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though complicated numerically, appears to be a
more attractive alternative.
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The spontaneously broken gauge theory is formulated in the generalized renormalizable
gauge (R& gauge). A parameter ( can be adjusted to include existing gauges, U gauge,
R gauge, and 't Hooft-Feynman gauge as special cases. Three applications of the R&-gauge
formulation are given. First we compute the weak correction to the muon magnetic moment
unambiguously in the existing models for leptons, Secondly, we discuss the large-momentum-
transfer limit of the Pauli magnetic form factor of the muon. Finally, we discuss the static
charge of the neutrino, and show that an appropriate regularization makes it vanish.

I. INTRODUCTION

The possibility of constructing a unified theory
of weak and electromagnetic interactions in terms
of a spontaneously broken gauge symmetry has
attracted a great deal of attention lately, following
the works of Weinberg' and 't Hooft. ' In this paper
we shall present a formulation of spontaneously
broken gauge theories (SBGT) which is particularly
suited for practical calculations. In this formula-
tion the gauge condition one adopts is a general-

I ~ization of the one used by 't Hooft and depends on a
parameter $ which can vary continuously from 0 to

In this gauge, which we shall call generically

the A
& gauge, the massive-vector-boson prop-

agator is precisely the one invented by Lee and
Yang in their discussion of the g-limiting process:

1 Pgv 1
ll&(P& h) gP& ( P2 M2/( P2 ~2

1 l 1
ggv ~2PPPv I P2 M2

The difference between the B&-gauge formulation
of SBGT and the g-limiting process applied to the
electrodynamics of massive vector bosons is this:



2924 F V JIKAWA, LEE, AND SANDA

PpP'v
M' P' -M' (1.3)

In this gauge, the unitarity of the S matrix is mani-
fest since there are no spurious singularities at
P'=M'/g. However, Green's functions are unre-
normalizable in this gauge: It is only the S matrix
that can be defined in this gauge. The U-gauge is
formally equivalent to the R& gauge in the limit
g-0. The equivalence here is "formal, " in the
sense that Feynman amplitudes in the two formu-
lations are equal if the limit g -0 is taken before
the Feynman integral is performed.

The U-gauge formulation of SBGT deserves some
more discussion. Because the quantization of
SBGT in this gauge is most straightforward, most
of the existing calculations were performed in this
formulation, despite the divergence difficulties
unique to this gauge. The cancellation of diver-
gences in the S matrix (but not in Green's func-
tions) has been demonstrated by various authors
in a number of cases. ' However, isolation of
the finite part of an S-matrix element in this gauge
may prove ambiguous. In fact, Jackiw and Wein-
berg and Bars and Yoshimura' have commented on

In the former, the negative-metric scalar-boson
pole of the vector-boson propagator at p' =M'/( is
canceled by the pole of the unphysical-scalar-boson
propagator

1.2p2-M2/~ (1 )

in the 8 matrix, and the 8 matrix of the former is
independent of the parameter $ and is unitary,
whereas in the latter, one recovers the unitarity
of the S matrix only in the limit $-0. The $ inde-
pendence of the 8 matrix4 in the former is a direct
consequence of the non-Abelian gauge invariance
of the relevant Lagrangian.

It is worthwhile to note the connection between
the A

&
gauge and other gauges discussed in the

literature.
(1) The R Gauge: In the proof of renormalizabil-

ity of SBGT by Lee and Zinn-Justin, ' and also in
the discussion of Salam and Strathdee, a general-
ization of the Landau gauge in quantum electro™
dynamics, the so-called R gauge, was used. The
R gauge is obtained from the R

& gauge for $ =~.
(2) The 't Hooft Feynman G-auge: This gauge,

which was discussed by 't Hooft, is obtained when
we set g = l. In this gauge the vector-boson prop-
agator is proportional to g&„, and the unphysical-
scalar-boson propagator of Eq. (1.2) has a pole at
P=M.

(3) The U Gauge: In this formulation, the un-
physical scalar bosons are absent and the vector-
boson propagator is the canonical one:

an ambiguity that exists in the calculation of the
weak-interaction contribution to the anomalous
magnetic moment of the muon. We claim that,
based on our own experiences, computation of
Feynman amplitudes is enormously simplified in
the R~ gauge. It is also easier to check the g inde-
pendence of the S matrix (thereby verifying the uni-
tarity of the S matrix) in the R, gauge, than to es-
tablish the cancellation of higher-order diver-
gences. When there are ambiguities in fixing the
finite part of an 8-matrix element in the U gauge,
the B&-gauge formulation provides a gauge-invari-
ant (with respect to the non-Abelian gauge group)
way of circumventing such difficulties. In fact, we
shall resolve the ambiguity in the computation of
the anomalous magnetic moment of the muon by
evaluating it in the 8

&
gauge. Our study explains

also why the g-limiting process used by Jackiw and
Weinberg and by Bars and Yoshimura yields the
correct result. '

This paper is organized as follows: In Sec. II we
formulate the generalized renormalizable gauge
(R &

gauge). In Sec. III, we apply the R
& gauge to

the calculation of weak correction to the magnetic
moment of the muon. We will present unambigu-
ous answers for three existing models of Wein-
berg, ' of Georgi and Glashow, ' and of Lee,"and
Prentki and Zumino. " In Sec. IV, we show that the
naive calculation of the neutrino static charge gives
a nonvanishing result and we discuss how to rem-
edy this situation. In Appendix A, we give details
of Sec. GI. In Appendix B we point out the reasons
for ambiguities present in the U-gauge calculations
of the weak correction to the muon magnetic mo-
ment. Finally, in Appendix C, we give the Lagran-
gians and necessary Feynman rules for our calcu-
lations.

After the completion of this paper, we received
a paper by Yao'" in which a formulation similar to
ours is discussed in the context of an Abelian
gauge theory.

II. FORMULATION OF THE R( GAUGE

In this section we shall discuss the formulation
of SBGT in a general class of covariant linear
gauge conditions. We shall consider, for definite-
ness, the Georgi-Glashow model based on the O(3)
gauge symmetry without fermions. In Appendix C,
we will extend our considerations of this section
to all three models mentioned in the Introduction,
with fermions.

In the absence of fermions, the Georgi-Glashow
model consists of a triplet of gauge bosons and a
triplet of scalar mesons. The Lagrangian is of the
form
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2= -4(sqB„—B„Bq+gBqxB„)'

+ z[(s„+gB„x)4]'—V(4), (2.1) g=0. (2.2)

where V(q) is an isospin-invariant quartic poly-
nomial of the scalar fields P. The potential is as-
sumed to have an absolute minimum at Q = v g0.
We can always choose the isospin z axis to coin-
cide with the direction of v.

It is convenient to define a unit vector g along
the z axis:

We also define (I[)t and P by

The gauge condition we shall adopt is (see also
Appendix B)

s "B ——gvq x p = 0 (2 8)

where g is a non-negative real parameter.
It was shown by 't Hooft" that the gauge condition

(2.3}may be taken care of by defining the effective
action":

1 -' 11
S[B Q] = d'x Z(x) —— & "B ——g vx Q ————$ (s]'B')' —i Tr 1n[1+g8y],P~ 2 P 2 Q

(2 4)

where 9 is defined by

(-s'+ie)5~ ——(gv)'(5„—pe, ) (b, x~9~ c, y) =5„5'(x—y) (2.5)

and y is defined by

c(x, lyxl]]«() = («... z'«(x)+ —Zx[t,.(x)x, —t(x., —qZ), )] x'(x —y) (2.6)

and Tr denotes the trace operation over the space-time variables x, y, as well as over the isospin indices
a, b. In Eq. (2.4), g and, t). are in general arbitrary non-negative real numbers.

The effective action S of Eq. (2.4) is to be used in defining the generating functional of connected Green's
functions. Thus, if we define

xxt(iz[Z„, «]) f[Zz„]f[Zt=]xxpI(S[))„,t]+af Z x[x(«) ~ t(x) —Z„(x) B"(x)]I, (2.7)

functional derivatives of Z at J„=k=0 give connected Green's functions of the theory. The generating func-
tional Z depends on two parameters o. and $. Note that the choice n '=g =~ leads to the 8 gauge discussed
in Refs. 5 and 6.

The effective Lagrangian can be written as

1 -' 1 1 1 - - - - a (gv) -z
(s "&')'= [s 0+—gBx(0 x eti}']'—

2 2 Q ]) 2 ]) [) t 2( t

+g'vq xB„B~x(Qt+ Qq) —V(Q)
2

——'(s„B,—s„B„+gB„xB„}+ (B'„)

——(s "B')' ——(8"&')'.
2 " 2n

(2.8)

The terms proportional to B„S"Q have disappeared from Eq. (2.8). The propagators for various fields
are obtained by inverting the matrix of the quadratic form Zp of the above expression:

2

(2 9)

where

M'=gv, p, &' —-2s V(vg)/»',

and they are

W2
' k' —I'l$+is'
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—V'
k —p. + zE'

~ ~ . 1 1 1
W„~~(B'„+zB'„): zg-» —k„k, k, (2.10)

and

k~k„-g gPlj —
2 1 —Q k'+ se

We see that our gauge interpolates between the B gauge ($ -~) and the U gauge ($ -0). For $ =1, we re-
cover the 't Hooft-Feynman gauge, in which the vector-boson propagators are proportional to g„,.

In the Weinberg model (and also in the model of Lee and of Prentki and Zumino) we have another gauge
boson Z„. We fix the gauge for this boson by adding the following term to the Lagrangian:

1 T/ Gv 2
g' = —— 0 Z&+—g2 " q

G ( 2 +gl 2)1/2 (2.11)

where q is a parameter that can vary over the range

0&g (2.12)

and G and g are the coupling constant of Z„and the corresponding unphysical neutral scalar boson, respec-
tively, We must also modify the last term -iTr in[1+@By] in Eq. (2.4) accordingly. The propagators for
Z„and y are given by

[g„,—k„k„(1—q)/(Mz' —qk')]
Z ~ S 2 2 7 (2.13)

Z+
1

k' —(1/zi)Me'+ i~ ' (2.14)

wher~ Mz=G
In an g-matrix element the pole at k' =M'/$ of the vector-boson propagator is canceled by the similar

pole at Mz/$ of the s~ propagator. Neither of the scalar particles implied by these poles are physical. (In
the B-gauge formulation the s' are the would-be Goldstone fields, ) In fact, the couplings of s' to other
particles can be determined based on the above considerations. As an example, let us determine the cou-
pling of s to the ev pair. We write the coupling of W„[=(1/v 2)(B'„+iB'„)]to the ev pair as

Zv, „=ge(1 —y, )vW„.

Now consider the T-matrix element for the process

e (P)+ v(q) - v(q')+ e(P') .
To lowest order, the 8' exchange gives

u~u'
(za')'(-z)[e(P')y "( —y, ) v (q)][v (q')y'(1 —y, )e(P)] g"' — M. + M. + M, k.

where k=P' —q=P —q', and we have used the vector-boson propagator of Eci. (2.10). The pole term at k'
=M'/(,

1(-i)[e (P')(1 —y, ) v(q)][vl(q')(I+ y,) e ( p)] M' = (gv)'

must be canceled by the s exchange contribution. This requires the s ev coupling to be

me—2,—., =+—'e(1 —y, )vs
V

(The sign ambiguity is superficial, since the sign of v is indeterminate. Once a definite sign convention is
made here, all other couplings are uniquely determined. )

We note that the above cancellation is one of the consequences of the following two fundamental relations:
(i) The S matrix is gauge-independent, namely

8$——= 0
8$
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(ii) The propagator D„„for W„and the propagator D for s' satisfy the identity

g k„k,—D (k)=- " ' —D(k).s( t" M' s~

III. MAGNETIC FORM FACTOR OF THE MUON

A. Weak Correction to the Magnetic Moment of the Muon

In a unified theory of weak and electromagnetic interactions, one-loop contributions to the anomalous
magnetic moment a„of the muon are formally of order n, whether they derive from photon exchange or
weak-vector-boson exchanges. Theanomalous magnetic moment to this order can be written as

(3.1)

where p. is the muon mass, M is the W-boson mass, f is a function of the mass ratios (p, /M) and(m „0/g),
and m~a is the mass of a neutral heavy lepton Y', that might exist in such a theory. The second term in
Eq. (3.1) is in magnitude of order (o/M') p.

' —G~p,
' and we shall call it the weak correction to a„and de-

note it by

(3 2)

In addition, there are contributions of massive Higgs scalar bosons in such a theory to a&. However, they
are of order (p. /m&)' compared to Eq. (3.2), where m

&
is a typical Higgs scalar mass, and since the mass-

es of these scalars are presumably very large, we shall ignore them in the following discussion.
The weak correction to a„has previously been computed by several authors' in the U gauge. In this

gauge, the electromagnetic vertex of the muon is quadratically divergent, so that its separation into the
electric and anomalous (Pauli) magnetic form factors is ambiguous. As a consequence, one finds that a„
computed in this gauge depends on the way the internal momentum is routed in a diagram, even though it is
finite.

In the R& gauge, the electromagnetic vertex of the muon is only logarithmically divergent, and there is
no such ambiguity in evaluating aN~. In order to verify the gauge invariance we have evaluated it in three
different gauges: g =~, 1, and 0. In this section we will present the results of these calculations. In Ap-
pendix A, we will present a general proof that the value of a„ is independent of $. In the following we shall
refer to the result obtained in the limit $-0 after the Feynman integration as the U-gauge result. For those
diagrams involving unphysical scalars in this particular case, the limit g - 0 and the integration commute.
This explains why the procedure used by Jackiw and Weinberg' and by Bars and Yoshimura, ' of replacing
the vector propagator (1.3) by the regularized one, (1.1), yielded the correct result, even though this re-
placement per se is not a gauge-invariant procedure.

Our results are given for three different models. These are the model of Weinberg' based on SU(2) xU(1),
that of Georgi and Glashow'o based on O(3), and that of Lee and Prentki and Zumino (LPZ) based on O(3)
xO(2). The diagrams shown in Figs. 1 and 2 contribute to the models given by Weinberg and LPZ, and the
diagrams shown in Figs. 1 and 3 contribute to the model of Georgi and Glashow. In these figures s and X

are unphysical scalars and Y' is a neutral lepton. For the purpose of illustration let us evaluate the dia-
gram shown in Fig. 2b. It gives the contribution

, V' (Z'+g") d'k P(p')r, (p' —ii+V)rI (p' Ii+Vb&p(p)-
Mx' 4 (2'}' [(P —k)' —P, '][(P' —k)' —P, '][k' —M~'/q]' (3.3)

where p and p' are the incident and final muon momenta, respectively, and k is the internal momentum of
We separate this expression into the charge and anomalous magnetic form factors:

I

-iud(P') E,(q')y„E,+(q') —o „,q'+parity-violating terms p (p), q =p' -p. (3.4)

After the k integration E,(q') of Eq. (3.4) is found to be

4M') 8w' J, , g'(x+y)'- q'xy+(Mx'/q)(1-x —y)
' (3.5)

Integrations over x and y yield the desired result in the gauge characterized by q. For example, to obtain
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the 8-gauge result, we take the limit q-~. Then

G~p,
a„"[Fig. 2(b)]„=— (3.6)

To get from Eq. (3.3) to Eq. (3.6) we have used the relations
2 2

8m'

To obtain U-gauge result, we let g-0 and we find that the diagram does not contribute:

a„[Fig. 2(b)]~ =0.
Finally in a 't Hooft-Feynman gauge, we let q = 1 and we see that

(3 7)

a„[Fig. 2(b)]., „F=O(p, '/M~') . (3 6)

(3.9)

Details of all other diagrams can be found in Appendix A. Tables I, II, and III give contributions from
Figs. 1, 2, and 3, respectively. For example, the contribution of Fig. 2(b) can be found in Table II, in
the column labeled Fig. 2(b). We neglected terms of order p, /M. In Table III, terms of order mro/M,
p, /m„o were also neglected. It is amusing to see that individual diagrams are quite gauge-dependent, but,
as they must, the diagrams always add up to give a gauge-independent result not only to the leading order
in (g/M)'-, (p, /m„)', but to all orders. (See Appendix A. )

To obtain the result of Weinberg's model, we add the results of Tables I and II:
G 2

g„=, (—", + -', [(3 —4 cos'0)' —5]]..

Note that this result is the same as that obtained previously in the U gauge by the $-limiting regulariza-
tion. 8

The result for the model proposed by I PZ can be obtained from that of Weinberg's model by merely
changing the definition for the coupling constants. We obtain

G~p ]() 4 u'+ v'
(3.10)

where 6 is related to the physical quantities by

G~ u +v2 M
2 4~2 sjn2g (3.11)

u and v are the vacuum expectation values of Higgs scalars in this model. In Eq. (3.10), a„can be about the
same order of magnitude as that of Eq. (3.9) if (M'/M~') tan'6-0(1). In that case both of these models predict
the weak correction to the muon magnetic moment to be of order 10 ', below the experimental detectability.
In any case, the strong-interaction correction a& has been estimated from the colliding-beam experiment to
be of order (6.5+0.5) x10 '," so that the latter seems to be bigger than the former.

The Georgi-Glashow model receives contributions from Figs. 1 and 2. The results of the calculation in
the special case m~p«M are given in Table III and Table I. Note that Fig. 3 gives contributions which are
much larger than the previous two models by the factor mr+/p. We will thus concentrate our attention on
the contributions of order Gzgmro in Fig. 3. Evaluating for arbitrary value of m„o/M we obtain

Gp(Bzry+ p, )p, 6
(3.12)

where y =mro'/M' and sin'0=4G~M'/W2e'. Note
also the relation

and M. The present status on experimental and
theoretical uncertainties in a„places the limit"

2m ~p coso =m ~+ + LU, . 2x10 '~a~+a' =6xi0-~ (3.13)

In Fig. 4 we have plotted the prediction of Eq.
(3.12). Two sets of curves correspond to contours
of constant a„and m ~p at various values of m ~+

where a& corresponds to the hadronic correction
to the muon magnetic moment. Using the value for
a'„quoted above, it seems quite safe to guess that
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/

\

s-$
/

/$
/

(b) (c) (b) (c)

s y /s-

Y
/

s s
/

FIG. 1. W-boson and scalar-boson contributions to
weak correction to the muon magnetic moment. These
give contributions in all three models.

FIG. 3. Y -lepton contribution to the weak correction
to the muon magnetic moment. These diagrams are
for the Georgi-Glashow model.

-2x10 7 ~ g~ ~ 0.

The detection of coincident e p.
' from the decays

F - v„+v, +e
~ Vp+ Vp+ P.

(a)
Y
(b)

FIG. 2. Z- and X-boson contribution to the weak cor-
rection to the muon magnetic moment. These diagrams
are for Weinberg's model. Similar sets of diagrams
exist for the LPZ model.

If we further demand, for example, that m~+ ~ 0.5
GeV, then Fig. 4 readily gives the allowed range
of m~0 and M. The generous lower limit -2x10 '
=a„gives mr+ & 5 GeV. If we use

~ a„~ ~+1.1
@10 ', we get m~+ ~ 2 GeV. In these estimates we
assume rn„+m /M~'« I, where 4' is the physical
scalar boson. A charged heavy lepton of this mass
range can be detected in the near future. A pair
of P' and F can be produced in reactions such as

y+ (Z) —F '+ F + (Z)
or

e'+e - Y +Y

is a signature of the 7'Y pair production.
It is important to recognize that the g„ in Eq.

(3.12) does not vanish even in the limit m„o- ~.
If one performs a naive U-gauge calculation the
first term in Eq. (3.12) is absent and a„-0 forI„0-~ (i.e., we can make a„arbitrarily small
by letting m ro be large).

B. Asymptotic Behavior of F2(q )

In this subsection we discuss the behavior of the
Pauli magnetic form factor E,(q') as

~

q'~-~. We
caution the reader that E,(q') for q'w0 is not an
on-shell S-matrix element (i.e., not measurable)
and is not invariant under non-Abelian gauge group
(i.e., depends on the gauge). Figure 5(a) gives a
process in which E2(q') is relevant. But Fig. 5(b)
is of the same order. We obtain the gauge-invari-
ant answer only when Figs. 5(a) and 5(b) and all
other diagrams of the same order are added.
E,(q'=0) =a„ is available for experimental mea-
surements only because of the pole due to the pho-
ton propagator. Still, the knowledge of the asymp-
totic behavior of E,(q'), though gauge-dependent,
is important in the question of renormalizability
when diagrams of the type Fig. 5(a) are inserted in
more complicated diagrams.

Our conclusion is that E2(q )-0 as
~

q'~- in all
gauges except the U gauge, i.e., for all combina-
tions q xO, t' xO. This can be easily seen, at least
for off-mass-shell muons, as follows: For q g0,
( g 0, the triangle diagram that we consider has the
degree of divergence at most zero. Thus due to the
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TABLE I. Contributions of diagrams shown in Fig. 1. To obtain the answer these numbers
should be multiplied by Gz@2/87t'2v 2.

G Fig. 1(a) Fig. 1{b)+1(c) Fig. 1(d) Total

U gauge

't Hooft-
Feynman
gauge

R gauge

kinematical factor, o „,q„, the integral for E,(q')
has the degree of divergence -1. Therefore, by
Weinberg's theorem, 's E,(q') ~ O(1/v q ).

We have also done the calculation for the on-
mass-shell muon amplitude and verified that E(q')
-0 as

~

q'~-~ in all gauges except the U gauge in
the Weinberg model. In order to obtain the result
for the U gauge, we let $-0 and then let q'- -~.
The result is (for the Weinberg model)

G p,
2

+constant for q'- -~.
These results indicate the gauge dependence of the
off-shell amplitude. In particular, for the renor-
malizable gauge (i.e., for ( g 0), E,(q') shows a
manifestly renormalizable behavior. On the other
hand, E(q') in the U gauge exhibits a divergent be-
havior at q' = -~. As remarked in Ref. 17, the
logarithmic growth of E,(q') for large q' does not
necessarily imply any trouble with S-matrix ele-
ments for physical processes. When all diagrams
of the same order for a physical process are added
the bad behavior of E,(q') can be canceled by those
of other diagrams.

The dispersion relation for E, in the U gauge re-
quires a subtraction (which cannot be determined
a priori) while its absorptive part may be com-

puted by the standard Landau-Cutkosky rule. On
the other hand, E, in the R

&
gauge has an absorp-

tive contribution from unphysical states, while it
requires no unknown subtraction.

Note added. After the completion of this paper,
we received a preprint of Bardeen et al. ,

' in which
they evaluate a„ in the Weinberg model using the
n regularization method of 't Hooft and Peltman. '
Their answer agrees with ours. Quinn and Pri-
mack' have computed a„ for the Georgi-Glashow
model. We appreciate Professor Quinn's explain-
ing their result to us.

IV. STATIC CHARGE OF THE NEUTRINO

As in the case of Pauli magnetic form factor dis-
cussed in Sec. III, the notion of the electric form
factor of a (muon) neutrino is an unphysical one in
the present theory: The electric form factor, for
nonzero momentum transfer, is not an element of
the S matrix and, in the present theory, is neither
gauge-invariant nor unitary for arbitrary (. How-
ever, the electric charge, i.e., the value of the
electric form factor I', at zero momentum trans-
fer, is an element of the S matrix and measurable.
It must be zero if due care is exercised in evaluat-
ing Feynman integrals.

In the Georgi-Glashow model, there are altogeth-
er 10 diagrams contributing to the electric charge

TABLE II. Contributions of diagrams shown in Fig. 2. To obtain the answer these numbers
should be multiplied by G&p /87r W2.

Gau

U gauge

't Hooft-
Feynman
gauge

Fig. 2(a)

~[(3—4 cos28)~ -5]

~3[(3 —4 cos20) 2 -5]

&3[{3-4 cos20)2 -5]
+1

Fig. 2(b) Total

&3[(3—4 cos28) 2 —5]

&3[(3—4 cos20) 2 -5]

(3 4 cos20)2
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TABLE III. Contributions of diagrams shown in Fig. 3. To obtain the answer these numbers
should be multiplied by Qz mr+ p/2m2u 2 sin26.

Qau Fig. 3(a) Fig. 3(b) +3(c) Fig. 3(d) Total

U gauge

't Hooft-
Feynman
gauge

R gauge

of the neutrino. In Fig. 6, we show five of them
which involve internal muon lines. The other five
are similar and involve internal F' lines. We
shall evaluate the Feynman integrals in the 8 gauge

($ =~) for convenience. (We have also checked the

$ independence of our results. ) The contribution
of each of the five diagrams in Fig. 6 is as follows.

(q) .3 g tS k 1
(2s)4 (y2 Jtf s)s

g 2 g4Q p2

2 2 (2m)4 0' —p,
' (O'-M')"

(4 1)

3 g' d4k p,
'

2 2 (2~)' (u' —m')(k' —q')"

(~) . 1 fp t d 0 k —2p,

(2s)4 ps(ps 2)»

where p, and lit are the masses of the muon and the
W boson, and f„ is the coupling constant of the sca-
lar meson to the muon and neutrino:

f~
=gal /M .

In Eg. (4.1) we have written E~'~(0) as a sum of log-
arithmically divergent and convergent integrals. A

simple computation shows that the sum of the sec-
ond term of E,', E, , and F, is zero after the in-
tegration, so that if the sum E~' +E~' vanishes,
then the muon contribution to the electric charge of
the neutrino is

W
a+ and my'

m6—
C9

4.

m
4

I I I I I I

a =-BxlO

l07

and is independent of the muon mass. The Y' con-
tribution to the electric charge of the neutrino is
exactly opposite to the above-mentioned p, contribu-
tion, so the net charge of the neutrino is zero as it
should be.

Thus, the matter hinges entirely on whether the
sum E,' +E~~'~ is zero. A naive evaluation of these

IO-

0 20
M (GeV)

60

FIG. 4. Predictions of Eq. (3.12). Sets of contours
correspond to constant a& and constant ~~0 on the
(wc~+, M) plane. If we take -2 x 10 —a& ~ 0, for ex-
ample, the experimentally allowed region lies below
the line labeled —2x 10 . If we further take m~+
~ 0.5 GeV, the allowed region is bounded from below.
The upper bound for ~~+, in any case, is approximately
5 GeV.

W

(b)

FIG. 5. Example of diagrams contributing to muon
elastic scattering.
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s'i

y
(b)

7r+(k)A~
/

n(q) =
p(q+ k)

p(k)
n(q)

S
/

I

FIG. 7. Diagrams contributing to the neutron static
charge.

(e)

FIG. 6. Diagrams which contribute to the static charge
of the neutrino in the Georgi-Glashow model.

1 1 1
0'-m ' k'-m ' O'-A "

(4.4)
1 1

(k —q)' —m, ' (k —q)' —m, ' (k —q)' —A,' '

two terms gives

E(c) + E(e) f))
1 1

f d4k k' —2((),
'

~ (2)))' (k'(k' —)v, ')' k'(k' —g') (4.2)

8n'2 '

(4 3)

and if we can shift the contour of integration k- k
+ q in the second term of the integrand, the inte-
gral vanishes identically. The integral is, how-
ever, linearly divergent, so that the change of
the variable of integration is legitimate only after
the integral is suitably regularized in a gauge-
invariant manner. A simple regularization scheme
is to replace the pion propagators in (4.3) by

which is not zero; it is significant that the value of
I is independent of the muon mass p, . Note that
E~(' +E~' cannot be canceled by the similar contri-
bution of Y', since the latter is proportional to
(f„+)', fr+ being the coupling constant of the sca-
lar meson to the muon-neutrino pair. That is, a
naive evaluation of Feynman integrals leads to a
nonzero electric charge of the neutrino.

The above paradox has nothing to do with the non-
Abelian gauge invariance of the theory or the mass-
less nature of the neutrino. The offending dia-
grams, Figs. 5(c) and 5(e), are characteristic of
a theory in which fermions are coupled to a seal'ar
meson. The sum of the two diagrams shown in Fig.
7 may be written as

e I' d'k l
sq)' J (27))' ' (g+k —m~)(k' —m„')

1
(k - m ~)[(k -q)'- m, ']

In this case, the naive evaluation of the charge of
the neutron gives a result independent of the mass-
m, internal-pion lines so that the regularization
implied by E(l. (4.4) yields to a zero neutron charge.
The result here is counter to the folklore which
says that convergent Feynman integrals need not
be regulated: If we perform the differentiation
with respect to q prior to integration in Eq. (4.3),
as one would to recover the original Feynman inte-
gral, then the integral becomes convergent and the
conventional wisdom would say that it is not nec-
essary to regulate the integral. What we have
learned is that to keep the charge of a neutral fer
mion zero, it i s necessary to ~eI ulaxize Eeynrnan
integrals in a gauge-invariant &cay, even if the in
tegoals ax'e convergent.

Let us return now to our problem. We can regu-
larize the scalar-meson line in a gauge-invariant
manner as in the cr model: We insert in the La-
grangian the regulator term

--.[(D„0')' —A.'0"] = --.([(s„+g~ „&)0']'- A.'0'']
and replace the untranslated scalar fields Q by the
sum Q+ p' in all interaction terms. "'" This modi-
fication of the Lagrangian is clearly gauge-invari-
ant (with respect to the non-Abelian gauge group),
and the integral I in Eq. (4.2) is now regulated to
read

d4jp jg2 —2p2 1 1
()w)' (("—u. ')' )." o' —A ')

1 1
~ ' - '

(A ')' (a A ')' ) '
which is zero for all values of Ao'. Thus, a gauge-
invariant regularization of the Feynman integral
does give the physically correct result E~(' +E,' =0.
We remind the reader that E,' +E,' is non-Abelian
gauge-invariant by itself. Thus the regularization
procedure stated above is sufficient to remove the
neutrino static charge for arbitrary gauge.
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V. CONCLUSION

We have given a formulation of the convenient
gauge for actual applications of SBGT (8 ~ gauge).
Based on this formulation, we have verified the
gauge independence of several simple S-matrix
elements. This indicates that the ghost-eliminat-
ing mechanism is indeed working in examples we
have considered. It is important to show that the
gauge-independence properties of the S matrix are
preserved at every stage of the renormalization
program.

In our formulation, the finite part of the S matrix
is uniquely determined. Results of our calculation
of weak correction to the muon magnetic moment
agree with IJ-gauge calculations with the $-limit-
ing regularization procedure. An experimental im-
plication of our results is that the charged heavy
lepton in the Georgi-Glashow model is required to
be small (of the order of 0.5 —5 GeV). It is there-
fore worthwhile searching for this lepton in the
existing accelerators.

A naive calculation of the neutrino static charge

in SBGT gives a nonvanishing result. This diffi-
culty, however, also exists in any theory with neu-
tral spinor fields. A prescription to remove the
static charge in a manifestly gauge-invariant (non-
Abelian) manner was given. To check the self-
consistency of SBGT, it is desirable to evaluate
other lower-order diagrams and to confirm the
absence of any other unexpected "anomalous"
behaviors.

APPENDIX A: FORMULAS FOR THE MUON MAGNETIC
FORM FACTOR AND PROOF OF THE GAUGE

INDEPENDENCE OF THE gp FACTOR

In this appendix we give general formulas for
the weak corrections to the anomalous magnetic
moment of the muon based on our A& gauge in
Sec. II. We calculate the neutral-vector-meson
contribution in the Weinberg model and the mas-
sive-neutral-lepton contribution in the Georgi-
Glashow model. The Feynman rules are given in

Appendix C. From these two results one can easi-
ly derive the magnetic moment for other schemes
of lepton interactions.

1. Neutral Vector Meson in the Weinberg Model

We have two diagrams shown in Figs. 2(a) and 2(b) for the neutral vector- and scalar-meson contribution
in the Weinberg model. Figure 2(b) has been discussed in Sec. III [see Eq. (3.5)].

For Fig. 2(a) we have

@(P') rg a-2 ' +b
2

' (Y'+V)r„(t'+u)y a
2

' +b
2

' P(P) &2 z

where

(A 1)

@f2

(g2~g l2)l/2
] g/2 g26=-

(+2 I 2)l/2

„8( )
„8 b"ks(l —q)

Mz -qk

The result is given by

2

(A3)

4p, 2 (x+ y —1)

+ —, , dxdy[3(x+ y) —2] ln
(a- b)' @2+A(1 —x —y)

8p 2Mz 2+Mx' 1 —x —y

where

q'= p, 2(x+ y)' —q'xy,

Note the relation

(a —b)' 1 g'
M 4M

2dxdy[q (x+y)+2q xy], 2( )
—,

( )2

A = JI/1, '/q .

(A4)

(A5)

with M the mass of the W boson.
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Based on Eqs. (3.5), (A4), and (A5) we prove the gauge-independence condition for the physical $-matrix
element, (8/sq)F, (0) = 0 or equivalently

—F (0) =-0.8

BA

Equation (A6) demands the following relation:

r (1 —t) p't '(.I —t ) 2p. 't '(1 —t)' t'+A(1 —t) [ 't'+A(l —t)]' [ 't'+A(1 —t)]'

where we changed the Feynman variables to

t= (x+ y), z = (x —y)/t.

Equation (A7) is indeed satisfied if one notices the relation

e ' 1 —t, 2t-t2
st p't'+A, (1 —t) [p't' +A(1 —t)]'

(A6)

(A7)

(AB)

(A9)

Therefore the sum of the neutral vector and scalar meson contributions is gauge-independent, and con-
sequently it is free of ghost contributions. Equation (A6) allows us to use any gauge we want to calculate
the matrix element. In particular if one takes the limit g -0 in Eq. (A4) one recovers the results based
on the $-limiting procedure (scalar-meson contribution vanishes in this limit).

In passing we note that the Higgs neutral scalar meson (which is independent of the gauge) in the Wein-
berg model (see Fig. 7) gives the magnetic form factor

Z'u ' (x+ y)(x+ y —2)
4M' p, '(x+ y)' —q'(xy) +M~'(1 —x —y)

'

This gives a small contribution to F,(0) for (p, '/M&') «1.
2. Neutral Massive Lepton in the Georgi-Glashow Model

(A10)

The neutral massive lepton in the Georgi-Glashow scheme contains four diagrams; see Figs. 3(a)-3(d).
Figure 3(d) gives

e , [(g —m cos8)'+ (p. cos8 —m)'] P(P')P p(P)
(l + l')„

+, (p, -mcos8)(p, cos8 —m)p(P')gp(P) +, l2 A I„A), (A11)
e' (l+ l')„

and the result is

2m
F(q') = —,", [(p, —m cos8)(y, cos8 —m)] dxdy8r'm' A, A

2[(p, —m cos8) + (p, cos8 —m) ] dxdy
(x+ y)(l —x —y)

16m'm'

where we defined

A =Af'/~,

m =mass of the neutral massive lepton Y',

f(a, b) =Q'+x(a —p, ')+ y(b —p')+ (1 —x —y)m',

Q'= tj. '(x+ y)' —q'xy.

Note that F(q') in Eq. (A12) vanishes in the U-gauge limit, $-0 (or A -~).
Figures 3(b) and 3(c) give rise to

(A12)

(A13)

e' F„"(l) ZB(l')—
2

[u(1+cos' ) —2m «s ] u(P')&r W(P)
(b m2)(l 2 A)(l2 A)

+P(P )Yak'(P) ('b2 2)(12 A)(l 2 )

e' &."(l) F„'(I )+ 2m[m(1+«s' ) —2P «»8] tT(P'b V(P)(p 2)(l
2"

A)(l2 A) +P(P')rBV(P)(p 2)(p" A)(l, g A)

(A14}
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where

k„k"(1/$ —1)

The result is given by

F(q') =, , [p.(1+cos'0) —2m cos0] 2M' dxdy, + dxdy[3(x+ y) —2]lna a f(A, A)
16p~M~ t

1 1
dxdy(x+ y —1)[Q' —p, '(x+ y)] (,) -f(A A)

for the first group in Eq. (A14). The second group in Eq. (A14) gives

F(q') = » [m(1+cos'0) —2p. cos0] dxdy(x+y —1)'
16p~

Note that F(q') in Eqs. (A15) and (A16) vanishes in the U-gauge limit A -~.
Finally Fig. 3(a) gives the expression

(A15)

(A16)

PB'(l')V, „„P'"(l) e' Ps'(l')V, „P' (l)-e'm «s P(P')rEr u(P) (k2 m2)(f 2 "M2)(f2 M2) 2(1+ co's)u(&')ra&r V(p) (k2 m2)(f 2 '

MB)()2 M~)

(A17)

where

and

V,» —g«(l + l )&
—l, g&~

—l ~ g„~ + g',
& A g,& q,

q=l' —l.

(A18)

The result is rather lengthy. The first group in Eq. (A17) gives rise to

' mcos~
8p M

+3 dxdy x —y ln
t

+ d xdy f(1 —x+ y)[Q' —2V'(x+ y) + u']+ 2e'y(x —»)

1
dxdy[3(x+ y) —2] ln

2

+ —~, dxdy(x+ y —1)[Q' —2p, '(x+ y) + p, ']

1 1 1 - 1
f(M', M') f(M', A) f(A, M') f(A, A)

and the second group in Eq. (A17) gives

F(q') = » (1+cos'0) 2M' dxdy
1 e'p,~, , (x+ y)[2(x+ y) + 1]

8~' 4M'

(A 19)

—2 dxdy 4 x+y —9 x+y +2+6y ln M~ M~

dxdy p~ x+y 1 2y+ x+y x+y —1 —q xy 2y+ 1 —x —y

1+4 dxdy q' xy —y M2 M2
—

A M2
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+, d xdy[4(x+ y)' —9(x+ y) + 4 ] ln

2

dxdp x+p- 1 x+p-2 + p. &+/

]. 1

f(M', M') f(M', A) f(A, M') f(A, A)

We would like to discuss the gauge-independence condition (&/&$) F(0) —= 0 or

(A20)

—F(O) -=0.8

BA
(A21)

From Eqs. (A12), (A15), (A16), (A19), and (A20) we readily recognize that F(q') consists of two groups,
one of which is proportional to m cos0 and the other proportional to (1+cos'8). These two groups separate-
ly satisfy Eq. (A21). The proof of Eq. (A21) can be made as in Eqs. (A7)-(A9) by the repeated use of par-
tial integration. We note that the contributions with a f(A, M ) factor and the contribution with a. f(A, A)
factor in Eqs. (A12)-(A20) sePaxately satisfy Eq. (A12). We do not write down this lengthy but straight-
forward proof.

Equation (A21) ensures the absence of the ghost contribution to the anomalous magnetic moment. Equa-
tion (A21) also allows us to use the most convenient gauge when we calculate numerical values. We also
note that in the limit $ - 0 we recover the result based on the $-limiting process.

The neutrino contribution is obtained from the above result by setting m =0. The coupling constant
should be adjusted according to the specific model one uses.

3. Large-q Behavior of F(q )

From the above general results for F(q') it is easy to see. that all the contributions to F(q') from scalar
mesons vanish in the U-gauge limit, $ =0 and @=0. They also vanish at q'=-~ (i.e., large spacelike mo-
mentum transfer). It is also not difficult to see that the Z contribution in Eq. (A4) also vanishes at q =-~
independently of the value of q.

In the following we discuss the large-q behavior of the W contribution in Eqs. (A19) and (A20). Those
equations show that all the contributions to F(q') vanish at q'= —~ for $ =1 (i.e. , 't Hooft —Feynman gauge).
However the gauge independence of the off-shell amplitude cannot be proved. We expect that F(q') at q'
=-~ may depend on the gauge one 'chooses. We show this explicitly in the case of the neutrino contribution
in the Weinberg model. We thus put m = 0 in Eqs. (A19) and (A20).

We first note the following relations:

—q' dxdy, , » ~ ln(-q') + dt ln
Q +x(A —p. ')+y(M' —p ),z „o p, 't+M —p.

(A22)

1

dxd$p x, p ln M, A. ~ -q' dt p t t].nt
q 2 0

p. t+M —
ILL,

+ (A+M' —2~') dt p(t) ln(-q't)+ -', (A -M') dt p(t)»
p. 't+ A —p,

where

p (x, y) =4(x+ y)' —9(x+y)+4

M
dtp(t) p't —p, '+ In[(p't+M —p')(p, 't+A —p, )]

0 2

1

+ (A+M' —2p, ') dt p(t),
0

(A23)

p(t) = 4t' —9t+ 4 .

Using these two relations in Eq. (A20) we can readily show that
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F(q')-0 for q'- —~ and $c0, (A24)

F(q')-, , 4 ——, ln(-q')+ cost for q'- -~ after $ =0.
8p2 8M2

(A25)

Equations (A24) and (A25) indicate the gauge independence of the off-shell amplitude.
We also point out an interesting large-q behavior obtained if one uses (incorrect) regularization schemes

other than the $-limiting procedure in the U gauge. The last two terms in Eq. (A20) show that the linear
divergence in q' at large q' could exist. For the gauge-invariant calculation this linear divergence cancels.
But if one uses other regularization schemes such as the "proper-time*' (see Appendix B) or the "Pauli-
Villars" regularization with a massive neutrino in the U gauge, this linear divergence indeed survives.

APPENDIX B: AMBIGUITIES IN THE U GAUGE

In this appendix we briefly review the ambiguity that Jackiw and Weinberg and also Bars and Yoshimura'
encountered in their calculation of the muon g factor.

The logarithmic term in the parametric integral for F(0) in the U-gauge limit (i.e., $-0) causes an am-
biguity: Equation (A20) in Appendix A contains the logarithmic term

g 2~2
2 x

F(o) = —6, 4, J dxdy[4(x+y)' —9(x+y)+2+6y] ln, , ») +other terms.8n' 4m' p. '(x + y j' + x+ y j M ' —p'

This is the correct answer. On the other hand if one regulates the neutrino propagator we get

F(0) =—,4, dxdy[4(x+y)' —9(x+y}+2+6y]ln»»j +other terms.8' V 1-x—y
8~' 4M' x+y + x+y

(B2)

If one first exponentiates the Feynman amplitude (a sort of "proper time") and performs a. loop integral,
the following result is obtained:

F(0) = —, , j dxdy[4(x+y)' —9(x+y)+2+6y]ln», , +other terms.1
8~' 4M' x+y + x+y M —p,

(B3)

All these expressions give rise to different answers This. kind of ambiguity is absent in the general R-
gauge calculation. Naive U-gauge calculations are plagued by this kind of ambiguity. Some existing proofs
of cancellations of divergences in higher-order diagrams are based on the exponential parametrization of
propagators that leads to (B3). While such a method is acceptable in establishing the absence of diver-
gences, it will not provide a reliable finite part.

APPENDIX C: LAGRANGIANS AND FEYNMAN RULES

In this appendix we present Lagrangians for the existing models of leptons mentioned in the Introduction.
We also write down necessary Feynman rules for our calculations in Secs. III and IV. In the 8

&
gauge dis-

cussed in Sec. II, we have unphysical scalars in the Lagrangian. The Feynman rules are therefore more
complicated than those in the U-gauge limit. The Feynman rules for those unphysical scalars and also the
relative signs for various amplitudes can be conveniently checked based on the gauge independence of the
T-matrix element as we discussed in Sec. II.

1. Georgi-Glashow Model

This model is based on the group O(3). We have a triplet of leptons and also a singlet of neutral ma. ssive
lepton. The mass is generated by a triplet of real scalars. A part of this Lagrangian has been given in
Sec. H. (We follow the notation of Bjorken and Drell". ) The total Lagrangian has the following form:

Z = Si+ Sip+ Xiii —V,

2, =—Y'+(iP —m +)Y'+ Yo(ig —m„o}Y

+ p(ip —m )ij. + @~ipv~+eLY" (T B)~L+ STY"(7 B)„A— " " [L(T s)A+H. c.]

( [sin8 Yo~ —cos 8 V~][s Y„'+s' p ~+ gY'0~]+ H.c.].,

where
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cos8 Y~+ sin0 v~ A=— Y~ (C2)

with

1+/5 1
(C3)

0

0

Rp

-s' 0

-s 0 s

0 s

(C4)

where

g = Higgs scalar,

s ' = unphysical scalars,

G~/&2= (e' sin'8/4M') .
There is a constraint:

2@i~ 0 cos 0 = sz g + + w ~ .
Note that the covariant derivative is given by

V„y-=[8„+ig(T H)„]y,

with g=—-e.
s given by

2&&—= —,
'

~
s&g+ie[W„s+- W&s ] ~'+

~
&„s'+ilMW& —ieA „s++ie(W'„~'.

The quadratic term of 2» is given by

Zqq =
~
&„&'

~

'+ —,(&„g)'+M') W'„)' —iM[s„s'W ~ —s„s W' "].

(C5)

(c6)

(C7)

(CS)

This g"„"' suggests the following gauge term:

2' = ——(s p A ")' —$ s W' "+™s'
2o.

(C9)

see also Sec. rr. Z„, is given by

2„,=-—,'~ s„W'„—s„W'„+ie[W'„A, —W'„A„J (' —
& ~

s„A„—s, A„—ze[W~W, —W„W', ] ~'.

The mass of W„' is given in Eq. (C8).
The potential is given by

I(@)=-.'~.'I el "~l el'
=-,'m~'g'+ X[4m/(2s's + rP)+ (2s's +g')']+ [@,,'+4v'X][s's + vy],

where

ypg
~ —

p ~+ ]2/g~

(C10)

(C11)

(C12)

(C13)

p, ,'(0, and we have the condition p,'+4v'A. =O. The field Q is the unshifted field, and it is expressed as

(~i i"')
/ (0)

The gauge-compensating term for Ecl. (C9) is given by (see also Sec. II)

iTr ln(1+ 9 ~ y-), (C14)
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where

-(8'+ M'/g —i~)

and

+ZE

-(8'+ M'/$ —ie)

(C15)

iesy" —(eM/()y -ies„w'" +(eM/()s'

-sea w-~
P

iea w'" 5~(x —y) . (C16)

ie8„W "+(eM/$)s ie8-„A" —(eM/&)P

The divergence in this matrix stands for an operator, e.g. , 8~A~=—(8„A~)+A~8„. The lowest-order con-
tribution from Eq. (C14) is a lt -vacuum tadpole diagram F.or $ =~ (Landau gauge), for example, Eg. (C14)
becomes

1-iTrln 1+, . 8 (ieT B")-O'+ ie

2. steinberg Model

The detailed form of this Lagrangian is found in Refs. 1 and 6. We briefly summarize it in the following:

Z = r+ &~r+ ~III —V,

2, = V~i y'v~ + p (i$ —m „)p —egg p, —
~2 [v~g" i/, + H c ] —.—.vt gv~

where

+Gpss 2
—sin'6

2
P—

2
, [(W2J/. vLs +H.c.)+PPp+PiY, I/X],

cos26I 1 —y, , &+y,
(C18)

s' and y =unphysical scalar,

G (g2 ~g t2)1/2

g = Higgs scalar,

cos(9 = —=g M
G M G '

Wa SM' (c19)

For notational convenience we defined the charge e with an extra minus sign.
2« is given by

where

8s'+i MW+~gW&s +i -eA&+ Z„+ &8s
0i ~ Z& —i 2" so+~2gW&s' (c20)

1
e

=~2
(4+iX).

The quadratic part of 2„ is given by

2",",
"=

i
8„s'i'+-,'[(8„()'+(8„X)']+M'i W'„('

+ ~M~'(Z„)' —iM[8„s'W "—8&s W'"] —M~8„XZ".

The gauge term is given as

2 =-—(8 A~) —g 8 W "+i—s —— 8 Z" +-1 .M+2q Mg
2n P

The gauge-compensating term will be discussed later.
For Z

(C21)

„W', —8„W'„+ie[W„A„—W',A„]—iG cos'e[W'„Z„—W'„Z„] ('
--,'

f 8„A, —8„A„—ie[W~W, —W'„W„] J' ——,'f 8„Z, —8„Z„+iGcos' [W'„W„—W'„W„] J'.
The masses for W„and Z„are given in Eq. (C21);

(c22)
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V=A. s's + s +—s'+—
=-,'m(, 'P+ AI(2/A)"'m~y(s's + s's')+ [s's + s's']').

The gauge-compensating term is given by

iT-r in[1 + 8 y]

where

(C24)

(C25)

-(8 + M /$ —ZE)

-(s'+ M'/( —i~)
a=5'(x-y)

and the matrix y is defined by

-(s'+M '/q —i~)

1—2(n'-in' )

5fA

(n'+in')

= [~l ~ n+~n
g

(C27)

5fz n3-2nD

with

5f ' —= migs~[(Z„cos 8+4 „sin8)n'] — (g + iy)n'gM

vie cos8 8~[W "(n"+ cot8 n )]+
eMcos0 & Gs' 20 ——cos26 Q

5f" =iG sin88" (W~n' —-W'„n ),
GM

6f = ig B&(W—&n' —W&n )+ (-gnz+ s'Q + s n') .
2n

(C28)

Another way to take care of this compensating term is to introduce four auxiliary complex scalar fields"
Q„a = (+, —,A, Z). We add the following extra piece to the effective Lagrangian:

(C29)

The ordinary perturbative treatment of Z with an extra (-) sign for each closed loop of the ficticious scalar
particles Q, gives rise to Eq. (C25).

3. The Lepton Model of Lee, Prentki, and Zumino

The group structure of this model is close to that of the Weinberg model. We need two sets of scalar
triplets to accomodate "quarks" in this model. However only one triplet of complex scalars is sufficient
for the lepton model. We present here this simplified lepton model:

2 = Zg+ Zgg+ Zg)g —V,

2 y
= M (z0—m~+)M + vg2 P vl + g (iP —m ~ )g

N m
[(L .s)Ms+ H. c.] — "[(l. s)gz+ H. c.] —e[pgp—M'AM+] .—g[(~p+~ M+++~)+ H c ]

+Gag cos 8 —sin 8
1-y, . , 1+y, —, 1 j+.-GMV.:e -' .; ~ ") ~.

2 2 2
'"

2
(c30)
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where

ps

L= vi s

s'
s= s

G (g2+ g i2)1/2 (
)g'g' Gp g'

v2 4M" cos6=—G' Mz ——W2Gu .

For gii,

2„= I
8 „s"—ig W ~s'+ i(-2eA2+0 cos26Z2)s" I'

+
I
B„s'+iMW'„+igW'„s' —igW~s" —i[eA„+Gsin28Z„]s'I'+ s so-i Z +igW s+ —iGZ so2 2 2

(C32)
The quadratic part of 2« is given by

&11"=
I
'2s" I'+

I
S2s'I'+ 2[(S,q)'+(S „X)']+M'I W „I'+-,'M, '(Z„)'-iM[S2s'W„- - S2s-W '„] M, S„q Z~,

(C33)

where we defined

s'—=
~2 (g+zy),

s' and y =unphysical scalars,
s" and )=Higgs scalars.

(C34)

The gauge term is the same as Eq. (C22) in the Weinberg model. The Yang-Mills Lagrangian is also given
by Eq. (C23).

Finally we discuss the potential:

y=i1 (g* ~ g)+-(~*X~) +X([*~ ~)'

= —,'mi2y2+ —,'m, ++'Is" I'+2W2Aug(s's'+s"s +s'"s )+z(s's'+s's +s'"s )'

——,'v[2@ 2ug(sos'+s" s )+2us'(sos —s"s )+2us (s's' —s s")
+(s's'-s"s )'+2(s's' —s s")(s's —s's )],

where $ is the unshifted complex scalar field

(C35)

s 0

(C36)

Q+S

m y' = -2 p, o) 0, m, ++' =vu'& 0.
There is the following constraint:

A.— + =
2 [my + m&++ ] ~

v Pp 1
2u 4u' (C37)

We can make m& and m, ++ arbitrarily large. The gauge-compensating term is also similar to that of the
Weinberg model. We do not discuss it here.

4. Feynman Rules

We summarize several Feynman rules we use in Secs. III and IV. Propagators for vector bosons and
also for scalars are found in Sec. II. The fermion propagator has the standard form

(C38)
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In the following we give Feynman rules for the lep-
ton models due to Georgi and Glashow (GG), Wein-
berg (W), and Lee, Prentki, and Zumino (LPZ).
We write the Feynman rules for the It',

& gauge of
Sec. II.

All of these models give the identical Feynman
rules for Figs. 8(a)-8(d). They are

,~e'
~4u$- /

,&e
(b)

8(a): ( fe)-P~. V;

8(b): (-fe)(l'+l) „;
8(c): (fe)[(g„8(i'+l}ji—l8g&„—l'„g„~)

+ (g „q8-gs„q„)], where q= l' —l;

8(d): ( ie)M-g „„.

(C39)

(C40)

(C41)

(C42)

(c)

(e)

+
Wg

+w---$

Note that we normalized the sign of the charge by
Fig. 8(a). The magnetic form factor appears as a
coefficient of (-ie)p, (io „,q'/2 p. )p. . For other dia-
grams Feyriman rules depend on the model. We
just list them below: (g)

Wg a---$+

(C43)

(C44)

(C46)

8(e): GG: (iesiee)vy„( ')8;
W: -'—'-y. ' ".;
LPZ: (-ig)vy„

1

8G): GG: (
' '"' ")-.(",'). ;

—'Lg'pled p 1 + p5

LPg . ~8~9 — + Y5

8(g): GG: (ie) ' ys (ee8')e( ') y„e;

ZQ

FIG. 8. Several vertex diagrams for lower-order
calculations.

8() W 'G-1::z I'
2 2

-sing
2 yi

(C4'7)

1+/5 . 2 1 —p5LPZ iGI cos26 - sln28 5
yn V.

8(h): GG: —FG (m „cos6—m „G)
ze 1+/5

1 p5+ (m „-m „pcos 9)

(C46)
Lppj '. —z p, 'Lisp, .

(C48)
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Sum Rules and Bounds on Scattering Amplitudes*
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Using sum rules obtained from crossing and analyticity, and unitarity bounds on scattering
amplitudes, we show how new relations between low-energy and high-energy scattering can be
derived, These relations can provide tests of a wide range of theoretical ideas. As examples,
we discuss several inequalities obtained for Ti.-~ and x- N scattering. For 7l-n. scattering, a
number of relations involving the asymptotic behavior of total cross sections are presented,
including bounds limiting the size of violations of the Pomeranchuk theorem, Using finite-
energy sum rules for x-N scattering, we derive new types of bounds and show how they can
be used to probe such things as the nature of the Pomeranchuk trajectory and the assumption
of s-channel helicity conservation. Finally, we introduce inequality constraints between
partial-wave amplitudes of different isospin, and indicate how they can be used to explore
the nature of exchange degeneracy, absence of exotics, and duality.

I. INTRODUCTION

Certain general principles, namely unitarity,
crossing symmetry, and some form of analyticity,
severely restrict the allowed behavior of scatter-
ing amplitudes. During the past several years,
many interesting inequalities have been derived
which follow solely from these principles, or
from these principles combined with a few pieces
of experimental information, or a few additional
theoretically plausible assumptions. In this paper,
we discuss several bounds at fixed energies, en-
forcing unitarity through the use of Lagrange in-
equality multipliers. We then shorn two mays in

which crossing and analyticity can be introduced
into the problems by combining our results either
with a Froissart-Gribov expression for crossed-
channel scattering or with finite-energy sum rules
(FESR}. Both these approaches yield relations
between low- and high-energy scattering. In Sec.
II, we describe the fixed-energy bounds problems
with which we shall deal, and we introduce a con-
straint which can be used to explore the nature of
duality, absence of exotics, and exchange degen-
eracy. Using z-z scattering as an example, Sec.
III develops the formalism for using the Froissart-
Gribov formula with the results of Sec. II, to pro-
vide bounds on various quantities. In Sec. IV, the


