ .
&1= J.

0 a= 1

(66)

The redundant scalers are eliminated completely.
In terms of the new variables, Z~ describes an
SBGT for a nonsemisimple group, modified by the
addition of mass terms for vectors associated with

invariant Abelian subgroups. This Lagrangian is
the general solution of Eqs. (37) and (38) when

is not zero. The SBGT of Eq. (57) and the
modified SBGT of Eqs. (66) and (66) characterize
al/ possible solutions of the gauge-invariance con-
ditions and covariant tree-unitarity constraints in

Eqs. (37) and (38). This forms the basis of the
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conclusion: If the general Lagrangian of Eq. (4}
has a tree-unitary 8 matrix, then there must be
a transformation of field variables which puts the
Lagrangian into the form of an SBGT (modulo Abe-
lian vector mass terms).

SBGT models, modified by the addition of Abe-
lian vector mass terms, can be classified as con-
served current theories, "hybrid" theories, ' or
combinations thereof. For example, suppose C
contains just one invariant Abelian subgroup, and

Z~ contains a mass term for the corresponding
vector boson. In the conserved current case the
Abelian subgroup is not spontaneously broken;
the corresponding massive Abelian vector couples
directly to a conserved source current. The
simplest example of this type of theory is massive
QED. In the "hybrid" case the Abelian subgroup
is spontaneously broken. Therefore, the Abelian
vectors can mix with other vectors and need not
have conserved source currents. A simple ex-
ample' of a hybrid model is Weinberg's [SU(2)
SU(1)] theory, modified by the addition of an Abe-
lian vector mass term. The model describes four
massive vectors, none of which couples to a con-
served source current.

p = redundant
M, (VO)

0„(id"q),
M,

P =neutral or charged .

Define lV,„, g~, and g~ by

A, q
—= U(- o),~ 0 '~, W, q

—Q(- o),~ s~ o~,

(V2)

A direct calculation shows that the v ' are ortho-
normal. Define the real vectors u~("' so that
jul", U~'J is an orthonormal set which is complete
over the entire space of all sca, lar indices. The
number of values, taken by the index 0, is equal
to the number of all scalar indices minus the num-
ber of all vector indices. The following invertible
transformation serves to define the real fields
p, and o, in terms of 8, and F~:

6)p =-4„~p +~, O,ao, vp, p =redundant(&) " (~)

w~
—=[e' ' (q+u~"'p, )j~, p =neutral or charged.

B. Full tree unitarity of all solutions

We have shown that if the Lagrangian of Eq. (4)
has a tree-unitary 8 matrix, then there must be a
change of variables which puts the Lagrangian into
the form of Eqs. (5V) or (66). In this subsection
the inverse relation is proved: Any Lagrangian
given by Eqs. (5V) or (66) can be transformed into
a Lagrangian which has the form of Eq. (4) and
which has a fully tree-unitary' 8 matrix. The first
step is to construct the transformation which puts
Eqs. (5V) or (66) into the form of Eq. (4). Con-
sider the vector-boson mass matrix, which char-
acterizes the terms (of Zz) quadratic in vector
fields:

M' =(iD 'q) (iD" rl) +M ' '5 (69)

where P is summed only over neutral and charged
scalar indices (P &N,). It is easy to see that M'
is a real, symmetric, and positive-indefinite ma-
trix. Therefore, there is an orthogonal trans-
formation O,~, which diagonalizes it: (0M'0 ')„
= &,&M, '. In general, we know that M, ~ 0; at this
point it will be assumed that all hf, &0. This as-
sumption is consistent with the original restriction
that the Lagrangian in Eq. (4) describes massive
vectors only (see Sec. III). Define the real vectors
v~'~ on the space of all (redundant plus neutral
plus charged) scalar indices:

When Z~ is rewritten in terms of o, p, 8', and

g, the v fields disappear. Except for rotations
which diagonalize the p and f mass matrices, the
rewritten Lagrangian takes the form of Eq. (4),
with

Aayc = ~agcy = 0
y

Caac fa'5'c' Oaa' Oyy~ Occ'

8Dabcd —Cace CMe + Cp&e C&ce

L( ) ~ 1(~)

&&i(e) = 5&i

G„(g) =-O„u~"(iD ' u ") y

2r.,(y) = 5.,M. '+M, 0., u&'&(in&'& d'&), y„

+M. O„v&'(iD'& u&'&), y„

I'(4) = I'(n+ ~'" @,),
a(y) =7(q+u y„) .

(V5)

This completes the demonstration that the Z~ in
Eqs. (5V) or (66) can always be transformed into
the Z(W, gs, g~, p) in Eq. (4). Notice thai the mass
dimension of Z is less than or equal to four as
anticipated in the comments in Sec. DI.

The next step is to prove the full tree unitarity
of the Lagrangian specified by Eq. (VS). Because
of the equivalence theorem in Appendix A, the
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S matrix of Z(W, i(„,g~, p) is given by Eq. (19).
The left-hand side is computed by using the
StQckelberg rules, derived from the Lagrangians
in Eqs. (57) or (66). Since these Lagrangians have
mass dimension less than or equal to four, all
vertices of the Stuckelberg rules are good. In
addition, all Stackelberg propagators are good, and
the wave functions ($, s) in the left-hand side of
Eq. (19) are well-behaved. It follows that the left-
hand side of Eq. (19) is also well-behaved (~ E' ")
at high energy. Therefore, the Lagrangian of Eq.
(73) satisfies the unitarity bound:

SR(e ~ W ~ ~ g g
~ ~ p ~ ~ ~ )&E' "

Hence, we have demonstrated that every Lagran-
gian given by Eqs. (57) and (66) can be transformed
into a fully tree-unitary Lagrangian with the form
of Eq. (4).

This result, taken together with the result of
Sec. VIIA, shows that the SBGT of Eq. (57) and
the modified SBGT of Eq. (66) constitute the com-
plete set of all fully tree-unitary theories; i.e., the
Lagrangian in Eq. (4) is fully tree-unitary if and
only if it is equivalent to an SBQT, possibly mod-
ified by the addition of Abelian vector mass terms.

VIII. DISCUSSION AND CONCLUSIONS

The central conclusion of this paper is that the
general Lagrangian of Eq. (4) is tree-unitary if
and only if it is equivalent to an SBQT, possibly
modified by the addition of mass terms for vectors
associated with invariant Abelian subgroups. The
method of proof has heavily exploited the freedom
to change field variables. It is known that a set
of Lagrangians related by transformations of field
variables describe the same 8 matrix. %'e have
shown that it is always possible to find such a
transformation which casts any tree-unitary La-
grangian into the "standard form" of a gauge-in-
variant Lagrangian. In this sense, the high-energy
criterion of tree unitarity imposes internal gauge
symmetry on heavy-vector-boson Lagrangians.
This may be the true meaning of spontaneously
broken gauge invariance.

Section II presents a plausibility argument that
any perturbatively renormalizable theory must
be tree-unitary. If that connection is accepted, it
follows that every renormal. izable model must be
equivalent to an SBQT, conserved-current theory,
or hybrid theory of Eqs. (57) or (66}. Other au-
thors' have shown that the SBQT and conserved-
current models are truly renormalizable; it is
likely that the hybrid theories share this property.
Therefore, it is probable that Eqs. (57} and (66)
constitute the "standard forms" for all renormal-
izable interactions. All of these "standard forms"

are symmetric under groups of global (and, pos-
sibly, local) gauge transformations. This suggests
that the appearance of Lie groups of internal sym-
metries in particle physics is a natural conse-
quence of renormalizability. For example, this
may explain the striking fact that weak-interaction
currents form a Lie algebra, . If the weak inter-
actions are renormalizable and mediated by vector
mesons, they would have to be described by a
"standard" gauge theory. In such models the fer-
mionic parts of the weak currents (vector-boson
source currents) must form some Lie algebra.
Of course, the criterion of renormalizability alone
does not specify MIhicA, Lie group or zvhich rep-
resentations are involved.

The results of this paper suggest several areas
of investigation.

(~) Hybrid models. Since the hybrid theories
are fully tree-unitary, it is likely that they are
also renormalizable. However, this should be
proved in detail. As suggested in Ref. 9, "hybrid-
ization" might be a useful way of regulating the
infrared behavior due to massless vectors asso-
ciated with unbroken Abelian subgroups in ordinary
SBQT's.

(2) game geneva/ I.ag~angians. %e are now in
the process of generalizing the techniques of this
paper in order to investigate the tree unitarity of
Lagrangians which are more general than the one
in Eq. (4). The question is: Are there new tree-
unitary Lagrangians which contain higher powers
of 8', ~W, and ~Q? As mentioned in Sec. III, the
chance of an affirmative answer is small.

(3) Higher spins. The Einstein theory of pure
gravity is not tree-unitary; in fact, all N-point
scattering amplitudes diverge as E' at high energy.
Can a tree-unitary (and, presumably, renormal-
izable") model of gravitation be constructed by
adding seal. ar, vector, and massive tensor ex-
changes, which cancel the bad high-energy be-
havior? Unfortunately, the answer is "no." In
order to maintain Newton's law of gravitation be-
tween any two particles, the four-particle scat-
tering amplitude must have a single-graviton-ex-
change pole with nonzero residue. Because of
the spin-2 nature of the graviton, these pole terms
have pieces which behave like s'/I, thereby violat-
ing unitarity at high energy. On the other hand,
scalar exchange diagrams, vector exchange dia-
grams, and "contact" diagrams are unitarily
bounded at high energy except for po/ynomials in
s and t. Therefore, these contributions cannot
cancel the bad high-energy behavior of graviton
exchange. Massive tensor exchange contributes
a nonunitary pole term with the same sign as the
graviton pole term; thus, there can be no cancel-
lation between badly behaved contributions from
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graviton and massive tensor exchanges. Ne con-
clude that a tree-unitary theory of gravitation can-
not be constructed from fields with spin less than
or equal to two. It is interesting to ask if there
are any tree-unitary theories of scalar, vector,
and (massive or massless) tensor particles, which
are nongravitational (i.e., which do not reproduce
Newton's law). An even more ambitious program
would be a search for tree-unitary models which
describe towers of higher-spin particles.

Finally, it is interesting to speculate about the
relevance of the dimensionality of space-time to
this work. %e have demonstrated that in four-
dimensional space-time tree unitarity is just strong
enough to impose internal symmetry on heavy-vec-
tor -boson interactions. Multiparticle phase space
in two- or three-dimensional space-time grows
less rapidly with energy. Therefore, the con-
straints of tree unitarity are weaker and may not
impose a group symmetry on vector-particle in-
teractions in two or three dimensions. On the
other hand, vector theories in five-dimensional
space-time may be so divergent that there are no
solutions of all tree-unitarity constraints. So,
the connection between high-energy behavior and
internal symmetry under Lie groups may be char-
acteristic of four-dimensional space-time.

APPENDIX A: EQUIVALENCE THEOREMS

Io, this appendix it is shown that Lagrangians,
related by point transformations of fields, de-
scribe the same S matrix in the tree approxima-
tion. First, we state the following general equiv-
alence theorem: Two Lagrangians are equivalent
if they are related by an invertible transformation
which maps vanishing fields. Then, it is proved
that two vector-particle Lagrangians, related by
a generalized Stuckelberg decomposition, lead
to the same S matrix in the tree approximation.

Consider any Lagrangian of a real field p with
the form

(A l)

Define a set of C Feynman rules, in which the P
propagator has the usual form [Eq. (2)] and in
which vertices are taken from cubic and higher
terms of Z. Let h(P) l's the following invertible
transformation which maps the origin into the
origin:

Define Z„(P') by

(A3)

Consider the set of Z„Feynman rules in which the

p' propagator has the usual form and vertices are
taken from cubic and higher terms in Z„. The
equivalence theorem states that the S-matrix
elements, constructed in the tree approximation
from Z Feynman rules, are equal to the S-matrix
elements, constructed in the tree approximation
from Z„Feynman rules; that is

G(f) -=Ex fd'x[2(q)+f(x) p(x)] . (A5)

Here, "Ex"means that the integral is evaluated
at p(x) = ps(x, f), the extremum value of the field.
It can be proved that the Green's functions, con-
structed in the tree approximation from the I
Feynman rules, are generated by G(f) in the fol-
lowing way:

(A6)

Similarly, the Green's functions, constructed from
the g„Feynman rules, are generated by G„(f):

G„(f) -=Ex d'x[2„(y')+f(x) y'(x)] .

According to the equivalence theorem, G(f) and

G„(f) generate the same on-mass-shell Green's
functions.

Next, we prove that two vector field Lagrangians,
related by a generalized Stuckelberg decomposition,
describe the same S matrix in the tree approxi-
mation. Let g(W} be any Lagrangian of the form

(A8)

Define a set of 2 Feynman rules in which the W

propagator has the usual form [Eq. (2)] and in
which vertices are taken from cubic and higher
terms in Z. Let a(&i) and P(o) be any power series
such that

(A4)

Notice that only the on-mass-shell Qreen's func-
tions need to be equivalent; in general, 2 and Z~
describe very different off-mass-shell Qreen s
functions. Heuristically, the theorem means that
P' and P =h(p') are equivalent interpolating fields;
the quadratic and higher terms in h(p') do not
contain single-particle poles and, therefore, do
not contribute to on-mass-shell Green's functions. "

These results can be restated in terms of the
functional formalism" for calculating Green's
functions. Let f(x} be a real external source func-
tion. Define G(f) to be the following functional:
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(r(8) =1+0(8), P(8) =1+0(o) . (A9)

Define the SNckelberg Lagrangian Z~ by decom-
posing each vector field (W} into a "Stiickelberg
vector" (A} and a "Stiickelberg scalar" (8) as fol-
lows:

Gr(J„}=Ex d'x[8( W)+J„W"] . (A13)

of Eq. (A12) is more involved. First, notice that
the Green's functions, constructed from the 7
Feynman rules, are generated by

2~(A., 8) =-2 o(8)Aq+ —P(8)sq8
1

(A10)
Similarly, the Green's functions, constructed from
the Stiickelberg rules, are generated by

Consider the Stuckelberg rules in which vertices
are taken from cubic and higher terms in S~ and
in which the propagators are

& r(88)& =, 1

(A11)

& T(A„/i„) }=„,g"', .

The equivalence theorem states that an on-mass-
shell scattering amplitude of 8"s, constructed in
the tree approximation from the Z Feynman rules,
is equal to the corresponding on-mass-shell scat-
tering amplitude of [A„+(1/M)8„8]'s, constructed
in the tree approximation from the Stuckelberg
rules; that is

(W„~ ~ ) = SR([A„+(1/M)a~8] ) . (A12)

This equation can be verified immediately for the
special case". a(8) =P(8) =1. Then, it is clear
that the vertices of the [A„+(1/M)s„8] modes are
exactly the same as the 5'„vertices. Since the
W„and [A„+(1/M)s~8] modes also have identical
propagators, their scattering amplitudes (as well
as their off-shell Green's functions) are equal.

If e and P are more general functions, the proof

G,(z„y) = zxf ~ *(z,(~;a) --.' (BA -~v)*

+J„A"+fo') . (A14)

Define A„(8„8)to be a function of o and another
vector field 9&..

1 1
a( 8A}„+ P—(8)s„a =B„+——s„8, (A15)

G,(J„,f) =-Ex d'x(Sz(A(B, o'), 8)

——,
' [sx(B,8) -M8]'

+J„B"+f8j . (A17)

According to the equivalence theorem stated ear-
lier in this appendix, Gz(J„,f) and Gz(J''„, f}gen-
erate the same on-mass-shell Green's functions.
At the point f= (- 1/M)s J, Gz( J„,(- 1/M)s J) can be
written as

Note that this transformation has the form

A„=B„+O(o') +O((r B) + ~ ~ ~ . (A16)

Therefore, the transformation between A and B
is invertible and maps vanishing fields into van-
ishing fields. Now, define G,(J„,f):

(A18)

The right-hand side is evaluated at the extremum
fields: B„=B»(x,J), 8=8s(x, J). Any variation
about these fields produces no change in the action:

Gg Jq, ~J =Ex & x Z B~+—~~&

0= 5 d x Z B~+—.8~o' —g &A. -3fcr
= Gr(J~) . (A21)

In particular, consider the variation

e„a„=a„A,

where A(x) is any real function. Since 5~[B~
+(1/M)8„8] =0, Eq. (A19) implies

(A19) Since G~(J„,(-1/M)SJ} and G,(J'„, (-1/M)SJ) gen-
erate the same on-mass-shell Green's functions.
it follows that Gz(J„, (-1/M}sJ) and G~(J„) gen-
erate the same on-mass-shell Green's functions.
Notice t ag

5Gg( J„,(- 1/M)s J} 5 1 8

((),(*) — L),(*) M ~*, 5f( ))

(sA, -M8, ) 8,(sA M(T) =0 . - (A20)

This means that &A~ -Ma~ =0 and, therefore, Therefore, we have proved that the Green's
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function

5"G

LI„(x) 5J„(y) ~,
is equal on the mass shell to the Qreen's function

This completes the proof of the equivalence rela-
tion, Eq. (A12).

APPENDIX 8: PROOF OF FLATNESS CONDITION

Consider a Lagrangian of the form

Z(w) = —,
' s „w~ s" w, g~, (w}

involving a number of scalar fields z~. The func-
tions g~, (w) are given by a power series of the
form

I
g~, (w) = 5p, + —,P~, w„w, + ~

The absence of a linear term involves no loss of
generality since it can always be eliminated by a
point transformation. In this appendix we prove
the following result, which was used in Sec. VI:
If the T matrix of Z(w) vanishes, then the metric
g~, (w) is flat; i.e., A,„,(w) = 0 for w in a neighbor-
hood of the origin. In other words, if the T matrix
vanishes, then it is always possible to find a point
transformation of the fie1.ds

w~ =F~(w'), F~(0) =0

such that Z(F(w')}=-,'&„w~s" w,', i.e., Z(w) is equiv-
alent to a free theory. It is understood here that
F~ represents an invertible change of variables
so that it can be taken to be a power series of the
form

F,(w') = w~+0(w") .

%e begin by calculating the tree approximation
for the amplitude m~m, - m„m, . Setting it equal to
zero results in the relation

p~."+~s~.—
~~ a-4~. =0

which states that the Biemann-Christoffel tensor
of the manifold with metric g~, (w} vanishes at the
origin m~ =0:

R~,(0}=0 .

It is possible to proceed now step-by-step and
show that the vanishing of the (n+4)-particle am-
plitudes implies the vanishing of the nth derivatives
of A, at the origin. Thus, the vanishing of the
T matrix implies that the g~, manifold is flat in a
neighborhood of the origin and, in particular,

Euclidean since g~,(0) = 5~,.
Instead of looking in detail at all higher-point

trees, we prefer to complete the proof by making
use of the functional formalism. '4 The tree-gen-
erating functional for Z(w) is given by

G(j)=extremum d'x[2(w)+f, w, ] .

The functional derivatives of G yield th8 Qreen's
functions according to

( ')))-1
5f, (x,) 5f~ (x„)

=( T( ~w, ( x} (.. w~ (x„)))„„.

The first functional derivative

5G

( )
—w~(x, f)

satisfies the field equations

which may be written explicitly as

&'w, = l~„( )w„sw&" w, +g"f, .

Here g~'=—(g ')~, is the contravariant metric
tensor and I'~ is the affinity of Eq. (86). The
field equations and the appropriate boundary con-
ditions lead to the following integral equation from
which any Green's function can be obtained by a
finite number of iterations:

w, ( ) = ' f &'*'&,(*— ') [&,(w(x')) !,(~')1 .

Here b.„is the Feynman propagator for a massless
scalar field and J~ =- F „m, &" m„. In writing the
integral equation we have simplified g ~'f, to f,
since terms like r"f with n&0 do not contribute
to mass-shell amplitudes. Consider now the neu
Lagrangian Z(w~) —= Z(w~+)I~), where )I~ is any suf-
ficiently small x-independent, c-number displace-
ment of the scalar fields. The functional w~(x, f)
associated with 2 satisfies

w (x) =i f d'x'a (x —x') [J (w(x') +(})+f (x')),

which may be written as

w~(x) +)I~ = i d'x [J~(w(x') + q) +f,(x')+ q, ~ ")
x a~(x —x') .

Comparing this with the integral equation for
w~(x, f) we obtain

wp(x, f) +q~ = wp(x; f + ps') .
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Thus the T matrices of Z and 2 are simply re-
lated in the tree approximation: A given n-par-
ticie mass-she11 amplitude of 2 is equal to the
corresponding n-particle amplitude of 2 plus a
sum over all possible insertions in it of external
lines carrying zero four-momentum. But this
means that all tree amplitudes of P vanish since

those of Z vanish. In particular, the vanishing of
the four-point amplitudes for Z(m) = Z(f +ri) implies
that

R~,(ri) =0

for all sufficiently small q~. Hence the metric
g~, is flat in some neighborhood of the origin.
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