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Chapter 1

Free Field Quantization

1.1 General formalism

1.1.1 Canonical quantization for particles

Before we study the canonical quantization of systems with an infinite number of degrees
of freedom, as it is the case with fields, we will review briefly the quantization of systems
with a finite number of degrees of freedom, like a system of particles.

Let us start with a system that consists of one particle with just one degree of freedom,
like a particle moving in one space dimension. The classical equations of motion are
obtained from the action,

S =

∫ t2

t1

dtL(q, q̇) . (1.1)

The condition for the minimization of the action, δS = 0, gives the Euler-Lagrange equa-
tions,

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (1.2)

which are the equations of motion.

Before proceeding to the quantization, it is convenient to change to the Hamiltonian
formulation. We start by defining the conjugate momentum p, to the coordinate q, by

p =
∂L

∂q̇
(1.3)

Then we introduce the Hamiltonian using the Legendre transform

H(p, q) = pq̇ − L(q, q̇) (1.4)

In terms of H the equations of motion are,

13
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{H, q}PB =
∂H

∂p
= q̇ (1.5)

{H, p}PB = −∂H
∂q

= ṗ (1.6)

where the Poisson Bracket (PB) is defined by

{f(p, q), g(p, q)}PB =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
(1.7)

obviously satisfying

{p, q}PB = 1 . (1.8)

The quantization is done by promoting p and q to hermitian operators that instead of
Eq. (1.8) will satisfy the commutation relation (h̄ = 1),

[p, q] = −i (1.9)

which is trivially satisfied in the coordinate representation where p = −i ∂
∂q

. The dynamics

is the given by the Schrödinger equation

H(p, q) |ΨS(t)〉 = i
∂

∂t
|ΨS(t)〉 (1.10)

If we know the state of the system in t = 0, |ΨS(0)〉, then Eq. (1.10) completely
determines the state |Ψs(t)〉 and therefore the value of any physical observable. This
description, where the states are time dependent and the operators, on the contrary, do not
depend on time, is known as the Schrödinger representation. There exits and alternative
description, where the time dependence goes to the operators and the states are time
independent. This is called the Heisenberg representation. To define this representation,
we formally integrate Eq. (1.10) to obtain

|ΨS(t)〉 = e−iHt |ΨS(0)〉 = e−iHt |ΨH〉 . (1.11)

The state in the Heisenberg representation, |ΨH〉, is defined as the state in the Schrödinger
representation for t = 0. The unitary operator e−iHt allows us to go from one representa-
tion to the other. If we define the operators in the Heisenberg representation as,

OH(t) = eiHtOSe
−iHt (1.12)

then the matrix elements are representation independent. In fact,

〈ΨS(t)|OS |ΨS(t)〉 =
〈
ΨS(0)|eiHtOSe−iHt|ΨS(0)

〉
(1.13)
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= 〈ΨH |OH(t)|ΨH〉 . (1.14)

The time evolution of the operator OH(t) is then given by the equation

dOH(t)

dt
= i[H,OH (t)] +

∂OH
∂t

(1.15)

which can easily be obtained from Eq. (1.12). The last term in Eq. (1.15) is only present
if OS explicitly depends on time.

In the non-relativistic theory the difference between the two representations is very
small if we work with energy eigenfunctions. If ψn(q, t) = e−iωntun(q) is a Schrödinger
wave function, then the Heisenberg wave function is simply un(q). For the relativistic
theory, the Heisenberg representation is more convenient, because it is easier to describe
the time evolution of operators than that of states. Also, Lorentz covariance is more
easily handled in the Heisenberg representation, because time and spatial coordinates are
together in the field operators.

In the Heisenberg representation the fundamental commutation relation is now

[p(t), q(t)] = −i (1.16)

The dynamics is now given by

dp(t)

dt
= i[H, p(t)] ;

dq(t)

dt
= i[H, q(t)] (1.17)

Notice that in this representation the fundamental equations are similar to the classical
equations with the substitution,

{, }PB =⇒ i[, ] (1.18)

In the case of a system with n degrees of freedom Eqs. (1.16) and (1.17) are generalized
to

[pi(t), qj(t)] = −iδij (1.19)

[pi(t), pj(t)] = 0 (1.20)

[qi(t), qj(t)] = 0 (1.21)

and
ṗi(t) = i[H, pi(t)] ; q̇i(t) = i[H, qi(t)] (1.22)

Because it is an important example let us look at the harmonic oscillator. The Hamil-
tonian is

H =
1

2
(p2 + ω2

0q
2) (1.23)

The equations of motion are

ṗ = i[H, p] = −ω2
0q (1.24)
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q̇ = i[H, q] = p =⇒ q̈ + ω2
0q = 0 . (1.25)

It is convenient to introduce the operators

a =
1√
2ω0

(ω0q + ip) ; a† =
1√
2ω0

(ω0q − ip) (1.26)

The equations of motion for a and a† are very simple:

ȧ(t) = −iω0a(t) e ȧ
†(t) = iω0a

†(t) . (1.27)

They have the solution

a(t) = a0e
−iω0t ; a†(t) = a†0e

iω0t (1.28)

and obey the commutation relations

[a, a†] = [a0, a
†
0] = 1 (1.29)

[a, a] = [a0, a0] = 0 (1.30)

[a†, a†] = [a†0, a
†
0] = 0 (1.31)

In terms of a, a† the Hamiltonian reads

H =
1

2
ω0(a

†a+ aa†) =
1

2
ω0(a

†
0a0 + a0a

†
0) (1.32)

= ω0a
†
0a0 +

1

2
ω0 (1.33)

where we have used
[H, a0] = −ω0a0, [H, a†0] = ω0a

†
0 (1.34)

We see that a0 decreases the energy of a state by the quantity ω0 while a†0 increases
the energy by the same amount. As the Hamiltonian is a sum of squares the eigenvalues
must be positive. Then it should exist a ground state (state with the lowest energy), |0〉,
defined by the condition

a0 |0〉 = 0 (1.35)

The state |n〉 is obtained by the application of
(
a†0

)n
. If we define

|n〉 = 1√
n!

(
a†0

)n
|0〉 (1.36)

then
〈m|n〉 = δmn (1.37)

and

H |n〉 =
(
n+

1

2

)
ω0 |n〉 (1.38)

We will see that, in the quantum field theory, the equivalent of a0 and a†0 are the
creation and annihilation operators.
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1.1.2 Canonical quantization for fields

Let us move now to field theory, that is, systems with an infinite number of degrees of
freedom. To specify the state of the system, we must give for all space-time points one
number (or more if we are not dealing with a scalar field). The equivalent of the coordinates
qi(t) and velocities, q̇i, are here the fields ϕ(~x, t) and their derivatives, ∂µϕ(~x, t). The action
is now

S =

∫
d4xL(ϕ, ∂µϕ) (1.39)

where the Lagrangian density L, is a functional of the fields ϕ and their derivatives ∂µϕ.
Let us consider closed systems for which L does not depend explicitly on the coordinates
xµ (energy and linear momentum are therefore conserved). For simplicity let us consider
systems described by n scalar fields ϕr(x), r = 1, 2, · · · n. The stationarity of the action,
δS = 0, implies the equations of motion, the so-called Euler-Lagrange equations,

∂µ
∂L

∂(∂µϕr)
− ∂L
∂ϕr

= 0 r = 1, · · · n (1.40)

For the case of real scalar fields with no interactions that we are considering, we can
easily see that the Lagrangian density should be,

L =
n∑

r=1

[
1

2
∂µϕr∂µϕr −

1

2
m2ϕrϕr

]
(1.41)

in order to obtain the Klein-Gordon equations as the equations of motion,

(⊔⊓ +m2)ϕr = 0 ; r = 1, · · · n (1.42)

To define the canonical quantization rules we have to change to the Hamiltonian for-
malism, in particular we need to define the conjugate momentum π(x) for the field ϕ(x).
To make an analogy with systems with n degrees of freedom, we divide the 3-dimensional
space in cells with elementary volume ∆Vi. Then we introduce the coordinate ϕi(t) as the
average of ϕ(~x, t) in the volume element ∆Vi, that is,

ϕi(t) ≡
1

∆Vi

∫

(∆Vi)
d3xϕ(~x, t) (1.43)

and also

ϕ̇i(t) ≡
1

∆Vi

∫

(∆Vi)
d3xϕ̇(~x, t) . (1.44)

Then

L =

∫
d3xL →

∑

i

∆ViLi . (1.45)

Therefore the canonical momentum is now

pi(t) =
∂L

∂ϕ̇i(t)
= ∆Vi

∂Li
∂ϕ̇i(t)

≡ ∆Viπi(t) (1.46)
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and the Hamiltonian

H =
∑

i

piϕ̇i − L =
∑

i

∆Vi(πiϕ̇i − Li) (1.47)

Going now into the limit of the continuum, we define the conjugate momentum,

π(~x, t) ≡ ∂L(ϕ, ϕ̇)
∂ϕ̇(~x, t)

(1.48)

in such a way that its average value in ∆Vi is πi(t) defined in Eq. (1.46). Eq. (1.47)
suggests the introduction of an Hamiltonian density such that

H =

∫
d3xH (1.49)

H = πϕ̇−L . (1.50)

To define the rules of the canonical quantization we start with the coordinates ϕi(t)
and conjugate momenta pi(t). We have

[pi(t), ϕj(t)] = −iδij
[ϕi(t), ϕj(t)] = 0

[pi(t), pj(t)] = 0 (1.51)

In terms of momentum πi(t) we have

[πi(t), ϕj(t)] = −i δij
∆Vi

. (1.52)

Going into the continuum limit, ∆Vi → 0, we obtain

[ϕ(~x, t), ϕ(~x′, t)] = 0 (1.53)

[π(~x, t), π(~x′, t)] = 0 (1.54)

[π(~x, t), ϕ(~x′, t)] = −iδ(~x − ~x′) (1.55)

These relations are the basis of the canonical quantization. For the case of n scalar
fields, the generalization is:

[ϕr(~x, t), ϕs(~x
′, t)] = 0 (1.56)

[πr(~x, t), πs(~x
′, t)] = 0 (1.57)

[πr(~x, t), ϕs(~x
′, t)] = −iδrsδ(~x− ~x′) (1.58)

where

πr(~x, t) =
∂L

∂ϕ̇r(~x, t)
(1.59)

and the Hamiltonian is

H =

∫
d3xH (1.60)

with

H =

n∑

r=1

πrϕ̇r − L . (1.61)
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1.1.3 Symmetries and conservation laws

The Lagrangian formalism gives us a powerful method to relate symmetries and conser-
vation laws. At the classical level the fundamental result is the following theorem.

Noether’s Theorem

To each continuous symmetry transformation that leaves L and the equations of
motion invariant, corresponds one conservation law.

Proof:

We will make a generic proof for the most general case, and then consider particular
cases. We take a general change of inertial frame, including Lorentz transformations
and translations. For infinitesimal transformations we have

x′µ = xµ + εµ + ωµνx
ν ≡ xµ + δxµ, δxµ = εµ + ωµνx

ν (1.62)

where εµ and ωµν are infinitesimal constant parameters. For the fields, under such
a transformation we have two types of variations.

δϕr(x) ≡ ϕ′r(x)− ϕr(x) (1.63)

δTϕr(x) ≡ ϕ′r(x
′)− ϕr(x) (1.64)

They are related because (we neglect second order terms)

δTϕr(x) =
[
ϕ′r(x

′)− ϕr(x
′)
]
+
[
ϕr(x

′)− ϕr(x)
]

=δϕr(x
′) +

∂ϕr
∂xβ

δxβ = δϕr(x) +
∂ϕr
∂xβ

δxβ (1.65)

Now the invariance of the Lagrangian

L(ϕ′r(x′), ∂αϕ′(x′)) = L(ϕr(x), ∂αϕ(x)) (1.66)

can be written as

0 =L(ϕ′r(x′), ∂αϕ′(x′))−L(ϕr(x), ∂αϕ(x))

=δL+
∂L
∂xβ

δxβ (1.67)

Now we calculate δL (using the equations of motion)

δL =
∂L
∂ϕr

δϕr +
∂L

∂(∂αϕr)
δ(∂αϕr)

=
∂

∂xα

[
∂L

∂(∂αϕr)
δϕr

]

=
∂

∂xα

[
∂L

∂(∂αϕr)
δTϕr −

∂L
∂(∂αϕr)

∂ϕr
∂xβ

δxβ
]

(1.68)
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where we have used Eq. (1.65). Introducing now Eq. (1.68) in Eq. (1.67) we obtain

0 =
∂

∂xα

[
∂L

∂(∂αϕr)
δTϕr −

(
∂L

∂(∂αϕr)

∂ϕr
∂xβ

− Lgαβ
)
δxβ
]

=
∂

∂xα

[
∂L

∂(∂αϕr)
δTϕr − Tαβδxβ

]

=∂αJ
α (1.69)

We have defined the conserved current Jαand the tensor Tαβ by

Tαβ ≡ ∂L
∂(∂αϕr)

∂ϕr
∂xβ

− Lgαβ (1.70)

Jα ≡ ∂L
∂(∂αϕr)

δTϕr − Tαβδxβ (1.71)

This ends the proof of Noether’s theorem.

Before we apply it to particular cases let us also introduce some useful notation. We
define for infinitesimal transformations

ϕ′r(x
′) = Srs(a)ϕs(x), Srs(ω) = δrs +

1

2
ωαβΣ

αβ
rs → δTϕr(x) =

1

2
ωαβΣ

αβ
rs ϕs (1.72)

1) Translations

First we consider the case of translations. For this case we have

δTϕr = 0, δxµ = εµ (1.73)

From the above and using the fact that εµ is arbitrary and constant we get from Eq. (1.71)

∂µJ
µ = 0 −→ ∂µT

µν = 0 (1.74)

where T µν is the energy-momentum tensor defined above in Eq. (1.70),

T µν = −gµνL+
∑

r

∂L
∂(∂µϕr)

∂ν ϕr (1.75)

Using these relations we can define the conserved quantities

Pµ ≡
∫
d3xT 0µ ⇒ dPµ

dt
= 0 (1.76)

Noticing that T 00 = H, it is easy to realize that Pµ should be the 4-momentum vector.
Therefore we conclude that invariance for translations leads to the conservation of energy
and momentum.
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2) Lorentz transformations

Consider the infinitesimal Lorentz transformations

x′µ = xµ + ωµν x
ν , δTϕr(x) =

1

2
ωαβΣ

αβ
rs ϕs (1.77)

where we have indicated the total variation of the fiels using the conventions of Eq. (1.72).
For instance for scalar fields we have δTϕr(x) = 0 and for spinors

δTψr(x) =
1

8
[γµ, γν ]rsω

µνψs(x) (1.78)

Inserting these variations in the conserved current, Eq. (1.71), and factoring out the con-
stant parameters ωαβ we obtain

∂µM
µαβ = 0 with Mµαβ = xαT µβ − xβT µα +

∂L
∂(∂µϕr)

Σαβrs ϕs (1.79)

The conserved angular momentum is then

Mαβ =

∫
d3xM0αβ =

∫
d3x

[
xαT 0β − xβT 0α +

∑

r,s

πrΣ
αβ
rs ϕs

]
(1.80)

with
dMαβ

dt
= 0 (1.81)

3) Internal Symmetries

Let us consider that the Lagrangian is invariant for an infinitesimal internal symmetry
transformation

δTϕr(x) = −iελrsϕs(x), δxµ = 0 (1.82)

where we explicitely indicate that there are no chnage in the coordinates, only in the fields.
Then substituting in the current we easily obtain

∂µJ
µ = 0 where Jµ = −i ∂L

∂(∂µϕr)
λrsϕs (1.83)

This leads to the conserved charge

Q(λ) = −i
∫
d3xπrλrsϕs ;

dQ

dt
= 0 (1.84)

These relations between symmetries and conservation laws were derived for the classical
theory. Let us see now what happens when we quantize the theory. In the quantum theory
the fields ϕr(x) become operators acting on the Hilbert space of the states. The physical
observables are related with the matrix elements of these operators. We have therefore
to require Lorentz covariance for those matrix elements. This in turn requires that the
operators have to fulfill certain conditions.
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This means that the classical fields relation

ϕ′r(x
′) = Srs(a)ϕs(x) (1.85)

should be in the quantum theory1

〈
Φ′α|ϕr(x′)|Φ′β

〉
= Srs(a) 〈Φα|ϕs(x)|Φβ〉 (1.86)

It should exist an unitary transformation U(a, b) that should relate the two inertial frames
∣∣Φ′
〉
= U(a, b) |Φ〉 (1.87)

where aµν e bµ are defined by
x′µ = aµνx

ν + bµ (1.88)

Using Eq. (1.87) in Eq. (1.86) we get that the field operators should transform as

U(a, b)ϕr(x)U
−1(a, b) = S(−1)

rs (a)ϕs(ax+ b) (1.89)

Let us look at the consequences of this relation for translations and Lorentz transfor-
mations. We consider first the translations. Eq. (1.89) is then

U(b)ϕr(x)U
−1(b) = ϕr(x+ b) (1.90)

For infinitesimal translations we can write

U(ε) ≡ eiεµP
µ ≃ 1 + iεµPµ (1.91)

where Pµ is an hermitian operator. Then Eq. (1.90) gives

i[Pµ, ϕr(x)] = ∂µϕr(x) (1.92)

The correspondence with classical mechanics and non relativistic quantum theory sug-
gests that we identify Pµ with the 4-momentum, that is, Pµ ≡ Pµ where Pµ has been
defined in Eq. (1.76).

As we have an explicit expression for Pµ and we know the commutation relations of
the quantum theory, the Eq. (1.92) becomes an additional requirement that the theory
has to verify in order to be invariant under translations. We will see explicitly that this is
indeed the case for the theories in which we are interested.

For Lorentz transformations x′µ = aµν x
ν , we write for an infinitesimal transformation

aµν = gµν + ωµν +O(ω2) (1.93)

and therefore

U(ω) ≡ 1− i

2
ωµνMµν (1.94)

We then obtain from Eq. (1.89) the requirement

i[Mµν , ϕr(x)] = xµ∂νϕr − xν∂µϕr +Σµνrs ϕs(x) (1.95)

Once more the classical correspondence lead us to identify Mµν = Mµν where the
angular momentum Mµν is defined in Eq. (1.80). For each theory we will have to verify
Eq. (1.95) for the theory to be invariant under Lorentz transformations. We will see that
this is true for the cases of interest.

1This is a definition not a derivation from Eq. (1.85). See[1, 2]
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1.2 Quantization of scalar fields

1.2.1 Real scalar field

The real scalar field described by the Lagrangian density

L =
1

2
∂µϕ∂µϕ− 1

2
m2ϕϕ (1.96)

to which corresponds the Klein-Gordon equation

(⊔⊓+m2)ϕ = 0 (1.97)

is the simplest example, and in fact was already used to introduce the general formalism.
As we have seen the conjugate momentum is

π =
∂L
∂ϕ̇

= ϕ̇ (1.98)

and the commutation relations are

[ϕ(~x, t), ϕ(~x′, t)] = [π(~x, t), π(~x′, t)] = 0

[π(~x, t), ϕ(~x′, t)] = −iδ3(~x− ~x′) (1.99)

The Hamiltonian is given by,

H = P 0 =

∫
d3xH

=

∫
d3x

[
1

2
π2 +

1

2
|~∇ϕ|2 + 1

2
m2ϕ2

]
(1.100)

and the linear momentum is
~P = −

∫
d3xπ~∇ϕ (1.101)

Using Eqs. (1.100) and (1.101) it is easy to verify that

i[Pµ, ϕ] = ∂µϕ (1.102)

showing the invariance of the theory for the translations. In the same way we can verify
the invariance under Lorentz transformations, Eq. (1.95), with Σµνrs = 0 (spin zero).

In order to define the states of the theory it is convenient to have eigenstates of energy
and momentum. To build these states we start by making a spectral Fourier decomposition
of ϕ(~x, t) in plane waves:

ϕ(~x, t) =

∫
d̃k
[
a(k)e−ik·x + a†(k)eik·x

]
(1.103)

where

d̃k ≡ d3k

(2π)32ωk
; ωk = +

√
|~k|2 +m2 (1.104)
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is the Lorentz invariant integration measure. As in the quantum theory ϕ is an operator,
also a(k) e a†(k) should be operators. As ϕ is real, then a†(k) should be the hermitian
conjugate to a(k). In order to determine their commutation relations we start by solving
Eq. (1.103) in order to a(k) and a†(k). Using the properties of the delta function, we get

a(k) = i

∫
d3xeik·x∂

↔
0ϕ(x)

a†(k) = −i
∫
d3xe−ik·x∂

↔
0ϕ(x) (1.105)

where we have introduced the notation

a∂
↔

0b = a
∂b

∂t
− ∂a

∂t
b (1.106)

The second member of Eq. (1.105) is time independent as can be checked explicitly
(see Problem 1.3). This observation is important in order to be able to choose equal times
in the commutation relations. We get

[a(k), a†(k′)] =
∫
d3x

∫
d3y

[
eik·x∂

↔
0ϕ(~x, t), e

−ik′·y∂
↔

0ϕ(~y, t)
]

=(2π)32ωkδ
3(~k − ~k′) (1.107)

and
[a(k), a(k′)] = [a†(k), a†(k′)] = 0 (1.108)

We then see that, except for a small difference in the normalization, a(k) e a†(k) should
be interpreted as annihilation and creation operators of states with momentum kµ. To
show this, we observe that

H =
1

2

∫
d̃k ωk

[
a†(k)a(k) + a(k)a†(k)

]
(1.109)

~P =
1

2

∫
d̃k ~k

[
a†(k)a(k) + a(k)a†(k)

]
(1.110)

Using these explicit forms we can then obtain

[Pµ, a†(k)] = kµa†(k) (1.111)

[Pµ, a(k)] = −kµa(k) (1.112)

showing that a†(k) adds momentum kµ and that a(k) destroys momentum kµ. That the
quantization procedure has produced an infinity number of oscillators should come as no
surprise. In fact a(k), a†(k) correspond to the quantization of the normal modes of the
classical Klein-Gordon field.

By analogy with the harmonic oscillator, we are now in position of finding the eigen-
states of H. We start by defining the base state, that in quantum field theory is called
the vacuum. We have

a(k) |0〉k = 0 ; ∀k (1.113)
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Then the vacuum, that we will denote by |0〉, will be formally given by

|0〉 = Πk |0〉k (1.114)

and we will assume that it is normalized, that is 〈0|0〉 = 1. If now we calculate the
vacuum energy, we find immediately the first problem with infinities in Quantum Field
Theory (QFT). In fact

〈0|H|0〉 =
1

2

∫
d̃k ωk

〈
0|
[
a†(k)a(k) + a(k)a†(k)

]
|0
〉

=
1

2

∫
d̃k ωk

〈
0|
[
a(k), a†(k)

]
|0
〉

=
1

2

∫
d3k

(2π)32ωk
ωk(2π)

32ωkδ
3(0)

=
1

2

∫
d3k ωkδ

3(0) = ∞ (1.115)

This infinity can be understood as the the (infinite) sum of the zero point energy of all
quantum oscillators. In the discrete case we would have,

∑
k

1
2ωk = ∞. This infinity can

be easily removed. We start by noticing that we only measure energies as differences with
respect to the vacuum energy, and those will be finite. We will then define the energy of
the vacuum as being zero. Technically this is done as follows. We define a new operator
PµN.O. as

PµN.O. ≡ 1

2

∫
d̃k kµ

[
a†(k)a(k) + a(k)a†(k)

]

−1

2

∫
d̃k kµ

〈
0|
[
a†(k)a(k) + a(k)a†(k)

]
|0
〉

=

∫
d̃k kµa†(k)a(k) (1.116)

Now
〈
0|PµN.O.|0

〉
= 0. The ordering of operators where the annihilation operators appear

on the right of the creation operators is called normal ordering and the usual notation is

:
1

2
(a†(k)a(k) + a(k)a†(k)) :≡ a†(k)a(k) (1.117)

Therefore to remove the infinity of the energy and momentum corresponds to choose the
normal ordering to our operators. We will adopt this convention in the following dropping
the subscript ”N.O.” to simplify the notation. This should not appear as an ad hoc
procedure. In fact, in going from the classical theory where we have products of fields
into the quantum theory where the fields are operators, we should have a prescription for
the correct ordering of such products. We have just seen that this should be the normal
ordering.

Once we have the vacuum we can build the states by applying the the creation operators
a†(k). As in the case of the harmonic oscillator, we can define the number operator,

N =

∫
d̃k a†(k)a(k) (1.118)
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It is easy to see that N commutes with H and therefore the eigenstates of H are also
eigenstates of N . The state with one particle of momentum kµ is obtained as a†(k) |0〉. In
fact we have

Pµa†(k) |0〉 =

∫
d̃k
′
k′µa†(k′)a(k′)a†(k) |0〉

=

∫
d3k′k′µδ3(~k − ~k′)a†(k) |0〉

= kµa†(k) |0〉 (1.119)

and
Na†(k) |0〉 = a†(k) |0〉 (1.120)

In a similar way, the state a†(k1)...a†(kn) |0〉 would be a state with n particles. However,
the sates that we have just defined have a problem. They are not normalizable and
therefore they can not form a basis for the Hilbert space of the quantum field theory, the
so-called Fock space. The origin of the problem is related to the use of plane waves and
states with exact momentum. This can be solved forming states that are superpositions
of plane waves

|1〉 = λ

∫
d̃kC(k)a†(k) |0〉 (1.121)

Then

〈1|1〉 = λ2
∫
d̃k1d̃k2C

∗(k1)C(k2)
〈
0|a(k1)a†(k2)|0

〉

= λ2
∫
d̃k|C(k)|2 = 1 (1.122)

and therefore

λ =

(∫
d̃k |C(k)|2

)−1/2
(1.123)

with the condition that
∫
d̃k |C(k)|2 <∞. If k is only different from zero in a neighborhood

of a given 4-momentum kµ, then the state will have a well defined momentum (within some
experimental error).

A basis for the Fock space can then be constructed from the n–particle normalized
states

|n〉 =

(
n!

∫
d̃k1 · · · d̃kn|C(k1, · · · kn)|2

)−1/2

∫
d̃k1 · · · d̃knC(k1, · · · kn)a†(k1) · · · a†(kn) |0〉 (1.124)

that satisfy

〈n|n〉 = 1 (1.125)

N |n〉 = n |n〉 (1.126)
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Due to the commutation relations of the operators a†(k) in Eq. (1.124), the functions
C(k1 · · · kn) are symmetric, that is,

C(· · · ki, · · · kj , · · · ) = C(· · · kj · · · ki · · · ) (1.127)

This shows that the quanta that appear in the canonical quantization of real scalar fields
obey the Bose–Einstein statistics. This interpretation in terms of particles, with creation
and annihilation operators, that results from the canonical quantization, is usually called
second quantization, as opposed to the description in terms of wave functions (the first
quantization.

1.2.2 Microscopic causality

Classically, the fields can be measured with an arbitrary precision. In a relativistic quan-
tum theory we have several problems. The first, results from the fact that the fields are
now operators. This means that the observables should be connected with the matrix
elements of the operators and not with the operators. Besides this question, we can only
speak of measuring ϕ in two space-time points x and y if [ϕ(x), ϕ(y)] vanishes. Let us
look at the conditions needed for this to occur.

[ϕ(x), ϕ(y)] =

∫
d̃k1d̃k2

{[
a(k1), a

†(k2)
]
e−ik1·x+ik2·y +

[
a†(k1), a(k2)

]
eik1x−ik2·y

}

=

∫
d̃k1

(
e−ik1·(x−y) − eik1·(x−y)

)

≡ i∆(x− y) (1.128)

The function ∆(x− y) is Lorentz invariant and satisfies the relations

(⊔⊓x +m2)∆(x− y) = 0 (1.129)

∆(x− y) = −∆(y − x) (1.130)

∆(~x− ~y, 0) = 0 (1.131)

The last relation ensures that the equal time commutator of two fields vanishes.
Lorentz invariance implies then,

∆(x− y) = 0 ; ∀ (x− y)2 < 0 (1.132)

This means that for two points that can not be physically connected, that is for which
(x − y)2 < 0, the fields interpreted as physical observables, can then be independently
measured. This result is known as Microscopic Causality. We note that

∂0∆(x− y)|x0=y0 = −δ3(~x− ~y) (1.133)

which ensures the canonical commutation relation, Eq. (1.99).
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1.2.3 Vacuum fluctuations

It is well known from Quantum Mechanics that, in an harmonic oscillator, the coordinate
is not well defined for the energy eigenstates, that is

〈
n|q2|n

〉
> (〈n|q|n〉)2 = 0 (1.134)

In Quantum Field Theory, we deal with an infinite set of oscillators, and therefore we will
have the same behavior, that is,

〈0|ϕ(x)ϕ(y)|0〉 6= 0 (1.135)

although
〈0|ϕ(x)|0〉 = 0 (1.136)

We can calculate Eq. (1.135). We have

〈0|ϕ(x)ϕ(y)|0〉 =

∫
d̃k1d̃k2e

−ik1·xeik2·y
〈
0|a(k1)a†(k2)|0

〉

=

∫
d̃k1e

−ik·(x−y) ≡ ∆+(x− y) (1.137)

The function ∆+(x− y) corresponds to the positive frequency part of ∆(x− y). When
y → x this expression diverges quadratically,

〈
0|ϕ2(x)|0

〉
= ∆+(0) =

∫
d̃k1 =

∫
d3k1

(2π)32ωk1
(1.138)

This divergence can not be eliminated in the way we did with the energy of the vacuum.
In fact these vacuum fluctuations, as they are known, do have observable consequences
like, for instance, the Lamb shift. We will be less worried with the result of Eq. (1.138),
if we notice that for measuring the square of the operator ϕ at x we need frequencies
arbitrarily large, that is, an infinite amount of energy. Physically only averages over a
finite space-time region have meaning.

1.2.4 Charged scalar field

The description in terms of real fields does not allow the distinction between particles
and anti-particles. It applies only the those cases were the particle and anti-particle
are identical, like the π0. For the more usual case where particles and anti-particles are
distinct, it is necessary to have some charge (electric or other) that allows us to distinguish
them. For this we need complex fields.

The theory for the scalar complex field can be easily obtained from two real scalar
fields ϕ1 and ϕ2 with the same mass. If we denote the complex field ϕ by,

ϕ =
ϕ1 + iϕ2√

2
(1.139)

then
L = L(ϕ1) + L(ϕ2) =: ∂µϕ†∂µϕ−m2ϕ†ϕ : (1.140)
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which leads to the equations of motion

(⊔⊓+m2)ϕ = 0 ; (⊔⊓ +m2)ϕ† = 0 (1.141)

The classical theory given in Eq. (1.140) has, at the classical level, a conserved current,
∂µJ

µ = 0, with

Jµ = iϕ†∂
↔µ

ϕ (1.142)

Therefore we expect, at the quantum level, the charge Q

Q =

∫
d3x : i(ϕ†ϕ̇− ϕ̇†ϕ) : (1.143)

to be conserved, that is, [H,Q] = 0. To show this we need to know the commutation
relations for the field ϕ. The definition Eq. (1.139), and the commutation relations for ϕ1

and ϕ2 allow us to obtain the following relations for ϕ and ϕ†:

[ϕ(x), ϕ(y)] = [ϕ†(x), ϕ†(y)] = 0 (1.144)

[ϕ(x), ϕ†(y)] = i∆(x− y) (1.145)

For equal times we can get from Eq. (1.145)

[π(~x, t), ϕ(~y, t)] = [π†(~x, t), ϕ†(~y, t)] = −iδ3(~x− ~y) (1.146)

where

π = ϕ̇† ; π† = ϕ̇ (1.147)

The plane waves expansion is then

ϕ(x) =

∫
d̃k
[
a+(k)e

−ik·x + a†−(k)e
ik·x
]

ϕ†(x) =
∫
d̃k
[
a−(k)e

−ik·x + a†+(k)e
ik·x
]

(1.148)

where the definition of a±(k) is

a±(k) =
a1(k)± ia2(k)√

2
; a†± =

a†1(k)∓ ia†2(k)√
2

(1.149)

The algebra of the operators a± it is easily obtained from the algebra of the operators
ai′s. We get the following non-vanishing commutators:

[a+(k), a
†
+(k

′)] = [a−(k), a
†
−(k

′)] = (2π)32ωkδ
3(~k − ~k′) (1.150)

therefore allowing us to interpret a+ and a†+ as annihilation and creation operators of
quanta of type +, and similarly for the quanta of type −. We can construct the number
operators for those quanta:

N± =

∫
d̃k a†±(k)a±(k) (1.151)
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One can easily verify that
N+ +N− = N1 +N2 (1.152)

where

Ni =

∫
d̃k a†i (k)ai(k) (1.153)

The energy-momentum operator can be written in terms of the + and − operators,

Pµ =

∫
d̃k kµ

[
a†+(k)a+(k) + a†−(k)a−(k)

]
(1.154)

where we have already considered the normal ordering. Using the decomposition in
Eq. (1.148), we obtain for the charge Q:

Q =

∫
d3x : i(ϕ†ϕ̇− ϕ̇†ϕ̇) :

=

∫
d̃k
[
a†+(k)a+(k)− a†−(k)a−(k)

]

= N+ −N− (1.155)

Using the commutation relation in Eq. (1.150) one can easily verify that

[H,Q] = 0 (1.156)

showing that the charge Q is conserved. The Eq. (1.155) allows us to interpret the± quanta
as having charge ±1. However, before introducing interactions, the theory is symmetric,
and we can not distinguish between the two types of quanta. From the commutation
relations (1.150) we obtain,

[Pµ, a†+(k)] = kµa†+(k)

[Q, a†+(k)] = +a†+(k) (1.157)

showing that a†+(k) creates a quanta with 4-momentum kµ and charge +1. In a similar

way we can show that a†− creates a quanta with charge −1 and that a±(k) annihilate
quanta of charge ±1, respectively.

1.2.5 Time ordered product and the Feynman propagator

The operator ϕ† creates a particle with charge +1 or annihilates a particle with charge −1.
In both cases it adds a total charge +1. In a similar way ϕ annihilates one unit of charge.
Let us construct a state of one particle (not normalized) with charge +1 by application of
ϕ† in the vacuum:

|Ψ+(~x, t)〉 ≡ ϕ†(~x, t) |0〉 (1.158)

The amplitude to propagate the state |Ψ+〉 into the future to the point (~x′, t′) with t′ > t
is given by

θ(t′ − t)
〈
Ψ+(~x

′, t′)|Ψ+(~x, t)
〉
= θ(t′ − t)

〈
0|ϕ(~x′, t′)ϕ†(~x, t)|0

〉
(1.159)
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In ϕ†(~x, t) |0〉 only the operator a†+(k) is active, while in 〈0|ϕ(~x′, t′) the same happens to
a+(k). Therefore Eq. (1.159) is the matrix element that creates a quanta of charge +1 in
(~x, t) and annihilates it in (~x′, t′) with t′ > t.

There exists another way of increasing the charge by +1 unit in (~x, t) and decreasing
it by −1 in (~x′, t′). This is achieved if we create a quanta of charge −1 in ~x′ at time t′ and
let it propagate to ~x where it is absorbed at time t > t′. The amplitude is then,

θ(t− t′)
〈
Ψ−(~x, t)|Ψ−(~x′, t′)

〉
=
〈
0|ϕ†(~x, t)ϕ(~x′, t′)|0

〉
θ(t− t′) (1.160)

Since we can not distinguish the two paths we must sum of the two amplitudes in
Eqs. (1.159) and (1.160). This is the so-called Feynman propagator. It can be written in
a more compact way if we introduce the time ordered product. Given two operators a(x)
and b(x′) we define the time ordered product T by,

Ta(x)b(x′) = θ(t− t′)a(x)b(x′) + θ(t′ − t)b(x′)a(x) (1.161)

In this prescription the older times are always to the right of the more recent times. It
can be applied to an arbitrary number of operators. With this definition, the Feynman
propagator reads,

∆F (x
′ − x) =

〈
0|Tϕ(x′)ϕ†(x)|0

〉
(1.162)

Using the ϕ and ϕ† decomposition we can calculate ∆F (for free fields, of course)

∆F (x
′ − x) =

∫
d̃k
[
θ(t′ − t)e−ik·(x

′−x) + θ(t− t′)eik·(x
′−x)

]
(1.163)

=

∫
d4k

(2π)4
i

k2 −m2 + iε
e−ik·(x

′−x) (1.164)

≡
∫

d4k

(2π)4
∆F (k)e

−ik·(x′−x)

where

∆F (k) ≡
i

k2 −m2 + iε
(1.165)

∆F (k) is the propagator in momenta space (Fourier transform). The equivalence be-
tween Eq. (1.164) and Eq. (1.163) is done using integration in the complex plane of the
time component k0, with the help of the residue theorem. The contour is defined by the
iε prescription, as indicated in Fig. (1.1). Applying the operator (⊔⊓′x+m2) to ∆F (x

′−x)
in any of the forms of Eq. (1.163) one can show that

(⊔⊓′x +m2)∆F (x
′ − x) = −iδ4(x′ − x) (1.166)

that is, ∆F (x
′ − x) is the Green’s function for the Klein-Gordon equation with Feynman

boundary conditions.

In the presence of interactions, Feynman propagator looses the simple form of Eq. (1.165).
However, as we will see, the free propagator plays a key role in perturbation theory.



32 CHAPTER 1. FREE FIELD QUANTIZATION

Re k0

Im k0

Figure 1.1: Integration in the complex k0 plane.

1.3 Second quantization of the Dirac field

Let us now apply the formalism of second quantization to the Dirac field. As we will
see, something has to be changed, otherwise we would be led to a theory obeying Bose
statistics, while we know that electrons have spin 1/2 and obey Fermi statistics.

1.3.1 Canonical formalism for the Dirac field

The Lagrangian density that leads to the Dirac equation is

L = iψγµ∂µψ −mψψ (1.167)

The conjugate momentum to ψα is

πα =
∂L
∂ψ̇α

= iψ†α (1.168)

while the conjugate momentum to ψ†α vanishes. The Hamiltonian density is then

H = πψ̇ − L = ψ†(−i~α · ~∇+ βm)ψ (1.169)

The requirement of translational and Lorentz invariance for L leads to the tensors T µν

and Mµνλ. Using the obvious generalizations of Eqs. (1.75) and (1.79) we get

T µν = iψγµ∂νψ − gµνL (1.170)

and

Mµνλ = iψγµ(xν∂λ − xλ∂ν +Σνλ)ψ −
(
xνgµλ − xµgνλ

)
L (1.171)

where

Σνλ ≡ 1

4
[γν , γλ] (1.172)

The 4-momentum Pµ and the angular momentum tensor Mνλ are then given by,

Pµ ≡
∫
d3xT 0µ
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Mµλ ≡
∫
d3xM0νλ (1.173)

or

H ≡
∫
d3xψ†(−i~α · ~∇+ βm)ψ

~P ≡
∫
d3xψ†(−i~∇)ψ (1.174)

If we define the angular momentum vector ~J ≡ (M23,M31,M12) we get

~J =

∫
d3xψ†

(
~r × 1

i
~∇+

1

2
~Σ

)
ψ (1.175)

which has the familiar aspect ~J = ~L + ~S. We can also identify a conserved current,
∂µj

µ = 0, with jµ = ψγµψ, which will give the conserved charge

Q =

∫
d3xψ†ψ (1.176)

All that we have done so far is at the classical level. To apply the canonical formalism
we have to enforce commutation relations and verify the Lorentz invariance of the theory.
This will lead us into problems. To see what are the problems and how to solve them, we
will introduce the plane wave expansions,

ψ(x) =

∫
d̃p
∑

s

[
b(p, s)u(p, s)e−ip·x + d†(p, s)v(p, s)eip·x

]
(1.177)

ψ†(x) =
∫
d̃p
∑

s

[
b†(p, s)u†(p, s)e+ip·x + d(p, s)v†(p, s)e−ip·x

]
(1.178)

where u(p, s) and v(p, s) are the spinors for positive and negative energy, respectively,
introduced in the study of the Dirac equation and b, b†, d and d† are operators. To see
what are the problems with the canonical quantization of fermions, let us calculate Pµ.
We get

Pµ =

∫
d̃k kµ

∑

s

[
b†(k, s)b(k, s) − d(k, s)d†(k, s)

]
(1.179)

where we have used the orthogonality and closure relations for the spinors u(p, s) and
v(p, s). From Eq. (1.179) we realize that if we define the vacuum as b(k, s) |0〉 = d(k, s) |0〉 =
0 and if we quantize with commutators then particles b and particles d will contribute with
opposite signs to the energy and the theory will not have a stable ground state. In fact,
this was the problem already encountered in the study of the negative energy solutions of
the Dirac equation, and this is the reason for the negative sign in Eq. (1.179). Dirac’s hole
theory required Fermi statistics for the electrons and we will see how spin and statistics
are related.

To discover what are the relations that b, b†, d and d† should obey, we recall that at
the quantum level it is always necessary to verify Lorentz invariance. This gives,

i[Pµ, ψ(x)] = ∂µψ ; i[Pµ, ψ(x)] = ∂µψ (1.180)
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Instead of imposing canonical quantization commutators and, as a consequence, verifying
Eq. (1.180) we will do the other way around. We start with Eq. (1.180) and we will
discover the appropriate relations for the operators. Using the expansions Eqs. (1.177)
and (1.178) we can show that Eq. (1.180) leads to

[Pµ, b(k, s)] = −kµb(k, s) ; [Pµ, b
†(k, s)] = kµb

†(k, s) (1.181)

[Pµ, d(k, s)] = −kµd(k, s) ; [Pµ, d
†(k, s)] = kµd

†(k, s) (1.182)

Using Eq. (1.179) for Pµ we get

∑

s′

[(
b†(p, s′)b(p, s′)− d(p, s′)d†(p, s′)

)
, b(k, s)

]
= −(2π)32k0δ3(~k − ~p)b(k, s) (1.183)

and three other similar relations. If we assume that

[d†(p, s′)d(p, s′), b(k, s)] = 0 (1.184)

the condition from Eq. (1.183) reads

∑

s′

[
b†(p, s′){b(p, s′), b(k, s)} − {b†(p, s′), b(k, s)}b(p, s′)

]
=

= −(2π)32k0δ3(~p− ~k)b(k, s) (1.185)

where the parenthesis {, } denote anti-commutators. It is easy to see that Eq. (1.185) is
verified if we impose the canonical commutation relations. We should have

{b†(p, s), b(k, s)} = (2π)32k0δ3(~p − ~k)δss′

{d†(p, s′), d(k, s)} = (2π)32k0δ3(~p− ~k)δss′ (1.186)

and all the other anti-commutators vanish. Note that as b anti-commutes with d and d†,
then it commutes with d†d and therefore Eq. (1.184) is verified.

With the anti-commutator relations both contributions to Pµ in Eq. (1.179) are posi-
tive. As in boson case we have to subtract the zero point energy. This is done, as usual,
by taking all quantities normal ordered. Therefore we have for Pµ,

Pµ =

∫
d̃k kµ

∑

s

:
(
b†(k, s)b(k, s) − d(k, s)d†(k, s)

)
:

=

∫
d̃k kµ

∑

s

:
(
b†(k, s)b(k, s) + d†(k, s)d(k, s)

)
: (1.187)

and for the charge

Q =

∫
d3x : ψ†(x)ψ(x) :

=

∫
d̃k
∑

s

[
b†(k, s)b(k, s) − d†(k, s)d(k, s)

]
(1.188)
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which means that the quanta of b type have charge +1 while those of d type have charge
−1. It is interesting to note that was the second quantization of the Dirac field that
introduced the − sign in Eq. (1.188), making the charge operator without a definite sign,
while in Dirac theory was the probability density that was positive defined. The reverse
is true for bosons. We can easily show that

[Q, b†(k, s)] = b†(k, s) [Q, d(k, s)] = d(k, s)

[Q, b(k, s)] = −b(k, s) [Q, d†(k, s)] = −d†(k, s)
and then

[Q,ψ] = −ψ ; [Q,ψ] = ψ (1.189)

In QED the charge is given by eQ (e < 0). Therefore we see that ψ creates positrons and
annihilates electrons and the opposite happens with ψ.

We can introduce the number operators

N+(p, s) = b†(p, s)b(p, s) ; N−(p, s) = d†(p, s)d(p, s) (1.190)

and we can rewrite

Pµ =

∫
d̃k kµ

∑

s

(N+(k, s) +N−(k, s)) (1.191)

Q =

∫
d̃k
∑

s

(N+(k, s)−N−(k, s)) (1.192)

Using the anti-commutator relations in Eq. (1.186) it is now easy to verify that the theory
is Lorentz invariant, that is (see Problem 1.5),

i[Mµν , ψ] = (xµ∂ν − xν∂µ)ψ +Σµνψ . (1.193)

1.3.2 Microscopic causality

The anti-commutation relations in Eq. (1.186) can be used to find the anti-commutation
relations at equal times for the fields. We get

{ψα(~x, t), ψ†β(~y, t)} = δ3(~x− ~y)δαβ (1.194)

and
{ψα(~x, t), ψβ(~y, t)} = {ψ†α(~x, t), ψ†β(~y, t)} = 0 (1.195)

These relations can be generalized to unequal times

{ψα(x), ψ†β(y)} =

∫
d̃p
[[
(p/+m)γ0

]
αβ

e−ip·(x−y) −
[
(−p/+m)γ0

]
αβ

eip·(x−y)
]

=
[
(i∂/x +m)γ0

]
αβ

i∆(x− y) (1.196)

where the ∆(x− y) function was defined in Eq. (1.128) for the scalar field. The fact that
γ0 appears in Eq. (1.196) is due to the fact that in Eq. (1.196) we took ψ† and not ψ. In
fact, if we multiply on the right by γ0 we get

{ψα(x), ψβ(y)} = (i∂/x +m)αβi∆(x− y) (1.197)
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and

{ψα(x), ψβ(y)} = {ψα(x), ψβ(y)} = 0 (1.198)

We can easily verify the covariance of Eq. (1.197). We use

U(a, b)ψ(x)U−1(a, b) = S−1(a)ψ(ax + b)

U(a, b)ψ(x)U−1(a, b) = ψ(ax+ b)S(a)

S−1γµS = aµνγ
ν (1.199)

to get

U(a, b){ψα(x), ψβ(y)}U−1(a, b) =

= S−1ατ (a){ψτ (ax+ b), ψλ(ay + b)}Sλβ(a)

= S−1ατ (a)(i∂/ax +m)τλi∆(ax− ay)Sλβ(a)

= (i∂/ +m)αβi∆(x− y) (1.200)

where we have used the invariance of ∆(x − y) and the result S−1i∂/axS = i∂/x. For
(x − y)2 < 0 the anti-commutators vanish, because ∆(x − y) also vanishes. This result
allows us to show that any two observables built as bilinear products of ψ e ψ commute
for two spacetime points for which (x− y)2 < 0. Therefore

[
ψα(x)ψβ(x), ψλ(y)ψτ (y)

]
=

= ψα(x){ψβ(x), ψλ(y)}ψτ (y)− {ψα(x), ψλ(y)}ψβ(x)ψτ (y)

+ψλ(y)ψα(x){ψβ(x), ψτ (y)} − ψλ(y){ψτ (y), ψα(x)}ψβ(x)

= 0 (1.201)

for (x− y)2 < 0. In this way the microscopic causality is satisfied for the physical observ-
ables, such as the charge density or the momentum density.

1.3.3 Feynman propagator

For the Dirac field, as in the case of the charged scalar field, there are two ways of increasing
the charge by one unit in x′ and decrease it by one unit in x (note that the electron has
negative charge). These ways are

θ(t′ − t)
〈
0|ψβ(x′)ψ†α(x)|0

〉
(1.202)

θ(t− t′)
〈
0|ψ†α(x)ψβ(x′)|0

〉
(1.203)

In Eq. (1.202) an electron of positive energy is created at ~x in the instant t, propagates
until ~x′ where is annihilated at time t′ > t. In Eq. (1.203) a positron of positive energy
is created in x′ and annihilated at x with t > t′. The Feynman propagator is obtained
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summing the two amplitudes. Due the exchange of ψβ and ψα there must be a minus sign
between these two amplitudes. Multiplying by γ0, in order to get ψ instead of ψ†, we get
for the Feynman propagator,

SF (x
′ − x)αβ = θ(t′ − t)

〈
0|ψα(x′)ψβ(x)|0

〉

−θ(t− t′)
〈
0|ψβ(x)ψα(x′)|0

〉

≡
〈
0|Tψα(x′)ψβ(x)|0

〉
(1.204)

where we have defined the time ordered product for fermion fields,

Tη(x)χ(y) ≡ θ(x0 − y0)η(x)χ(y) − θ(y0 − x0)χ(y)η(x) . (1.205)

Inserting in Eq. (1.204) the expansions for ψ and ψ we get,

SF (x
′ − x)αβ=

∫
d̃k
[
(k/ +m)αβθ(t

′ − t)e−ik·(x
′−x) + (−k/+m)αβθ(t− t′)eik·(x

′−x)
]

=

∫
d4k

(2π)4
i(k/ +m)αβ
k2 −m2 + iε

e−ik·(x
′−x)

≡
∫

d4k

(2π)4
SF (k)αβe

−ik·(x′−x) (1.206)

where SF (k) is the Feynman propagator in momenta space. We can also verify that
Feynman’s propagator is the Green function for the Dirac equation, that is (see Problem
1.7),

(i∂/−m)λα SF (x
′ − x)αβ = iδλβδ

4(x′ − x) (1.207)

1.4 Electromagnetic field quantization

1.4.1 Introduction

The free electromagnetic field is described by the classical Lagrangian,

L = −1

4
FµνF

µν (1.208)

where

Fµν = ∂µAν − ∂νAµ (1.209)

The free field Maxwell equations are

∂αF
αβ = 0 (1.210)

that corresponds to the usual equations in 3-vector notation,

~∇ · ~E = 0 ; ~∇× ~B =
∂ ~E

∂t
(1.211)
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The other Maxwell equations are a consequence of Eq. (1.209) and can written as,

∂αF̃
αβ = 0 ; F̃αβ =

1

2
εαβµνFµν (1.212)

corresponding to

~∇ · ~B = 0 ; ~∇× ~E = −∂
~B

∂t
(1.213)

Classically, the quantities with physical significance are the fields ~E e ~B, and the
potentials Aµ are auxiliary quantities that are not unique due to the gauge invariance of
the theory. In quantum theory the potentials Aµ are the ones playing the leading role
as, for instance in the minimal prescription. We have therefore to formulate the quantum
fields theory in terms of Aµ and not of ~E and ~B.

When we try to apply the canonical quantization to the potentials Aµ we immediately
run into difficulties. For instance, if we define the conjugate momentum as,

πµ =
∂L
∂(Ȧµ)

(1.214)

we get

πk =
∂L

∂(Ȧk)
= −Ȧk − ∂A0

∂xk
= Ek

π0 =
∂L
∂Ȧ0

= 0 (1.215)

Therefore the conjugate momentum to the coordinate A0 vanishes and does not allow
us to use directly the canonical formalism. The problem has its origin in the fact that the
photon, that we want to describe, has only two degrees of freedom (positive or negative
helicity) but we are using a field Aµ with four degrees of freedom. In fact, we have to
impose constraints on Aµ in such a way that it describes the photon. This problem can
be addressed in three different ways:

i) Radiation Gauge

Historically, this was the first method to be used. It is based in the fact that it is
always possible to choose a gauge, called the radiation gauge, where

A0 = 0 ; ~∇ · ~A = 0 (1.216)

that is, the potential ~A is transverse. The conditions in Eq. (1.216) reduce the num-
ber of degrees of freedom to two, the transverse components of ~A. It is then possible
to apply the canonical formalism to these transverse components and quantize the
electromagnetic field in this way. The problem with this method is that we loose
explicit Lorentz covariance. It is then necessary to show that this is recovered in the
final result. This method is followed in many text books, for instance in Bjorken
and Drell [3].
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ii) Quantization of systems with constraints

It can be shown that the electromagnetism is an example of an Hamilton generalized
system, that is a system where there are constraints among the variables. The way
to quantize these systems was developed by Dirac for systems of particles with n
degrees of freedom. The generalization to quantum field theories is done using the
formalism of path integrals. We will study this method in Chapter 6, where it will
be shown, this is the only method that can be applied to non-abelian gauge theories,
like the Standard Model.

iii) Undefined metric formalism

There is another method that works for the electromagnetism, called the formalism
of the undefined metric, developed by Gupta and Bleuler [4, 5]. In this formalism,
that we will study below, Lorentz covariance is kept, that is we will always work
with the 4-vector Aµ, but the price to pay is the appearance of states with negative
norm. We have then to define the Hilbert space of the physical states as a sub-space
where the norm is positive. We see that in all cases, in order to maintain the explicit
Lorentz covariance, we have to complicate the formalism. We will follow the book
of Silvan Schweber [6].

1.4.2 Undefined metric formalism

To solve the difficulty of the vanishing of π0, we will start by modifying the Maxwell
Lagrangian introducing a new term,

L = −1

4
FµνF

µν − 1

2ξ
(∂ ·A)2 (1.217)

where ξ is a dimensionless parameter. The equations of motion are now,

⊔⊓Aµ −
(
1− 1

ξ

)
∂µ(∂ ·A) = 0 (1.218)

and the conjugate momenta

πµ =
∂L
∂Ȧµ

= Fµ0 − 1

ξ
gµ0(∂ ·A) (1.219)

that is {
π0 = −1

ξ (∂ · A)
πk = Ek

We remark that the Lagrangian of Eq. (1.216) and the equations of motion, Eq. (1.218),
reduce to Maxwell theory in the gauge ∂ · A = 0. This why we say that the choice of
Eq. (1.216) corresponds to a class of Lorenz gauges with parameter ξ. With this abuse of
language (in fact we are not setting ∂ · A = 0, otherwise the problems would come back)
the value of ξ = 1 is known as the Feynman gauge and ξ = 0 as the Landau gauge.

From Eq. (1.218) we get
⊔⊓(∂ ·A) = 0 (1.220)
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implying that (∂ ·A) is a massless scalar field. Although it would be possible to continue
with a general ξ, from now on we will take the case of the so-called Feynman gauge, where
ξ = 1. Then the equation of motion coincide with the Maxwell theory in the Lorenz gauge.
As we do not have anymore π0 = 0, we can impose the canonical commutation relations
at equal times:

[πµ(~x, t), Aν(~y, t)] = −igµν δ3(~x− ~y)

[Aµ(~x, t), Aν(~y, t)] = [πµ(~x, t), πν(~y, t)] = 0 (1.221)

Knowing that [Aµ(~x, t), Aµ(~y, t)] = 0 at equal times, we can conclude that the space
derivatives of Aµ also commute at equal times. Then, noticing that

πµ = −Ȧµ + space derivatives (1.222)

we can write instead of Eq. (1.221)

[Aµ(~x, t), Aν(~y, t)] = [Ȧµ(~x, t), Ȧµ(~y, t)] = 0

[Ȧµ(~x, t), Aν(~y, t)] = igµνδ
3(~x− ~y) (1.223)

If we compare these relations with the corresponding ones for the real scalar field, where
the only one non-vanishing is,

[ϕ̇(~x, t), ϕ(~y, t)] = −iδ3(~x− ~y) (1.224)

we see (gµν = diag(+,−,−,−) that the relations for space components are equal but they
differ for the time component. This sign will be the source of the difficulties previously
mentioned.

If, for the moment, we do not worry about this sign, we expand Aµ(x) in plane waves,

Aµ(x) =

∫
d̃k

3∑

λ=0

[
a(k, λ)εµ(k, λ)e−ik·x + a†(k, λ)εµ∗(k, λ)eik·x

]
(1.225)

where εµ(k, λ) are a set of four independent 4-vectors that we assume to real, without loss
of generality. We will now make a choice for these 4-vectors. We choose εµ(1) and εµ(2)
orthogonal to kµ and nµ, such that

εµ(k, λ)εµ(k, λ
′) = −δλλ′ for λ, λ′ = 1, 2 (1.226)

After, we choose εµ(k, 3) in the plane (kµ, nµ) orthogonal to nµ and normalized, that is

εµ(k, 3)nµ = 0 ; εµ(k, 3)εµ(k, 3) = −1 (1.227)

Finally we choose εµ(k, 0) = nµ. The vectors εµ(k, 1) and εµ(k, 2) are called transverse
polarizations, while εµ(k, 3) and εµ(k, 0) longitudinal and scalar polarizations, respec-
tively. We can give an example. In the frame where nµ = (1, 0, 0, 0) and ~k is along the z
axis we have

εµ(k, 0) ≡ (1, 0, 0, 0) ; εµ(k, 1) ≡ (0, 1, 0, 0)
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εµ(k, 2) ≡ (0, 0, 1, 0) ; εµ(k, 3) ≡ (0, 0, 0, 1) (1.228)

In general we can show that

ε(k, λ) · ε∗(k, λ′) = gλλ
′

∑

λ

gλλεµ(k, λ)ε∗ν (k, λ) = gµν (1.229)

Inserting the expansion (1.225) in (1.223) we get consistency only if

[a(k, λ), a†(k′, λ′)] = −gλλ′2k0(2π)3δ3(~k − ~k′) (1.230)

showing, once more, that the quanta associated with λ = 0 has a commutation relation
with the wrong sign. Before addressing this problem, we can verify that the generalization
of Eq. (1.223) for arbitrary times is

[Aµ(x), Aν(y)] = −igµν∆(x, y) (1.231)

showing the covariance of the theory. The function ∆(x− y) is the same that was intro-
duced before for scalar fields.

Therefore, up to this point, everything is as if we had 4 scalar fields. There is, however,
the problem of the sign difference in one of the commutators. Let us now see what are
the consequences of this sign. For that we introduce the vacuum state defined by

a(k, λ) |0〉 = 0 λ = 0, 1, 2, 3 (1.232)

To see the problem with the sign we construct the one-particle state with scalar polariza-
tion, that is

|1〉 =
∫
d̃k f(k)a†(k, 0) |0〉 (1.233)

and calculate its norm

〈1|1〉 =

∫
d̃k1d̃k2f

∗(k1)f(k2)
〈
0|a(k1, 0)a†(k2, 0)|0

〉

= −〈0|0〉
∫
d̃k |f(k)|2 (1.234)

where we have used Eq. (1.230) for λ = 0. The state |1〉 has a negative norm. The
same calculation for the other polarization would give well behaved positive norms. We
therefore conclude that the Fock space of the theory has indefinite metric. What happens
then to the probabilistic interpretation of quantum mechanics?

To solve this problem we note that we are not working anymore with the classical
Maxwell theory because we modified the Lagrangian. What we would like to do is to
impose the condition ∂ · A = 0, but that is impossible as an equation for operators, as
that would bring us back to the initial problems with π0 = 0. We can, however, require
that condition on a weaker form, as a condition only to be verified by the physical states.
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More specifically, we require that the part of ∂ ·A that contains the annihilation operator
(positive frequencies) annihilates the physical states,

∂µA(+)
µ |ψ〉 = 0 (1.235)

The states |ψ〉 can be written in the form

|ψ〉 = |ψT 〉 |φ〉 (1.236)

where |ψT 〉 is obtained from the vacuum with creation operators with transverse polar-
ization and |φ〉 with scalar and longitudinal polarization. This decomposition depends,
of course, on the choice of polarization vectors. To understand the consequences of

Eq. (1.235) is enough to analyze the states |φ〉 as ∂µA(+)
µ contains only scalar and longi-

tudinal polarizations,

i∂ · A(+) =

∫
d̃k e−ik·x

∑

λ=0,3

a(k, λ) ε(k, λ) · k (1.237)

and therefore Eq. (1.235) becomes

∑

λ=0,3

k · ε(k, λ) a(k, λ) |φ〉 = 0 (1.238)

Condition (1.238) does not determine completely |φ〉. In fact, there is much arbitrari-
ness in the choice of the transverse polarization vectors, to which we can always add a
term proportional to kµ because k · k = 0. This arbitrariness must reflect itself on the
choice of |φ〉. Condition (1.238) is equivalent to,

[a(k, 0) − a(k, 3)] |φ〉 = 0 . (1.239)

We can construct |φ〉 as a linear combination of states |φn〉 with n scalar or longitudinal
photons:

|φ〉 = C0 |φ0〉+ C1 |φ1〉+ · · ·+ Cn |φn〉+ · · ·

|φ0〉 ≡ |0〉 (1.240)

The states |φn〉 are eigenstates of the operator number for scalar or longitudinal pho-
tons,

N ′ |φn〉 = n |φn〉 (1.241)

where

N ′ =
∫
d̃k
[
a†(k, 3)a(k, 3) − a†(k, 0)a(k, 0)

]
(1.242)

Then
n 〈φn|φn〉 =

〈
φn|N ′|φn

〉
= 0 (1.243)

where we have used Eq. (1.239). This means that

〈φn|φn〉 = δn0 (1.244)
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that is, for n 6= 0, the state |φn〉 has zero norm. We have then for the general state |φ〉,
〈φ|φ〉 = |C0|2 ≥ 0 (1.245)

and the coefficients Ci, i = 1, · · · n · · · are arbitrary. We have to show that this arbitrariness
does not affect the physical observables. The Hamiltonian is

H =

∫
d3x : πµȦµ − L :

=
1

2

∫
d3x :

3∑

i=1

[
Ȧ2
i + (~∇Ai)2

]
− Ȧ2

0 − (~∇A0)
2 :

=

∫
d̃k k0

[
3∑

λ=1

a†(k, λ)a(k, λ) − a†(k, 0)a(k, 0)

]
(1.246)

It is easy to check that if |ψ〉 is a physical state we have

〈ψ|H|ψ〉
〈ψ|ψ〉 =

〈
ψT |

∫
d̃k k0

∑2
λ=1 a

†(k, λ)a(k, λ)|ψT
〉

〈ψT |ψT 〉
(1.247)

and the arbitrariness on the physical states completely disappears when we take average
values. Besides that, only the physical transverse polarizations contribute to the result.
One can show (see Problem 1.10) that the arbitrariness in |φ〉 is related with a gauge
transformation within the class of Lorenz gauges.

It is important to note that although for the average values of the physical observables
only the transverse polarizations contribute, the scalar and longitudinal polarizations are
necessary for the consistency of the theory. In particular they show up when we consider
complete sums over the intermediate states.

Invariance for translations is readily verified. For that we write,

Pµ =

∫
d̃k kµ

3∑

λ=0

(−gλλ)a†(k, λ)a(k, λ) (1.248)

Then

i[Pµ, Aν ] =

∫
d̃k d̃k

′
ikµ
∑

λ,λ′

(−gλλ)
{[
a†(k, λ)a(k, λ), a(k′ , λ′)

]
εν(k′, λ′)e−ik·x

+
[
a†(x, λ)a(k, λ), a†(k′, λ′)

]
ε∗ν(k′, λ′)eik

′·x
}

=

∫
d̃k ikµ

∑

λ

[
a(k, λ)εν(k, λ)e−ik·x − a†(k, λ)εν(k, λ)eik·x

]

= ∂µAν (1.249)

showing the invariance under translations. In a similar way, it can be shown the invariance
for Lorentz transformations (see Problem 1.11). For that we have to show that

M jk =

∫
d3x :

[
xjT 0k − xkT 0j + EjAk − EkAj

]
: (1.250)
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M0i =

∫
d3x :

[
x0T 0i − xiT 00 − (∂ ·A)Ai − EiA0

]
: (1.251)

where (ξ = 1)

T 0i = −(∂ ·A) ∂iA0 − Ek∂iAk

T 00 =

3∑

i=1

[
Ȧ2
i + (~∇Aj)2

]
− Ȧ2

0 − (~∇A0)
2 (1.252)

Using these expressions one can show that the photon has helicity ±1, corresponding
therefore to spin one. For that we start by choosing the direction of ~k along the axis 3
(z axis) and take the polarization vector with the choice of Eq. (1.228). A one-photon
physical state will then be (not normalized),

|k, λ〉 = a†(k, λ) |0〉 λ = 1, 2 (1.253)

Let us now calculate the angular momentum along the axis 3. This is given by

M12 |k, λ〉 = M12a†(k, λ) |0〉

= [M12, a†(k, λ)] |0〉 (1.254)

where we have used the fact that the vacuum state satisfiesM12 |0〉 = 0. The operatorM12

has one part corresponding the orbital angular momenta and another corresponding to the
spin. The contribution of the orbital angular momenta vanishes (angular momenta in the
direction of motion) as one can see calculating the commutator. In fact the commutator
with the orbital angular momenta is proportional to k1 or k2, which are zero by hypothesis.
Let us then calculate the spin part. Using the notation,

Aµ = Aµ(+) +Aµ(−) (1.255)

where Aµ(+)(Aµ(−)) correspond to the positive (negative) frequencies, we get

: E1A2−E2A1 := E1(+)A2(+)+E1(−)A2(+)+A2(−)E1(+)+E1(−)A2(−)−(1 ↔ 2) (1.256)

Then
[
: E1A2 − E2A1 :, a†(k, λ)

]
=

= E1(+)
[
A2(+), a†(k, λ)

]
+
[
E1(+), a†(k, λ)

]
A2(+)

+E1(−)
[
A2(+), a†(k, λ)

]
+A2(−)

[
E1(+), a†(k, λ)

]
− (1 ↔ 2)

= E1
[
A2(+), a†(k, λ)

]
+A2

[
E1(+), a†(k, λ)

]
− (1 ↔ 2) (1.257)

Now (recall that λ = 1, 2)

[A2(+), a†(k, λ)]=
∫
d̃k
′∑

λ′

ε2(k′, λ′)
[
a(k′, λ′), a†(k, λ)

]
e−ik

′·x
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=ε2(k, λ)e−ik·x

[E1(+), a†(k, λ)]=
∫
d̃k
′∑

λ′

(
ik′0ε0(k′, λ′) + ik′1ε0(k′, λ′)

) [
a(k′, λ′), a†(k, λ)

]
e−ik

′·x

= ik0ε1(k, λ)e−ik·x (1.258)

Therefore
∫
d3x

[
: E1A2 − E2A1 :, a†(k, λ)

]

=

∫
d3xe−ik·x

[
E1ε2(k, λ) +A2ik0ε1(k, λ) − E2ε1(k, λ) +A1ik0ε2(k, λ)

]

=

∫
d3xe−ik·x

[
ε1(k, λ)∂

↔
0A

2(x)− ε2(k, λ)∂
↔

0A
1(x)

]
(1.259)

where we have used the fact that Ei = −Ȧi, i = 1, 2, for our choice of frame and
polarization vectors. On the other hand

a(k, λ) = −i
∫
d3xeik·x ∂

↔
0 ε

µ(k, λ)Aµ(x)

a†(k, λ) = i

∫
d3xe−ik·x ∂

↔
0 ε

µ(k, λ)Aµ(x) (1.260)

For our choice we get

a†(k, 1) = −i
∫
d3xe−ik·x ∂

↔
0 A

1(x)

a†(k, 2) = −i
∫
d3xe−ik·x ∂

↔
0 A

2(x) (1.261)

and therefore
[M12, a†(k, λ)] = iε1(k, λ)a†(k, 2) − iε2(k, λ)a†(k, 1) (1.262)

We find that the state a†(k, λ) |0〉 , λ = 1, 2 is not an eigenstate of the operator M12.
However the linear combinations,

a†R(k) =
1√
2

[
a†(k, 1) + ia†(k, 2)

]

a†L(k) =
1√
2

[
a†(k, 1) − ia†(k, 2)

]
(1.263)

which correspond to right and left circular polarization, verify

[M12, a†R(k)] = a†R(k) ; [M12, a†L(k)] = −a†L(k) (1.264)

showing that the photon has spin 1 with right or left circular polarization (negative or
positive helicity).
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1.4.3 Feynman propagator

The Feynman propagator is defined as the vacuum expectation value of the time ordered
product of the fields, that is

Gµν(x, y) ≡ 〈0|TAµ(x)Aν(y)|0〉

= θ(x0 − y0) 〈0|Aµ(x)Aν(y)|0〉 + θ(y0 − x0) 〈0|Aν(y)Aµ(x)|0〉 (1.265)

Inserting the expansions for Aµ(x) and Aν(y) we get

Gµν(x− y) = −gµν
∫
d̃k
[
e−ik·(x−y)θ(x0 − y0) + eik·(x−y)θ(y

0−x0)
]

= −gµν
∫

d4k

(2π)4
i

k2 + iε
e−ik·(x−y)

≡
∫

d4k

(2π)4
Gµν(k)e

−ik·(x−y) (1.266)

where Gµν(k) is the Feynman propagator on the momentum space

Gµν(k) ≡
−igµν
k2 + iε

(1.267)

It is easy to verify that Gµν(x− y) is the Green’s function of the equation of motion, that
for ξ = 1 is the wave equation, that is

⊔⊓xGµν(x− y) = igµνδ
4(x− y) (1.268)

These expressions for Gµν(x−y) and Gµν(k) correspond to the particular case of ξ = 1,
the so-called Feynman gauge. For the general case where ξ 6= 0 the equation of motion
reads [

⊔⊓xgµρ −
(
1− 1

ξ

)
∂µ∂ρ

]
Aρ(x) = 0 (1.269)

For this case the equal times commutation relations are more complicated (see Problem
1.12). Using those relations one can show that the Feynman propagator is still the Green’s
function of the equation of motion, that is

[
⊔⊓xgµρ −

(
1− 1

ξ

)
∂µ∂ρ

]
〈0|TAρ(x)Aν(y)|0〉 = igµνδ4(x− y) (1.270)

Using this equation we can then obtain in an arbitrary ξ gauge (of the Lorenz type),

Gµν(k) = −i gµν
k2 + iε

+ i(1− ξ)
kµkν

(k2 + iε)2
. (1.271)



1.5. DISCRETE SYMMETRIES 47

1.5 Discrete Symmetries

We know from the study of the Dirac equation the transformations like space inversion
(Parity) and charge conjugation, are symmetries of the Dirac equation. More precisely, if
ψ(x) is a solution of the Dirac equation, then

ψ′(x) = ψ′(−~x, t) = γ0ψ(~x, t) (1.272)

ψc(x) = Cψ
T
(x) (1.273)

are also solutions (if we take the charge −e for ψc). Similar operations could also be
defined for scalar and vector fields.

With second quantization the fields are no longer functions, they become operators. We
have therefore to find unitary operators P and C that describe those operations within this
formalism. There is another discrete symmetry, time reversal, that in second quantization
will be described by an anti-unitary operator T . We will exemplify with the scalar field
how to get these operators. We will leave the Dirac and Maxwell fields as exercises.

1.5.1 Parity

To define the meaning of the Parity operation we have to put the system in interaction
with the measuring system, considered to be classical. This means that we will consider
the system described by

L −→ L− jµ(x)A
µ
ext(x) (1.274)

where we have considered that the interaction is electromagnetic. jµ(x) is the electromag-
netic current that has the form,

jµ(x) = ie : ϕ∗∂
↔
µϕ : scalar field

jµ(x) = e : ψγµψ : Dirac field (1.275)

In a Parity transformation we invert the coordinates of the measuring system, therefore
the classical fields are now

Aµext = (A0
ext(−~x, t)),− ~Aext(−~x, t) = Aextµ (−~x, t) (1.276)

For the dynamics of the new system to be identical to that of the original system, which
should be the case if Parity is conserved, it is necessary that the equations of motion
remain the same. This is true if

PL(~x, t)P−1 = L(−~x, t) (1.277)

Pjµ(~x, t)P−1 = jµ(−~x, t) (1.278)

Eqs. (1.277) and (1.278) are the conditions that a theory should obey in order to be
invariant under Parity. Furthermore P should leave the commutation relations unchanged,
so that the quantum dynamics is preserved. For each theory that conserves Parity should
be possible to find an unitary operator P that satisfies these conditions.
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Now we will find such an operator P for the scalar field. It is easy to verify that the
condition

Pϕ(~x, t)P−1 = ±ϕ(−~x, t) (1.279)

satisfies all the requirements. The sign ± is the intrinsic parity of the particle described
by the field ϕ, (+ for scalar and − for pseudo-scalar). In terms of the expansion of the
momentum, Eq. (1.279) requires

Pa(k)P−1 = ±a(−k) ; Pa†(k)P−1 = ±a†(−k) (1.280)

where −k means that we have changed ~k into −~k (but k0 remains intact, that is, k0 =

+

√
|~k|2 +m2). It is easier to solve Eq. (1.280) in the momentum space. As P should be

unitary, we write
P = eiP (1.281)

Then

Pa(k)P−1 = a(k) + i[P, a(k)] + · · ·+ in

n!
[P, [· · · , [P, a(k)] · · · ] + · · ·

= −a(−k) (1.282)

where we have chosen the case of the pseudo-scalar field.

Eq. (1.282) suggests the form

[P, a(k)] =
λ

2
[a(k) + εa(−k)] (1.283)

where λ and ε = ±1 are to be determined. We get

[P, [P, a(k)]] =
λ2

2
[a(k) + εa(−k)] (1.284)

and therefore

Pa(k)P−1 = a(k) +
1

2

[
iλ+

(iλ)2

2!
+ · · · + (iλ)4

n!
+ · · ·

]
(a(k) + εa(−k))

=
1

2
[a(k) − εa(−k)] + 1

2
eiλ[a(k) + εa(−k)]

= −a(−k) (1.285)

We solve Eq. (1.285) if we choose λ = π and ε = +1 (λ = π and ε = −1 for the scalar
case). It is easy to check that

Pps = −π
2

∫
d̃k
[
a†(k)a(k) + a†(k)a(−k)

]
= P †ps (1.286)

and it is solution of Eq. (1.283) for λ = π and ε = +1. Therefore,

Pps = exp

{
−iπ

2

∫
d̃k
[
a†(k)a(k) + a†(k)a(−k)

]}
(1.287)
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and for the scalar field

Ps = exp

{
−iπ

2

∫
d̃k
[
a†(k)a(k) − a†(k)a(−k)

]}
(1.288)

For the case of the Dirac field, the condition equivalent to Eq. (1.279) is now

Pψ(~x, t)P−1 = γ0ψ(−~x, t) (1.289)

Repeating the same steps we get

PDirac = exp

{
−iπ

2

∫
d̃p
∑

s

[
b†(p, s)b(p, s)− b†(p, s)b(−p, s)

+ d†(p, s)d(p, s) + d†(p, s)d(−p, s)
]}

(1.290)

The case of the Maxwell field is left as an exercise.

1.5.2 Charge conjugation

The conditions for charge conjugation invariance are now

CL(x)C−1 = L ; CjµC−1 = −jµ (1.291)

where jµ is the electromagnetic current. Conditions (1.291) are verified for the charged
scalar fields if

Cϕ(x)C−1 = ϕ∗(x) ; Cϕ∗(x)C−1 = ϕ(x) (1.292)

and for the Dirac field if

Cψα(x)C−1 = Cαβ ψβ(x)

Cψα(x)C−1 = −ψβ(x)C−1βα (1.293)

where C is the charge conjugation matrix.

Finally from the invariance of jµA
µ we obtain the condition for the electromagnetic

field,

CAµC−1 = −Aµ (1.294)

By using a method similar to the one used in the case of the Parity we can get the
operator C for the different theories. For instance, for the scalar field we get

Cs = exp

{
i
π

2

∫
d̃k (a†+ − a†−)(a+ − a−)

}
(1.295)

and for the Dirac field

C = C1C2 (1.296)



50 CHAPTER 1. FREE FIELD QUANTIZATION

with

C1 = exp

{
−i
∫
d̃p
∑

s

φ(p, s)
[
b†(p, s)b(p, s)− d†(p, s)d(p, s)

]}

C2 = exp

{
i
π

2

∫
d̃p
∑

s

[
b†(p, s)− d†(p, s)

]
[b(p, s)− d(p, s)]

}
(1.297)

with

v(p, s) = eiφ(p,s) uc(p, s)

u(p, s) = eiφ(p,s) vc(p, s) (1.298)

where the phase φ(p, s) is arbitrary (see [7]).

1.5.3 Time reversal

Classically the meaning of the time reversal invariance it is clear. We change the sign of
the time, the velocities change direction and the system goes from what was the final state
to the initial state. This exchange between the initial and final state has as consequence, in
quantum mechanics, that the corresponding operator must be anti-linear or anti-unitary.
In fact 〈f |i〉 = 〈i|f〉∗ and therefore if we want 〈T ϕf |T ϕi〉 = 〈ϕi|ϕf 〉 then T must include
the complex conjugation operation. We can write

T = UK (1.299)

where U is unitary and K is the instruction to tale the complex conjugate of all c-numbers.
Then

〈Tϕf |Tϕi〉 = 〈UKϕf |UKϕi〉

= 〈Uϕf |Uϕi〉∗

= 〈ϕf |ϕi〉∗ = 〈ϕi|ϕf 〉 (1.300)

as we wanted. A theory will be invariant under time reversal if

T L(~x, t)T −1 = L(~x,−t)

T jµ(~x, t)T −1 = jµ(~x,−t) (1.301)

For the scalar field this condition will be verified if

T ϕ(~x, t)T −1 = ±ϕ(~x,−t) (1.302)

and for the electromagnetic field we must have.

T Aµ(~x, t)T −1 = Aµ(~x,−t) (1.303)
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making jµAµ invariant. For the case of the Dirac field the transformation is

T ψα(~x, t)T −1 = Tαβψβ(~x,−t) (1.304)

In order that Eq. (1.301) is satisfied, the T matrix must satisfy

TγµT
−1 = γTµ = γµ∗ (1.305)

with a solution, in the Dirac representation,

T = iγ1γ3 (1.306)

Applying the same type of reasoning already used for P and C we can find T , or
equivalently, U . For the Dirac field, noticing that

Tu(p, s) = u∗(−p,−s)eiα+(p,s)

Tv(p, s) = v∗(−p,−s)eiα−(p,s) (1.307)

we can write U = U1U2 and obtain

U1 = exp

{
−i
∫
d̃p
∑

s

[
α+b

†(p, s)b(p, s)− α−d
†(p, s)d(p, s)

]}
(1.308)

and

U2 = exp

{
−iπ

2

∫
d̃p
∑

s

[
b†(p, s)b(p, s) + b†(p, s)b(−p− s)

− d†(p, s)d(p, s) − d†(p, s)d(−p,−s)
]}

(1.309)

1.5.4 The T CP theorem

It is a fundamental theorem in Quantum Field Theory that the product T CP is an invari-
ance of any theory that satisfies the following general conditions:

• The theory is local and covariant for Lorentz transformations.

• The theory is quantized using the usual relation between spin and statistics, that is,
commutators for bosons and anti-commutators for fermions.

This theorem due to Lüdus, Zumino, Pauli e Schwinger has an important consequence
that if one of the discrete symmetries is not preserved then another one must also be
violated to preserve the invariance of the product. For a proof of the theorem see the
books of Bjorken and Drell[3, 1] and Itzykson and Zuber[2].
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Problems for Chapter 1

1.1 Verify, for the scalar field, the covariant relations for translations and Lorentz trans-
formations,

i[Pµ, ϕ] = ∂µϕ

i[Mµν , ϕ] = (xµ∂ν − xν∂µ)ϕ (1.310)

Hints:

• Consider the theory already normal ordered. Then use

Pµ =

∫
d̃k kµa†(k)a(k) , (1.311)

Eq. (1.103) and Eq. (1.107).

• Show that

M0i =− i

∫
d̃k a†(k)

(
k0

∂

∂ki
− ki

∂

∂k0

)
a(k) (1.312)

M ij = −i
∫
d̃k a†(k)

(
ki

∂

∂kj
− kj

∂

∂ki

)
a(k) (1.313)

and then use again Eq. (1.103) and Eq. (1.107).

1.2 Show that

∂0∆(x− y)|x0=y0 = −δ3(~x− ~y) (1.314)

1.3 Show that

∫
d4k

(2π)4
i

k2 −m2 + iε
e−ik·(x−y) =

=

∫
d̃k
[
θ(x0 − y0)e−ik·(x−y) + θ(y0 − x0)eik·(x−y)

]
(1.315)

where d̃k ≡ d3k

(2π)32k0
.
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Hint: Integrate in the complex plane of the variable dk0 and use the prescription iε to
define the contours.

1.4 Show that
{ψα(~x, t), ψ†β(~y, t)} = δαβδ

3(~x− ~y) (1.316)

Hint: You have to use the anti-commutation relations in Eq. (1.186) and the completion
properties of the sum over spins for the u and v spinors [8].

1.5 Show that for the Dirac theory the requirements of Lorentz invariance are satisfied,

i[Mµν , ψ(x)] = (xµ∂ν − xν∂µ)ψ +Σµνψ ; Σµν =
1

4
[γµ, γν ] (1.317)

Hint: Use the method of Problem 1.1 for the orbital part.

1.6 Show that

SF (x− y)αβ = θ(x0 − y0)
〈
0|ψα(x)ψβ(y)|0

〉

−θ(y0 − x0)
〈
0|ψβ(y)ψα(x)|0

〉
(1.318)

corresponds to

SF (x− y)αβ =

∫
d4p

(2π)4
i(p/+m)αβ
p2 −m2 + iε

e−ip·(x−y) (1.319)

Hint: Expand ψα e ψβ in plane waves.

1.7 Show that
(i∂/x −m)αβSF (x− y)βγ = iδαγδ

4(x− y) (1.320)

1.8 Show that is is always possible to choose the electromagnetic potential Aµ such that

A0 = 0 , ~∇ · ~A = 0 (Radiation gauge) (1.321)

1.9 Show that we have
[Aµ(x), Aν(y)] = −igµν∆(x− y) (1.322)

1.10 Consider the indefinite metric formalism for the electromagnetic field.

a) Consider the expectation value of Aµ in the state |φ〉. Show that

〈φ|Aµ|φ〉 = C∗0C1

∫
d̃k e−ik·x 〈0| [εµ(k, 3)a(k, 3) + εµ(k, 0)a(k, 0)] |φ1〉

+h.c. (1.323)

b) Choose the state |φ1〉 in the form

|φ1〉 =
∫
d̃k f(k)

[
a†(k, 3) − a†(k, 0)

]
|0〉 (1.324)
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Show that

〈φ|Aµ|φ〉 =
∫
d̃k [εµ(k, 3) + εµ(k, 0)] (C

∗
0C1e

−ik·xf(k) + c.c.) (1.325)

c) Choose εµ(k, λ) to be real. Show that

εµ(k, 3) + εµ(k, 0) =
kµ

(n · k) (1.326)

d) Show that

〈φ|Aµ|φ〉 = ∂µΛ(x) (1.327)

where

⊔⊓Λ = 0 (1.328)

Comment the result.

1.11 Show the covariance of the electromagnetism for the Lorentz transformations,

i[Mµν , Aλ] = (xµ∂ν − xν∂µ)Aλ +Σµν,λσA
σ (1.329)

where
Σµν,λσ = gµλgνσ − gµσgλν (1.330)

1.12 Show that for the general case of ξ 6= 1 we have

[Aµ(~x, t), Aν(~y, t)] = 0

[Ȧµ(~x, t), Aν(~y, t)] = igµν [1− (1− ξ)gµ0] δ
3(~x− ~y)

[Ȧi(~x, t), Ȧj(~y, t)] = [Ȧ0(~x, t), Ȧ0(~y, t)] = 0

[Ȧ0(~x, t), Ȧi(~y, t)] = i(1− ξ)∂iδ
3(~x− ~y) (1.331)

1.13 Use the results of Problem 1.12 to show that, in the general gauge with ξ 6= 1 we
have [

⊔⊓xgµρ −
(
1− 1

ξ

)
∂µ∂ρ

]
〈0|TAρ(x)Aν(y)|0〉 = igµνδ4(x− y) (1.332)

where (
⊔⊓gµρ−

(
1− 1

ξ

)
∂µ∂ρ

)
Aρ = 0 (1.333)

1.14 Find the operator P for the Dirac and Maxwell fields.
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1.15 Find the operator C for the Dirac and Maxwell fields.

1.16 Show that
T ψα(~x, t)T−1 = Tαβψβ(~x,−t) (1.334)

ensures that
T L(~x, t)T −1 = L(~x,−t) (1.335)

if there is a matrix T such that TγµT
−1 = γµ∗. Find T in the Dirac representation.

1.17 Find the operator T for the Dirac and Maxwell fields.

1.18 Consider the Lagrangian

L = ψiγµDµPLψ −mψψ (1.336)

where

Dµ = ∂µ + iAaµ
τa

2

PL =
1− γ5

2
(1.337)

Show that the theory is neither invariant under P nor under C but it is invariant for the
product CP .
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Chapter 2

Physical States. S Matrix. LSZ
Reduction.

2.1 Physical states

In the previous chapter we saw, for the case of free fields, how to construct the space of
states, the so-called Fock space of the theory. When we consider the real physical case,
with interactions, we are no longer able to solve the problem exactly. For instance, the
interaction between electrons and photons is given by a set of nonlinear coupled equations,

(i∂/−m)ψ = eA/ ψ

∂µF
µν = eψγνψ (2.1)

that do not have an exact solution. In practice we have to resort to approximation meth-
ods. In the following chapter we will learn how to develop a covariant perturbation theory.
Here we are going just to study the general properties of the theory.

Let us start by the physical states. As we do not know how to solve the problem exactly,
we can not prove the assumptions we are going to make about these states. However, these
are reasonable assumptions, based essentially on Lorentz covariance. We choose our states
to be eigenstates of energy and momentum, and of all the other observables that commute
with Pµ. Besides that, we will also assume that

i) The eigenvalues of p2 are non-negative and p0 > 0.

ii) There exists one non-degenerate base state, with the minimum of energy, which is
Lorentz invariant. This state is called the vacuum state |0〉 and by convention

pµ |0〉 = 0 (2.2)

iii) There exist one particle states
∣∣p(i)

〉
, such that,

p(i)µ p
(i)µ = m2

i (2.3)

57
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for each stable particle with mass mi.

iv) The vacuum and the one-particle states constitute the discrete spectrum of pν.

2.2 In states

As we are mainly interested in scattering problems, we should construct states that have
a simple interpretation in the limit t → −∞. At that time, the particles that are going
to participate in the scattering process have not interacted yet (we assume that the in-
teractions are adiabatically switched off when |t| → ∞ which is appropriate for scattering
problems).

We look for operators that create one particle states with the physical mass. To be
explicit, we start by an hermitian scalar field given by the Lagrangian

L =
1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 − V (x) (2.4)

where V (x) is an operator made of more than two interacting fields ϕ at point x. For
instance, those interactions can be self-interactions of the type

V (x) =
λ

4!
ϕ4(x) (2.5)

The field ϕ satisfies the following equation of motion

(⊔⊓+m2)ϕ(x) = − ∂V

∂ϕ(x)
≡ j(x) (2.6)

and the equal time canonical commutation relations,

[ϕ(~x, t)ϕ(~y, t)] = [π(~x, t)π(~y, t)] = 0

[π(~x, t), ϕ(~y, t)] = −iδ3(~x− ~y) (2.7)

where
π(x) = ϕ̇(x) (2.8)

if we assume that V (x) has no derivatives. We designate by ϕin(x) the operator that
creates one-particle states. It will be a functional of the fields ϕ(x). Its existence will be
shown by explicit construction. We require that ϕin(x) must satisfy the conditions:

i) ϕin(x) and ϕ(x) transform in the same way for translations and Lorentz transforma-
tions. For translations we have then

i [Pµ, ϕin(x)] = ∂µϕin(x) (2.9)

ii) The spacetime evolution of ϕin(x) corresponds to that of a free particle of mass m,
that is

(⊔⊓+m2)ϕin(x) = 0 (2.10)
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From these definitions it follows that ϕin(x) creates one-particle states from the vac-
uum. In fact, let us consider a state |n〉, such that,

Pµ |n〉 = pµn |n〉 . (2.11)

Then

∂µ 〈n|ϕin(x)|0〉 = i 〈n| [Pµ, ϕin(x)] |0〉

= ipµn 〈n|ϕin(x)|0〉 (2.12)

and therefore
⊔⊓ 〈n|ϕin(x)|0〉 = −p2n 〈n|ϕin(x)|0〉 (2.13)

Then
(⊔⊓ +m2) 〈n|ϕin(x)|0〉 = (m2 − p2n) 〈n|ϕin(x)|0〉 = 0 (2.14)

where we have used the fact that ϕin(x) is a free field, Eq. (2.10). Therefore the states
created from the vacuum by ϕin are those for which p2n = m2, that is, the one-particle
states of mass m.

The Fourier decomposition of ϕin(x) is then the same as for free fields, that is,

ϕin(x) =

∫
d̃k
[
ain(k)e

−ik·x + a†in(k)e
ik·x
]

(2.15)

where ain(k) and a
†
in(k) satisfy the usual algebra for creation and annihilation operators.

In particular, by repeated use of a†in(k) we can create one state of n particles.

To express ϕin(x) in terms of ϕ(x) we start by introducing the retarded Green’s func-
tion of the Klein-Gordon operator,

(⊔⊓x +m2)∆ret(x− y;m) = δ4(x− y) (2.16)

where
∆ret(x− y;m) = 0 if x0 < y0 (2.17)

We can then write

√
Zϕin(x) = ϕ(x)−

∫
d4y∆ret(x− y;m)j(y) (2.18)

The field ϕin(x), defined by Eq. (2.15), satisfies the two initial conditions. The constant√
Z was introduced to normalize ϕin in such a way that it has amplitude 1 to create

one-particle states from the vacuum. The fact that ∆ret = 0 for x0 → −∞, suggests that√
Zϕin(x) is, in some way, the limit of ϕ(x) when x0 → −∞. In fact, as ϕ and ϕin are

operators, the correct asymptotic condition must be set on the matrix elements of the
operators. Let |α〉 and |β〉 be two normalized states. We define the operators

ϕf (t) = i

∫
d3xf∗(x) ∂

↔
0 ϕ(x)

ϕfin = i

∫
d3xf∗(x) ∂

↔
0 ϕin(x) (2.19)
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where f(x) is a normalized solution of the Klein-Gordon equation. By Green’s theorem,

ϕfin does not depend on time (for plane waves f = e−ik·x and ϕfin = ain). Then the
asymptotic condition of Lehmann, Symanzik e Zimmermann (LSZ) [9], is

lim
t→−∞

〈α|ϕf (t) |β〉 =
√
Z 〈α|ϕfin |β〉 (2.20)

2.3 Spectral representation for scalar fields

We saw that Z had a physical meaning as the square of the amplitude for the field ϕ(x)
to create one-particle states from the vacuum. Let us now find a formal expression for Z
and show that 0 ≤ Z ≤ 1.

We start by calculating the expectation value in the vacuum of the commutator of two
fields,

i∆′(x, y) ≡ 〈0| [ϕ(x), ϕ(y)] |0〉 (2.21)

As we do not know how to solve the equations for the interacting fields ϕ, we can not solve
exactly the problem of finding the ∆′, in contrast with the free field case. We can, however,
determine its form using general arguments of Lorentz invariance and the assumed spectra
for the physical states. We introduce a complete set of states between the two operators
in Eq. (2.21) and we use the invariance under translations in order to obtain,

〈n|ϕ(y)|m〉 = 〈n| eiP ·yϕ(0)e−iP ·y |m〉

= ei(pn−pm)·y 〈n|ϕ(0)|m〉 (2.22)

Therefore we get

∆′(x, y) = −i
∑

n

〈0|ϕ(0)|n〉 〈n|ϕ(0)|0〉 (e−ipn·(x−y) − eipn·(x−y))

≡ ∆′(x− y) (2.23)

that is, like in the free field case, ∆′ is only a function of the difference x− y. Introducing
now

1 =

∫
d4q δ4(q − pn) (2.24)

we get

∆′(x− y) = −i
∫

d4q

(2π)3

[
(2π)3

∑

n

δ4(pn − q)| 〈0|ϕ(0)|n〉 |2
]
(e−iq·(x−y) − eiq·(x−y))

= −i
∫

d4q

(2π)3
ρ(q)(e−iq·(x−y) − eiq·(x−y)) (2.25)

where we have defined the density ρ(q) (spectral amplitude),

ρ(q) = (2π)3
∑

n

δ4(pn − q)| 〈0|ϕ(0)|n〉 |2 (2.26)
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This spectral amplitude measures the contribution to ∆′ of the states with 4-momentum
qµ. ρ(q) is Lorentz invariant (as can be shown using the invariance of ϕ(x) and the
properties of the vacuum and of the states |n〉) and vanishes when q is not in future light
cone, due the assumed properties of the physical states. Then we can write

ρ(q) = ρ(q2)θ(q0) (2.27)

and we get

∆′(x− y) = −i
∫

d4q

(2π)3
ρ(q2)θ(q0)(e−iq·(x−y) − eiq·(x−y))

= −i
∫

d4q

(2π)3

∫
dσ2δ(q2 − σ2)ρ(σ2)θ(q0)

[
e−iq·(x−y) − eiq·(x−y)

]

=

∫ ∞

0
dσ2ρ(σ2)∆(x− y;σ) (2.28)

where

∆(x− y;σ) = −i
∫

d4q

(2π)3
δ(q2 − σ2)θ(q0)(e−iq·(x−y) − eiq·(x−y)) (2.29)

is the invariant function defined for the commutator of free fields with mass σ.

The Eq. (2.28) is known as the spectral decomposition of the commutator of two fields.
This expression will allow us to show that 0 ≤ Z < 1. To show that, we separate the states
of one-particle from the sum in Eq. (2.26). Let |p〉 be a one-particle state with momentum
p. Then

〈0|ϕ(x)|p〉 =
√
Z 〈0|ϕin(x)|p〉+

∫
d4y∆ret(x− y;m) 〈0|j(y)|p〉

=
√
Z 〈0|ϕin(x)|p〉 (2.30)

where we have used

〈0|j(y)|p〉 =
〈
0|(⊔⊓ +m2)ϕ(y)|p

〉
=

= (⊔⊓+m2)e−ip·y 〈0|ϕ(0)|p〉

= (m2 − p2)e−ip·y 〈0|ϕ(0)|p〉 = 0 (2.31)

On the other hand

〈0|ϕin(x)|p〉 =

∫
d3k

(2π)32ωk
e−ik·x 〈0|ain(k)|p〉

= e−ip·x (2.32)

and therefore

ρ(q) = (2π)3
∫
d̃p δ4(p − q)Z + contributions from more than one particle
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= Zδ(q2 −m2)θ(q0) + · · · (2.33)

Therefore

∆′(x− y) = Z∆(x− y;m) +

∫ ∞

m2
1

dσ2ρ(σ2)∆(x− y;σ) (2.34)

where m1 is the mass of the lightest state of two or more particles. Finally noticing that

∂

∂x0
∆′(x− y)|x0=y0 =

∂

∂x0
∆(x− y;σ)|x0=y0 = −δ3(~x− ~y) (2.35)

we get the relation

1 = Z +

∫ ∞

m2
1

dσ2ρ(σ2) (2.36)

which means
0 ≤ Z < 1 (2.37)

where this last step results from the assumed positivity of ρ(σ2).

2.4 Out states

In the same way as we reduced the dynamics of t → −∞ to the free fields ϕin, it is also
possible to define in the limit t → +∞ the corresponding free fields, ϕout(x). These free
fields will be the final state of a scattering problem. The formalism is copied from the
case of ϕin, and therefore we will present the results without going into the details of the
derivations. ϕout(x) obey the following relations:

i [Pµ, ϕout] = ∂µϕout

(⊔⊓+m2)ϕout = 0 (2.38)

and has the expansion

ϕout(x) =

∫
d̃k
[
aout(k)e

−ik·x + a†out(k)e
ik·x
]

(2.39)

The asymptotic condition is now

lim
t→∞

〈α|ϕf (t) |β〉 =
√
Z 〈α|ϕfout |β〉 (2.40)

and √
Zϕout(x) = ϕ(x) −

∫
d4y∆adv(x− y;m)j(y) (2.41)

where the Green’s functions ∆adv satisfy

(⊔⊓x +m2)∆adv(x− y;m) = δ4(x− y)

∆adv(x− y;m) = 0 ; x0 > y0 . (2.42)

For one-particle states we get

〈0|ϕ(x)|p〉 =
√
Z 〈0|ϕout(x)|p〉

=
√
Z 〈0|ϕin(x)|p〉

=
√
Ze−ip·x (2.43)
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2.5 S matrix

We have now all the formalism needed to study the transition amplitudes from one initial
state to a given final state, the so-called S matrix elements. Let us start by an initial state
with n non-interacting particles (we suppose that initially they are well separated),

|p1 · · · pn ; in〉 ≡ |α ; in〉 (2.44)

where p1 · · · pn are the 4-momenta of the n particles. Other quantum numbers are assumed
but not explicitly written. The final state will be, in general, a state with m particles

∣∣p′1 · · · p′m ; out
〉
≡ |β ; out〉 (2.45)

The S matrix element Sβα is defined by the amplitude

Sβα ≡ 〈β ; out|α ; in〉 (2.46)

The S matrix is an operator that induces an isomorphism between the in and out states,
that by assumption are a complete set of states,

〈β ; out| = 〈β ; in|S

〈β ; in| = 〈β ; out|S−1

〈β ; out|α ; in〉 = 〈β ; in|S|α ; in〉 = 〈β ; out|S|α; out〉 (2.47)

From the assumed properties for the states we can show the following results for the
S matrix.

i) 〈0|S|0〉 = 〈0|0〉 = 1 (stability and unicity of the vacuum)

ii) The stability of the one-particle states gives

〈p ; in|S|p ; in〉 = 〈p ; out|p ; in〉 = 〈p ; in|p ; out〉 = 1 (2.48)

because |p ; in〉 = |p ; out〉.

iii) ϕin(x) = Sϕout(x)S
−1

This relation results from the fact that we want that the matrix elements of operators
do not depend on the basis in or out. In fact

〈α; in|ϕin(x)|β; in〉 = 〈α; out|ϕout(x)|β; out〉
=
〈
α; in|Sϕout(x)S−1|β; in

〉
(2.49)

showing the above result.
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iv) The S matrix is unitary. To show this we have

δβα = 〈β ; out|α ; out〉 =
〈
β ; in|SS†|α ; in

〉
(2.50)

and therefore

SS† = 1 (2.51)

v) The S matrix is Lorentz invariant, or more precisely the S matrix transition elements
are Lorentz invariant. In fact we have

ϕin(ax+ b) = U(a, b)ϕin(x)U
−1(a, b) = USϕout(x)S

−1U−1

= USU−1ϕout(ax+ b)US−1U−1 . (2.52)

But
ϕin(ax+ b) = Sϕout(ax+ b)S−1 , (2.53)

and therefore we get finally1 for the S matrix in the transformed frame

S′ = U(a, b)SU−1(a, b) . (2.54)

ensuring that 〈
Φ′α|S′|Φ′β

〉
=
〈
Φα|U−1S′U |Φβ

〉
= 〈Φα|S|Φβ〉 (2.55)

2.6 Reduction formula for scalar fields

The S matrix elements are the quantities that are directly connected to the experiment.
In fact, |Sβα|2 represents the transition probability from the initial state |α ; in〉 to the
final |β ; out〉. We are going in this section to use the previous formalism to express these
matrix elements in terms of the so-called Green functions for the interacting fields. In
this way the problem of the calculation of these probabilities is transferred to the problem
of calculating these Green functions. These, of course, can not be evaluated exactly, but
we will learn in the next chapter how to develop a covariant perturbation theory for that
purpose.

Let us then proceed to the derivation of the relation between the S matrix elements
and the the Green functions of the theory. This technique is known as the LSZ reduction
from the names of Lehmann, Symanzik e Zimmermann [9] that have introduced it. By
definition

〈p1 · · · ; out|q1 · · · ; in〉 =
〈
p1, · · · ; out|a†in(q1)|q2, · · · ; in

〉
(2.56)

Using

a†in(q1) = −i
∫

t
d3xe−iq1·x ∂

↔
0ϕin(x) (2.57)

1This proof is for scalar fields. For the other cases it is much more complicated to prove [10]
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where the integral is time-independent, and therefore can be calculated for an arbitrary
time t. If we take t→ −∞ and use the asymptotic condition for the in fields, Eq. (2.20),
we get

〈p1 · · · ; out|q1 · · · ; in〉 = − lim
t→−∞

iZ−1/2
∫

t
d3xe−iq1·x ∂

↔
0 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉

(2.58)

In a similar way one can show that

〈
p1 · · · ; out|a†out(q1)|q2 · · · ; in

〉
=

= − lim
t→∞

iZ−1/2
∫

t
d3xe−iq1·x ∂

↔
0 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉 . (2.59)

Then, using the result,

(
lim
t→∞

− lim
t→−∞

)∫
d3xf(~x, t) = lim

tf→∞,ti→−∞

∫ tf

ti

dt
∂

∂t

∫
d3xf(~x, t)

=

∫
d4x∂0f(~x, t) (2.60)

and subtracting Eq. (2.59) from Eq. (2.58) we get

〈p1 · · · ; out|q1 · · · ; in〉=
〈
p1 · · · ; out|a†out(q1)|q2 · · · ; in

〉

+iZ−1/2
∫
d4x ∂0

[
e−iq1·x∂

↔
0 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉

]
(2.61)

The first term on the right-hand side of Eq. (2.61) corresponds to a sum of disconnected
terms, in which at least one of the particles is not affected by the interaction (it will vanish
if none of the initial momenta coincides with one of the final momenta). Its form is

〈
p1 · · · ; out|a†out(q1)|q2 · · · ; in

〉
=

=
n∑

k=1

(2π)32p0k δ
3(~pk − ~q1) 〈p1, · · · , p̂k, · · · ; out|q2, · · · ; in〉 (2.62)

where p̂k means that this momentum was taken out from that state. For the second term
we write,

∫
d4x ∂0

[
e−iqix∂

↔
0 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉

]

=

∫
d4x

[
−
(
∂20e
−iq1·x) 〈· · · 〉+ e−iq1·x∂20 〈· · · 〉

]

=

∫
d4x

[(
(−∆2 +m2) e−iq1·x

)
〈· · · 〉+ e−iq1·x∂20 〈· · · 〉

]
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=

∫
d4xe−iq1·x(⊔⊓+m2) 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉 (2.63)

where we have used (⊔⊓ + m2)e−iq1·x = 0, and have performed an integration by parts
(whose justification would imply the substitution of plane waves by wave packets).

Therefore, after this first step in the reduction we get,

〈p1, · · · pn; out|q1 · · · qℓ; in〉 =

=

n∑

k=1

2p0k(2π)
3δ3(~pk − ~q1) 〈p1, · · · p̂k; · · · pn; out|q2 · · · q2 · · · qℓ; in〉

+iZ−1/2
∫
d4xe−iq1x(⊔⊓+m2) 〈p1 · · · pn; out|ϕ(x)|q2 · · · qℓ; in〉 (2.64)

We will proceed with the process until all the momenta in the initial and final state are
exchanged by the field operators. To be specific, let us now remove one momentum in
the final state. From now on we will no longer consider the disconnected terms, because
in practice we are only interested in the cases where all the particles interact2. We have
then

〈p1 · · · pn; out|ϕ(x1)|q2 · · · qℓ; in〉 = 〈p2 · · · pn; out|aout(p1)ϕ(x1)|q2 · · · qℓ; in〉

= lim
y01→∞

iZ−1/2
∫
d3y1 e

ip1·y1∂
↔
y01

〈p2 · · · pn; out|ϕ(y1)ϕ(x1)|q2 · · · qℓ; in〉

= 〈p2 · · · pn; out|ϕ(x1)ain(p1)|q2 · · · qℓ; in〉

+ lim
y01→∞

iZ−1/2
∫
d3y1 e

ip1·y1∂
↔
y01

〈p2 · · · pn; out|ϕ(y1)ϕ(x1)|q2 · · · qℓ; in〉

− lim
y01→−∞

iZ−1/2
∫
d3y1 e

ip1·y1∂
↔
y01

〈p2 · · · pn; out|ϕ(x1)ϕ(y1)|q2 · · · qℓ; in〉

= 〈p2 · · · pn; out|ϕ(x1)ain(p1)|q2 · · · qℓ; in〉

+iZ−1/2
(

lim
y01→∞

− lim
y01→−∞

)∫
d3y1 e

ip1·y1∂
↔
y01

〈p2 · · · pn; out|Tϕ(y1)ϕ(x1)|q2 · · · qℓ; in〉

(2.65)

where we have used the properties of the time-ordered product, Eq. (1.161). Applying the
same procedure that lead to Eq. (2.63) we obtain,

〈p1 · · · pn, ; out|ϕ(x1)|q2 · · · qℓ; in〉 = disconnected terms

+iZ−1/2
∫
d4y1e

ip1·y1(⊔⊓y1 +m2) 〈p2 · · · pn; out|Tϕ(y1)ϕ(x1)|q2 · · · qℓ; in〉 (2.66)

2Once we know the cases where all the particles interact, we can always calculate situations where some
of the particles do not participate in the scattering.
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It is not very difficult to generalize this method to obtain the final reduction formula
for scalar fields,

〈p1 · · · pn; out|q1 · · · qℓ; in〉 = disconnected terms

+

(
i√
Z

)n+ℓ ∫
d4y1 · · · d4ynd4x1 · · · d4xℓe[i

∑n
1 pk·yk−i

∑ℓ
1 qr·xr]

(⊔⊓y1 +m2) · · · (⊔⊓xℓ +m2) 〈0|Tϕ(y1) · · ·ϕ(yn)ϕ(x1) · · ·ϕ(xℓ)|0〉 (2.67)

This last equation is the fundamental equation in quantum field theory. It allows us to
relate the transition amplitudes to the Green functions of the theory. The quantity

〈0|Tϕ(x1) · · ·ϕ(xn)|0〉 ≡ G(x1 · · · xn) (2.68)

is known as the complete green function for r = m+ ℓ particles and we will introduce the
following diagrammatic representation for it,

G(x1 · · · xn) = (2.69)

x1 xi

xlxn

The factors (⊔⊓ +m2) in Eq. (2.67) force the external particles to be on-shell. In fact, in
momentum space (⊔⊓ + m2) → (−p2 +m2). Therefore, Eq. (2.67) will vanish unless the
propagators of the external legs are on-shell, as in that case they will have a pole, 1

p2−m2 .

Eq. (2.67) will then give the residue of that pole. We conclude that for the transition
amplitudes only the truncated Green functions will contribute, that is the ones with the
external legs removed. In the next chapter we will learn how to evaluate these Green
functions in perturbation theory.

2.7 Reduction formula for fermions

2.7.1 States in and out

The definition of the in and out follows exactly the same steps as in the case of the scalar
fields. We will therefore, for simplicity, just state the results with the details.

The states ψin(x) satisfy the conditions,

(i∂/−m)ψin(x) = 0
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[Pµ, ψin(x)] = −i∂µψin(x) . (2.70)

The states ψin(x) will create one-particle states and they are related with the fields ψ(x)
by,

√
Z2ψin(x) = ψ(x)−

∫
d4ySret(x− y,m)j(y) (2.71)

where ψ(x) satisfies the Dirac equation,

(i∂/−m)ψ(x) = j(x) (2.72)

and Sret is the retarded Green function for the Dirac equation,

(i∂/x −m)Sret(x− y,m) = δ4(x− y)

Sret(x− y) = 0 ; x0 < y0 (2.73)

The fields ψin(x), as free fields, have the Fourier expansion,

ψin(x) =

∫
d̃p
∑

s

[
bin(p, s)u(p, s)e

−ip·x + d†in(p, s)v(p, s)e
ip·x
]

(2.74)

where the operators bin, din satisfy exactly the same algebra as in the free field case. The
asymptotic condition is now,

lim
t→−∞

〈α|ψf (t) |β〉 =
√
Z2 〈α|ψfin |β〉 (2.75)

where ψf (t) and ψfin have a meaning similar to Eq. (2.19).

For the ψout fields we get essentially the same expressions with ψin substituted by ψout.
The main difference is in the asymptotic condition that now reads,

lim
t→∞

〈α|ψf (t) |β〉 =
√
Z2 〈α|ψfout |β〉 (2.76)

implying the following relation between the fields ψout and ψ,

√
Z2ψout = ψ(x) −

∫
d4ySadv(x− y;m)j(y) (2.77)

where

(i∂/x −m)Sadv(x− y;m) = δ4(x− y)

Sadv(x− y;m) = 0 x0 > y0 . (2.78)

2.7.2 Spectral representation fermions

Let us consider the vacuum expectation value of the anti-commutator of two Dirac fields,

S′αβ(x, y) ≡ i 〈0| {ψα(x), ψβ(y)} |0〉
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= i
∑

n

[
〈0|ψα(0) |n〉 〈n|ψβ(0) |0〉 e−ipn(x−y)

+ 〈0|ψβ(0) |n〉 〈n|ψα(0) |0〉 eipn·(x−y)
]

≡ S′αβ(x− y) (2.79)

where we have introduced a complete set of eigen-states of the 4-momentum. As before
we introduce the spectral amplitude ραβ(q),

ραβ(q) ≡ (2π)3
∑

n

δ4(pn − q) 〈0|ψα(0) |n〉 〈n|ψβ(0) |0〉 (2.80)

We will now find the most general form for ραβ(q) using Lorentz invariance arguments.
ραβ(q) is a 4× 4 matrix in Dirac space, and can therefore be written as

ραβ(q) = ρ(q)δαβ + ρµ(q)γ
µ
αβ + ρµν(q)σ

µν
αβ + ρ̃(q)γ5αβ + ρ̃µ(q)(γ

µγ5)αβ (2.81)

Lorentz invariance arguments restrict the form of the coefficients ρ(q), ρµ(q), ρµν(q), ρ̃(q)
and ρ̃µ(q). Under Lorentz transformations the fields transform as

U(a)ψα(0)U
−1(a) = S−1αλ (a)ψλ(0)

U(a)ψα(0)U
−1(a) = ψλ(0)Sλα(a)

S−1γµS = aµνγ
ν (2.82)

Then we can show that the matrix (in Dirac space), ραβ must obey the relation,

ρ(q) = S−1(a)ρ(qa−1)S(a) (2.83)

where we have used a matrix notation. This relation gives the properties of the different
coefficients on Eq. (2.81). For instance,

ρµ(q) = aµνρ
ν(qa−1) (2.84)

which means that ρµ transform as a 4−vector.

Using the fact that ραβ is a function of q and vanishes outside the future light cone,
we can finally write

ραβ(q) = ρ1(q
2)q/αβ + ρ2(q

2)δαβ + ρ̃1(q
2)(q/γ5)αβ + ρ̃2(q

2)γ5αβ (2.85)

that is, ραβ(q) is determined up to four scalar functions of q2. Requiring invariance under
parity transformations we get, instead of Eq. (2.83),

ραβ(~q, q0) = γ0αλρλδ(−~q, q0)γ0δβ (2.86)

and inserting in Eq. (2.85) we obtain,

ρ̃1 = ρ̃2 = 0 (2.87)
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Therefore for the Dirac theory, that preserves parity, we get,

ραβ(q) = ρ1(q
2)q/αβ + ρ2(q

2)δαβ (2.88)

Repeating the steps of the scalar case we write,

S′αβ(x− y) =

∫ ∞

0
dσ2

{
ρ1(σ

2)Sαβ(x− y;σ)+

+
[
σρ1(σ

2)− ρ2(σ
2)
]
δαβ∆(x− y;σ)

}
(2.89)

where ∆ and Sαβ are the functions defined for free fields. We can then show that

i) ρ1 e ρ2 are real

ii) ρ1(σ
2) ≥ 0

iii) σρ1(σ
2)− ρ2(σ

2) ≥ 0

Using the previous relations we can extract of the one-particle states from Eq. (2.89). We
get,

S′αβ(x− y) = Z2Sαβ(x− y;m)

+

∫ ∞

m2
1

dσ2
{
ρ1(σ

2)Sαβ(x− y;σ)

+
[
σρ1(σ

2)− ρ2(σ
2)
]
δαβ∆(x− y;σ)

}
(2.90)

where m1 is the threshold for the production of two or more particles. Evaluating
Eq. (2.90) at equal times we can obtain

1 = Z2 +

∫

m2
1

dσ2ρ1(σ
2) (2.91)

that is

0 ≤ Z2 < 1 (2.92)

2.7.3 Reduction formula fermions

To get the reduction formula for fermions we will proceed as in the scalar case. The only
difficulty has to do with the spinor indices. The creation and annihilation operators can
be expressed in terms of the fields ψin by the relations,

bin(p, s) =

∫
d3xu(p, s)eip·xγ0ψin(x)

d†in(p, s) =

∫
d3xv(p, s)e−ip·xγ0ψin(x)
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b†in(p, s) =

∫
d3xψin(x)γ

0e−ip·xu(p, s)

din(p, s) =

∫
d3xψin(x)γ

0eip·xv(p, s) (2.93)

with the integrals being time independent. In fact, to be more rigorous we should substi-
tute the plane wave solutions by wave packets, but as in the scalar case, to simplify matter
we will not do it. To establish the reduction formula we start by extracting one electron
from the initial state,

〈β; out|(ps)α; in〉 =
〈
β; out|b†in(p, s)|α, in

〉

= 〈β − (p, s); out|α; in〉 +
〈
β; out|b†in(p, s)− b†out(p, s)|α; in

〉

= disconnected terms

+

∫
d3x

〈
β; out|ψin(x)− ψout(x)|α; in

〉
γ0e−ip·xu(p, s)

= disconnected terms

−
(

lim
t→+∞

− lim
t→−∞

)
1√
Z2

∫
d3x

〈
β; out|ψ(x)|α; in

〉
γ0e−ip·xu(p, s)

= disconnected terms

−Z−1/22

∫
d4x

[〈
β; out|∂0ψ(x)|α; in

〉
γ0e−ip·xu(p, s)

+
〈
β; out|ψ(x)|α; in

〉
γ0∂0(e

−ip·xu(p, s))
]

(2.94)

Using now

(iγ0∂0 + iγi∂i −m)(e−ip·xu(p, s)) = 0 (2.95)

we get, after an integration by parts,

〈
β; out|b†in(ρ, s)|α; in

〉
= disconnected terms

−iZ−1/22

∫
d4x

〈
β; out|ψ(x)|α; in

〉
(−i∂
←
/x −m)e−ip·xu(p, s) (2.96)

In a similar way the reduction of an anti-particle from the initial state gives,

〈
β; out|d†in(p, s)|α; in

〉
= disconnected terms

+iZ
−1/2
2

∫
d4xe−ip·xv(p, s)(i∂/x −m) 〈β; out|ψ(x)|α; in〉 (2.97)

while the reduction of a particle or of an anti-particle from the final state give, respectively,

〈β; out|bout(p, s)|α; in〉 = disconnected terms
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−iZ−1/22

∫
d4xeip·xu(p, s)(i∂/x −m) 〈β; out|ψ(x)|α; in〉 (2.98)

and

〈β; out|dout(p, s)|α; in〉 = disconnected terms

+iZ
−1/2
2

∫
d4x

〈
β; out|ψ(x)|α; in

〉
(−i∂
←
/x −m)v(p, s)eip·x (2.99)

Notice the formal relation between one electron in the initial state and a positron in the
final state. To go from one to the other one just has to do,

u(p, s)e−ip·x → −v(p, s)eip·x (2.100)

The following steps in the reduction are similar, one only has to pay attention to signs
because of the anti-commutation relations for fermions. To write the final expression we
denote the momenta in the state 〈in| by pi or pi, respectively for particles or anti-particles,
and those in the state 〈out| by p′i, p′i. We also make the following conventions (needed to
define the global sign),

|(p1, s1), · · · , (p1, s1); · · · ; in〉 = b†in(p1, s1) · · · d
†
in(p1, s1) · · · |0〉 (2.101)

and 〈
out; (p′1, s

′
1) · · · , (p′1, s′1) · · ·

∣∣ = 〈0| · · · dout(p′1, s′1), · · · bout(p′1, s′1) (2.102)

Then, if n(n′) denotes the total number of particles (anti-particles), we get

〈
out; (p′1, s

′
1) · · · , (p′1, s′1) · · · |(p1, s1), · · · (p1, s1), · · · ; in

〉
= disconnected terms

+(−iZ−1/22 )n(iZ
−1/2
2 )n

′

∫
d4x1 · · · d4y1 · · · d4x′1 · · · d4y′1 · · ·

e−i
∑

(pi·xi)−i
∑

(pi·yi)e+i
∑

(p′i·x′i)+i
∑

(p′i·y′i)

u(p′1, s
′
1)(i∂/x′1 −m) · · · v(p1, s1)(i∂/y1 −m)

〈0|T (· · ·ψ(y′1) · · ·ψ(x′1)ψ(x1) · · ·ψ(y1) · · · |0〉

(−i∂
←
/x1 −m)u(p1, s1) · · · (−i∂

←
/y′1 −m)v(p′1, s

′
1) (2.103)

Eq. (2.103) is the fundamental expression that allows to relate the elements of the S
matrix with the Green functions of the theory. The operators within the time-ordered
product can be reordered, modulo some minus sign. The sign and ordering shown corre-
spond to the conventions in Eqs. (2.101) and (2.102). In terms of diagrams, we represent
the Green function,

〈0|T
[
ψ(y′m′) · · ·ψ(y′1)ψ(x′ℓ′) · · ·ψ(x′1)ψ(x1) · · ·ψ(xℓ)ψ(y1) · · ·ψ(ym)

]
|0〉 (2.104)
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x1

x′1

y1

y′1

xl

x′l

ym

y′m

Figure 2.1: Green function for fermions.

by the diagram3 of Fig. (2.1).

The operators (i∂/−m) e (−i∂
←
/−m) force the particles to be on-shell and remove the

propagators from the external lines (truncated Green functions). In the next chapter we
will learn how to determine these functions in perturbation theory.

2.8 Reduction formula for photons

The LSZ formalism for photons, has some difficulties connected with the problems in
quantizing the electromagnetic field. When one adopts a formalism (radiation gauge)
where the only components of the field Aµ are transverse (as in Ref.[1]), the problems
arise in showing the Lorentz and gauge invariance of the S matrix. In the formalism of
the undefined metric, that we adopted in section 1.4.2, the difficulties are connected with
the states of negative norm, besides the gauge invariance.

Here we are going to ignore these difficulties4 and assume that we can define the in
fields by the relation,

√
Z3A

µ
in(x) = Aµ(x)−

∫
d4yDµν

ret(x− y)jν(y) (2.105)

and in the same way for the out fields,

√
Z3A

µ
out(x) = Aµ(x)−

∫
d4yDµν

adv(x− y)jν(y) (2.106)

3With lepton number conservation, the number of particles minus anti-particles is conserved, that is

ℓ−m = ℓ
′ −m

′

4We will see in chapter 6 a more satisfactory procedure to quantize all gauge theories, including Maxwell
theory of the electromagnetic field. We will see that the resulting perturbation theory coincides with the
one we get here. This is our justification to be less precise here.
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where

⊔⊓Aµin = ⊔⊓Aµout = 0

⊔⊓Aµ = jµ

⊔⊓Dµν
adv, ret = δµνδµ(x− y) (2.107)

The fields in and out are free fields, and therefore they have a Fourier expansion in
plane waves and creation and annihilation operators of the form

Aµin(x) =

∫
d̃k

3∑

λ=0

[
ain(k, λ)ε

µ(k, λ)e−ik·x + a†in(k, λ)ε
µ∗(k, λ)eik·x

]
(2.108)

and therefore

ain(k, λ) = −i
∫
d3xeik·x∂

↔
0ε
µ(k, λ)Ainµ (x)

a†in(k, λ) = i

∫
d3xe−ik·x∂

↔
0ε
µ∗(k, λ)Ainµ (x) (2.109)

where, as usual, ain(k, λ) and a†in(k, λ) are time independent. In Eq. (2.108) all the
polarizations appear, but as the elements of the S matrix are between physical states, we
are sure that the longitudinal and scalar polarizations do not contribute. In this formalism
what is difficult to show is the spectral decomposition. We are not going to enter those
details, just state that we can show that Z3 is gauge independent and satisfies 0 ≤ Z3 < 1.
The reduction formula is easily obtained. We get

〈β; out|(kλ)α; in〉 = 〈β − (k, λ); out|α; in〉 +
〈
β; out|a†in(k, λ) − a†out(k, λ)|α; in

〉

= disconnected terms

+i

∫
d3xe−ik·x∂

↔
0ε
∗
µ(k, λ) 〈β; out|Aµin(x)−Aµout(x)|α; in〉

= disconnected terms

−i( lim
t→+∞

− lim
t→−∞

)Z
−1/2
3

∫
d3xe−ik·x∂

↔
0 〈β; out|Aµ(x)|α; in〉 ε∗µ(k, λ)

= disconnected terms

−iZ−1/23

∫
d4xe−ik·x∂

↔
0 〈β; out|Aµ(x)|α; in〉 ε∗µ(k, λ)

= disconnected terms

−iZ−1/23

∫
d4xe−ik·x~⊔⊓x 〈β; out|Aµ(x)|α; in〉 ε∗µ(k, λ) (2.110)

The final formula for photons is then

〈
k′1 · · · k′n; out|k1 · · · kℓ; in

〉
= disconnected terms
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x1 xi

xlxn

Figure 2.2: Green function for photons.

+

( −i√
Z3

)n+ℓ ∫
d4y1 · · · d4ynd4x1 · · · d4xℓ e[i

∑n k′i·yi−i
∑ℓ ki·xi]

εµ1(k1, λ1) · · · εµℓ(kℓ, λℓ)ε∗µ
′
1(k′1, λ

′
1) · · · ε∗µ

′
n(k′n, λ

′
n)

⊔⊓y1 · · · ⊔⊓xℓ 〈0|T (Aµ′1(y1) · · ·Aµ′n(yn)Aµ1(x1) · · ·Aµℓ(xℓ) |0〉 (2.111)

and corresponds to the diagram of Fig. (2.2).

2.9 Cross sections

The reduction formulas, Eqs.(2.67), (2.103) and (2.111), are the fundamental results of
this chapter. They relate the transition amplitudes from the initial to the final state with
the Green functions of the theory. In the next chapter we will show how to evaluate these
Green functions setting up the so-called covariant perturbation theory. Before we close
this chapter, let us indicate how these transition amplitudes

Sfi ≡ 〈f ; out|i; in〉 (2.112)

are related with the quantities that are experimentally accessible, the cross sections. Then
the path between experiment (cross sections) and theory (Green functions) will be estab-
lished.

As we have seen in the reduction formulas there is always a trivial contribution to the
S matrix, that corresponds to the so-called disconnected terms, when the system goes from
the initial to the final state without interaction. The subtraction of this trivial contribution
leads us to introduce the T matrix with the relation,

Sfi = 1fi + i(2π)4δ4(Pf − Pi)Tfi (2.113)

where we have factorized explicitly the delta function expressing the 4-momentum conser-
vation. If we neglect the trivial contribution, the transition probability from the initial to
the final state will be given by

Wf←i =
∣∣(2π)4δ4(Pf − Pi)Tfi

∣∣2 (2.114)
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To proceed we have to deal with the meaning of a square of a delta function. This
appears because we are using plane waves. To solve this problem we can normalize in a
box of volume V and consider that the interaction has a duration of T . Then

(2π)4δ4(Pf − Pi) = lim
V → ∞
T → ∞

∫

V
d3x

∫ T/2

−T/2
dx0ei(Pf−Pi)·x . (2.115)

However

F ≡
∫

V
d3x

∫ T/2

−T/2
dx0ei(Pf−Pi)·x = V δ~Pf

~Pj

2

|Ef − Ei|
sin

∣∣∣∣
T

2
(Ef − Ei)

∣∣∣∣ (2.116)

and the square of the last expression can be done, giving,

|F |2 = V 2δ~Pf , ~Pi

4

|Ef − Ei|2
sin2

∣∣∣∣
T

2
(Ef − Ei)

∣∣∣∣ . (2.117)

If we want the transition rate by unit of volume (and unit of time) we divide by V T . Then

Γfi = lim
V → ∞
T → ∞

V δ~Pf , ~Pi
2
sin2 T2 (Ef −Ei)
T
2 (Ef − Ei)2

|Tfi|2 (2.118)

Using now the results

lim
V→∞

V δ~Pf
~Pj

= (2π)3δ3(~Pf − ~Pi)

lim
T→∞

2
sin2 T2 (Ef − Ei)
T
2 (Ef − Ei)2

= (2π) δ(Ef − Ei) (2.119)

we get for the transition rate by unit volume and unit time,

Γfi ≡ (2π)4δ4(Pf − Pi)|Tfi|2 (2.120)

To get the cross section we have to further divide by the incident flux, and normalize the
particle densities to one particle per unit volume. Finally, we sum (integrate) over all final
states in a certain energy-momentum range. We get,

dσ =
1

ρ1ρ2

1

|~v12|
Γfi

n∏

j=3

d3pj
2p0j(2π)

3
(2.121)

where
ρ1 = 2E1 ; ρ2 = 2E2 (2.122)

An equivalent way of writing this equation is

dσ =
1

4
[
(pi · p2)2 −m2

1m
2
2

]1/2 (2π)
4δ4(Pf − Pi)|Tfi|2

n∏

j=3

dpj (2.123)
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that exhibits well the Lorentz invariance of each part that enters the cross section5. The
incident flux and phase space factors are purely kinematics. The physics, with its inter-
actions, is in the matrix element Tfi.

We note that with our conventions, fermion and boson fields have the same normal-
ization, that is, the one-particle states obey

〈
p|p′
〉
= 2p0(2π)3δ3(~p− ~p′) (2.124)

differing in this way from some older books like Ref.[3].

5It is assumed that, in the case of two beams they are in the same line. Then the cross section, being
a transverse area, is invariant for Lorentz transformations along that direction.
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Problems for Chapter 2

2.1 Show that the spectral representation for fermions, ραβ(q), satisfies,

a) ρ(q) = S−1(a)ρ(qa−1)S(a)

b) ραβ(~q, q
0) = γ0αλρλδ(−~q, q0)γ0δβ

2.2 Use the results of the previous problem to show that, in a theory that preserves Parity,
like QED, we have

ραβ(q) = ρ1(q
2)q/αβ + ρ2(q

2)δαβ (2.125)

2.3 Show that the functions ρ1 and ρ2 defined in problem 2.2 satisfy the following prop-
erties:

i) ρ1 and ρ2 are real

ii) ρ1(σ
2) ≥ 0

iii) σρ1(σ
2)− ρ2(σ

2) ≥ 0

2.4 Show that for the Dirac field we have

1 = Z2 +

∫ ∞

m2
1

dσ2ρ1(σ
2) (2.126)

2.5 Show that

〈0| [ϕin(x), ϕout(y)] |0〉 = i∆(x− y;m) (2.127)



Chapter 3

Covariant Perturbation Theory

3.1 U matrix

In this chapter we are going to develop a method to evaluate the Green functions of a
given theory. From what we have seen in the two previous chapters, we realize that we
only know how to calculate for free fields, like the in an out fields. However, the Green
functions we are interested in, are given in terms of the physical interacting fields, and we
do not know how to operate with these. We are going to see how to express the physical
fields as perturbative series in terms of free in fields. In this way we will be able to evaluate
the Green functions in perturbation theory.

We start by defining the U matrix. To simplify matters, we will be considering, for
the moment, only scalar fields. In the end we will return to the other cases. The physical
interacting fields ϕ(~x, t) and their conjugate momenta π(~x, t), satisfy the same equal time
commutation relations than the in fields, ϕin(~x, t) and their πin(~x, t). Also, both ϕ and
ϕin form a complete set of operators, in the sense that any state, free or interacting, can
be obtained by application of ϕin or ϕ in the vacuum. This implies that there should be
an unitary transformation U(t) that relates ϕ with ϕin, that is,

ϕ(~x, t) = U−1(t)ϕin(~x, t)U(t)

π(~x, t) = U−1(t)πin(~x, t)U(t) (3.1)

The dynamics of U can be obtained from the equations of motion for ϕ(x) and ϕin(x).
These are,

∂ϕin
∂t

(x) = i[Hin(ϕin, πin), ϕin]

∂πin
∂t

(x) = i[Hin(ϕin, πin), πin] (3.2)

and

∂ϕ

∂t
(x) = i[H(ϕ, π), ϕ]

∂π

∂t
(x) = i[H(ϕ, π), π] (3.3)

79
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Then from Eqs. (3.2) and (3.1) we get,

ϕ̇in(x) =
∂

∂t

[
U(t)ϕ(x)U−1(t)

]

=
[
U̇(t)U−1(t), ϕin

]
+ i [H(ϕin, πin), ϕin(x)]

= ϕ̇in(x) +
[
U̇U−1 + iHI(ϕin, πin), ϕin

]
(3.4)

where

HI(ϕin, πin) = H(ϕin, πin)−Hin(ϕin, πin) ≡ HI(t) (3.5)

and in a similar way

π̇in(x) = π̇in +
[
U̇U−1 + iHI(ϕin, πin), πin

]
(3.6)

From Eqs. (3.4) and (3.6) we obtain,

iU̇U−1 = HI(t) + E0(t) (3.7)

where E0(t) commutes with ϕin and πin and is therefore a time dependent c-number, not
an operator. Defining

H ′I(t) = HI(t) + E0(t) (3.8)

we get a differential equation for U(t), that reads,

i
∂U(t)

∂t
= H ′I(t)U(t) (3.9)

The solution of this equation in terms of the in fields, is the basis of the covariant pertur-
bation theory.

To integrate Eq. (3.9) we need an initial condition. For that we introduce the operator

U(t, t′) ≡ U(t)U−1(t′) (3.10)

where t ≥ t′, and that obviously satisfies

U(t, t) = 1 (3.11)

It is easy to see that U(t, t′) also satisfies Eq. (3.9), that is,

i
∂U(t, t′)

∂t
= H ′I(t)U(t, t′) (3.12)

and has the initial condition, Eq. (3.11). To proceed we start by transforming Eq. (3.12)
in an equivalent integral equation, that is,

U(t, t′) = 1− i

∫ t

t′
dt1H

′
I(t1)U(t1, t

′) (3.13)
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Notice that we have not solved the problem because U(t, t′) appears on both sides of the
equation. However, we can iterate the equation to get the expansion,

U(t, t′) = 1− i

∫ t

t′
dt1H

′
I(t1) + (−i)2

∫ t

t′
dt1H

′
I(t1)

∫ t1

t′
dt2H

′
I(t2)

+ · · ·+ (−i)n
∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tn−1

t′
dtnH

′
I(t1) · · ·H ′I(tn)

+ · · · (3.14)

Of course this expansion can only be useful if HI contains a small parameter and, because
of that, we can truncate the expansion at certain order in that parameter. Coming back
to Eq. (3.14), as t1 ≥ t2 ≥, · · · tn, the product is time-ordered and we can therefore write

U(t, t′) = 1 +
∞∑

n=1

(−i)n
∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tn−1

t′
dtnT (H

′
I(t1) · · ·H ′I(tn)) (3.15)

Using the symmetry t1, t2 we can write,

∫ t

t′
dt1

∫ t1

t′
dt2T (H

′
I(t1)H

′
I(t2)) =

∫ t

t′
dt2

∫ t2

t′
dt1T (H

′
I(t1)H

′
I(t2))

=
1

2

∫ t

t′
dt1

∫ t

t′
dt2T (H

′
I(t1)H

′
2(t2)) (3.16)

which can be seen from the illustration in Fig. 3.1.

t

t
t′
t′ t1

t2

∫ t
t′ dt1

∫ t1
t′ dt2

∫ t
t′ dt2

∫ t2
t′ dt1

Figure 3.1: Integration regions in Eq.(3.16)

In general, for n integrations, instead of 1
2 we will have 1

n! , and we get,

U(t, t′) = 1 +

∞∑

n=1

(−i)n
n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtnT (H

′
I(t1) · · ·H ′I(tn))

≡ T

(
exp[−i

∫ t

t′
dtH ′I(t)]

)

= T

(
exp[−i

∫ t

t′
d4xHI(ϕin)]

)
(3.17)
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where the time-ordered product is to be interpreted expanding the exponential.

The operators U satisfy the following multiplication rule

U(t, t′) = U(t, t′′)U(t′′, t′) (3.18)

which can be seen using the definition, Eq. (3.10), or from the explicit expression, Eq. (3.17).
From Eq. (3.18), we can obtain,

U(t, t′) = U−1(t′, t) (3.19)

3.2 Perturbative expansion of Green functions

As we saw in the previous chapter, the LSZ technique reduces the evaluation of the
elements of the S matrix to a basic ingredient, the so-called Green functions of the theory.
These are expectation values of time-ordered products of the Heisenberg fields, ϕ(x),

G(x1, · · · , xn) ≡ 〈0|Tϕ(x1)ϕ(x2) · · ·ϕ(xn) |0〉 (3.20)

The basic idea for the evaluation of the Green functions consists in expressing the fields
ϕ(x) in terms of the fields ϕin(x), using the operator U . We get

G(x1, · · · , xn) = 〈0|T (U−1(t1)ϕin(x1)U(t1, t2)ϕin(x2)U(t2, t3) · · ·

· · ·U(tn−1, tn)ϕin(xn)U(tn)) |0〉

= 〈0|T (U−1(t)U(t, t1)ϕin(x1)U(t1, t2) · · ·

· · ·U(tn−1, tn)ϕin(xn)U(tn,−t)U(−t)) |0〉 (3.21)

where t is a time that we will let go to ∞. When t→ ∞, t is later than all the ti and −t is
earlier than all the times ti. Therefore we can take U−1(t) e U(−t) out of the time-ordered
product. Using the multiplicative property of the operator U we can then write,

G(x1, · · · , xn) = 〈0|U−1(t)T
(
ϕin(x1) · · ·ϕin(xn) exp[−i

∫ t

−t
H ′I(t

′)dt′]

)
U(−t) |0〉 (3.22)

where the time-ordered product T is meant to be applied after expanding the exponential.
If it were not for the presence of the operators U−1(t) and U(−t), we would have been
successful in expressing the Green function G(x1 · · · xn) completely in terms of the in
fields. Now we are going to show that the vacuum is an eigenstate of the operator U(t).
For that we consider an arbitrary state |αp; in〉 that contains one particle of momentum p,
all the other quantum numbers being denoted collectively by α. To simplify, we continue
considering the case of the scalar field. We have then,

〈αp; in|U(−t)|0〉 = 〈α; in|ain(p)U(−t)|0〉

= −i
∫
d3xf∗p (~x,−t′)

(
∂
→

∂t′
− ∂
←

∂t′

)
〈α; in|ϕin(~x,−t′)U(−t) |0〉
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(3.23)

where fp(~x, t) = e−ip·x. We use now Eq. (3.1) to express ϕin(~x,−t) in terms of ϕ(~x,−t).
We get,

〈αp; in|U(−t)|0〉 =

= −i
∫
d3xf∗p (~x,−t′)∂

↔′
0

〈
α; in|U(−t′)ϕ(~x,−t′)U−1(−t′)U(−t)|0

〉

= −i
∫
d3xf∗p (~x,−t′)

[
− ∂
←

0′ 〈α; in|U(−t′)ϕ(~x,−t′)U−1(−t′)U(−t) |0〉

+ 〈α; in|U(−t′)ϕ̇(~x,−t′)U−1(−t′)U(−t) |0〉
]

−i
∫ ′

d3xf∗p (~x,−t′) 〈α; in| U̇(−t′)ϕ(~x,−t′)U−1(−t′)U(−t) |0〉

−i
∫
d3xf∗p (~x,−t′) 〈α; in|U(−t′)ϕ(~x,−t′)U̇−1(−t′)U(−t) |0〉 (3.24)

We take now the t = t′ → ∞ limit. Then

〈αp; in|U(−t) |0〉 =
√
Z 〈α; in|U(−t)ain(p) |0〉

− i

∫
d3xf∗(~x,−t)

[
〈α; in| U̇(−t)ϕ(~x,−t) + U(−t)ϕ(~x,−t)U̇−1(−t)U(−t) |0〉

]
(3.25)

Now the first term in Eq. (3.25) vanishes because ain(p) |0〉 = 0. The second term also
vanishes because we have (we omit the arguments to simplify the notation),

U̇ϕ+ UϕU̇−1U = U̇U−1ϕinU + ϕinUU̇
−1U

= U̇U−1ϕinU − ϕinU̇U
−1U

= [U̇U−1, ϕin]U = −i[HI , ϕin]U = 0 (3.26)

where we have used Eq. (3.7) and assumed that the interactions have no derivative1. We
conclude then that,

lim
t→∞

〈αp; in|U(−t)|0〉 = 0 (3.27)

for all states in that contain at least one particle. This means that,

lim
t→∞

U(−t) |0〉 = λ− |0〉 (3.28)

In a similar way we could show that,

lim
t→∞

U(t) |0〉 = λ+ |0〉 (3.29)

1The study of theories with derivatives was not trivial before the quantization via path integral was
introduced. As we will be viewing this method for gauge theories, we can avoid here the complications of
the derivatives. The quantization via path integral is the only method that is available for non-abelian
gauge theories as we will be discussing in chapter 6.
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Returning now to the expression for the Green function, we can write,

G(x1, · · · xn) = λ−λ
∗
+ 〈0|T

(
ϕin(x1) · · ·ϕin(xn) exp

[
−i
∫ t

−t
H ′I(t

′)dt′
])

|0〉 (3.30)

The dependence in the operator U disappeared from the expectation value. To proceed,
let us evaluate the constants λ±, or more to the point, the combination λ−λ∗+ that appears
in Eq. (3.30). We get (in the limit → ∞),

λ−λ
∗
+ = 〈0|U(−t) |0〉 〈0|U−1(t) |0〉

= 〈0|U(−t)U−1(t) |0〉 = 〈0|U(−t, t) |0〉

= 〈0|T
(
exp

[
+i

∫ t

−t
dt′H ′I(t

′)

])
|0〉

= 〈0|T
(
exp

[
−i
∫ t

−t
dt′H ′I(t

′)

])
|0〉−1 (3.31)

Using this result we can write the Green function of Eq. (3.30) in the form,

G(x1, · · · , xn) =
〈0|T (ϕin(x1) · · ·ϕin(xn) exp[−i

∫ t
−t dt

′H ′I(t
′)]) |0〉

〈0|T (exp[−i
∫ t
−t dt

′H ′I(t
′)) |0〉

(3.32)

when t → ∞. Before we write the final expression, we can now introduce the number
E0(t). For that we recall that,

H ′I = HI + E0 (3.33)

and noticing that E0 is not an operator, we get a factor exp[−i
∫ t
−t dt

′E0(t
′)] both in the

numerator and denominator, canceling out in the final result. The final result can then
be obtained from Eq. (3.32), just substituting H ′I by HI . We get,

G(x1 · · · , xn) =
〈0|T (ϕin(x1) · · ·ϕin(xn) exp[−i

∫ t
−t dt

′HI(t
′)]) |0〉

〈0|T (exp[−i
∫ t
−t dt

′HI(t′)) |0〉

=

∑∞
m=0

(−i)m
m!

∫∞
−∞ d

4y1 · · · d4ym 〈0|T (ϕin(x1) · · ·ϕin(xn)HI(y1) · · · HI(ym) |0〉
∑∞

m=0
(−i)n
n!

∫ +∞
−∞ d4y1 · · · d4ym 〈0|T (HI(y1) · · · HI(ym)) |0〉

(3.34)

This equation is the fundamental result. The Green functions have been expressed in
terms of the in fields whose algebra we know. It is therefore possible to reduce Eq. (3.34)
to known quantities. In this reduction plays an important role the Wick’s theorem, to
which we now turn.

3.3 Wick’s theorem

To evaluate the amplitudes that appear in Eq. (3.34) we have to move the annihilation
operators to the right until they act on the vacuum. The final result from these manipu-
lations can be stated in the form of a theorem, known as Wick’s theorem, which reads,

T (ϕin(x1) · · ·ϕin(xn)) =
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= : ϕin(x1) · · ·ϕin(xn) : +[〈0|T (ϕin(x1)ϕin(x2)) |0〉 : ϕin(x3) · · ·ϕin(xn) : +perm.

+ 〈0|T (ϕin(x1)ϕin(x2)) |0〉 〈0|T (ϕin(x3)ϕin(x4)) |0〉 : ϕin(x5) · · ·ϕin(xn) : +perm.

+ · · ·

+





〈0|T (ϕin(x1)ϕin(x2)) |0〉 · · · 〈0|T (ϕin(xn−1)ϕin(xn)) |0〉+ perm.

n even

〈0|T (ϕin(x1)ϕin(x2) |0〉 · · · 〈0|T (ϕin(xn−2)ϕin(xn−1)) |0〉ϕin(xn) + perm.

n odd

(3.35)

Proof:

The proof of the theorem is done by induction. For n = 1 it is certainly true (and
trivial). Also for n = 2 we can shown that

T (ϕin(x1)ϕin(x2)) =: ϕin(x1)ϕin(x2) : +c-number (3.36)

where the c-number comes from the commutations that are needed to move the annihila-
tion operators to the right. To find this constant, we do not have to do any calculation,
just to notice that

〈0| : · · · : |0〉 = 0 (3.37)

Then

T (ϕin(x1)ϕin(x2)) =: ϕin(x1)ϕin(x2) : + 〈0|T (ϕin(x1)ϕin(x2)) |0〉 (3.38)

which is in agreement with Eq. (3.35).

Continuing with the induction, let us assume that Eq. (3.35) is valid for a given n. We
have to show that it remains valid for n+ 1. Let us consider then T (ϕin(x1) · · ·ϕin(xn+1))
and let us assume that tn+1 is the earliest time. Then

T (ϕin(x1) · · ·ϕin(xn+1)) =

= T (ϕin(x1) · · ·ϕin(xn))ϕin(xn+1)

= : ϕin(x1) · · ·ϕin(xn) : ϕin(xn+1)

+
∑

perm

〈0|T (ϕin(x1)ϕin(x2)) |0〉 : ϕin(x3) · · ·ϕin(xn) : ϕin(xn+1)

+ · · · (3.39)

To write Eq. (3.39) in the form of Eq. (3.35) it is necessary to find the rule showing how
to introduce ϕin(xn+1) inside the normal product. For that, we introduce the notation,

ϕin(x) = ϕ
(+)
in (x) + ϕ

(−)
in (x) (3.40)
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where ϕ
(+)
in (x) contains the annihilation operator and ϕ

(−)
in (x) the creation operator. Then

we can write,

: ϕin(x1) · · ·ϕin(xn) :=
∑

A,B

∏

i∈A
ϕ
(−)
in (xi)

∏

j∈B
ϕ
(+)
in (xj) (3.41)

where the sum runs over all the sets A,B that constitute partitions of the n indices. Then

: ϕin(x1) · · ·ϕin(xn) : ϕin(xn+1) =

=
∑

A,B

∏

i∈A
ϕ
(−)
in (xi)

∏

j∈B
ϕ
(+)
in (xj)[ϕ

(+)
in (xn+1) + ϕ

(−)
in (xn+1)]

=
∑

A,B

∏

iǫA

ϕ
(−)
in (xi)

∏

j∈B
ϕ
(+)
in (xj)ϕ

(+)
in (xn+1)

+
∑

A,B

∏

i∈A
ϕ
(−)
in (xi)ϕ

(−)
in (xn+1)

∏

j∈B
ϕ
(+)
in (xj)

+
∑

A,B

∏

i∈A
ϕ
(−)
in (xi)

∑

k∈B

∏

j∈Bj 6=k
ϕ
(+)
in (xj) 〈0|ϕ(+)

in (xk)ϕ
(−)
in (xn+1) |0〉 (3.42)

we can now write,

〈0|ϕ(+)
in (xk)ϕ

(−)
in (xn+1) |0〉 = 〈0|ϕin(xk)ϕin(xn+1) |0〉

= 〈0|T (ϕin(xk)ϕin(xn+1)) |0〉 (3.43)

where we have used the fact that tn+1 is the earliest time. We can then write Eq. (3.42)
in the form,

: ϕin(x1) · · ·ϕin(xn) : ϕin(xn+1) =: ϕin(x1) · · ·ϕin(xn+1) :

+
∑

k

: ϕin(x1) · · ·ϕin(xk−1)ϕin(xk+1) · · ·ϕin(xn) : 〈0|T (ϕin(xk)ϕin(xn+1)) |0〉

(3.44)

With this result, Eq. (3.39) takes the general form of Eq. (3.35) for the n + 1 case,
ending the proof of the theorem. To fully understand the theorem, it is important to do
in detail the case n = 4, to see how things work. The importance of the Wick’s theorem
for the applications comes from the following two corollaries.

Corollary 1 : If n is odd, then 〈0|T (ϕin(x1) · · ·ϕin(xn)) |0〉 = 0, as results trivially
from Eqs. (3.35) and (3.37) and from,

〈0|ϕin(x) |0〉 = 0 (3.45)

Corollary 2: If n is even

〈0|T (ϕin(x1) · · ·ϕin(xn)) |0〉 =
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=
∑

perm
δp 〈0|T (ϕin(x1)ϕin(x2)) |0〉 · · · 〈0|T (ϕin(xn−1)ϕin(xn)) |0〉 (3.46)

where δp is the sign of the permutation that is necessary to introduce in case of fermion
fields. This result, that in practice is the most important one, also results from Eqs.
(3.35), (3.37) and (3.45).

Therefore the vacuum expectation value of the time-ordered product of n operators
that appear in the general formula, Eq. (3.34), are obtained considering all the vacuum
expectation values of the fields taken two by two (contractions) in all possible ways. Now
these contractions are nothing else than the Feynman propagators for free fields. For
instance,

〈0|T (ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4)) |0〉

= 〈0|T (ϕin(x1)ϕin(x2)) |0〉 〈0|T (ϕin(x3)ϕin(x4) |0〉

+ 〈0|T (ϕin(x1)ϕin(x3)) |0〉 〈0|T (ϕin(x2)ϕin(x4)) |0〉

+ 〈0|T (ϕin(x1)ϕin(x4)) |0〉 〈0|T (ϕin(x2)ϕin(x3)) |0〉

= ∆F (x1 − x2)∆F (x3 − x4) + ∆F (x1 − x3)∆F (x2 − x4)

+∆F (x1 − x4)∆F (x2 − x3) (3.47)

where

∆F (x− y) =

∫
d4k

(2π)4
i

k2 −m2 + iǫ
e−ik(x−y) (3.48)

is the Feynman propagator for the free field theory in the case of scalar fields.

It is convenient to use a graphical (diagrammatic) representation for these propagators.
We have in configuration space,

∆F (x− y) =

∫
d4k

(2π)4
i

k2 −m2 + iǫ
e−ik·(x−y) (3.49)

p

SF (x− y)αβ =

∫
d4p

(2π)4
i(p/+m)αβ
p2 −m2 + iǫ

e−ip·(x−y) (3.50)αβ
p

µ ν
p Dµν

F (x− y) =

∫
d4k

(2π)4
−igµν
k2 + iǫ

e−ik·(x−y) (3.51)

respectively for scalar, spinor and photon (in the Feynman gauge) fields.

As the interaction Hamiltonian is normal ordered, there will be no contractions between
the fields that appear in HI . The fields in HI can only contract with fields outside. In this
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Figure 3.2: Some of the diagrams resulting from Eq (3.53).

way the contractions will connect the points corresponding to HI , the so-called vertices,
to either external points or points in another HI , corresponding to another vertex. To
illustrate this point let us consider the λϕ4 theory where,

HI(x) =
1

4!
λ : ϕ4

in(x) : (3.52)

Then a contribution of order λ2 to G(x1, x2, x3, x4) comes from the term,

λ2

(4!)2
〈0|T (ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4) : ϕ4

in(y1) :: ϕ
4
in(y2) : |0〉 (3.53)

and leads to the diagrams in Fig. (3.2). In these diagrams, the interaction is represented
by four lines coming from one point, y1 or y2. These lines are contractions between one
field from one HI with other field that might belong either to another HI , or be one
of the external fields in G(x1 · · · x4). To obtain the Feynman rules we are left with a
combinatorial problem. We are not going to find them here, as they are much easier to
express in momentum space, as we will see in the following.

In Fig. (3.2) the diagrams a), b) and d) are called connected while the diagram c) is
called disconnected. One diagram is disconnected when there is a part of the diagram that
is not connected in any way to an external line. We will see in the following that these
diagrams do not contribute to the Green functions. Diagram d) is connected but is also
called reducible because it can be obtained by multiplication of simpler Green functions.
As we will see only the irreducible diagrams are important.
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y1y1

y1

y2y2

y2

y3y3 y4y4
y5

a) b) c)

Figure 3.3: Some vacuum–vacuum amplitudes in Eq. (3.54).

3.4 Vacuum–Vacuum amplitudes

We have seen in the previous section examples of the numerator of Eq. (3.34). Let us
now look at the denominator, the so-called vacuum-vacuum amplitudes. Continuing with
the example of λϕ4, some of the diagrams contributing for these amplitudes are shown in
Fig. (3.3). The diagrams associated with the numerator of Eq. (3.34) can be separated
into connected and disconnected parts. For all diagrams that have as connected part a
contribution of order s in the interaction HI , the numerator of G(x1 · · · xn) takes the form,

∞∑

p=0

(−i)p
p!

∫
d4y1 · · · d4yp 〈0|T (ϕin(x1) · · ·ϕin(xn)HI(y1) · · · HI(ys)) |0〉c

× p!

s!(p− s)!
〈0|T (HI(ys+1) · · · HI(yp)) |0〉 (3.54)

where the subscript c indicates that only the connected parts are included. The combina-
torial factor 


p

s


 =

p!

s!(p− s)!
(3.55)

is the number of ways in which we can extract s terms HI from a set of p terms. We write
then Eq. (3.54) in the form (r = p− s),

∞∑

s=0

(−i)s
s!

∫
d4y1 · · · d4ys 〈0|T (ϕin(x1) · · ·ϕin(xn)HI(y1) · · · H(ys)) |0〉c

×
∞∑

r=0

(−i)r
r!

∫
d4z1 · · · d4zr 〈0|T (HI(z1) · · · HI(zr)) |0〉 (3.56)

This equation has the form of a connected diagram of order s times an infinite series
of vacuum-vacuum amplitudes, that cancels exactly against the denominator. This is true
for all orders, and therefore we can write,

G(x1, · · · xn) =

∑
iGi(x1 · · · xn)∑

kDk
=

(
∑

iG
c
i (x1, · · · xn))(

∑
kDk)∑

kDk
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=
∑

i

Gci (x1 · · · xn) (3.57)

where Gci are the connected diagrams and Dk the disconnected ones. This result means
that we can simply ignore completely the disconnected diagrams and consider only the
connected ones when evaluating the Green functions. These are simply the sum of all
connected diagrams, simplifying enormously the structure of Eq. (3.34).

3.5 Feynman rules for λϕ4

To understand how the Feynman rules appear, let us consider the case of a real scalar
field with an interaction of the form,

HI =
λ

4!
: ϕ4

in := −LI (3.58)

To be more precise we consider two particles in the initial and final state. Then the S
matrix element is,

Sfi =
〈
p′1p
′
2; out|p1p2; in

〉

= (i)4
∫
d4x1d

4x2d
4x3d

4x4e
−ip1·x1−ip2·x2+ip′ix3+ip′2·x4

(⊔⊓x1 +m2) · · · (⊔⊓x4 +m2) 〈0|T (ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)) |0〉 (3.59)

For the Green function we use the expressions in Eqs. (3.34) and (3.57) and we obtain,

G(x1, x2, x3, x4) =

∞∑

p=0

(−iλ)p
p!

∫
d4z1 · · · d4zp

〈0|T (ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4) :
ϕ4
in(z1)

4!
: · · · : ϕ

4
in(zp)

4!
:) |0〉c (3.60)

As the case p = 0 is trivial (there is no interaction) we begin by the p = 1 case.

• p = 1

Then the Green function is,

G(x1, x2, x3, x4) = (−iλ)
∫
d4z 〈0|T

(
ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4) :

ϕ4
in(z)

4!
:

)
|0〉

= (−iλ)4!
4!

∫
d4z∆F (x1 − z)∆F (x2 − z)∆F (x3 − z)∆F (x4 − z)

(3.61)

to which corresponds, in the configuration space, the diagram of Fig. (3.4). To proceed,
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x1 x2

x3 x4

z

Figure 3.4: Vertex in the λφ4 theory.

we introduce the Fourier transform of the propagators, that is,

∆F (x1 − z) =

∫
d4q1
(2π)4

e−iq1·(x1−z)∆F (q1) (3.62)

where

∆F (q1) =
i

q21 −m2
(3.63)

then

G(x1, · · · x4) = (−iλ)
∫
d4z

d4q1
(2π)4

· · · d
4q4

(2π)4
e−iq1·x1−iq2x2−iq3x3−iq4x4+i(q1+q2+q3+q4)·z

∆F (q1)∆F (q2)∆F (q3)∆F (q4)

= (−iλ)
∫

d4q1
(2π)4

· · · d
4q4

(2π)4
e−iq1·x1−iq2·x2−iq3·x3−iq4·x4

(2π)4δ4(q1 + q2 + q3 + q4)∆F (q1)∆F (q2)∆F (q3)∆F (q4)

(3.64)

If we now introduce the T matrix transition amplitude, defined by

Sfi = δfi + i(2π)4δ(Pf − Pi) Tfi (3.65)

we obtain

iTfi = (−iλ) (3.66)

for this amplitude we draw the Feynman diagram of Fig. (3.5), and we associate to the
vertex the number (−iλ).

• p = 2

Let us consider now a more complicated case, the evaluation of G(x1 · · · x4) in second
order in the coupling λ. After this exercise we will be in position to be able to state the
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p1 p2

p′1 p′2

−i λ

Figure 3.5: Vertex in momentum space.

Feynman rules in momentum space with all generality. From Eq. (3.60) we get in second
order in λ,

G(x1, · · · x4) =

=
(−iλ)2

2!

∫
d4z1d

4z2 〈0|T
(
ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4) :

ϕ4
in(z1)

4!
::
ϕ4
in(z2)

4!
:

)
|0〉c

=
(−iλ)2

2!

∫
d4z1d

4z2

(
4× 3

4!

)
×
(
4× 3

4!

)
× 2

{
∆F (x1 − z1)∆F (x2 − z1)∆F (z1 − z2)∆F (z1 − z2)∆F (z2 − x3)∆F (z2 − x4)

+∆F (x1 − z1)∆F (x2 − z2)∆F (z1 − z2)∆F (z1 − z2)∆F (z1 − x3)∆F (z2 − x4)

+∆F (x1 − z1)∆F (x2 − z2)∆F (z1 − z2)∆F (z1 − z2)∆F (z1 − x4)∆F (z2 − x3)

+∆F (x1 − z2)∆F (x2 − z2)∆F (z2 − z1)∆F (z2 − z1)∆F (z1 − x3)∆F (z1 − x4)

+∆F (x1 − z2)∆F (x2 − z1)∆F (z1 − z2)∆F (z2 − z1)∆F (z1 − x3)∆F (z2 − x4)

+ ∆F (x1 − z2)∆F (x2 − z1)∆F (z1 − z2)∆F (z1 − z2)∆F (z1 − x4)∆F (z1 − x3)

}

=
(−iλ)2

2!

∫
d4z1d

4z2

{
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x1 x1x1 x2 x2x2

x3 x3x4 x4 x4x3

z1 z1z2 z2z2z1
1

2
1

2

1

2
__ __ __

+ (z1 ↔ z2)

}
(3.67)

Let us now go into momentum space, by introducing the Fourier transform of the
propagators. We start by diagram a),

G(a)(x1, x2, x3, x4) =

=
(−iλ)2

2!

1

2

∫
d4z1d

4z2∆F (x1 − z1)∆F (x2 − z1)∆F (z1 − z2)∆F (z1 − z2)

∆F (z2 − x3)∆F (z2 − x4)

=
(−iλ)2

2!

1

2

∫
d4z1d

4z2
d4q1
(2π)4

d4q2
(2π)4

d4q3
(2π)4

d4q4
(2π)4

d4q5
(2π)4

d4q6
(2π)4

ei[(q1·x1+q2·x2−q3·x3−q4·x4)+z1·(q5−q1−q2+q6)+z2·(q3+q4−q5−q6)]

∆F (q1)∆F (q2)∆F (q3)∆F (q4)∆F (q5)∆F (q6)

=
(−iλ)2

2!

1

2
(2π)4

∫
d4q1
(2π)4

· · · d
4q5

(2π)4
δ4(q1 + q2 − q3 − q4) e

i[q1·x1+q2·x2−q2·x3−q4·x4]

∆F (q1)∆F (q2)∆F (q3)∆F (q4)∆F (q5)∆F (q1 + q2 − q5) (3.68)

Now we insert the last equation into the reduction formula. We get

S
(a)
fi = (i)4

∫
d4x1 · · · d4x4e−i[p1·x1+p2·x2−p

′
1·x3−p′2·x4]

(⊔⊓x1 +m2) · · · (⊔⊓x4 +m2)G(a)(x1, · · · , x4) (3.69)

The only dependence of G(a) in the coordinates, xi(i = 1, · · · 4), is in the exponential,
therefore,

(⊔⊓xi +m2) → (−q2i +m2) (3.70)

and using
(−q2i +m2)∆F (qi) = −i (3.71)

we get

S
(a)
fi =

(−iλ)2
2!

1

2

∫
d4x1 · · · d4x4

∫
d4q1
(2π)4

· · · d
4q5

(2π)4
(2π)4δ4(q1 + q2 − q3 − q4)
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p1 p2

p′1 p′2

q q − p1 − p21
2

Figure 3.6:

e−i[x1·(p1−q1)+x2·(p2−q2)−x3·(p
′
1−q3)−x4·(p′2−q4)]∆F (q5)∆F (q1 + q2 − q5)

=
(−iλ)2

2!

1

2

∫
d4q1
(2π)4

· · · d
4q5

(2π)4
(2π)4δ4(q1 + q2 − q3 − q4)(2π)

4δ4(p1 − q1)

(2π)4δ4(p2 − q2)(2π)
4δ4(p′1 − q3)(2π)

4δ4(p′2 − q4)∆F (q5)∆F (q1 + q2 − q5)

=
(−iλ)2

2!

1

2

∫
d4q5
(2π)4

(2π)4δ4(p1 + p2 − p′1 − p′2)∆F (q5)∆F (p1 + p2 − q5) (3.72)

This expression can be written in the form

S
(a)
fi = (2π)4δ4(p1 + p2 − p′1 − p′2)

(−iλ)2
2!

1

2

∫
d4q

(2π)4
∆F (q)∆F (p1 + p2 − q) (3.73)

If we denote by a′) the diagram a) with the interchange z1 ↔ z2 and redo the calculation
we get exactly the same result as in Eq. (3.73). Therefore,

S
(a+a′)
fi = (2π)4δ4(p1 + p2 − p′1 − p′2)(−iλ)2

1

2

∫
d4q

(2π)4
∆F (q)∆F (p1 + p2 − q) (3.74)

or in terms of the Tfi matrix,

− iT
(a+a′)
fi = (−iλ)2 1

2

∫
d4q

(2π)4
∆F (q)∆F (p1 + p2 − q) (3.75)

To encode this result we draw the Feynman diagram of Fig. (3.6), that has the same
topology as a) and a′) but in momentum space. We find that in order to evaluate the −iT
matrix, we associate to each vertex a factor (−iλ), to each internal line a propagator ∆F

and for each loop the integral
∫ d4q

(2π)4
. Besides that we have 4-momentum conservation at

each vertex. Finally there is a symmetry factor (see below) which takes the value 1
2 for

this diagram.

If we repeat the calculations for diagrams b) + b′) and c) + c′) it is easy to see that we
get,

− iT
(b+b′)
fi = (−iλ)2 1

2

∫
d4q

(2π)4
∆F (q)∆F (q − p1 + p′1) (3.76)
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Figure 3.7:

and

− iT
(c+c′)
fi = (−iλ)2 1

2

∫
d4q

(2π)4
∆F (q)∆F (q − p1 + p′2) (3.77)

to which correspond the diagrams of Fig. (3.7).

After this exercise we are in position to state the Feynman rules with all generality for
the λϕ4 theory. These are rules for the −iT matrix, that is, after we factorize (2π)4δ4(· · · ).
These are (for a process with n external legs):

1. Draw all topologically distinct diagrams with n external legs.

2. At each vertex multiply by the factor (−iλ).

3. To each internal line associate a propagator ∆F (q).

4. For each loop include an integral
∫ d4q

(2π)4 . The direction of this momentum is irrele-

vant, but we have to respect 4-momentum conservation ate each vertex.

5. Multiply by the symmetry factor of the diagram. This is defined by,

S =
# of distinct ways of connecting the vertices to the external legs

Permutations of each vertex × Permutations of equal vertices
(3.78)

6. Add the contributions of all the topologically distinct diagrams. The result is the
−iT matrix amplitude that enters the formula for the cross section.

3.6 Feynman rules for QED

We now turn to the case of QED. Like λφ4, it is a theory without derivatives and therefore,

LI = −HI = −e QψinγµψinAinµ (3.79)

where e is the absolute value of the electron charge, or the proton charge. For the electron
the sign enters explicitly in Q = −1. This way of writing in Eq. (3.79), allows for obvious
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Figure 3.8: Kinematics for the Compton scattering.

generalizations for particles with other charges, like for instance the quarks. For QED we
have then,

LQEDI = e ψinγ
µψinA

in
µ (3.80)

Due to the electric charge conservation, the Green functions that we have to deal with
have an equal number of ψ and ψ fields. In general we have,

G(x1 · · · xnxn+1 · · · x2n; y1 · · · yp) =

= 〈0|T (ψ(x1) · · ·ψ(xn)ψ(xn+1) · · ·ψ(x2n)Aµ1(y1) · · ·Aµp(yp)) |0〉 (3.81)

where, for simplicity, we omit the spinorial indices in the fermion fields. This equation is
written in terms of the physical fields. Following a similar procedure to the scalar field
case, we can obtain an expression for G in terms of the in fields. This will be,

G(x1 · · · x2n; y1 · · · yp) =
〈0|Tψin(x1) · · ·ψin(x2n)Aµ1in (y1) · · ·A

µp
in (yp) e

[i
∫

d4zLI(z)] |0〉
〈0|T exp[i

∫
d4zLI(z)] |0〉

= 〈0|Tψin(x1) · · ·ψin(x2n)Aµ1in (y1) · · ·A
µp
in (yp) e

[i
∫

d4tLI(z)] |0〉c
(3.82)

where the fields in LI are normal ordered, and 〈0| · · · |0〉c means that we only consider the
connected diagrams. To get the Feynman rules we will evaluate a few simple processes.

3.6.1 Compton scattering

Compton scattering corresponds to the following process,

e− + γ → e− + γ (3.83)

and we choose the kinematics in Fig. (3.8). The S matrix element to evaluate is therefore,

Sfi =
〈
(p′, s′), k′; out|(p, s), k; in

〉
(3.84)
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Using the LSZ reduction formula Eq. (2.103), and Eq. (2.111) we can write,

Sfi =

∫
d4xd4x′

∫
d4yd4y′e−i[p·x+k·y−p

′·x′−k′·y′]εµ(k)ε∗µ
′

(k′)

u(p′, s′)α′(i∂
→
/x′−m)α′β′~⊔⊓y~⊔⊓y′ 〈0|T (ψβ′(x′)ψβ(x)Aµ(y)Aµ′(y

′)) |0〉 (−i∂
←
/x−m)βαuα(p, s)

(3.85)

Our task is therefore to evaluate the Green function

G(x′, x, y, y′) ≡ 〈0|T (ψβ′(x′)ψβ(x)Aµ(y)Aµ′(y
′)) |0〉 (3.86)

If we use Eq. (3.82) and the fact that the interaction has an odd number of fields, we find
that the lowest contribution is quadratic in the interaction2. We get

G(x, x′, y, y′) =

=
(ie)2

2!

∫
d4z1d

4z2 〈0|T (ψinβ′ (x′)ψ
in
β (x)Ainµ (y)Ainµ′ (y

′)

: ψin(z1)γ
σψin(z1)A

in
σ (z1) :: ψ

in
(z2)γ

ρψin(z2)A
in
ρ (z2) :) |0〉

=
(ie)2

2!
(γσ)γδ (γρ)γ′δ′

∫
d4z1d

4z2 〈0|T (ψinβ′ (x′)ψ
in
β (x)Ainµ (y)Ainµ′ (y

′)

: ψ
in
γ (z1)ψ

in
δ (z1)A

in
σ (z1) :: ψ

in
γ′ (z2)ψ

in
δ′ (z2)A

in
ρ (z2) :) |0〉 (3.87)

Now we use Wick’s theorem to write 〈0|T (· · · ) |0〉 in terms of the propagators. We get,

〈0|T (ψinβ′ (x′)ψ
in
β (x)Ainµ (y)Ainµ′ (y

′) :ψ
in
γ (z1)ψ

in
δ (z1)A

in
σ (z1) ::ψ

in
γ′ (z2)ψ

in
δ′ (z2)A

in
ρ (z2)) :) |0〉

= 〈0|Tψinβ′ (x′)ψ
in
γ (z1) |0〉 〈0|Tψinδ′ (z2)ψ

in
β (x) |0〉 〈0|Tψinδ (z1)ψγ′(z2) |0〉

〈0|T (Ainµ (y)Ainσ (z1)) |0〉 〈0|TAinµ′(y′)Ainρ (z2) |0〉

+ 〈0|Tψinβ′ (x′)ψ
in
γ (z1) |0〉 〈0|Tψinδ′ (z2)ψ

in
β (x) |0〉 〈0|Tψinδ (z1)ψγ′(z2)|0

〈0|TAinµ (y)Ainρ (z2) |0〉 〈0|TAinµ′ (y′)Ainσ (z1) |0〉

+ 〈0|Tψinβ′ (x′)ψ
in
γ′ (z2) |0〉 〈0|Tψinδ (z1)ψ

in
β (x) |0〉 〈0|Tψinδ′ (z2)ψ

in
γ (z1) |0〉

〈0|TAinµ (y)Ainσ (z1) |0〉 〈0|TAinµ′ (y′)Ainρ (z2) |0〉

+ 〈0|Tψinβ′ (x′)ψ
in
γ′ (z2) |0〉 〈0|Tψinδ (z1)ψ

in
β (x) |0〉 〈0|Tψinδ′ (z2)ψ

in
γ (z1) |0〉

〈0|TAinµ (y)Ainρ (z2) |0〉 〈0|TAinµ′ (y′)Ainσ (z1) |0〉

= SFβ′γ(x
′ − z1)SFδ′β(z2 − x)SFδγ′(z1 − z2)DFµσ(y − z1)DFµ′ρ(y

′ − z2)

2By Wick’s theorem the expectation value of an odd number of fields vanishes.
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Figure 3.9: Diagrams for Compton scattering in configuration space.

+SFβ′γ(x
′ − z1)SFδ′β(z2 − x)SFδγ′(z1 − z2)DFµρ(y − z2)DFµ′σ(y

′ − z1)

+SFβ′γ′(x
′ − z2)SFδβ(z1 − x)SFδ′γ(z2 − z1)DFµσ(y − z1)DFµ′ρ(y

′ − z2)

+SFβ′γ′(x
′ − z2)SFδβ(z1 − x)SFδ′γ(z2 − z1)DFµρ(y − z2)DFµ′σ(y

′ − z1) (3.88)

To better understand Eq. (3.88) it is useful to draw the corresponding diagrams in
configuration space. We show them in Fig. (3.9). From this figure it is clear that b) ≡ c)
and a) ≡ d) because z1 and z2 are irrelevant labels. From this we get a factor of 2 that
is going to cancel the 1

2! in Eq. (3.87)3. We have then only two distinct diagrams that we
take as c) and d). Then, including already the factor of 2, we get for diagrama c)

G(c)(x, x′, y, y′) = (ie)2(γσ)γδ(γ
ρ)γ′δ′

∫
d4z1d

4z2 SFβ′γ′(x
′ − z2)SFδβ(z1 − x)

SFδ′γ(z2 − z1)DFµσ(y − z1)DFµ′ρ(y
′ − z2) (3.89)

To proceed we could, like in the case of λϕ4, introduce the Fourier transform of the
propagators. However, it is easier to get rid of the external legs using the results,

(i∂/x −m)αλSFλβ(x− y) = iδαβδ
4(x− y)

SFαλ(x− y)(−i∂
←
/y −m)λβ = iδαβδ

4(x− y) (3.90)

and
⊔⊓xDFµν(x− y) = igµνδ

4(x− y) (3.91)

3In fact this result is general, for n vertices we have n! that cancels against the factor 1
n!

from the
expansion of the exponential.
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Figure 3.10: Diagrams for Compton scattering.

We get therefore,

S
(c)
fi = (ie)2

∫
d4xd4x′d4yd4y′e−i(p·x+k·y−p

′·x′−k′·y′)εµ(k)gµσε
∗µ′(k′)gµ′ρ

(γσ)γδ(γ
ρ)γ′δ′ u(p

′, s′)α′δα′γ′uα(p, s) δδα∫
d4z1d

4z2δ
4(x′ − z2)δ

4(x− z1)δ
4(y − z1)δ

4(y′ − z2) SFδ′γ(z2 − z1)

= (ie)2
∫
d4z1d

4z2e
−i(p·z1+k·z1−p′·z2−k′·z2)εµ(k)ε∗µ

′

(k′)

u(p′, s′)α′(γµ′)α′δ′SFδ′γ(z2 − z1)(γµ)γαuα(p, s) (3.92)

Finally we use

SF (z2 − z1) =

∫
d4q

(2π)4
i(q/+m)

q2 −m2 + iǫ
e−iq·(z2−z1)

≡
∫

d4q

(2π)4
SF (q)e

−iq·(z2−z1) (3.93)

to get

S
(c)
fi =

∫
d4q

(2π)4
d4z1d

4z2e
−iz1·(p+k−q)+iz2·(p′+k′−q)

εµ(k)εµ
′∗(k′)u(p′, s′)(ieγµ′ )SF (q)(ieγµ)u(p, s)

= (2π)4δ(4)(p+ k − p′ − k)·

εµ(k)εµ
′∗(k′)u(p′, s′)(ieγµ′ )SF (p+ k)(ieγµ)u(p, s) (3.94)

Therefore, the T matrix transition amplitude is,

− iT
(c)
fi = εµ(k)εµ

′∗(k′)u(p′, s′)(ieγµ′ )SF (p + k)(ieγµ)u(p, s) (3.95)

corresponding to the diagram on the left panel of Fig. (3.10). In Eq. (3.95) we factor out
the quantity (ieγµ), because it will be clear that this quantity will be the Feynman rule for
the vertex. The arrows in these diagrams correspond to the flow of electric charge. Notice
that to an electron in the initial state we associate a spinor u(p, s) and for an electron in



100 CHAPTER 3. COVARIANT PERTURBATION THEORY
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q q′

Figure 3.11: Diagram with positrons

the final state we associate the spinor u(p′, s′). Since the electron line as to be a c-number,
we start writing the line in the reverse order of that of the arrows.

In a similar way for diagram d) we will get the diagram represented in Fig. (3.10), that
corresponds to the following expression,

− iT
(d)
fi = εµ(k)ε∗µ

′

(k′)u(p′, s′)(ieγµ)SF (p − k′)(ieγµ′)u(p, s) (3.96)

Looking at Eqs. (3.95) and (3.96) we are almost in a position to state the Feynman rules
for QED. Before that we will look at a case where we have positrons.

3.6.2 Electron–positron elastic scattering (Bhabha scattering)

We will consider electron-positron elastic scattering, the so-called Bhabha scattering,

e−(p) + e+(q) → e−(p′) + e+(q′) (3.97)

This example will teach us two things. First, how positrons (that is the anti-particles)
enter in the amplitudes. Secondly we will learn that, sometimes, due the anti-commutation
rules of the fermions, we will get relative minus signs between different diagrams. We have,

Sfi =
〈
(p′, s′), (q′, s′); out|(p, s), (q, s); in

〉
(3.98)

corresponding to the kinematics in Fig. (3.11). Notice that the arrows are in the direction
of flow of charge of the electron, but the momenta do correspond to the real momenta
of the particles or antiparticles in that frame: p entering and p′ exiting for the electron,
and q entering and q′ exiting for the positron. In the following we will not show the spin
dependence in order to simplify the notation. Then using Eq. (3.98) we write,

Sfi =

∫
d4xd4yd4x′d4y′e−i[p·x+q·y−p

′·x′−q′·y′]

u(p′)α(i∂
→
/x′ −m)αβ vγ(q)(i∂

→
/y −m)γδ

〈0|Tψδ′(y′)ψβ(x′)ψβ′(x)ψδ(y) |0〉

(−i∂
←
/x −m)β′α′uα′(p)(−i∂

←
/y′ −m)δ′γ′vγ′(q

′) (3.99)

We have, therefore, to evaluate the Green function

G(y′, x′, x, y) ≡ 〈0|Tψδ′(y′)ψβ(x′)ψβ′(x)ψδ(y) |0〉 (3.100)
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Figure 3.12:

The lowest order contribution is of second order in the coupling4. We have (to simplify
we omit the label in),

G(y′, x′, x, y) =
(ie)2

2
(γµ)ǫǫ′(γ

ν)ϕϕ′

∫
d4z1d

4z2

〈0|Tψδ′(y′)ψβ(x′)ψβ′(x)ψδ(y) : ψǫ(z1)ψǫ′(z1)Aµ(z1) :: ψϕ(z2)ψϕ′(z2)Aν(z2) : |0〉

=
(ie)2

2
(γµ)εε′(γ

ν)ϕϕ′

∫
d4z1d

4z2

[
− SFβǫ(x

′ − z1)SFǫ′β′(z1 − x)SFδϕ(y − z2)SFϕ′δ′(z2 − y′)DFµν(z1 − z2)

+SFδǫ(y − z1)SFǫ′β′(z1 − x)SFβϕ(x
′ − z2)SFϕ′δ′(z2 − y′)DFµν(z1 − z2)

+(z1 ↔ z2)
]

(3.101)

Once more the exchange (z1 ↔ z2) compensates for the factor 1
2! and we have two diagrams

with a relative minus sign, as it is shown in Fig. (3.12). Let us look at the contribution of
diagram a),

S
(a)
fi = −

∫
d4xd4yd4x′d4y′d4z1d

4z2(ie)
2(γµ)εε′(γ

ν)ϕϕ′e−i[p·x+q·y−p
′·x′−q′·y′]

u(p′)α(i∂
→
/′x −m)αβvγ(q)(i∂

→
/y −m)γδ

SFβε(x
′ − z1)SFε′β′(z1 − x)SFδϕ(y − z2)SFϕ′δ′(z2 − y′)

(−i∂
←
/x −m)β′α′uα′(p)(−i∂

←
/′y −m)δ′γ′vγ′(q

′)DFµν(z1 − z2)

= −
∫
d4z1d

4z2e
−i[p·z1+q·z2−p′·z1−q′·z2]

u(p′)(ieγµ)u(p)v(q)(ieγν)v(q′)DFµν(z1 − z2) (3.102)

4There is, of course, a contribution without interaction, but that corresponds to disconnected terms in
which we are not interested.
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Using now the Fourier transform of the photon propagator,

DFµν(z1 − z2) =

∫
d4k

(2π)4
−igµν
k2 + iε

e−ik·(z1−z2)

≡
∫

d4k

(2π)u
DFµν(k)e

−ik·(z1−z2) (3.103)

we get

S
(a)
fi = −u(p′)(ieγµ)u(ρ)v(q)(ieγν)v(q′)

∫
d4z1d

4z2
d4k

(2π)4
DFµν(k)e

−iz1·(p−p′+k)e−iz2·(q−q
′−k)

= −(2π)4δ4(p + q − p′ − q′)u(p′)(ieγν)u(p)v(q)(ieγµ)v(q′)DFµν(p
′ − p)

(3.104)

and therefore the T matrix element is,

− iT
(a)
fi = −u(p′)(ieγµ)u(p)DFµν(p

′ − p)v(q)(ieγν)v(q′) (3.105)

to which corresponds the Feynman diagram of Fig. (3.13).

In a similar way we would get

− iT
(b)
fi = v(q)(ieγµ)u(p)DFµν(p+ q)u(p′)(ieγν)v(q′) (3.106)

that corresponds to the diagram of Fig. (3.14). Which of the diagrams has the minus
sign is irrelevant, because this is the lowest order diagram. It depends on the conventions
determining how to build the in state that lead to Eq. (3.98). Only the relative sign is
important. However, higher order terms have to respect the same conventions.

3.6.3 Fermion Loops

Before we summarize the Feynman rules for QED let us look at what happens with fermion
loops. One such example is the second order correction to the photon propagator shown
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p

q q’

p’

µ ν
p+q

Figure 3.14:

Figure 3.15: Vacuum polarization

in Fig. (3.15). First of all, the loop orientation it is only relevant if leads to topologically
different diagrams. Therefore the diagrams of Fig. (3.16) are topologically equivalent and
only one should be considered. However the diagrams in Fig. (3.17) are topologically
distinct and both should be considered.

Figure 3.16: Topologically equivalent diagrams

The second aspect that is relevant is a possible sign coming from the anti-commutation
of the fermion fields, that should affect some diagrams, and in particular the fermion loop.
To understand this sign we should note that by definition of loop, the internal lines are
not connected to external fermion lines, they should originate only in the interaction.
Therefore they should come from terms of the form

〈0|T · · · : ψ(z1)A/(z1)ψ(z1) : · · · : ψ(zn)A/(zn)ψ(zn) : · · · |0〉 . (3.107)

Now it is clear that in order to make the appropriate contractions of the fermion fields
to bring them to the form of the Feynman propagator, 〈0|Tψ(z1)ψ(z2) |0〉, it is necessary
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11

22 33

44

Figure 3.17: Topologically distinct diagrams

to make an odd number of permutations of the fermion fields, and therefore we get a (−)
sign for the loops. This sign is physically relevant because there is a lowest order diagram
where the photons do not interact, corersponding to the free propagator. So the minus
sign is defined in relation to this lowest order diagram and therefore it is not arbitrary
(see the difference with respect to the discussion of the Bahbha scattering).

3.6.4 Feynman rules for QED

We are now in position to state the Feynman rules for QED

1. For a given process, draw all topologically distinct diagrams.

2. For each electron entering a diagram a factor u(p, s). If it leaves the diagram a factor
u(p, s).

3. For each positron leaving the diagram (final state) a factor v(p, s). It it enters the
diagram (initial state) then we have a factor v(p, s).

4. For each photon in the initial state we have the vector εµ(k) and in the final state
ε∗µ(k).

5. For each internal fermionic line the propagator

SFαβ
(p) = i

(p/+m)αβ
p2 −m2 + iε

(3.108)
p αβ

6. For each virtual photon the propagator (Feynman gauge)

DFµν(k) = −igµν
k2

(3.109)µ ν
k

7. For each vertex the factor
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ieγµ (3.110)
µ

α

β

8. For each internal momentum, not fixed by conservation of momenta, as in the case
of loops, a factor

∫
d4q

(2π)4
(3.111)

9. For each loop of fermions a −1 sign.

10. A factor of −1 between diagrams that differ by exchange of fermionic lines. In doubt,
revert to Wick’s theorem.

Comments

• In QED there are no symmetry factors, that is, they are always equal to 1.

• In our discussion we did not consider the Z factors that come in the reduction
formulas, like in Eq. (2.67). This is true in lowest order in perturbation theory.
They can be calculated also in perturbation theory. Their definition is (for instance
for the electron),

lim
p/→m

S′F (p) = Z2SF (p) (3.112)

where S′F (p) is the propagator of the theory with interactions. Then we can obtain,
in perturbation theory,

Z2 = 1 +O(α) + · · · (3.113)

In higher orders it is necessary to correct the external lines with these
√
Z factors.

3.7 General formalism for getting the Feynman rules

After showing how to obtain the Feynman rules for λφ4 and QED, we are going to present
here, without proof, a general method to obtain the Feynman rules of any theory, including
the case when the interactions have derivatives, that we have excluded up to now, and
that is very important for the Standard Model. This method can only be fully justified
with the methods of Chapter 5. For simplicity we will consider only scalar fields.

The starting point is the action taken as a functional of the fields,

Γ0[ϕ] ≡
∫
d4xL[ϕ]· (3.114)
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In fact, Γ0[ϕ] is the generating functional of the one particle irreducible Green functions
in lowest order, as we will see in Chapter 5. The rules are as follows:

Propagators

1. Start by evaluating Γ
(2)
0 (xi, xj) ≡

δ2Γ0[ϕ]

δϕ(xi)δϕ(xj)

2. Then evaluate the Fourier Transform (FT) to get Γ
(2)
0 (pi, pj) defined by the relation

(2π)4δ4(pi + pj)Γ
(2)
0 (pi, pj) ≡

∫
d4xid

4xje
−i(pi·xi+pj ·xj)Γ(2)

0 (xi, xj) (3.115)

where all the momenta are incoming.

3. The Feynman propagator is then

G
(0)
F ij = i[Γ

(2)
0 (pi, pj)]

−1 . (3.116)

Do not forget that pi = −pj.

Vertices

1. Evaluate Γ
(n)
0 (x1 · · · xn) = δnΓ0[ϕ]

δϕ(x1) · · · δϕ(xn)
2. Then take the Fourier Transform to obtain

(2π)4δ4(p1 + p2 + · · ·+ pn)Γ
(n)
0 (p1 · · · pn)

≡
∫
d4x1 · · · d4xne−i(p1·x1+···pn·xn)Γ(n)

0 (x1 · · · xn) (3.117)

3. The vertex in momenta space is then given by the rule

iΓ
(n)
0 (p1, · · · pn) (3.118)

Comments



3.7. GENERAL FORMALISM FOR GETTING THE FEYNMAN RULES 107

• For fermionic fields it is necessary to take care with the order of the derivation. The
convention that we take is

δ2

δψα(x)δψβ(y)

(
ψ(z)Γψ(z)

)
≡ Γβαδ

4(z − x)δ4(z − y) (3.119)

ψα(x) e ψβ(x) are here taken as classical anti-commuting fields (Grassmann variables,
see Chapter 5).

• The functional derivatives are defined by

δϕi(x)

δϕk(y)
≡ δikδ

4(x− y) (3.120)

3.7.1 Example: scalar electrodynamics

The Lagrangian is

L = (∂µ − ieQAµ)ϕ
∗(∂µ + ieQAµ)ϕ−mϕ∗ϕ+ LMaxwell −

λ

4
(ϕ∗ϕ)2 (3.121)

Therefore
Lint = −ieQϕ∗∂

↔
µϕA

µ + e2Q2ϕ∗ϕAµA
µ (3.122)

The propagators are the usual ones, let us consider only the vertices. There are two
vertices. The cubic vertex is

µ
k

p

q
ϕ

ϕ∗

Figure 3.18: Cubic vertex in scalar QED.

Γ(3)
µ (x1, x2, x3) = −ieQ

∫
d4zδ4(z − x1)(∂

→z

µ − ∂
←z

µ)δ
4(z − x2)δ

4(z − x3) (3.123)

therefore

(2π)4δ4(p + k + q)Γ(3)
µ (p, q, k) ≡ −ieQ

∫
d4zd4x1d

4x2d
4x3e

−i(x1·p+x2·q+x3·k)

δ4(z − x1) (∂
→z
µ − ∂

←z
µ)δ

4(z − x2)δ
4(z − x3)
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= −ieQ
∫
d4zd4x2e

−i[(p+k)·z+q·x2]∂zµδ
4(z − x2)

+ieQ

∫
d4zd4x1e

−i[p·x1+(q+k)·z]∂zµδ
4(z − x1)

= −ieQ(ipµ − iqµ)(2π)
4δ4(p+ q + k) (3.124)

Therefore we obtain for this vertex

iΓµ(p, q, k) = ieQ (pµ − qµ) = −ieQ (qµ − pµ) (3.125)

The other vertex is

µ ν

k1 k2

p q

Figure 3.19: Quartic vertex in scalar QED (seagull).

We obtain,

Γ(4)
µν (x1, x2, x3, x4) = 2e2Q2δ4(x1 − x2)δ

4(x1 − x3)δ
4(x1 − x4)gµν (3.126)

and

Γ(4)
µν (p, q, k1, k2) = 2(eQ)2gµν (3.127)

and we finally get for the Feynman rule.

i2e2Q2 gµν (3.128)

Comment

• From the above results we can enunciate a simple rule for interactions that have
derivatives of fields.

Consider that we have one field in the Lagrangian that has a derivative,
say ∂µφ. Then the rule is

∂µφ→ −i (incoming momentum)µ (3.129)

In the end do not forget to multiply the result by i.
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• As an example consider the following term in the Lagrangian for scalar electrody-
namics

L = ieQ∂µϕ
∗ϕAµ + · · · (3.130)

If p is the incoming momentum of the line associated with the field ϕ∗, see Fig. 3.18,
we have

Vertex = i× (ieQ)× (−ipµ) = i eQ pµ (3.131)

in agreement with Eq. (3.125).
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Problems for Chapter 3

3.1 Show explicitly that Wick’s theorem is valid for the case of 4 fields, that is

T (ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4)) =: ϕin(x1) · · ·ϕin(x4) : + · · · (3.132)

3.2 For the case of the λϕ4 theory verify the Feynman rules for the diagrams

p1p1 p2p2

p′1
p′1

p′2
p′2

qq

q−p1+p′2

q−p1+p′1
1
2

1
2

3.3 Consider a theory with the following interaction Lagrangian

LI = − λ

3!
ϕ3
in (3.133)

• a) Find the Feynman rules for this theory.

• b) Find the symmetry factor for the diagram

3.4 Verify that for Compton scattering the diagram
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bp p′

k k′

µ ν

gives the result of Eq. (3.96).

3.5 Verify Eq. (3.106).

3.6 Show that in QED the symmetry factors are always 1.

3.7 Explicitly calculate the T matrix element for the process e+e− → γγ and verify that
is in agreement with the general rules.

3.8 Show that the amplitudes for e+e− → γγ and e−γ → e−γ are related. How can one
obtain one from the other?
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Chapter 4

Radiative Corrections

4.1 QED Renormalization at one-loop

We will consider the theory described by the Lagrangian

LQED = −1

4
FµνF

µν − 1

2ξ
(∂ ·A)2 + ψ(i∂/+ eA/−m)ψ . (4.1)

The free propagators are

(
i

p/−m+ iε

)

βα

≡ S0
Fβα(p) (4.2)

−i
[

gµν
k2 + iε

− (1− ξ)
kµkν

(k2 + iε)2

]

= −i
{(

gµν −
kµkν
k2

)
1

k2 + iε
+ ξ

kµkν
k4

}

≡ G0
Fµν(k) (4.3)

αβ
p

µ ν
k

and the vertex

113
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+ ie(γµ)βα e = |e| > 0 (4.4)

e−

e−
γ

We will now consider the one-loop corrections to the propagators and to the vertex. We
will work in the Feynman gauge (ξ = 1).

4.1.1 Vacuum Polarization

In first order the contribution to the photon propagator is given by the diagram of Fig. 4.1
that we write in the form

kk

p

p+ k

Figure 4.1: Vacuum polarization.

G(1)
µν (k) ≡ G0

µµ′(k) iΠ
µ′ν′(k)G0

ν′ν(k) (4.5)

where

iΠµν(k) = −(+ie)2
∫

d4p

(2π)4
Tr[γµ(p/+m)γν(p/+ k/+m)]

(p2 −m2 + iε)((p + k)2 −m2 + iε)
(4.6)

= −4e2
∫

d4p

(2π)4
[2pµpν + pµkν + pνkµ − gµν(p

2 + p · k −m2)

(p2 −m2 + iε)((p + k)2 −m2 + iε)

Simple power counting indicates that this integral is quadratically divergent for large
values of the internal loop momenta. In fact the divergence is milder, only logarithmic. The
integral being divergent we have first to regularize it and then to define a renormalization
procedure to cancel the infinities. For this purpose we will use the method of dimensional
regularization. For a value of d small enough the integral converges. If we define ǫ = 4−d,
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in the end we will have a divergent result in the limit ǫ→ 0. We get therefore1

iΠµν(k, ǫ) = −4e2 µǫ
∫

ddp

(2π)d
[2pµpν + pµkν + pνkµ − gµν(p

2 + p · k −m2)]

(p2 −m2 + iε)((p + k)2 −m2 + iε)

= −4e2 µǫ
∫

ddp

(2π)d
Nµν(p, k)

(p2 −m2 + iε)((p + k)2 −m2 + iε)
(4.7)

where

Nµν(p, k) = 2pµpν + pµkν + pνkµ − gµν(p
2 + p · k −m2) (4.8)

To evaluate this integral we first use the Feynman parameterization to rewrite the denom-
inator as a single term. For that we use (see Appendix)

1

ab
=

∫ 1

0

dx

[ax+ b(1− x)]2
(4.9)

to get

iΠµν(k, ǫ) = −4e2 µǫ
∫ 1

0
dx

∫
ddp

(2π)d
Nµν(p, k)

[x(p+ k)2 − xm2 + (1− x)(p2 −m2) + iε]2

= −4e2 µǫ
∫ 1

0
dx

∫
ddp

(2π)d
Nµν(p, k)

[p2 + 2k · px+ xk2 −m2 + iε]2

= −4e2 µǫ
∫ 1

0
dx

∫
ddp

(2π)d
Nµν(p, k)

[(p+ kx)2 + k2x(1− x)−m2 + iε]2
(4.10)

For dimension d sufficiently small this integral converges and we can change variables

p→ p− kx (4.11)

We then get

iΠµν(k, ǫ) = −4e2 µǫ
∫ 1

0
dx

∫
ddp

(2π)d
Nµν(p− kx, k)

[p2 − C + iǫ]2
(4.12)

where

C = m2 − k2x(1− x) (4.13)

Nµν is a polynomial of second degree in the loop momenta as can be seen from Eq. (4.8).
However as the denominator in Eq. (4.12) only depends on p2 is it easy to show that

∫
ddp

(2π)d
pµ

[p2 − C + iǫ]2
= 0

∫
ddp

(2π)d
pµpν

[p2 − C + iǫ]2
=

1

d
gµν

∫
ddp

(2π)d
p2

[p2 − C + iǫ]2
(4.14)

1 Where µ is a parameter with dimensions of a mass that is introduced to ensure the correct dimensions
of the coupling constant in dimension d, that is, [e] = 4−d

2
= ǫ

2
. We take then e → eµ

ǫ
2 . For more details

see the Appendix.
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x

x

Re p0

Im p0

Figure 4.2: Wick rotation.

This means that we only have to calculate integrals of the form

Ir,m =

∫
ddp

(2π)d
(p2)r

[p2 − C + iǫ]m

=

∫
dd−1p
(2π)d

∫
dp0

(p2)r

[p2 − C + iǫ]m
(4.15)

To make this integration we will use integration in the plane of the complex variable p0 as
described in Fig. 4.2. The deformation of the contour corresponds to the so called Wick
rotation,

p0 → ip0E ;

∫ +∞

−∞
→ i

∫ +∞

−∞
dp0E (4.16)

and p2 = (p0)2 − |~p|2 = −(p0E)
2 − |~p|2 ≡ −p2E, where pE = (p0E, ~p) is an euclidean vector,

that is
p2E = (p0E)

2 + |~p|2 (4.17)

We can then write (see the Appendix for more details),

Ir,m = i(−1)r−m
∫

ddpE
(2π)d

p2
r

E[
p2E + C

]m (4.18)

where we do not need the iǫ anymore because the denominator is positive definite2(C > 0).
To proceed with the evaluation of Ir,m we write,

∫
ddpE =

∫
dp p d−1 dΩd−1 (4.19)

where p =
√

(p0E)
2 + |~p|2 is the length of of vector pE in the euclidean space with d

dimensions and dΩd−1 is the solid angle that generalizes spherical coordinates. We can
show (see Appendix) that ∫

dΩd−1 = 2
π

d
2

Γ(d2 )
(4.20)

2The case when C < 0 is obtained by analytical continuation of the final result.
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The p integral is done using the result,

∫ ∞

0
dx

xp

(x2 +C)m
=

Γ
(
p+1
2

)
C

1
2
(p−2m+1)Γ

(
−p

2 +m− 1
2

)

2Γ(m)
(4.21)

and we finally get

Ir,m = iCr−m+ d
2
(−1)r−m

(4π)
d
2

Γ(r + d
2)

Γ(d2 )

Γ(m− r − d
2 )

Γ(m)
(4.22)

Note that the integral representation of Ir,m, Eq. (4.15) is only valid for d < 2(m − r) to
ensure the convergence of the integral when p→ ∞. However the final form of Eq. (4.22)
can be analytically continued for all the values of d except for those where the function
Γ(m− r − d/2) has poles, which are (see section C.6),

m− r − d

2
6= 0,−1,−2, . . . (4.23)

For the application to dimensional regularization it is convenient to write Eq. (4.22) after
making the substitution d = 4− ǫ. We get

Ir,m = i
(−1)r−m

(4π)2

(
4π

C

) ǫ
2

C2+r−m Γ(2 + r − ǫ
2)

Γ(2− ǫ
2)

Γ(m− r − 2 + ǫ
2)

Γ(m)
(4.24)

that has poles for m− r − 2 ≤ 0 (see section C.6).

We now go back to calculate Πµν . First we notice that after the change of variables of
Eq. (4.11) we get, neglecting terms that vanish due to Eq. (4.14),

Nµν(p− kx, k) = 2pµpν + 2x2kµkν − 2xkµkν − gµν
(
p2 + x2k2 − xk2 −m2

)
(4.25)

and therefore

Nµν ≡ µǫ
∫

ddp

(2π)d
Nµν(p − kx, k)

[p2 − C + iǫ]2

=

(
2

d
− 1

)
gµνµ

ǫI1,2 +

[
− 2x(1− x)kµkν+x(1− x)k2gµν + gµνm

2

]
µǫI0,2 (4.26)

Using now Eq. (4.24) we can write

µǫI0,2 =
i

16π2

(
4πµ2

C

) ǫ
2 Γ( ǫ2)

Γ(2)

=
i

16π2

(
∆ǫ − ln

C

µ2

)
+O(ǫ) (4.27)

where we have used the expansion of the Γ function, Eq. (C.78),

Γ
( ǫ
2

)
=

2

ǫ
− γ +O(ǫ) (4.28)
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γ being the Euler constant and we have defined, Eq. (C.82),

∆ǫ =
2

ǫ
− γ + ln 4π (4.29)

In a similar way

µǫI1,2 = − i

16π2

(
4πµ2

C

) ǫ
2

C
Γ(3− ǫ

2)

Γ(2− ǫ
2)

Γ(−1 + ǫ
2)

Γ(2)

=
i

16π2
C

(
1 + 2∆ǫ − 2 ln

C

µ2

)
+O(ǫ) (4.30)

Due to the existence of a pole in 1/ǫ in the previous equations we have to expand all
quantities up to O(ǫ). This means for instance, that

2

d
− 1 =

2

4− ǫ
− 1 = −1

2
+

1

8
ǫ+O(ǫ2) (4.31)

Substituting back into Eq. (4.26), and using Eq. (4.13), we obtain

Nµν = gµν

[
−1

2
+

1

8
ǫ+O(ǫ2)

] [
i

16π2
C

(
1 + 2∆ǫ − 2 ln

C

µ2

)
+O(ǫ)

]

+

[
− 2x(1− x)kµkν+x(1− x)k2gµν + gµνm

2

] [
i

16π2

(
∆ǫ − ln

C

µ2

)
+O(ǫ)

]

= − i

16π2
kµkν

[(
∆ǫ − ln

C

µ2

)
2x(1 − x)

]

+
i

16π2
gµνk

2

[
∆ǫ

(
x(1− x) + x(1− x)

)
+ ln

C

µ2

(
− x(1− x)− x(1− x)

)

+ x(1− x)

(
1

2
− 1

2

)]

+
i

16π2
gµνm

2

[
∆ǫ(−1 + 1) + ln

C

µ2
(1− 1) + (−1

2
+

1

2
)

]
(4.32)

and finally

Nµν =
i

16π2

(
∆ǫ − ln

C

µ2

)(
gµνk

2 − kµkν
)
2x(1− x) (4.33)

Now using Eq. (4.7) we get

Πµν(k) = −4e2
1

16π2
(
gµνk

2 − kµkν
) ∫ 1

0
dx 2x(1− x)

(
∆ǫ − ln

C

µ2

)

= −
(
gµνk

2 − kµkν
)
Π(k2, ǫ) (4.34)

where

Π(k2, ǫ) ≡ 2α

π

∫ 1

0
dx x(1− x)

[
∆ǫ − ln

m2 − x(1− x)k2

µ2

]
(4.35)
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+ +

+ + . . .

=

=Gµν

Figure 4.3: Full photon propagator.

This expression clearly diverges as ǫ → 0. Before we show how to renormalize it
let us discuss the meaning of Πµν(k). The full photon propagator is given by the series
represented in Fig. 4.3, where

≡ iΠµν(k) = sum of all one-particle irreducible
(proper) diagrams to all orders

(4.36)

In lowest order we have the contribution represented in Fig. 4.4, which is what we have

=

Figure 4.4: Lowest order contribution.

just calculated. To continue it is convenient to rewrite the free propagator of the photon
(in an arbitrary gauge ξ) in the following form

iG0
µν =

(
gµν −

kµkν
k2

)
1

k2
+ ξ

kµkν
k4

= P Tµν
1

k2
+ ξ

kµkν
k4

≡ iG0T
µν + iG0L

µν (4.37)

where we have introduced the transversal projector P Tµν defined by

P Tµν =

(
gµν −

kµkν
k2

)
(4.38)
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obviously satisfying the relations,





kµP Tµν = 0

P Tµ
νP Tνρ = P Tµρ

(4.39)

The full photon propagator can also in general be written separating its transversal an
longitudinal parts

Gµν = GTµν +GLµν (4.40)

where GTµν satisfies

GTµν = P TµνGµν (4.41)

Eq. (4.34) means that, to first order, the vacuum polarization tensor is transversal,
that is

iΠµν(k) = −ik2P Tµν Π(k) (4.42)

This result is in fact valid to all orders of perturbation theory, a result that can be shown
using the Ward-Takahashi identities. This means that the longitudinal part of the photon
propagator is not renormalized,

GLµν = G0L
µν (4.43)

For the transversal part we obtain from Fig. 4.3,

iGTµν = P Tµν
1

k2
+ P Tµµ′

1

k2
(−i)k2P Tµ′ν′Π(k2)(−i)P Tν′ν

1

k2

+P Tµρ
1

k2
(−i)k2P Tρλ Π(k2)(−i)P Tλτ

1

k2
(−i)k2P Tτσ Π(k2)(−i)P Tσν

1

k2
+ · · ·

= P Tµν
1

k2
[
1−Π(k2) + Π2(k2) + · · ·

]
(4.44)

which gives, after summing the geometric series,

iGTµν = P Tµν
1

k2
[
1 + Π(k2)

] (4.45)

All that we have done up to this point is formal because the function Π(k) diverges.
The most satisfying way to solve this problem is the following. The initial lagrangian
from which we started has been obtained from the classical theory and nothing tell us
that it should be exactly the same in quantum theory. In fact, as we have just seen, the
normalization of the wave functions is changed when we calculate one-loop corrections,
and the same happens to the physical parameters of the theory, the charge and the mass.
Therefore we can think that the correct lagrangian is obtained by adding corrections to the
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classical lagrangian, order by order in perturbation theory, so that we keep the definitions
of charge and mass as well as the normalization of the wave functions. The terms that we
add to the lagrangian are called counterterms3. The total lagrangian is then,

Ltotal = L(e,m, ...) + ∆L (4.46)

Counterterms are defined from the normalization conditions that we impose on the fields
and other parameters of the theory. In QED we have at our disposal the normalization
of the electron and photon fields and of the two physical parameters, the electric charge
and the electron mass. The normalization conditions are, to a large extent, arbitrary. It
is however convenient to keep the expressions as close as possible to the free field case,
that is, without radiative corrections. We define therefore the normalization of the photon
field as,

lim
k→0

k2iGRTµν = 1 · P Tµν (4.47)

where GRTµν is the renormalized propagator (the transversal part) obtained from the la-
grangian Ltotal. The justification for this definition comes from the following argument.
Consider the Coulomb scattering to all orders of perturbation theory. We have then the
situation described in Fig. 4.5. Using the Ward-Takahashi identities one can show that

=

++ +

Figure 4.5: Corrections to Coulomb scattering.

the last three diagrams cancel in the limit q = p′ − p → 0. Then the normalization con-
dition, Eq. (4.47), means that we have the situation described in Fig. 4.6, that is, the
experimental value of the electric charge is determined in the limit q → 0 of the Coulomb
scattering.

3 This interpretation in terms of quantum corrections makes sense. In fact we can show that an
expansion in powers of the coupling constant can be interpreted as an expansion in h̄L, where L is the
number of the loops in the expansion term.
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=lim
q→0

Figure 4.6: Definition of the electric charge.

The counterterm lagrangian has to have the same form as the classical lagrangian to
respect the symmetries of the theory. For the photon field it is traditional to write

∆L = −1

4
(Z3 − 1)FµνF

µν = −1

4
δZ3 FµνF

µν (4.48)

corresponding to the following Feynman rule

µ ν
kk − i δZ3k

2

(
gµν −

kµkν
k2

)
(4.49)

We have then

iΠµν = iΠloopµν − i δZ3k
2

(
gµν −

kµkν
k2

)

= −i (Π(k, ǫ) + δZ3) k
2 P Tµν (4.50)

Therefore we should make the substitution

Π(k, ǫ) → Π(k, ǫ) + δZ3 (4.51)

in the photon propagator. We obtain,

iGTµν = P Tµν
1

k2
1

1 + Π(k, ǫ) + δZ3
(4.52)

The normalization condition, Eq. (4.47), implies

Π(0, ǫ) + δZ3 = 0 (4.53)

from which one determines the constant δZ3. We get

δZ3 = −Π(0, ǫ) = −2α

π

∫ 1

0
dxx(1 − x)

[
∆ǫ − ln

m2

µ2

]

= − α

3π

[
∆ǫ − ln

m2

µ2

]
(4.54)
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The renormalized photon propagator can then be written as 4

iGµν(k) =
P Tµν

k2[1 + Π(k, ǫ) −Π(0, ǫ)]
+ iGLµν (4.55)

The finite radiative corrections are given through the function

ΠR(k2)≡Π(k2, ǫ)−Π(0, ǫ)

=−2α

π

∫ 1

0
dxx(1− x) ln

[
m2 − x(1− x)k2

m2

]

=− α

3π

{
1

3
+ 2

(
1 +

2m2

k2

)[(
4m2

k2
− 1

)1/2

cot−1
(
4m2

k2
− 1

)1/2

− 1

]}
(4.56)

where the last equation is valid for k2 < 4m2. For values k2 > 4m2 the result for ΠR(k2)
can be obtained from Eq. (4.56) by analytical continuation. Using (k2 > 4m2)

cot−1 iz = i

(
− tanh−1 z +

iπ

2

)
(4.57)

and (
4m2

k2
− 1

)1/2

→ i

√
1− 4m2

k2
(4.58)

we get

ΠR(k2) = − α

3π

{
1

3
+ 2

(
1 +

2m2

k2

)[
−1 +

√
1− 4m2

k2
tanh−1

(
1− 4m2

k2

)1/2

(4.59)

−iπ
2

√
1− 4m2

k2

] }
(4.60)

The imaginary part of ΠR is given by

Im ΠR(k2) =
α

3

(
1 +

2m2

k2

)√
1− 4m2

k2
θ

(
1− 4m2

k2

)
(4.61)

and it is related to the pair production that can occur 5 for k2 > 4m2.

4.1.2 Self-energy of the electron

The electron full propagator is given by the diagrammatic series of Fig. 4.7, which can be
written as,

4 Notice that the photon mass is not renormalized, that is the pole of the photon propagator remains
at k2 = 0.

5 For k2 > 4m2 there is the possibility of producing one pair e+e−. Therefore on top of a virtual process
(vacuum polarization) there is a real process (pair production).
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= + +

+  . . .+

Figure 4.7: Full electron propagator

S(p) = S0(p) + S0(p)

(
− iΣ(p)

)
S0(p) + · · ·

= S0(p)

[
1− iΣ(p)S(p)

]
(4.62)

where we have identified

≡ −iΣ(p) (4.63)

Multiplying on the left with S−10 (p) and on the right with S−1(p) we get

S−10 (p) = S−1(p)− iΣ(p) (4.64)

which we can rewrite as

S−1(p) = S−10 (p) + iΣ(p) (4.65)

Using the expression for the free field propagator,

S0(p) =
i

p/−m
=⇒ S−10 (p) = −i(p/−m) (4.66)

we can then write

S−1(p) = S−10 (p) + iΣ(p)

= −i
[
p/− (m+Σ(p))

]
(4.67)

We conclude that it is enough to calculate Σ(p) to all orders of perturbation theory to
obtain the full electron propagator. The name self-energy given to Σ(p) comes from the
fact that, as can be seen in Eq. (4.67), it comes as an additional (momentum dependent)
contribution to the mass.

In lowest order there is only the diagram of Fig. 4.8 contributing to Σ(p) and therefore
we get,

− iΣ(p) = (+ie)2
∫

d4k

(2π)4
(−i) gµν

k2 − λ2 + iε
γµ

i

p/+ k/ −m+ iε
γν (4.68)



4.1. QED RENORMALIZATION AT ONE-LOOP 125

pp

k

p+ k

Figure 4.8: Self-energy of the electron

where we have chosen the Feynman gauge (ξ = 1) for the photon propagator and we have
introduced a small mass for the photon λ, in order to control the infrared divergences
(IR) that will appear when k2 → 0 (see below). Using dimensional regularization and the
results of the Dirac algebra in dimension d,

γµ(p/+ k/)γµ = −(p/+ k/)γµγ
µ + 2(p/+ k/) = −(d− 2)(p/+ k/)

mγµγ
µ = md (4.69)

we get

−iΣ(p) = −µǫe2
∫

ddk

(2π)d
1

k2 − λ2 + iε
γµ

p/+ k/+m

(p+ k)2 −m2 + iε
γµ

= −µǫe2
∫

ddk

(2π)d
−(d− 2)(p/+ k/) +md

[k2 − λ2 + iε] [(p+ k)2 −m2 + iε]

= −µǫe2
∫ 1

0
dx

∫
ddk

(2π)d
−(d− 2)(p/+ k/) +md

[(k2 − λ2) (1− x) + x(p+ k)2 − xm2 + iε]2

= −µǫe2
∫ 1

0
dx

∫
ddk

(2π)d
−(d− 2)(p/+ k/) +md

[(k + px)2 + p2x(1− x)− λ2(1− x)− xm2 + iε]2

= −µǫe2
∫ 1

0
dx

∫
ddk

(2π)d
−(d− 2) [p/(1− x) + k/] +md

[k2 + p2x(1− x)− λ2(1− x)− xm2 + iε]2

= −µǫe2
∫ 1

0
dx
[
− (d− 2)p/(1 − x) +md

]
I0,2 (4.70)

where6

I0,2 =
i

16π2
[
∆ǫ − ln

[
−p2x(1− x) +m2x+ λ2(1− x)

]]
(4.71)

The contribution from the loop in Fig. 4.8 to the electron self-energy Σ(p) can then be
written in the form,

Σ(p)loop = A(p2) +B(p2) p/ (4.72)

with

A = e2µǫ(4− ǫ)m
1

16π2

∫ 1

0
dx
[
∆ǫ − ln

[
−p2x(1− x) +m2x+ λ2(1− x)

]]

B = −e2µǫ(2− ǫ)
1

16π2

∫ 1

0
dx (1− x)

[
∆ǫ

6 The linear term in k vanishes.
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− ln
[
−p2x(1− x) +m2x+ λ2(1− x)

]]
(4.73)

Using now the expansions

µǫ(4− ǫ) = 4

[
1 + ǫ

(
lnµ− 1

4

)
+O(ǫ2)

]

µǫ(4− ǫ)∆ǫ = 4

[
∆ǫ + 2

(
lnµ− 1

4

)
+O(ǫ)

]

µǫ(2− ǫ) = 2

[
1 + ǫ

(
lnµ− 1

2

)
+O(ǫ2)

]

µǫ(2− ǫ)∆ǫ = 2

[
∆ǫ + 2

(
lnµ− 1

2

)
+O(ǫ)

]
(4.74)

we can finally write,

A(p2) =
4 e2m

16π2

∫ 1

0
dx

[
∆ǫ −

1

2
− ln

[−p2x(1− x) +m2x+ λ2(1− x)

µ2

]]
(4.75)

and

B(p2) = − 2 e2

16π2

∫ 1

0
dx (1− x)

[
∆ǫ − 1− ln

[−p2x(1− x) +m2x+ λ2(1− x)

µ2

]]
(4.76)

To continue with the renormalization program we have to introduce the counterterm la-
grangian and define the normalization conditions. We have

∆L = i (Z2 − 1)ψγµ∂µψ − (Z2 − 1)mψψ + Z2δmψψ + (Z1 − 1)eψγµψAµ (4.77)

and therefore we get for the self-energy

− iΣ(p) = −iΣloop(p) + i (p/−m) δZ2 + i δm (4.78)

Contrary to the case of the photon we see that we have two constants to determine. In
the on-shell renormalization scheme that is normally used in QED the two constants are
obtained by requiring that the pole of the propagator corresponds to the physical mass
(hence the name of on-shell renormalization), and that the residue of the pole of the
renormalized electron propagator has the same value as the free field propagator. This
implies,

Σ(p/ = m) = 0 → δm = Σloop(p/ = m)

∂Σ

∂p/

∣∣∣∣
p/=m

= 0 → δZ2 =
∂Σloop

∂p/

∣∣∣∣
p/=m

(4.79)

We then get for δm,

δm = A(m2) +mB(m2)
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=
2me2

16π2

∫ 1

0
dx

{[
2∆ǫ − 1− 2 ln

(
m2x2 + λ2(1− x)

µ2

)]

−(1− x)

[
∆ǫ − 1− ln

(
m2x2 + λ2(1− x)

µ2

)]}

=
2me2

16π2

[
3

2
∆ǫ −

1

2
−
∫ 1

0
dx (1 + x) ln

(
m2x2 + λ2(1− x)

µ2

)]

=
3αm

4π

[
∆ǫ −

1

3
− 2

3

∫ 1

0
dx (1 + x) ln

(
m2x2

µ2

)]
(4.80)

where in the last step in Eq. (4.80) we have taken the limit λ → 0 because the integral
does not diverge in that limit7. In a similar way we get for δZ2,

δZ2 =
∂Σloop

∂p/

∣∣∣∣
p/=m

=
∂A

∂p/

∣∣∣∣
p/=m

+B +m
∂B

∂p/

∣∣∣∣
p/=m

(4.81)

where

∂A

∂p/

∣∣∣∣
p/=m

=
4 e2m2

16π2

∫ 1

0
dx

2(1− x)x

−m2x(1− x) +m2x+ λ2(1− x)

=
2αm2

π

∫ 1

0
dx

(1− x)x

m2x2 + λ2(1− x)

B = − α

2π

∫ 1

0
dx (1− x)

[
∆ǫ − 1− ln

(
m2x2 + λ2(1− x)

µ2

)]

m
∂B

∂p/

∣∣∣∣
p/=m

= − α

2π
m2

∫ 1

0
dx

2x(1− x)2

m2x2 + λ2(1− x)
(4.82)

Substituting Eq. (4.82) in Eq. (4.81) we get,

δZ2 = − α

2π

[
1

2
∆ǫ −

1

2
−
∫ 1

0
dx (1 − x) ln

(
m2x2

µ2

)
− 2

∫ 1

0
dx

(1 + x)(1 − x)xm2

m2x2 + λ2(1− x)

]

=
α

4π

[
−∆ǫ − 4 + ln

m2

µ2
− 2 ln

λ2

m2

]
(4.83)

where we have taken the λ → 0 limit in all cases that was possible. It is clear that the
final result in Eq. (4.83) diverges in that limit, therefore implying that Z2 is IR divergent.
This is not a problem for the theory because δZ2 is not a physical parameter. We will see
in section 4.4.2 that the IR diverges cancel for real processes. If we had taken a general
gauge (ξ 6= 1) we would find out that δm would not be changed but that Z2 would show
a gauge dependence. Again, in physical processes this should cancel in the end.

4.1.3 The Vertex

The diagram contributing to the QED vertex at one-loop is the one shown in Fig. 4.9. In

7δm is not IR divergent.
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µ

p

k

p′

Figure 4.9: The QED vertex.

the Feynman gauge (ξ = 1) this gives a contribution,

ie µǫ/2Λloopµ (p′, p) = (ie µǫ/2)3
∫

ddk

(2π)d
(−i) gρσ

k2 − λ2 + iε

γσ
i[(p/′ + k/) +m]

(p′ + k)2 −m2 + iε
γµ

i[(p/+ k/) +m]

(p + k)2 −m2 + iε
γρ (4.84)

where Λµ is related to the full vertex Γµ through the relation

iΓµ = ie (γµ + Λloopµ + γµδZ1)

= ie
(
γµ + ΛRµ

)
(4.85)

The integral that defines Λloopµ (p′, p) is divergent. As before we expect to solve this problem
by regularizing the integral, introducing counterterms and normalization conditions. The
counterterm has the same form as the vertex and is already included in Eq. (4.85). The
normalization constant is determined by requiring that in the limit q = p′ − p → 0 the
vertex reproduces the tree level vertex because this is what is consistent with the definition
of the electric charge in the q → 0 limit of the Coulomb scattering. Also this should be
defined for on-shell electrons. We have therefore that the normalization condition gives,

u(p)
(
Λloopµ + γµδZ1

)
u(p)

∣∣∣
p/=m

= 0 (4.86)

If we are interested only in calculating δZ1 and in showing that the divergences can be
removed with the normalization condition then the problem is simpler. It can be done in
two ways.

1st method

We use the fact that δZ1 is to be calculated on-shell and for p = p′. Then

iΛloopµ (p, p) = e2µǫ
∫

ddk

(2π)d
1

k2 − λ2 + iε
γρ

1

p/+ k/ −m+ iε
γµ

1

p/+ k/−m+ iε
γρ (4.87)
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However we have

1

p/+ k/ −m+ iε
γµ

1

p/+ k/−m+ iε
= − ∂

∂pµ
1

p/+ k/−m+ iε
(4.88)

and therefore

iΛloopµ (p, p) = −e2µǫ ∂

∂pµ

∫
ddk

(2π)d
1

k2 − λ2 + iε
γρ

p/+ k/+m

(p+ k)2 −m2 + iε
γρ (4.89)

= −i ∂
∂pµ

Σloop(p) (4.90)

We conclude then, that Λloopµ (p, p) is related to the self-energy of the electron8,

Λloopµ (p, p) = − ∂

∂pµ
Σloop (4.91)

On-shell we have

Λloopµ (p, p)

∣∣∣∣
p/=m

= − ∂Σloop

∂pµ

∣∣∣∣
p/=m

= −δZ2γµ (4.92)

and the normalization condition, Eq. (4.86), gives

δZ1 = δZ2 (4.93)

As we have already calculated δZ2 in Eq. (4.83), then δZ1 is determined.

2nd method

In this second method we do not rely in the Ward identity but just calculate the integrals
for the vertex in Eq. (4.84). For the moment we do not put p′ = p but we will assume
that the vertex form factors are to be evaluated for on-shell spinors. Then we have

i u(p′)Λloopµ u(p) = e2µǫ
∫

ddk

(2π)d
u(p)γρ [p/

′ + k/ +m)] γµ [p/+ k/ +m)] γρu(p)

D0D1D2

= e2µǫ
∫

ddk

(2π)d
Nµ

D0D1D2
(4.94)

where

Nµ = u(p)

[
(−2 + d)k2γµ + 4p · p′γµ + 4(p+ p′) · k γµ + 4mkµ

8This result is one of the forms of the Ward-Takahashi identity.
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− 4k/ (p + p′)µ + 2(2 − d)k/kµ

]
u(p) (4.95)

D0 = k2 − λ2 + iǫ (4.96)

D1 = (k + p′)2 −m2 + iǫ (4.97)

D2 = (k + p)2 −m2 + iǫ (4.98)

Now we use the results of section C.7.3 to do the momentum integrals. We have for our
case

rµ1 = p′µ ; rµ2 = pµ (4.99)

Pµ = x1p
′µ + x2p

µ (4.100)

C = (x1 + x2)
2m2 − x1x2 q

2 + (1− x1 − x2)λ
2 (4.101)

where
q = p′ − p . (4.102)

We get,

i u(p′)Λloopµ u(p) = i
α

4π
Γ(3)

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

2C
{
u(p′)γµu(p)

[
− (−2 + d)(x21m

2 + x22m
2 + 2x1x2p

′ · p)− 4p′ · p

+4(p+ p′) · (x1p′ + x2p) +
(2− d)2

2
C

(
∆ǫ − ln

C

µ2

)]

+u(p)u(p)m

[
4(x1p

′ + x2p)µ − 4(p′ + p)µ(x1 + x2)

− 2(2− d)(x1 + x2)(x1p
′ + x2p)µ

]}
(4.103)

= i u(p)
[
G(q2) γµ +H(q2) (p+ p′)µ

]
u(p) (4.104)

where we have defined9,

G(q2) ≡ α

4π

[
∆ǫ − 2− 2

∫ 1

0
dx1

∫ 1−x1

0
dx2 ln

(x1 + x2)
2m2 − x1x2q

2 + (1− x1 − x2)λ
2

µ2

9 To obtain Eq. (4.109) one has to show that the symmetry of the integrals in x1 ↔ x2 implies that the
coefficient of p is equal to the coefficient of p′. To see this define

H =

∫ 1

0

dx1

∫ 1−x1

0

f(x1, x2) (4.105)

Then use

f(x1, x2) =
1

2
[f(x1, x2) + f(x2, x1)]

1

2
[f(x1, x2)− f(x2, x1)] (4.106)

to show that

H =

∫ 1

0

dx1

∫ 1−x1

0

1

2
(f(x1, x2) + f(x2, x1)) . (4.107)

Also notice that you can put d = 4 in this term because H is not divergent.
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+

∫ 1

0
dx1

∫ 1−x1

0
dx2

( −2(x1 + x2)
2m2 − x1x2q

2 − 4m2 + 2q2

(x1 + x2)2m2 − x1x2q2 + (1− x1 − x2)λ2

+
2(x1 + x2)(4m

2 − q2)

(x1 + x2)2m2 − x1x2q2 + (1− x1 − x2)λ2

)]
(4.108)

H(q2) ≡ α

4π

[∫ 1

0
dx1

∫ 1−x1

0
dx2

−2m (x1 + x2) + 2m (x1 + x2)
2

(x1 + x2)2m2 − x1x2q2 + (1− x1 − x2)λ2

]
(4.109)

Now, using the definition of Eq. (4.85), we get for the renormalized vertex,

u(p′)ΛRµ (p
′, p)u(p) = u(p′)

[(
G(q2) + δZ1

)
γµ +H(q2) (p + p′)µ

]
u(p) (4.110)

As δZ1 is calculated in the limit of q = p′ − p → 0 it is convenient to use the Gordon
identity to get rid of the (p′ + p)µ term. We have

u(p′)
(
p′ + p

)
µ
u(p) = u(p′)

[
2mγµ − iσµν q

ν
]
u(p) (4.111)

and therefore,

u(p′)ΛRµ (p
′, p)u(p) = u(p′)

[(
G(q2) + 2mH(q2) + δZ1

)
γµ − iH(q2)σµν q

ν
]
u(p)

= u(p′)

[
γµF1(q

2) +
i

2m
σµνq

νF2(q
2)

]
u(p) (4.112)

where we have introduced the usual notation for the vertex form factors,

F1(q
2) ≡ G(q2) + 2mH(q2) + δZ1 (4.113)

F2(q
2) ≡ −2mH(q2) (4.114)

The normalization condition of Eq. (4.86) implies F1(0) = 0, that is,

δZ1 = −G(0) − 2mH(0) (4.115)

We have therefore to calculate G(0) and H(0). In this limit the integrals of Eqs. (4.108)
and (4.109) are much simpler. We get (we change variables x1 + x2 → y),

G(0) =
α

4π

[
∆ǫ − 2− 2

∫ 1

0
dx1

∫ 1

x1

dy ln
y2m2 + (1− y)λ2

µ2

+

∫ 1

0
dx1

∫ 1

x1

dy
−2y2m2 − 4m2 + 8ym2

y2m2 + (1− y)λ2

]
(4.116)

H(0) =
α

4π

∫ 1

0
dx1

∫ 1

x1

dy
−2my + 2my2

y2m2 + (1− y)λ2
(4.117)

Now using

∫ 1

0
dx1

∫ 1

x1

dy ln
y2m2 + (1− y)λ2

µ2
=

1

2

(
ln
m2

µ2
− 1

)
(4.118)
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∫ 1

0
dx1

∫ 1

x1

dy
−2y2m2 − 4m2 + 8ym2

y2m2 + (1− y)λ2
= 7 + 2 ln

λ2

m2
(4.119)

∫ 1

0
dx1

∫ 1

x1

dy
−2my + 2my2

y2m2 + (1− y)λ2
= − 1

m
(4.120)

(where we took the limit λ→ 0 if possible) we get,

G(0) =
α

4π

[
∆ǫ + 6− ln

m2

µ2
+ 2 ln

λ2

m2

]
(4.121)

H(0) = − α

4π

1

m
(4.122)

Substituting the previous expressions in Eq. (4.115) we get finally,

δZ1 =
α

4π

[
−∆ǫ − 4 + ln

m2

µ2
− 2 ln

λ2

m2

]
(4.123)

in agreement with Eq. (4.83) and Eq. (4.93). The general form of the form factors Fi(q
2),

for q2 6= 0, is quite complicated. We give here only the result for q2 < 0 (in section C.10.3
we will give a general formula for numerical evaluation of these functions),

F1(q
2) =

α

4π

{(
2 ln

λ2

m2
+ 4

)
(θ coth θ − 1)− θ tanh

θ

2
− 8 coth θ

∫ θ/2

0
β tanh βdβ

}

F2(q
2) =

α

2π

θ

sinh θ
(4.124)

where

sinh2
θ

2
= − q2

4m2
· (4.125)

In the limit of zero transferred momenta (q = p′ − p = 0) we get




F1(0) = 0

F2(0) =
α

2π

(4.126)

a result that we will use in section 4.4.1 while discussing the anomalous magnetic moment
of the electron.

4.2 Ward-Takahashi identities in QED

In the study of the QED vertex, in one of the methods, we used the Ward identity10

Λµ(p, p) = − ∂

∂pµ
Σ(p) (4.127)

10The sign in Eq. (4.127) is connected with our identification in Eq. (4.63) of the one-particle irreducible
contribution to the fermion propagator as −iΣ(p).
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We are going to derive here the general form for these identities. The following discussion
is formal in the sense that the various Green functions are divergent. We have to prove
that we can find a regularization scheme that preserves the identities. This happens when
one uses a regularization that preserves the gauge invariance of the theory. Examples are
dimensional regularization and the Pauli-Villars regularization.

Ward identities are a consequence of the gauge invariance of the theory, as will be
fully discussed in chapters 5 and 6. Here we are only going to use the fact that there is a
conserved current11,

jµ = −eψγµψ

∂µj
µ = 0

(4.128)

We are interested in calculating the quantity

∂µx 〈0|Tjµ(x)ψ(x1)ψ(y1) · · ·ψ(xn)ψ(yn)Aν1(z1) · · ·Aνp(zp) |0〉 (4.129)

This quantity does not vanish, despite the fact that ∂µjµ = 0. This happens because
in the time ordered product we have θ functions that depend on the coordinate x0. For
instance, for the field ψ(xi) we should have a contribution of the form,

∂0x
[
θ(x0 − x0i )j0(x)ψ(xi) + θ(x0i − x0)ψ(xi)j0(x)

]

= δ(x0 − x0i )j0(x)ψ(xi)− δ(x0 − x0i )ψ(xi)j0(x)

=
[
j0(x), ψ(xi)

]
δ(x0 − x0i ) (4.130)

In this way we get ( ̂ means that we omit that term from the sum),

∂µx 〈0|Tjµ(x)ψ(x1) · · ·ψ(yn)Aν1(z1) · · ·Aνp(zp) |0〉

=

n∑

i=1

〈0|T
{
[j0(x), ψ(xi)] δ(x

0 − x0i )ψ(yi)

+ψ(xi)
[
j0(x), ψ(yi)

]
δ(x0 − y0i )

}
ψ(x1)ψ(y1) · · · ̂ψ(xi)ψ(yi) · · ·Aνp(zp) |0〉

+

p∑

j=1

〈0|Tψ(x1) · ψ(yn)Aνp(z1) · · · [j0(x), Aνj (zj)]δ(x0 − z0j ) · · ·Aνp(zp) |0〉 (4.131)

Using now the equal time commutation relations,
[
j0(x), ψ(x

′)
]
δ(x0 − x′0) = eψ(x)δ4(x− x′)

[
j0(x), ψ(x

′)
]
δ(x0 − x′0) = −eψ(x)δ4(x− x′)

[
j0(x), Aµ(x

′)
]
δ(x0 − x′0) = 0

(4.132)

that express that ψ,ψ and Aµ create quanta with charge Q =
∫
d3xj0(x) equal to e,−e

and zero, respectively, we get,

∂µx 〈0|Tjµ(x)ψ(x1) · · ·ψ(yn)Aν1(z1) · · ·Aνp(zp) |0〉
11We follow here Ref.[2], but use our identification of the electric charge as e = |e|, so we have modified

the signs to be consistent.
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= −e 〈0|Tψ(y1) · · ·Aνp(zp) |0〉
n∑

i=1

[
δ4(x− yi)− δ4(x− xi)

]
(4.133)

Taking different values for n and p we get different relations among the Green functions
of the theory. We will consider in the following, two important cases.

4.2.1 Transversality of the photon propagator n = 0, p = 1

The Green function 〈0|Tjµ(x)Aν(y) |0〉 corresponds to the Feynman diagram of Fig. 4.10,
and it is related with the full photon propagator shown in Fig. 4.11, by the diagrammatic

µ, x ν, y

Figure 4.10: Green function 〈0|Tjµ(x)Aν(y) |0〉.

relation shown in Fig. 4.12 known as the Dyson-Schwinger equation for QED. It can be
written as

Gµν(x− y) = G0
µν(x− y)− i

∫
d4x′G0

µρ(x− x′) 〈0|Tjρ(x′)Aν(y) |0〉 (4.134)

We apply now the derivative ∂µx to get,

∂µxGµν(x− y) = ∂µxG
0
µν(x− y)− i

∫
d4x′∂µxG

0
µρ(x− x′) 〈0|Tjρ(x′)Aµ(y) |0〉 (4.135)

The free photon propagator is given by,

G0
µρ(x− x′) =

∫
d4p

(2π)4
e−i(x−x

′)·pG0
µρ(p) (4.136)

where

G0
µν(p) = −i

[(
gµν −

pµpν
p2

)
1

p2
+ ξ

pµpν
p4

]
. (4.137)

Therefore

∂µxG
0
µρ(x− x′) =

∫
d4p

(2π)4
e−i(x−x

′)·p(−ipµ)G0
µρ(p)

µ, x ν, y

Figure 4.11: Photon propagator
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= +µ, x µ, xµ, x ν, y ν, yν, y

Figure 4.12: Dyson-Schwinger equation.

=

∫
d4p

(2π)4
e−i(x−x

′)·p(−ipρ)F (p2)

= −∂x′ρ
∫

d4p

(2π)4
e−i(x−x

′)·pF (p2)

= −∂x′ρ F̃ (x− x′) (4.138)

and we get

∂µxGµν(x− y) = ∂µxG
0
µν(x− y) + i

∫
d4x′∂ρx′F̃ (x− x′) 〈0|Tjρ(x′)Aν(y) |0〉

= ∂µxG
0
µν(x− y)− i

∫
d4x′F̃ (x− x′)∂x

′

ρ 〈0|Tjρ(x′)Aν(y) |0〉

= ∂µxG
0
µν(x− y) (4.139)

where we have made an integration by parts and used the Ward-Takashashi identity for
n = 0, p = 1. We have then

∂µxGµν(x− y) = ∂µxG
0
µν(x− y) (4.140)

which in momenta space implies

pµGµν(p) = pµG0
µν(p) (4.141)

This means that the longitudinal part of the photon propagator is not renormalized,
or in other words, that the self-energy of the photon (vacuum polarization) is transverse.
In fact

pµG0
µν(p) = −iξ pν

p2
(4.142)

or
pµ = −iξ pν

p2
G−1νµ (p) = −ξ pν

p2
Γνµ(p) (4.143)

But, in agreement with our conventions, we have

Γνµ(p) = −(gνµp
2 − pνpµ)−

1

ξ
pνpµ +Πνµ(p

2) (4.144)

and therefore

− ξ
pν
p2

Γνµ(p) = pµ −
1

ξ

1

p2
pνΠνµ(p

2) = pµ (4.145)

which gives
pνΠνµ(p

2) = 0 (4.146)

that is, the self-energy is transverse.
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4.2.2 Identity for the vertex n = 1, p = 0

We are now interested in the Green function,

〈0|Tjµ(x)ψβ(x1)ψα(y1) |0〉 (4.147)

to which corresponds the diagram of Fig. 4.13. This Green function can be related with

µ, x

β, x1 α, y1

Figure 4.13: Green function 〈0|Tjµ(x)ψβ(x1)ψα(y1) |0〉.

the vertex 〈0|TAµ(x)ψβ(x1)ψα(y1) |0〉 corresponding to the diagram of Fig. 4.14, through

µ, x

β, x1 α, y1

Figure 4.14: Full vertex.

the following diagrammatic equation,
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(4.148)=

µ, xµ, x

β, x1β, x1 α, y1α, y1

that we can write as,

〈0|TAµ(x)ψβ(x1)ψα(y1) |0〉 = −i
∫
d4x′G0

µν(x− x′) 〈0|Tjν(x′)ψβ(x1)ψα(y1) |0〉 (4.149)

Taking the Fourier transform,
∫
d4xd4x1d

4y1e
i(p′·x1−p·y1−q·x) 〈0|TAµ(x)ψβ(x1)ψα(y1) |0〉

= −iG0
µν(q)

∫
d4xd4x1d

4y1e
i(p′·x1−p·y1−q·x) 〈0|Tjν(x)ψβ(x1)ψα(y1) |0〉 (4.150)

where the direction of the momenta are shown in Fig. 4.15, and the momentum transfered

µ

β α

pp′

q = p′ − p

Figure 4.15: Definition of the momenta in the vertex.

is q = p′ − p.

On the other side, using the definition of Γµ, we have,
∫
d4xd4x1d

4y1e
i(p′·x1−p·y1−q·x) 〈0|TAµ(x)ψβ(x1)ψα(y1) |0〉
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= (2π)4δ4(p′ − p− q)Gµν(q)
[
S(p′)iΓν(p

′, p)S(p)
]
βα

(4.151)

Therefore we get,

(2π)4δ(p′ − p− q)Gµν(q)S(p
′)iΓν(p′, p)S(p)

= −iG0
µν(q)

∫
d4xd4x1d

4y1e
i(p′·x1−p·y1−q·x) 〈0|Tjν(x)ψ(x1)ψ(y1) |0〉 (4.152)

Multiplying by qµ and using the result,

qµGµν(q) = qµG0
µν(q) = −iξ qν

q2
(4.153)

we can then write (using the Ward identity for n = 1, p = 0)

(2π)4δ(p′ − q − p)S(p′)qνΓν(p
′, p)S(p)

= i

∫
d4xd4x1d

4y1∂
ν
x 〈0|Tjν(x)ψ(x1)ψ(y1) |0〉 ei(p

′·x1−p·y1−q·x)

= −i e
∫
d4xd

4x1d
4y1e

i(p′·x1−p·y1−q·x) 〈0|Tψ(x1)ψ(y1) |0〉
[
δ(x− y1)− δ(x− x1)

]

= −i e(2π)4δ(p′ − p− q)
[
S(p′)− S(p)

]
(4.154)

or
qνΓν(p

′, p) = −i e
[
S−1(p)− S−1(p′)

]
(4.155)

As qν = (p′ − p)ν we get in the limit p′ = p,

Γν(p, p) = ie
∂S−1

∂pν

= e

(
γν −

∂Σ

∂pν

)
(4.156)

Using Γν = e(γν + Λν) we finally get the Ward identity in the form used before,

Λν(p, p) = − ∂Σ

∂pν
. (4.157)

4.3 Counterterms and power counting

All that we have shown in the previous sections can be interpreted as follows. The initial
Lagrangian L(e,m, · · · ) has been obtained from a correspondence between classical and
quantum theory. It is then natural that the initial Lagrangian has to be modified by
quantum corrections. The total Lagrangian is then given by,

Ltotal = L(e,m, · · · ) + ∆L (4.158)



4.3. COUNTERTERMS AND POWER COUNTING 139

and
∆L = ∆L(1) +∆L[2] + · · · (4.159)

where ∆L[i] is the ith − loops correction. This also correspond to order h̄i as counting
in terms of loops is equivalent to counting in terms of h̄12. This interpretation is quite
attractive because in the limit h̄ → 0 the total Lagrangian reduces to the classical one.
With the Lagrangian Ltot we can then obtain finite results, although Ltot is divergent
because of the counter-terms in ∆L.

With this language the results up to the first order in h̄ can be written as,

L(e,m, · · · ) = −1

4
FµνF

µν +
λ2

2
AµAµ −

1

2ξ
(∂ · A)2

+iψ∂/ψ −mψψ − eψA/ψ (4.160)

∆L(1) = −1

4
(Z3 − 1)FµνF

µν + (Z2 − 1)(iψ∂/ψ −mψψ)

+Z2δmψψ − e(Z1 − 1)ψA/ψ (4.161)

The Lagrangian

Ltotal = −1

4
Z3FµνF

µν +
λ2

2
AµA

µ − 1

2ξ
(∂ · A)2

+Z2(iψ∂/ψ −mψψ + δmψψ)

−eZ1ψA/ψ (4.162)

will give the renormalized Green’s functions up the the order h̄.

In fact, we have only shown that the two-point and three-point Green’s functions (self-
energies and vertex) were finite. It is important to verify that all the Green’s functions,
with an arbitrary number of external legs are finite, as we have already used all our freedom
in the renormalization of those Green’s functions. This leads us to the so-called power
counting.

Let us consider a Feynman diagram G, with L loops, IB bosonic and IF fermionic
internal lines. If there are vertices with derivatives, δv is the number of derivatives in
that vertex. We define then the superficial degree of divergence of the diagram (note that
L = IB + IF + 1− V ) by,

ω(G) = 4L+
∑

v

δv − IF − 2IB

= 4 + 3IF + 2IB +
∑

v

(δv − 4) (4.163)

For large values of the momenta the diagram will be divergent as

Λω(G) if ω(G) > 0 (4.164)

12 h̄E−1+L = h̄
E
2
+ V

2 . We have the following relations L = I − V + 1 ; 3V = E + 2I (this only for QED).
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and as
lnΛ if ω(G) = 0 (4.165)

where Λ is a cutoff. The origin of the different terms can be seen in the following corre-
spondence, ∫

d4q

(2π)4
(for each loop) → 4L

∂µ ⇔ kµ → δv

i
q/−m

→ −IF

i
q2 −m2 → −2IB

(4.166)

The expression for ω(G) is more useful when expressed in terms of the number of ex-
ternal legs and of the dimensionality of the vertices of the theory. Let ωv be the dimension,
in terms of mass, of the vertex v, that is,

ωv = δv +#campos bosónicos +
3

2
#campos fermiónicos (4.167)

Then, if we denote by fv(bv) the number of fermionic (bosonic) internal lines that join at
the vertex v, we can write,

∑

v

ωv =
∑

v

(δv +
3

2
fv + bv) +

3

2
EF + EB (4.168)

where EF (EB) are the total number of external fermionic (bosonic) lines of the diagram.
As we have,

IF =
1

2

∑

v

fv

IB =
1

2

∑

v

bv (4.169)

we get

∑

v

ωv =
∑

v

δv + 3IF + 2IB +
3

2
EF + EB (4.170)

Substituting in the expression for ω(G) we get finally,

ω(G) =4− 3

2
EF − EB +

∑

v

(ωv − 4)

=4− 3

2
EF − EB −

∑

v

[gv] (4.171)

where [gv] denotes the dimension in terms of mass of the coupling constant of vertex v,
satisfying,

ωv + [gv] = 4 . (4.172)
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From the previous expression for the superficial degree of divergence, Eq. (4.171), we
can then classify theories in three classes,

i) Non-renormalizable Theories

They have at least one vertex with ωv > 4 (or [gv ] < 0). The superficial degree of di-
vergence increases with the number of vertices, that is, with the order of perturbation
theory. For an order high enough all the Green functions will diverge.

ii) Renormalizable Theories

All the vertices have ωv ≤ 4 and at least one has ωv = 4. If all vertices have ωv = 4
then

ω(G) = 4− 3

2
EF −EB (4.173)

and all the diagrams contributing to a given Green function have the same degree
of divergence. Only a finite number of Green functions are divergent.

iii) Super-Renormalizable Theories

All the vertices have ωv < 4. Only a finite number of diagrams are divergent.13

Coming back to our question of knowing which are the divergent diagrams in QED, we
can now summarize the situation in Table 4.1. All the other diagrams are superficially

EF EB ω(G) Effective degree
of divergence

0 2 2 0 (Current Conservation (CC))
0 3 0 (Furry’s Theorem)
0 4 0 Convergent (CC)
2 0 1 0 (Current Conservation)
2 1 0 0

Table 4.1: Superficial and effective degree of divergence in QED.

convergent. We have therefore a situation where there are only a finite number of divergent
diagrams, exactly the ones that we considered before. This analysis shows that, up to order
h̄, the Lagrangian

Ltotal = −1

4
Z3FµνF

µν +
1

2
λ2AµA

µ − 1

2ξ
(∂ ·A)2

+Z2(iψ∂/ψ −mψψ + δmψψ)

−eZ1ψA/ψ (4.174)

gives Green functions that are finite and renormalized with an arbitrary number of external
legs. It remains to be shown that this Lagrangian is still valid up an arbitrary order in

13 The effective degree of divergence it is sometimes smaller than the superficial degree because of
symmetries of the theory. This is what happens for gauge theories like QED (see Table 4.1).
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h̄, with the only modification that the renormalization constants Z1, Z2, Z3 e δm are now
given by power series,

Z1 = Z
(1)
1 + Z

(2)
1 + · · · (4.175)

The previous Lagrangian, Eq. (4.174), allows for another interpretation that it is also
useful. The fields A,ψ and ψ are the renormalized fields that give the residues equal to
1 for the poles of the propagators and the constants e,m are the physical electric charge
and mass of the electron. Let us define the non-renormalized fields ψ0, ψ0 and A0 and the
bare (cutoff dependent) µ20,m0 through the definitions,

ψ0 =
√
Z2 ψ m0 = m− δm

ψ0 =
√
Z2 ψ λ20 = Z−13 λ2

A0 =
√
Z3 A e0 = Z1Z

−1
2

√
Z−13 e = 1√

Z3
e

ξ0 = Z3ξ

(4.176)

Then the Lagrangian written in terms of the bare quantities is identical to the original
Lagrangian14

L = −1

4
F0µνF

µν
0 +

1

2
λ20A0µA

µ
0 − 1

2ξ0
(∂ ·A0)

2

+i(ψ0∂/ψ0 −m0ψ0ψ0)− e0ψ0A/0ψ0 (4.177)

Finally we notice that the bare Green functions are related to the renormalized ones
by

Gn,ℓ0 (p1, · · · p2n, k1, · · · kℓ, µ0,m0, ℓ0, ξ0,Λ)

= Zn2 (Λ)Z
ℓ/2
3 Gn,ℓR (p1, · · · p2n, k1 · · · kℓ, µ,m, e, ξ) (4.178)

where p1 · · · p2n (k1 · · · kℓ) are the fermion (boson) momenta. We will come back to these
relations in the study of the renormalization group, in chapter 7.

4.4 Finite contributions from RC to physical processes

4.4.1 Anomalous electron magnetic moment

We will show here, for the case of the electron anomalous moment, how the finite part
of the radiative corrections can be compared with experiment, given credibility to the
renormalization program. In fact we will just consider the first order, while to compare
with the present experimental limit one has to go to fourth order in QED and to include
also the weak and QCD corrections. The electron magnetic moment is given by

14 The terms λ2

2
A2 =

λ2

0

2
A2

0 and 1
2ξ
(∂ · A)2 = 1

2ξ0
(∂ · A0)

2 are not renormalized. This a consequence of
the Ward-Takashashi identities for QED. The Ward identity Z1 = Z2 is crucial for the equality e0A0 = eA

giving a meaning to the electric charge independently of the renormalization scheme.
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~µ =
e

2m
g
~σ

2
(4.179)

where e = −|e| for the electron. One of the biggest achievements of the Dirac equation
was precisely to predict the value g = 2. Experimentally we know that g is close to, but
not exactly, 2. It is usual to define this difference as the anomalous magnetic moment.
More precisely,

g = 2(1 + a) (4.180)

or

a =
g

2
− 1 (4.181)

Our task is to calculate a from the radiative corrections that we have computed in the
previous sections. To do that let us start to show how a value a 6= 0 will appear in
non relativistic quantum mechanics. Schrödinger’s equation for a charged particle in an
exterior field is,

i
∂ϕ

∂t
=

[
(~p − e ~A)2

2m
+ eφ− e

2m
(1 + a)~σ · ~B

]
ϕ (4.182)

Now we consider that the external field is a magnetic field ~B = ~∇× ~A. Then keeping only
terms first order in e we get

H =
p2

2m
− e

~p · ~A+ ~A · ~p
2m

− e

2m
(1 + a)~σ · ~∇× ~A

≡ H0 +Hint (4.183)

With this interaction Hamiltonian we calculate the transition amplitude between two
electron states of momenta p and p′. We get

〈
p′
∣∣Hint |p〉 = − e

2m

∫
d3x

(2π)3
χ†e−i~p

′·~x[~p · ~A+ ~A · ~p+ (1 + a)~σ × ~∇ · ~A
]
ei~p·xχ

= − e

2m

∫
d3x

(2π)3
χ†
[
(~p′ + ~p) · ~A+ i(1 + a)σiǫijkqjAk

]
e−i~q·xχ

= − e

2m
χ†
[
(p′ + p)k + i(1 + a)σiǫijkqj

]
Ak(q)χ (4.184)

This is the result that we want to compare with the non relativistic limit of the renormal-
ized vertex. The amplitude is given by,

A=eu(p′)(γµ + ΛRµ )u(p)A
µ(q)

=eu(p′)

[
γµ(1 + F1(q

2)) +
i

2m
σµνq

νF2(q
2)

]
u(p)Aµ(q)

=
e

2m
u(p′)

{
(p′ + p)µ

[
1 + F1(q

2)
]
+ iσµνq

ν
[
1 + F1(q

2) + F2(q
2)
] }
u(p)Aµ(q)(4.185)
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where we have used Gordon’s identity. For an external magnetic field ~B = ~∇× ~A and in
the limit q2 → 0 this expression reduces to

A =
e

2m
u(p′)

{
(p′ + p)k

[
1 + F1(0)

]
+ iσkjq

j
[
1 + F1(0) + F2(0)

]}
u(p)Ak(q)

=
e

2m
u(p′)

[
−(p′ + p)k + iΣiǫkijqj

(
1 +

α

2π

)]
u(p)Ak(q) (4.186)

where we have used the results of Eq. (4.126),





F1(0) = 0

F2(0) =
α

2π

(4.187)

Using the explicit form for the spinors u

u(p) =




χ

~σ · (~p− e ~A)

2m
χ


 (4.188)

we can write in the non relativistic limit,

A = − e

2m
χ†
[
(p′ + p)k + i

(
1 +

α

2π

)
σiǫijkqj

]
χAk (4.189)

which after comparing with Eq. (4.184) leads to

aeth =
α

2π
(4.190)

This result obtained for the first time by Schwinger and experimentally confirmed, was
very important in the acceptance of the renormalization program of Feynman, Dyson and
Schwinger for QED.

4.4.2 Cancellation of IR divergences in Coulomb scattering

In this section we will show how the IR divergences cancel in physical processes. We will
take as an example the Coulomb scattering from a fixed nucleus. This is better done if we
start from first principles. Coulomb scattering corresponds to the diagram of Fig. 4.16,
which gives the following matrix element for the S matrix,

Aµc

pi pf

Figure 4.16: Lowest order diagram to Coulomb scattering.
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Sfi = iZe2(2π)δ(Ei − Ef )
1

|~q|2 u(pf )γ
0u(pi) (4.191)

We will now study the radiative corrections to this result in lowest order in perturbation
theory. Due to the IR divergences it is convenient to introduce a mass λ for the photon.
For a classical field, as we are considering, this means a screening. If we take,

A0
c(x) = Ze

e−λ|~x|

4π|~x| (4.192)

the Fourier transform will be,

A0
c(q) = Ze

1

|~q|2 + λ2
(4.193)

that shows that the screening is equivalent to a mass for the photon. With these modifi-
cations we have,

Sfi = iZe2(2π)δ(Ef − Ei)
i

|~q|2 + λ2
u(pf )γ

0u(pi) (4.194)

We are interested in calculating the corrections up to order e3 in the amplitude. To
this contribute15 the diagrams of Fig. 4.17. Diagram 1 is of order e2 while diagrams 2, 3, 4

AµcAµc
Aµc

AµcAµc

pipipipi pfpfpfpf

Figure 4.17: Coulomb scattering up to second order.

are of order e4. Therefore the interference between 1 and (2 + 3 + 4) is of order α3 and
should be added to the result of the bremsstrahlung in a Coulomb field. The contribution
from 1 + 2 + 3 can be easily obtained by noticing that

eAµc γµ → eAµc (γµ + ΛRµ +ΠRµνG
νργρ) (4.195)

where ΛRµ e ΠRµν have been calculated before. We get

S
(1+2+3)
fi = iZe2(2π)δ(Ei − Ef )

1

|~q|2 + λ2
u(pf )γ

0

{
1 +

α

π

[
−1

2
ϕ tanhϕ

15We do not have to consider the self-energies of the external legs of the electron because they are
on-shell.
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(
1 + ln

λ

m

)
(2ϕ coth 2ϕ− 1)− 2 coth 2ϕ

∫ ϕ

0
β tanh βdβ

+

(
1− coth2 ϕ

β

)
(ϕ cothϕ− 1) +

1

9

]
− q/

2m

α

π

ϕ

sinh 2ϕ

}
u(pi) (4.196)

where

|~q|2
4m

= sinh2 ϕ . (4.197)

Finally the fourth diagram gives

S
(4)
fi = (iZe)2(e)2

∫
d4k

(2π)4
u(pf )

[
2πδ(Ef − k0)

(pf − k)2 − λ2
γ0

i

k/ −m+ iε
γ0

2πδ(k0 − Ei)

(k − pi)2 − λ2

]

= −2i
Z2α2

π
2πδ(Ef − Ei) u(pf )

[
m(I1 − I2) + γ0Ei(I1 + I2)

]
u(pi) (4.198)

with

I1 =

∫
d3k

1

[(~pf − ~k)2 + λ2][(~pi − ~k)2 + λ2][(~p)2 − (~k)2 + iε]
(4.199)

and

1

2
(~pi + ~pf )I2 ≡

∫
d3k

~k

[(~pf − ~k)2 + λ2][(~pi − ~k)2 + λ2][(~p)2 − (~k)2 + iε]
. (4.200)

In the limit λ→ 0 it can be shown that

I1 =
π2

2ip3 sin2 θ/2
ln

(
2p sin(θ/2)

λ

)
(4.201)

I2 =
π2

2p3 cos2 θ/2

{
π

2

[
1− 1

sin θ/2

]
− i

[
1

sin2 θ/2
ln

(
2p sin θ/2

λ

)
+ ln

λ

2p

]}

(4.202)

With these expressions we get for the cross section

dσ

dΩ
=
Z2α2

|~q|2
1

2

∑

pol

|u(pf )Γu(pi)|2 (4.203)

where
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Γ = γ0(1 +A) + γ0
q/

2m
B + C (4.204)

and

A =
α

π

[(
1 + ln

λ

m

)
(2ϕ coth 2ϕ− 1)− 2 coth 2ϕ

∫ ϕ

0
dββ tanh β − ϕ

2
tanhϕ

+

(
1− 1

3
coth2 ϕ

)
(ϕ cothϕ− 1) +

1

9

]
− Zα

2π2
|~q|2E(I1 + I2) (4.205)

B = −α
π

ϕ

sinh 2ϕ
(4.206)

C = −Zα

2π2
m|~q|2(I1 − I2) (4.207)

Therefore

1

4

∑

pol

|u(pf )pu(pi)|2 =
1

4
Tr[Γ(p/i +m)Γ(p/f +m)]

= 2E2(1− β2 sin2 θ/2) + 2E22Bβ2 sin2
θ

2

+2E22ReA

(
1− β2 sin2

θ

2

)
+ 2ReC(2mE) +O(α2) (4.208)

Notice that A,B e C are of order α. Therefore the final result is, up to order α3:

(
dσ

dΩ

)

elastic

=

(
dσ

dΩ

)

Mott

{
1 +

2α

π

[(
1 + ln

λ

m

)
(2ϕ coth ϕ− 1)− ϕ

2
tanhϕ

−2 coth 2ϕ

∫ ϕ

0
dββ tanh β +

(
−coth2 ϕ

3

)
(ϕ cothϕ− 1) +

1

9

− ϕ

sinh 2ϕ

B2 sin2 θ/2

1− β2 sin2 θ/2

]
+ Zαπ

β sin θ
2 [1− sin θ/2]

1− β2 sin2 θ/2

}
(4.209)

As we had said before the result is IR divergent in the limit λ → 0. This divergence
is not physical and can be removed in the following way. The detectors have an energy
threshold, below which they can not detect. Therefore in the limit ω → 0 bremsstrahlung
in a Coulomb field and Coulomb scattering can not be distinguished. This means that we
have to add both results. If we consider an energy interval ∆E with λ ≤ ∆E ≤ E we get

[
dσ

dΩ
(∆E)

]

BR

=

(
dσ

dΩ

)

Mott

∫

ω≤∆E

d3k

2ω(2π)3
e2
[

2pi · pf
ki · pik · pf

− m2

(k · p·)2 − m2

(k · pf )2
]

(4.210)
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Giving a mass to the photon (that is ω = (|~k|2 +λ2)1/2) the integral can be done with the
result,

[
dσ

dΩ
(∆E)

]

BR

=

(
dσ

dΩ

)

Mott

2α

π

{
(2ϕ coth 2ϕ− 1) ln

2∆E

λ
+

1

2β
ln

1 + β

1− β

−1

2
cosh 2ϕ

1− β2

β sin θ/2

∫ 1

cos θ/2
dξ

1

(1− β2ξ2)[ξ − cos2 θ/2]1/2
ln

1 + βξ

1− βξ

}

(4.211)

The inclusive cross section can now be written as

dσ

dΩ
(∆E) =

(
dσ

dΩ

)

elastic

+

[
dσ

dΩ
(∆E)

]

BR

=

(
dσ

dΩ

)

Mott

(1− δR + δB) (4.212)

where δR and δB are complicated expressions that depend on the resolution of the detector
∆E but do not depend on λ that can be finally put to zero. One can show that in QED all
the IR divergences can be treated in a similar way. One should note that the final effect
of the bremsstrahlung is finite and can be important.



Chapter 5

Functional Methods

5.1 Introduction

In this chapter, called Functional Methods, we are going to present the path integral
quantization. For systems that are not described by gauge theories this method may
seem unnecessary, as the canonical quantization works without problems. However, for
non-abelian gauge theories, as we shall see in the next chapter, this is the only known
method. Besides this fundamental point, the quantization done using functional methods
and the path integral formalism is very elegant and allows us to obtain the results much
faster, even for the cases where the canonical quantization works. Examples of this are
the Ward-Takahashi identities and the Dyson-Schwinger equations, as we will discuss at
the end of the chapter.

We are going to assume that the reader is familiar with the path-integral quantization
for systems of N particles in non-relativistic quantum mechanics. Therefore only a brief
summary of the results will be given. A more detailed account is given in Appendix A.
The step from the quantization of a system with N particles to the quantization of a field
theory will be done heuristically. A more rigorous treatment will be given in Appendix B.

Before we start, let us clarify some questions related with the notation. Let us assume
that we have real scalar field φa(x) where a = 1, ...N . In the following we will encounter
expressions of the type,

I1 =

∫
d4xφa(x)φa(x) (5.1)

or

I2 =

∫
d4xd4y φa(x)Mab(x, y)φb(y) (5.2)

where Mab(x, y) is normally a differential operator. According to the rules for functional
derivation, we have,

δI1
δφb(y)

= 2φb(y) (5.3)

where we used the result
δφa(x)

δφb(y)
= δabδ4(x− y) (5.4)
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If we keep all the indices in the previous expressions (and in some much more compli-
cated that we will encounter soon), we will get a very complicated situation with respect
to the notation. Therefore it will be useful to make use of a more compact notation. To
this end we identify,

φi ⇐⇒ φa(x) (5.5)

that is, the index i will represent both the discrete index a as well as the continuous x,

i⇐⇒ {a, x} (5.6)

In the case that the fields have further indices we will assume that i will always rep-
resent them collectively. We also use the Einstein convention meaning a sum for discrete
indices and an integration for continuous indices. With these conventions Eq. (5.1) and
Eq. (5.4) can be written as

I1 = φiφi I2 = φiMijφj

δI1
δφj

= 2φj
δφi
δφj

= δij

(5.7)

In the following we will use these conventions, returning to the more usual notation when
convenient or in case of a possible confusion.

5.2 Generating functional for Green’s functions

5.2.1 Green’s functions

The basic objects in Quantum Field Theory are the so-called Green functions. To avoid
unnecessary complications we are going to use mostly the example of the scalar field. The
generalizations are however quite straightforward. The Green function of order n is given
by

G(n)(x1, . . . , xn) ≡ 〈0|Tφ(x1) · · · φ(xn)|0〉 . (5.8)

The Green functions defined in the previous equation are, sometimes called complete
to distinguish from the Green functions connected, truncated or one particle irreducible
that we now are going to define.

5.2.2 Connected Green’s functions

We call connected Green functions those that in which none of the external lines goes
through the diagram without interacting. As an example, in Fig. 5.1 we represent a
disconnected contribution to G4(x1, . . . , x4), while in Fig. 5.2 we have a connected contri-
bution to the same Green function.

Therefore the connected Green functions are obtained summing over all the connected
diagrams. The disconnected Green functions, corresponding to disconnected diagrams,
can be obtained from connected Green functions of lower order, therefore the relevant
quantities are the connected Green functions Gnc (x1, . . . , xn). It is clear that we have

Gnc (x1, . . . , xn) = Gn(x1, . . . , xn)− disconnected terms, (5.9)
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x1 x2

x3 x4

Figure 5.1: Disconnected contribution to G4(x1, . . . , x4).

x1 x2

x3 x4

Figure 5.2: Connected contribution to G4(x1, . . . , x4).

and
G2
c(x1, x2) = G2(x1, x2) . (5.10)

Conventionally we represent Gnc (x1, . . . , xn) by the diagram of Fig. 5.3,

x1 x2

xixn

Figure 5.3: Graphical representation for Gnc (x1, . . . , xn).

Sometimes it is important to consider the Green functions in momentum space. We
define then Gnc (p1, . . . , pn) through the relation (Fourier Transform)

(2π)4δ4(p1 + p2 + · · · pn) Gnc (p1, . . . , pn)

≡
∫
d4x1 · · · d4xne−i(p1·x1+···+pn·xn) Gnc (x1, . . . , xn) , (5.11)

where all momenta, p1, . . . , pn, are incoming, as shown in Fig. 5.4. Notice that in the
definition we have factored out the delta function that ensures the conservation of 4-
momentum. With these conventions G2(p,−p) ≡ G2(p) is the full propagator represented
in Fig. 5.5.
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p1 p2

pipn

Figure 5.4: Graphical representation for Gnc (p1, . . . , pn)

p −p

Figure 5.5: Full propagator G2(p).

5.2.3 Truncated Green’s functions

For n > 2 one defines the truncated Green functions through the relation,

Gntrunc(p1, . . . , pn) =

n∏

k=1

[
G2(pk)

]−1
Gnc (p1, . . . , pn) (5.12)

that is, we multiply each external line by the inverse of the full propagator corresponding
to that line. These are the functions that play a fundamental role in the Theory, as these
the ones that are related to the S matrix elements. In fact the LSZ reduction formula for
scalars fields is

〈p1, . . . , pn out|q1, . . . , qℓ in〉 = 〈p1, . . . , pn in|S|q1, . . . , qℓ in〉 = disconnected terms

+
(
iZ−1/2

)n+ℓ ∫
d4y1 · · · d4xℓ exp

[
i

(
n∑

k=1

pk · yk −
ℓ∑

k=1

qk · xk
)]

×(⊔⊓y1 +m2) · · · (⊔⊓xℓ +m2) 〈0|Tφ(y1) · · · φ(xℓ)|0〉c (5.13)

which gives

〈p1, . . . , pn out|q1, . . . , qℓ in〉 = 〈p1, . . . , pn in|S|q1, . . . , qℓ in〉 = disconnected terms

+Z−(n+ℓ)/2 (2π)4δ
(∑

pi −
∑

qj

)
Gn+ℓtrunc(−p1, . . . ,−pn, q1, . . . , qℓ) (5.14)

5.2.4 Irreducible diagrams

We saw in 5.14 that the S elements related with the cross sections are expressed in terms of
truncated diagrams. Among the truncated Green functions there is an important subset.
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These are the Green functions that correspond to the subset of one particle irreducible or
proper that are the truncated diagrams that remain connected when one cuts any arbitrary
internal line. For instance the diagram of Fig. 5.61 is truncated but it is not proper, while
the diagram of Fig. 5.7 is proper (in λφ3).

Figure 5.6: Example of a truncated diagram that is not proper.

Figure 5.7: Example of a proper diagram.

The reason why the non-irreducible truncated diagrams are not important is because
they can always be expressed in terms of irreducible diagrams of lower order (remember the
self energy series that we saw in the last lecture). It is convenient to introduce a notation
for the irreducible Green Functions (sum of all the irreducible diagrams for a given number
of exterior legs) where the factor i was introduced by convenience. In Fig. 5.8 the external
legs are drawn to make the figure more clear. They are in fact truncated. It is also
convenient to define a notation for the truncated diagrams of order n. This is shown in
Fig. 5.9 or, in another way, in Fig. 5.10. We can define similar diagrams in momentum
space.

5.3 Generating functionals for Green’s functions

The Generating Functional (FG) for the Green functions plays a very important role in
Quantum Field Theory. In fact starting with it, by taking appropriate functional deriva-
tives, one can obtain all the Green functions. Therefore they can treat simultaneously an
infinite number of Green functions. The FG of the full Green functions is given by,

Z(J) ≡
〈
0|TeiJiφi |0

〉
(5.15)

1 The bars indicate the the external lines are cuted.
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iΓ(n)(x1, . . . , xn) =

x1 x2

xixn

Figure 5.8: Irreducible Green functions.

G
(n)
trunc(x1, . . . , xn) ≡ ≡ =  

x1x1 x2x2

xixi xnxn

Figure 5.9: Graphical representation of truncated Green functions.

where we are using the compact notation explained before.

Jiφi ≡
∫
d4x J(x)φ(x) . (5.16)

Z(J) generates all the Green functions, because if we expand the exponential in 5.15 we
get

Z(J) =
∑∞

n=0
in

n!Ji1 · · · Jin 〈0|Tφi1 · · ·φin |0〉

=
∑∞

n=0
in

n!Ji1 · · · JinGni1···in (5.17)

The Green functions are then obtained taking derivatives

Gni1···in =
δnZ

iδJi1 · · · iδJin

∣∣∣∣
Ji=0

(5.18)

The generating functional of the connected Green functions is defined by the relation,

Z(J) = eiW (J) (5.19)
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=  

x1 x1x2 x2

xi xixn xn

Figure 5.10: Another representation of truncated Green functions.

or
W (J) = −i lnZ(J) . (5.20)

The connected Green functions are then obtained by taking functional derivatives

Gnc i1···in = i
δnW

iδJi1 · · · iδJin

∣∣∣∣
Ji=0

(5.21)

Before we actually prove this statement, let us define the last important generating func-
tional, the one that generates the irreducible Green functions. This is defined through the
Legendre transformation of W (J), that is

Γ(φ) ≡W (J)− Jiφi (5.22)

where 



φi ≡ δW (J)
δJi

Ji = −δΓ(φ)
δφi

(5.23)

The irreducible Green functions are then obtained through

Γni1···in =
δnΓ(φ)

δφi1 · · · δφin

∣∣∣∣
φ=0

. (5.24)

Having given the definitions we have now to show that W (J) and Γ(φ) do generate the
connected and irreducible Green functions, respectively. Let us start with W (J). The
proof is done calculating Gnc i1···in . We are going only to do only the n = 2, n = 3 and
n = 4 cases. The generalizations are immediate.

n = 2

G2
c i1i2 = i

δ2W

iδJi1 iδJi2

∣∣∣∣
Ji=0

=
δ2 lnZ

iδJi1 iδJi2

∣∣∣∣
Ji=0

=
δ

iδJi1

1

Z

δZ

iδJi2

∣∣∣∣
Ji=0
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=
1

Z

δ2Z

iδJi1 iδJi2

∣∣∣∣
Ji=0

− 1

Z

δZ

iδJi1

1

Z

δZ

iδJi2

∣∣∣∣
Ji=0

=
δ2Z

iδJi1 iδJi2

∣∣∣∣
Ji=0

(5.25)

or
G2
c i1i2 = G2

i1i2 (5.26)

To obtain this result we have used,

Z(0) = 1 The vacuum is normalized

δZ

iδJi
= 〈0|Tφi|0〉 = 0 There is no symmetry breaking (5.27)

n = 3

G3
c i1i2i3 =

[
1

Z

δ3Z

iδJi1 iδJi2 iδJi3
− 1

Z

δ2Z

iδJi1 iδJi2

1

Z

δZ

iδJi3

− 1

Z

δ2Z

iδJi2 iδJi3

1

Z

δZ

iδJi1
− 1

Z

δ2Z

iδJi1 iδJi3

1

Z

δZ

iδJi2

+2
1

Z

δZ

iδJi1

1

Z

δZ

iδJi2

1

Z

δZ

iδJi3

]

|Ji=0

(5.28)

therefore
G3
i1i2i3 = G3

c i1i2i3 (5.29)

The case n = 4 is left as an exercise (see Problem x.x). The extension to n > 4 is
straightforward. We have therefore showed that W (J) generates all the connected Green
functions. Let us now show that Γ(φ) is the generating functional for the irreducible Green
functions. For that we need two auxiliary results. The first one is based in the relation

δJi
δJk

= δik (5.30)

This relation it is obvious. However one can obtain starting with it another important
relation. In fact

δJi
δJk

=
δJi
δφℓ

δφℓ
δJk

= − δ2Γ

δφiδφℓ

δ2W

δJℓδJk
= −iΓiℓGℓk (5.31)

or
ΓiℓGℓk = iδik (5.32)

This fundamental relation expresses the fact that Γ2 is the inverse of the propagator
(except for the i that comes from conventions). It is useful to write it in a diagrammatic
form shown in 5.11. Notice that

iΓ
(2)
ik ≡ (5.33)
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= −1

Figure 5.11: Graphical representation of Eq.5.32.i k

which explains the disappearance of the i. A second result is related to the following
functional derivative,

δ

iδJi
(5.34)

We want to derive in order to Ji quantities that depend on Ji indirectly through φk. We
get

δ

iδJi
=
δφk
iδJi

δ

δφk
=

δ2W

δJkiδJi

δ

δφk
= G

(2)
ik

δ

δφk
(5.35)

and therefore
δ

iδJi
= Gik

δ

δφk
(5.36)

Equations 5.32 and 5.36 allow us to obtain all the relation between irreducible and con-
nected Green functions. This analysis it is easier in a diagrammatic form, if we note the
following identities,

δ

iδJi
(5.37)

i

kk =

m

m

δ

δφk
(5.38)

ii

k

=
j

j

and

δ

iδJi
(5.39)

i

kkk

m

jjj == Gim
δ

δφm
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where we have used 5.36 to establish 5.39. In all these relations it is understood that at
the end (after taking the functional derivatives) we do J = 0 e φ = 0 at the right places
We will use now these relations to relate the connected and irreducible Green functions
for n = 3 and n = 4.

n = 3

The starting point is the equation 5.32. We apply δ
iδJℓ

to 5.32 and we get

δ

iδJℓ
= 0 (5.40)i k

= 0

Using equations 5.37 and 5.39 we get the diagram of Figure 5.12.

ii k

k

l

l

+ = 0

Figure 5.12: Graphical result of Eq.5.40.

Multiplying on the left by G
(2)
mi and using 5.32 we get

iΓ
(3)
mkl ≡

(5.41)

mm

k

k

l

l

=

This shows that Γ
(3)
mkl is in fact the irreducible Green function with 3 external legs, as for

3 external legs the irreducible and truncated Green functions coincide. To show that we
have really irreducible functions and not only truncated ones, one has to go to n = 4 as
the difference starts there.
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n = 4

We start from equation 5.41 and take the functional derivative with respect to δ
iδJn

. Using
the previous methods we get the equation represented in Figure 5.13. If we use 5.41 to

= +

+ mm

m

m

m

k

k

k k
k

ll

l ll

n

n

n n
n

Figure 5.13: Graphical representation of Gmkln in terms of Γmkln.

express G
(3)
kml in terms of Γ

(3)
kml we obtain the diagrammatic equation of Figure 5.14 that

ends the proof.

n > 4

It is now trivial to continue the process for n > 4. For a given n we start from the relation
for n − 1 and we apply Eqs. 5.37 and 5.39. These results show that the irreducible
Green functions are the important ones, all the other can be obtained from them. This
is an important result as it reduces enormously the number of Feynman diagrams to be
evaluated.

5.4 Feynman rules

The formalism of functional generators allows us to obtain the Feynman rules of any theory
with all the correct conventions. We have already shown how to get the Feynman rules in
section 3.7. There we used the result that in lowest order (tree level) we have

Γtree(φ) =

∫
d4xL[φ] ≡ Γ0(φ) (5.42)

Here we are going just to show this result. For the interaction terms (n > 2) this is clear.
For instance for n = 3 we have

iΓ(3) = G
(3)

tree (5.43)
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Figure 5.14: Graphical representation of Gmkln in terms of Γmkln.

while for n = 4 we get
iΓ(4) = G(4) − irreducible parts (5.44)

and it is obvious that iΓ
(4)
tree generates the vertices.

The i factor is in agreement with the usual conventions for the Feynman rules as it
comes from the term exp

(
i
∫
d4xLint

)
in the calculation of the Green functions. There

is however an important detail. In our definiton of Γ(n)(p1, p2, . . .) we have factored out
(2π)4δ4(p1 + p2 + · · · ). Before doing the inverse Fourier transform one has to put it back.
For instance for the quadratic terms we have, Eq. 5.32,

Γ
(2)

tree(p) = p2 −m2 (5.45)

therefore, doing the inverse Fourier transform,

Γ
(2)

tree(x, y) =

∫
d4p1
(2π)4

d4p2
(2π)4

ei(p1·x+p2·y) (p21 −m2)× (2π)4δ4(p1 + p2) (5.46)

and

1

2

∫
d4xd4y φ(x)Γ

(2)

tree(x, y)φ(y) =

=
1

2

∫
d4xd4y

d4p1
(2π)4

d4p2
(2π)4

ei(p1·x+p2·y)(2π)4δ(p1 + p2)(p
2
1 −m2)φ(x)φ(y)

=
1

2

∫
d4xφ(x)(−⊔⊓ −m2)φ(x) =

1

2

∫
d4x

(
∂µφ∂

µφ−m2φ2
)

(5.47)

which shows that Γtree is in fact the action. In getting to Eq. (5.47) we have done an
integration by parts and discarded, usual, the boundary term. We refer the reader to
Section 3.7 for the actual recipes on how to determine the Feynman rules of any theory.
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5.5 Path integral for generating functionals

5.5.1 Quantum mechanics of n degrees of freedom

Let us start reviewing the results for the path integral in systems with 1 degree of freedom.
In appendix A a more detailed explanation is given for the results that we are going to
use. The fundamental result is the following transition amplitude,

〈
q′; t′|q; t

〉
= N

∫
D(q)ei

∫ t′

t
dtL(q,q̇) = N

∫
D(q)eiS (5.48)

whereN is a normalization factor and D(q) is a symbolic form for representing the measure
of integration. This is in fact a complicated limit (see appendix A). Another important
result concerns the time ordered matrix elements of operators. Let

O(t1, . . . , tn) = T [OH1 (t1)O
H
2 (t2)...O

H
n (tn)] (5.49)

such that
t′ ≥ (t1, t2, . . . , tn) ≥ t (5.50)

Then 〈
q′; t′

∣∣O(t1, . . . , tn) |q; t〉 = N

∫
D(q)O1(q(t1)) · · ·On(q(tn))eiS (5.51)

where we have assumed that the operators Oi are diagonal in the coordinate space. For
the generalization to Quantum Field Theory the important objects are not the transition
amplitudes but the generating functionals. Consider, for instance, the Green function

G(t1, t2) ≡ 〈0|T (QH(t1)QH(t2)) |0〉 (5.52)

where |0〉 is the ground state and QH(t) is the coordinate operator in the Heisenberg
representation. To write Eq. (5.52) using the path integral, we introduce a complete set
of states and we write

G(t1, t2) =

∫
dq dq′

〈
0|q′; t′

〉 〈
q′; t′

∣∣T (QH(t1)QH(t2)) |q; t〉 〈q; t|0〉

=

∫
dqdq′φ0(q

′, t′)φ∗0(q, t)
∫

D(q)q(t1)q(t2)e
i
∫ t′

t
Ldτ (5.53)

where
φ0(q, t) = 〈0|q; t〉 = φ0(q)e

−iE0t (5.54)

The appearance in this expression of the wave functions of the fundamental state makes
the expression not very useful. We can remove them in the following way. Consider the
matrix element

〈
q′; t′

∣∣O(t1, t2) |q; t〉

=

∫
dQ dQ′

〈
q′; t′|Q′;T ′

〉 〈
Q′;T ′

∣∣O(t1, t2) |Q;T 〉 〈Q;T |q; t〉 (5.55)

where

O(t1, t2) = T (QH(t1)Q
H(t2))
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t′ ≥ T ′ ≥ (t1, t2) ≥ T ≥ t (5.56)

Let |n〉 be the eigenstates of energy En with wave function φn(q) that is

H |n〉 = En |n〉
〈q|n〉 = φ∗n(q) (5.57)

Then

〈
q′; t′|Q′;T ′

〉
=

〈
q′
∣∣ e−iH(t′−T ′)

∣∣Q′
〉

=
∑

n

〈
q′|n

〉
〈n| e−iH(t′−T ′)

∣∣Q′
〉

=
∑

n

φ∗n(q
′)φn(Q

′)e−iEn(t′−T ′) (5.58)

We consider now the limit t′ → −i∞. We obtain then

lim
t′→−i∞

〈
q′; t′|Q′;T ′

〉
= φ∗0(q

′)φ0(Q
′)e−E0|t′|eiE0T ′

(5.59)

In a similar way

lim
t→i∞

〈Q;T |q; t〉 = φ0(q)φ
∗
0(Q)e−E0|t|e−iE0T (5.60)

Applying these limits to Eq. (5.55) we get

lim
t′→−i∞

lim
t→i∞

〈
q′; t′

∣∣O(t1, t2) |q; t〉

=

∫
dQdQ′φ∗0(q

′)φ0(Q
′)e−E0|t′|eiE0T ′

〈
Q′;T ′

∣∣O(t1, t2) |Q;T 〉φ0(q)φ∗0(Q)e−E0|t|e−iE0T

= φ∗0(q
′)φ0(q)e

−E0|t′|e−E0|t|

∫
dQdQ′φ0(Q

′, T ′)φ∗0(Q,T )
〈
Q′;T ′

∣∣O(t1, t2) |Q;T 〉 (5.61)

Using the definition of Green function in Eq.5.53 we obtain the important result

lim
t′→−i∞

lim
t→i∞

〈
q′; t′

∣∣O(t1, t2) |q; t〉 = φ∗0(q
′)φ0(q)e

−E0|t′|e−E0|t|G(t1, t2) (5.62)

On the other hand

lim
t′→−i∞

lim
t→i∞

〈
q′; t′|q; t

〉
= φ∗0(q

′)φ0(q)e
−E0|t′|eE0|t| (5.63)

Therefore we can finally write

G(t1, t2) = lim
t′→−i∞

lim
t→i∞

[〈q′; t′|T (QH(t1)QH(t2)) |q; t〉
〈q′; t′|q; t〉

]
(5.64)
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Using 5.51 we can finally write G(t1, t2) in terms of a path integral, as

G(t1, t2) = lim
t′→−i∞

lim
t→i∞

1

〈q′; t′|q; t〉

∫
D(q)q(t1)q(t2)e

i
∫ t′

t
Ldτ (5.65)

This result is easily generalized to Green functions with n-points

G(t1, . . . , tn) = 〈0|T (q(t1) · · · q(tn)) |0〉

= lim
t′→−i∞

lim
t→i∞

1

〈q′; t′|q; t〉

∫
D(q)q(t1) · · · q(tn)ei

∫ t′

t
Ldτ (5.66)

We can now see that all the Green functions can be obtained from the generating functional

Z[J ] = lim
t′→−i∞

lim
t→i∞

1

〈q′; t′|q; t〉

∫
D(q)ei

∫ t′

t
[L(q,q̇)+Jq]dτ (5.67)

by functional derivation

G(t1, . . . , tn) =
δnZ[J ]

iδJ(t1) · · · iδJ(tn)

∣∣∣∣
J=0

(5.68)

The expression 5.67 for the generating functional shows that its the transition amplitude
between the ground state at time t and the ground state at time t′, in the presence of an
exterior source and with normalization such that Z[J = 0] = 1

Z[J ] = 〈0|0〉J (5.69)

For a system with n degrees of freedom, we have the generalization of 5.67

Z[J1, . . . , Jn] = lim
t′→−i∞

lim
t→i∞

N

∫
D(qi)e

i
∫ t′

t
dτ [L(qi,q̇i)+

∑N
i=1 Jiqi] (5.70)

Comments

• In the previous equation the time limits for times t and t′ are imaginary. This means
that these Green functions are in Euclidean space. For field theory this corresponds
to the prescription m2 → m2 − iǫ.

• In equation 5.70 we do not explicitly wrote the normalization. It should be chosen
in such a way that Z[0, . . . , 0] = 1. However, as we will see, for the connected
Green functions in Quantum Field Theory the normalization it is not relevant, and
therefore we will not worry about it.

5.5.2 Field theory

To get the generating functional in Quantum Field Theory we proceed in the usual heuristic
way, by making the following equivalences,

t → xµ
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q(t) → φ(x)

D(q) → D(φ)

L(qi, q̇i) →
∫
d3xL(φ, ∂µφ) (5.71)

We get therefore

Z[J ] = N

∫
D(φ)ei

∫

d4x[L(φ,∂µφ)+J(x)φ(x)] (5.72)

This is the starting point in the path integral quantization. We will see in the next lecture
how to use it. A more rigorous derivation of the above result, Eq. 5.72, be found in
appendix B.

5.5.3 Applications

Once we know the generating functional Z[J ] we also know all the Green functions of the
theory and therefore how to address any problem in Quantum Field Theory. We can ask
in which conditions can we evaluate Z[J ]? The answer is that as we only know how to do
Gaussian path integrals we can only do either free fields or perturbation theory. However
there are two main advantages in the method that we will now discuss:

• Perturbation Theory

The expression for Z[J ] allows to establish the perturbative expansion and find the
Feynman rules for any theory.

• Formal Manipulations

Relations among the Green functions that are a consequence of symmetry properties
of the theory (for instance Ward identities) are much simpler in terms of the gener-
ating functionals. Here the expression of Z[J ] in terms of a path integral, Eq. 5.72
is particularly useful as we will discuss later.

We will use the scalar field as an example to illustrate the first point, that is how to
establish the perturbative expansion. We consider a real scalar field, described by the
Lagrangian,

L(φ) = L0(φ) + LI(φ) (5.73)

where L0(φ) is quadratic in the fields, that is

L0(φ) =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (5.74)

We can then write,

Z[J ] = N

∫
D(φ)ei

∫

d4x[L0(φ)+LI (φ)+Jφ]

= N

∫
D(φ)ei

∫

d4x[LI(φ)] ei
∫

d4x[L0(φ)+Jφ] (5.75)

This last integral can formally be written in the form,

Z[J ] = exp

[
i

∫
d4xLI

(
δ

iδJ

)]
Z0[J ] (5.76)
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where

Z0[J ] = N

∫
D(φ)ei

∫

d4x[L0+Jφ] . (5.77)

The usefulness of this expression results from the two following points:

• Z0[J ] can be exactly calculated because is quadratic in the fields (Gaussian integral).

• If LI(φ) has a small parameter, the exponential can be developed in a power series
in this parameter and the generating functional Z[J ] can be obtained order by order
in perturbation theory, as the integrals will be Gaussian integrals with polynomials.

5.5.4 Example: perturbation theory for λφ4

To see the connection with the usual results let us consider as an example the derivation
of the Feynman rules for a real scalar theory with the interaction,

LI = − λ

4!
φ4 . (5.78)

The generating functional Z[J ] is

Z[J ] = N exp

{
(−iλ) 1

4!

∫
d4x

(
δ

iδJ

)4
}
Z0[J ] (5.79)

where (see Problems)

Z0[J ] = exp

{
−1

2

∫
d4xd4yJ(x)∆(x, y)J(y)

}
(5.80)

The normalization N is to be chosen such that Z[0] = 1, as we will see later. We expand
in a series in the coupling constant,

Z[J ] = NZ0[J ]
{
1 + (−iλ)Z ′1[J ] + (−iλ)2Z ′2[J ] + · · ·

}
(5.81)

where

Z ′1[J ] ≡ Z−10 [J ]

{
1

4!

∫
d4x

(
δ

δJ

)4
}
Z0[J ] (5.82)

and

Z ′2[J ] ≡ 1

2
Z−10 [J ]

{
1

4!

∫
d4x

(
δ

δJ

)4
}2

Z0[J ]

=
1

2
Z−10 [J ]

{
1

4!

∫
d4x

(
δ

δJ

)4
}
(Z0Z

′
1)

=
1

2

(
Z ′1[J ]

)2
+

1

2
Z−10 [J ]

1

4!

∫
d4x

{
4
δ3Z0

δJ3(x)

δZ ′1
δJ(x)
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+6
δ2Z0

δJ2(x)

δ2Z ′1
δJ2(x)

+ 4
δZ0

δJ(x)

δ3Z ′1
δJ3(x)

+ Z0
δ4Z ′1
δJ4(x)

}
(5.83)

We get for the first order

Z ′1[J ] =

=
1

4!

∫
d4x

[
3∆(x, x)∆(x, x) − 3!∆(x, x)

∫
d4y1d

4y2∆(x, y1)∆(x, y2)J(y1)J(y2)

+

∫
d4y1 · · · d4y4∆(x, y1)∆(x, y2)∆(x, y3)∆(x, y4)J(y1)J(y2)J(y3)J(y4)

]
(5.84)

This result can be represented diagrammatically in the form,

Z ′1 =
1

8
− 1

4
+

1

4!
(5.85)

For Z ′2 we get

Z ′2[J ]

=
1

2

(
Z ′1[J ]

)2
+

1

2

(
1

4!

)2

4!

∫
d4x1d

4x2∆(x1, x2)∆(x1, x2)∆(x1, x2)∆(x1, x2)

+

(
1

4!

)2 [
−72

∫
d4x2

∫
d4x1∆(x1, x2)

∫
d4y1∆(x1, y1)J(y1)

∆(x1, x2)∆(x2, x2)

∫
d4y2∆(x2, y2)J(y2)

+24

∫
d4x2d

4x1∆(x1, x1)

∫
d4y1∆(x1, y1)J(y1)∆(x1, y2)

∫
d4y2∆(x2, y1)J(y2)

∫
d4y3∆(x2, y3)J(y2)

∫
d4y4∆(x1, y4)J(y4)

+24

∫
d4x2

∫
d4x1

∫
d4y1d

4y2d
4y3d

4y4∆(x1, x2)∆(x1, y1)

∆(x1, y2)∆(x1, y2)∆(x2, x2)∆(x2, y4)J(y1) · · · J(y4)

−8

∫
d4x2

∫
d4x1

∫
d4y1 · · · d4y6∆(x1, x2)∆(x1, y1)∆(x1y2)

∆(x1, y3)∆(x2, y4)∆(x2, y5)∆(x2, y6)J(y1) · · · J(y6)

+36

∫
d4x2d

4x1∆(x1, x1)∆(x1, x2)∆(x1, x2)∆(x2, x2)
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−36

∫
d4x2d

4x1∆(x1, x1)∆(x1, x2)∆(x1, x2)

∫
d4y1d

4y2∆(x2, y1)

∆(x2, y2)J(y1)J(y2)

−36

∫
d4x2d

4x1d
4y1d

4y2∆(x1, x2)∆(x1, x2)∆(x2, x1)

∆(x1, y1)∆(x1, y2)J(y1)J(y2)

+36

∫
d4x2d

4x1d
4y1 · · · d4y4∆(x1, x2)∆(x1, x2)∆(x1, y1)

∆(x1, y2)∆(x2, y3)∆(x2, y4)J(y1) · · · J(y4)

−48

∫
d4x2dy1d

4y1d
4y2∆(x1, x2)∆(x1, x2)∆(x1, x2)

∆(x1, y1)∆(x2, y2)J(y1)J(y2)

]
(5.86)

This can also be written as,

Z ′2[J ]

=
1

2

(
Z ′1[J ]

)2
+

1

2 · 4!

∫
d4x1d

4x2∆
4(x1, x2)

+
3

2 · 4!

∫
d4x1d

4x2∆(x1, x1)∆
2(x1, x2)∆(x2, x2)

− 1

2 · 3! · 3!

∫
d4x1d

4x2d
4y1 · · · d4y6∆(y1, x1)∆(y2, x1)∆(y3, x1)

∆(x1, x2)∆(x2, y4)∆(x2, y5)∆(x2, y6)J(y1) · · · J(y6)

+
2

4!

∫
d4x1d

4x2d
4y1 · · · d4y4∆(y1, x1)∆(x1, x1)∆(x1, x2)

∆(x2, y2)∆(x2, y3)∆(x2, y4)J(y1) · · · J(y4)

+
3

2 · 4!

∫
d4x1d

4x2d
4y1 · · · d4y4∆(y1, x1)∆(y2, x1)∆

2(x1, x2)

∆(x2, y3)∆(x2, y4)J(y1) · · · J(y4)
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−1

8

∫
d4x1d

4x2d
4y1d

4y2∆(y1, x1)∆(x1, x1)∆(x1, x2)∆(x2, x2)

∆(x2, y2)J(y1)J(y2)

−1

8

∫
d4x1d

4x2d
4y1d

4y2∆(y1, x1)∆
2(x1, x2)∆(x2, x2)∆(x1, y2)J(y1)J(y2)

− 1

12

∫
d4x1d

4x2d
4y1d

4y2∆(y1, x1)∆
3(x1, x2)∆(x2, y2)J(y1)J(y2) (5.87)

Let us now evaluate the normalization up to second order in perturbation theory. The
condition Z[0] = 1 gives,

1 = N
[
1 + (−iλ)n1 + (−iλ)2n2 + · · ·

]
(5.88)

where

n1 =
1

8
(5.89)

n2 =
1

2
n21 +

1

2 · 4! +
3

2 · 4! (5.90)

We then get,

N =
1

1 + (−iλ)n1 + (−iλ)2n2 + · · ·

= 1− (−iλ)n1 − (−iλ)2(n2 − n21) + · · · (5.91)

Putting everything together we have

Z[J ] = Z0[J ]
{
1− (−iλ)n1 − (−iλ)2(n2 − n21) + · · ·

}

{
1 + (−iλ)Z ′1 + (−iλ)2Z ′2 + · · ·

}

= Z0[J ]
{
1 + (−iλ)(Z ′1 − n1) + (−iλ)2(Z ′2 − n2 + n21 − n1Z

′
1) + · · ·

}
(5.92)

Defining now

Z1 ≡ Z ′1 − n1
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Z2 ≡ Z ′2 − n2 + n21 − n1Z
′
1 = Z ′2 − n2 − n1Z1 (5.93)

we get

Z1[J ] = −1

4
+

1

4!
(5.94)

and

Z2[J ]

=
1

2
(Z1[J ])

2 +
−1

2! 3! 3!

+
3

2! 4!
+

2

4!

−1

8
− 1

8
− 1

12
(5.95)

with Z1[0] = Z2[0] = 0. Therefore the generating functional

Z[J ] = Z0[J ]
{
1 + (−iλ)Z1[J ] + (−iλ)2Z2[J ] + · · ·

}
(5.96)

is automatically correctly normalized if we neglect all the vacuum amplitudes, know as
bubbles. To verify that this expression reproduces the perturbation theory results, let us
evaluate the propagator up to second order in λ2. We get

∆′(x1, x2) =
δ2Z[J ]

iδJ(x1)iδJ(x2)

∣∣∣∣
J=0

= − δ2Z0[J ]

δJ(x1)δJ(x2)

∣∣∣∣
J=0

− (−iλ) δ2Z1[J ]

δJ(x1)δJ(x2)

∣∣∣∣
J=0

− (−iλ)2 δ2Z2[J ]

δJ(x1)δJ(x2)

∣∣∣∣
J=0
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= ∆(x1, x2) + (−iλ)1
2

∫
d4y∆(x1, y)∆(x2, y)∆(y, y)

+(−iλ)2
∫
d4y1d

4y2

[
1

4
∆(x1, y1)∆(y1, y1)∆(y1, y2)∆(y2, y2)∆(y2, x2)

+
1

4
∆(x1, y1)∆

2(y1, y2)∆(y2, y2)∆(y1, x2) +
1

6
∆(x1, y1)∆

3(y1, y2)∆(y2, x2)

]
(5.97)

In diagrammatic form we have the situation of Figure 5.15.

=

x1x1x1

x1x1x1

x2x2x2

x2x2x2
+

1

2

+
1

4
+

1

4
+

1

6

Figure 5.15:

Continuing with the scalar λφ4 theory as an example, let analyze the generating func-
tional for the connected Green functions, W [J ]. It is easy to see that the terms like
Z2
1 [J ] correspond to disconnected diagrams which are part of Z[J ]. Let us see how they

disappear in W [J ]. We have

iW [J ] = lnZ[J ] =

= lnZ0[J ] + ln
{
1 + (−iλ)Z1[J ] + (−iλ)2Z2[J ] + · · ·

}

= iW0[J ] + (−iλ)Z1[J ]−
1

2
(−iλ)2 (Z1[J ])

2 + (−iλ)2Z2[J ] + · · ·

= iW0[J ] + (−iλ)Z1[J ] +

{
(−iλ)2(Z2[J ]−

1

2
(Z1[J ])

2

}
+ · · ·

≡ i
{
W0[J ] + (−iλ)W1[J ] + (−iλ)2W2[J ] + · · ·

}
(5.98)

with

iW1[J ] = Z1[J ], iW2[J ] = Z2[J ]−
1

2
(Z1[J ])

2 (5.99)

Therefore the disconnected diagrams contained in Z2[J ] are subtracted and W1 and W2

have only the connected diagrams.

5.5.5 Symmetry factors

After doing the derivatives in order to J to obtain a given Green function, we have some
diagrams multiplied by numbers known as symmetry factors. For instance for the one-loop
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correction to the propagator we get,

∆′(x1, x2) =
δ2Z

iδJ(x1)iδJ(x2)

∣∣∣∣
J=0

=

=
δ2Z0

iδJ(x1)iδJ(x2)

∣∣∣∣
J=0

+ (−iλ) δ2Z1

iδJ(x1)iδJ(x2)

∣∣∣∣
J=0

+ · · ·

= ∆(x1, x2) +
1

2
+ · · · (5.100)

The factor 1
2 is the symmetry factor that corresponds to that diagram. The method of

the generating functional gives automatically the correct symmetry factors. However in
practical applications it is normally easier to have a rule to obtain these symmetry factors.

Rule for the Symmetry Factors

The symmetry factor S of a diagram it is given by

S =
N

D
(5.101)

where N is the # of different ways of forming the diagram, and D it is the product of the
symmetry factors of each vertex by the number of permutations of equal vertices.

As an example take the diagram that contributes to the propagator at one-loop rep-
resented in Fig. 5.16. Then according to the rule we have,

pp

Figure 5.16:

S =
4× 3

4!
=

1

2
(5.102)

5.5.6 A comment on the normal ordering

In the previous example we have diagrams like in Fig. 5.16, that we generically denote
by “tadpoles”, that connect fields that belong to the same vertex, and that we saw that
were excluded by the normal ordering. This difference comes from the fact that we were
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not very rigorous in the definition of the Lagrangian to include in the path formalism.
If we would we would concluded that we should have to do the normal ordering in the
Lagrangian to include in ei

∫

d4xL(φ) This would make the Lagrangian L(φ) to include in
the path integral different from the classical Lagrangian. Let us look at φ4 as an example.
We will use the relations

φ̂(x)φ̂(x) =: φ̂(x)φ̂(x) : + 〈0| φ̂(x)φ̂(x) |0〉 (5.103)

or symbolically
: φ̂2 := φ̂2 − 〈0| φ̂2 |0〉 . (5.104)

In a similar way

φ̂4 =: φ̂4 : +6 : φ̂2 : 〈0| φ̂2 |0〉+ 6 〈0| φ̂2 |0〉 〈0| φ̂2 |0〉 (5.105)

Therefore we get

: φ̂4 := φ̂4 − 6 : φ̂2(x) : 〈0| φ̂2(x) |0〉 − 6
(
〈0| φ̂2 |0〉

)2
(5.106)

or
: φ̂4 := φ̂4 − 6 φ̂2 〈0| φ̂2 |0〉 (5.107)

This means that the quantum Lagrangian should be written as

LQInt = − λ

4!
: φ̂4 :

= − λ

4!
φ̂4 +

λ

4
φ̂2I (5.108)

where

I ≡ 〈0| φ̂2(x) |0〉

=

∫
˜dk1 ˜dk2 〈0|

(
a†(k1)e

ik1·x + a(k1)e
−ik1·x

)(
a†(k2)e

ik2·x + a(k2)e
−ik2·x

)
|0〉

=

∫
˜dk1 ˜dk2 〈0| a(k1)a†(k2) |0〉 ei(k2−k1)·x

=

∫
˜dk1 =

∫
d3k

(2π)3
1

2ωk
(5.109)

In the previous expression we have used the relations

[
a(k), a+(k′)

]
= (2π)32ωkδ

3(~k − ~k′) (5.110)

ωk =

√
k20 + |~k|2 (5.111)

The integral I is divergent and in fact it is equal to the one-loop integral. In fact

∫
d4k

(2π)4
i

k2 −m2 + iε
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=

∫
d3k

(2π)3

∫ +∞

−∞
dk0

i

(k0 − ωk)(k0 + ωk)

=

∫
d3k

(2π)3
1

2ωk
= I (5.112)

Therefore if we had been rigorous we should have to include the term, λ
4φ

2I in the
interaction. The Lagrangian to use in the path integral should then be,

LICInt = − λ

4!
φ4 +

λ

4
φ2I (5.113)

It is easy to verify that the additional term cancels the tadpole. In fact we have

=
i

p2 −m2

[
−iλ

2
I + i

λ

2
I

]
i

p2 −m2

= 0 (5.114)

1/2
+ =

and therefore the tadpoles would not appear. However many times we do not worry about
this considerations and just use the classical Lagrangian in the path integral. This can be
done because the tadpole gives an infinite contribution to the mass, that can be absorbed
in the renormalization process.

In QED the same occurs, we should have as interaction Lagrangian

LICInt = −eψγµψAµ + eAµ 〈0|ψγµψ |0〉 (5.115)

and the second term would remove the tadpole shown in Fig. 5.17,

Figure 5.17: Tadpole for QED.

However, due the Lorentz invariance of the theory, one can show that this tadpole vanishes
to all orders and therefore we do have to worry, just use the classical Lagrangian.
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5.5.7 Generating functionals for fermions

For theories with fermion fields we introduce Grassmann variables. These anti-commuting
variables are in some sense the the classical limit of fermionic quantum fields. The details
of this construction are explained in the Appendices A and B. Here we just review our
conventions. Due to the anti-commuting character it is necessary to specify the order of
the derivatives.

We will take the convention that derivatives are left derivatives, that is they obey,

δ

δη(x)

∫
d4yη(y)ψ(y) = ψ(x)

δ

δη(x)

∫
d4yψ(y)η(y) = −ψ(x) (5.116)

In the Green functions the order of the derivatives is such that

G2n(x1, . . . , yn) = 〈0|Tψ(x1) · · ·ψ(xn)ψ(y1) · · ·ψ(yn) |0〉

≡ δ2nZ[η, η]

iδη(yn) · · · iδη(y1)iδη(xn) · · · iδη(x1)

≡ δ

iδη(yn)
· · · δ

iδη(x1)
Z[η, η] (5.117)

where we have defined the generating functional for fermion fields as

Z[η, η] = 〈0|Tei
∫

d4x[η(x)ψ(x)+ψ(x)η(x)] |0〉

=

∫
D(ψ,ψ)ei

∫

d4x[L+η(x)ψ(x)+ψ(x)η(x)] (5.118)

Examples of these results will be given in the Problems at the end of the chapter.

5.6 Change of variables in path integrals. Applications

5.6.1 Introduction

One of the great advantages of having an expression for the generating functional Z[J ] in
terms of a path integral is that a great number of manipulations that are familiar for the
usual integrals, (change of variables, integration by parts, ...) can also be applied here.
Let us see the implications of changing integration variables.

Let us consider an infinitesimal transformation of the form,

φi → φi + εFi(φ) (5.119)

where
Fi(φ) = fi + fijφj + · · · (5.120)
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Then we should have, in first order,

D(φ) → D(φ) det
∣∣∣δij + ε δFi

δφj

∣∣∣

= D(φ)
(
1 + ε δFi

δφi

)
(5.121)

On the other hand

ei(S(φ)+Jiφi) → ei(S(φ)+Jiφi)
[
1 + iε

(
δS

δφi
+ Ji

)
Fi(φ)

]
(5.122)

As the integral for Z(J) should be independent of the change of variables we get

0 =

∫
D(φ)

[
i

(
δS

δφi
+ Ji

)
Fi +

δFi
δφi

]
ei(S[φ]+Jiφi) (5.123)

Using φi → δ
iδJi

we get a more compact expression,

{
i

[
δS

δφi

(
δ

iδJi

)
+ Ji

]
Fi

(
δ

iδJi

)
+
δFi
δφi

(
δ

iδJ

)}
Z(J) = 0 (5.124)

This the general expression that we are going to apply to two important particular cases,
the Dyson-Schwinger equations and the Ward identities.

5.6.2 Dyson-Schwinger equations

Let Fi = fi independent of φi, that is a simple translation of the fields. Then the previous
master equation simplifies to

(
δS

δφi

[
δ

iδJ

]
+ Ji

)
Z(J) = 0 (5.125)

We will see below that this the expression for the Dyson-Schwinger (DS) equations for
the generating functional of the full Green functions. In this way, the DS equations are a
consequence of the path integral for constant field translations. This equations can further
be written as

Jk = − 1

Z
E

[
δ

iδJk

]
Z[J ] (5.126)

where the functional E[φ] is the Euler-Lagrange equation of motion,

E [φk] ≡
δS

δφk
. (5.127)

For many applications it is more convenient to write the Dyson-Schwinger equations
for the connected and proper (one particle irreducible) Green functions. For this we have
to write the corresponding equations for the functional W and Γ. Using the identity

1

Z

δ

iδJk
(Z[J ]f [J ]) =

(
δiW

iδJk
+

δ

iδJk

)
f [J ] (5.128)
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we can write
1

Z
E

[
δ

iδJk

]
Z[J ] = E

[
i
δW

iδJk
+

δ

iδJk

]
1 (5.129)

Therefore the DS equation for the generating functional of the connected Green functions
can be written as,

Jk = −E
[
i
δW

iδJk
+

δ

iδJk

]
1 (5.130)

Let us now find the corresponding equation for the proper, or one particle irreducible,
Green functions. To obtain this equation we use the following relations





φk =
i δW

iδJk
Jk = − δΓ

δφk
δ

iδJk
= Gkm

δ

δφm

δ

δφk
= −iΓkr

δ

iδJr

We get
δΓ

δφk
= E

[
φk +Gkm

δ

δφm

]
1 (5.131)

It is in the form of Eq. 5.131, that the DS are more useful.

Example : Self-energy in φ3

Let us start with the example of the self-energy in φ3. The action for this theory is, using
our compact notation,

S[φ] =
1

2
φk(−⊔⊓ −m2)δkmφm − λ

3!
(φk)

3 (5.132)

Therefore the equation of motion is

E[φk] = (−⊔⊓ −m2)φk −
λ

2
(φk)

2 (5.133)

We get therefore, expanding the functional,

E

[
φk +Gkm

δ

δφm

]
1 = −(⊔⊓+m2)φk −

λ

2

(
φk +Gkr

δ

δφr

)
φk (5.134)

We get therefore for the DS equation

δΓ

δφk
= −(⊔⊓+m2)φk −

λ

2

(
φ2k +Gkrδrk

)
(5.135)

By taking functional derivatives with respect to φm we get the DS for the various Green
functions, all derived from just one master equation. For instance, for the self-energy we
get,

δ2Γ

δφkδφm
= −(⊔⊓+m2)δkm − λ

2
(2φkδkm − iΓmnGkrnδrk) (5.136)
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Setting φk = 0 we get

Γkm − (−⊔⊓−m2)δkm = i
λ

2
ΓmnGkrnδrk

=
λ

2
ΓmnGkrnΓrsGsk

= i
λ

2
ΓmnΓrsGskGkk′Grr′Gnn′Γk′r′n′

= −iλ
2
Gkk′GksΓk′sm (5.137)

where we have repeatedly used the relation

ΓijGjk = iδik (5.138)

By definition of self-energy we have,

Γkm − (−⊔⊓ −m2)δkm ≡ −Σkm (5.139)

Therefore

− iΣkm = −iλ
2
Gkk′GksiΓk′sm (5.140)

as shown in the Fig. 5.18, We see that the DS equation is no more than the statement

=
kk mm

Figure 5.18: Dyson-Schwinger equation for φ3.

that the vertex of the theory is λ
3!φ

3.

Example: Self-energy in φ4

In the case the action is

S[φ] =
1

2
φk(−⊔⊓−m2)δkmφm − λ

4!
(φk)

4 . (5.141)

Therefore the equation of motion is

E[φ] = (−⊔⊓ −m2)φk −
λ

3!
(φk)

3 . (5.142)

We then get

E

[
φk +Gkm

δ

δφm

]
1=−(⊔⊓+m2)φk −

λ

3!

(
φk +Gkm

δ

δφm

)(
φk +Gkn

δ

δφn

)
φk
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=−(⊔⊓+m2)φk −
λ

3!

(
φk +Gkm

δ

δφm

)(
φ2k +Gknδnk

)

=−(⊔⊓+m2)φk −
λ

3!

(
φ3k + φkGknδnk + 2Gkmφkδkm

− iGkmΓmℓGknℓδnk

)
(5.143)

The master equation for the DS equations then reads,

δΓ

δφk
= −(⊔⊓+m2)φk −

λ

3!

(
φ3k + φkGknδnk + 2Gkmφkδkm − iGkmΓmℓGknℓδnk

)
(5.144)

To obtain the DS for the self-energy we take the derivative with respect to φj make all
φ = 0 after derivation. We obtain,

Γkj − (−⊔⊓ −m2)δkj

= − λ

3!
(Gknδnkδkj + 2Gkmδkmδkj − iGkmΓmℓjGknℓδnk

−GkmpΓpjΓmℓGknℓδnk −GkmΓmℓGknℓpΓpjδnk) (5.145)

This equation can in turn be written as,

−iΣkj = −iλ
2
Gkkδkj + i

λ

3!
GkmiΓmℓjGkk′Gnn′Gℓℓ′iΓk′n′ℓ′δnk

+i
λ

3!
Gkk′Gmm′Gpp′iΓk′m′p′ΓpjΓmℓGkk′′Gnn′Gℓℓ′iΓk′′n′ℓ′δnk

+i
λ

3!
GkmΓmℓGknℓpΓpjδnk

= −iλ
2
Gkkδkj + i

λ

3!
δkℓδnkGknℓpiΓpj (5.146)

For the φ4 theory we have Γijk = 0 and therefore

Gknℓp = Gkk′Gnn′Gℓℓ′Gpp′ iΓk′n′ℓ′p′ (5.147)

We finally get,

− iΣkj = −iλ
2
Gkkδkj − i

λ

3!
Gkk′Gkn′Gkℓ′ iΓk′n′ℓ′j (5.148)

that we represent diagrammatically in Fig. 5.19 Again the DS equation for the self-energy

1

2
= +

1

3!

kk kmm m

Figure 5.19: Dyson-Schwinger equation for φ4.

is nothing else than the identification of the vertex of the theory.
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5.6.3 Ward identities

Consider a theory with some symmetry. This symmetry is expressed as an invariance of
the action, that is

δS[φ]

δφi
Fi(φ) = 0 (5.149)

where we considered the previously defined infinitesimal transformations. If this symmetry
transformation also leaves invariant the integration measure D(φ) the we get simply the
expression,

JiFi

[
δ

iδJ

]
Z(J) = 0 (5.150)

This expression is known as Ward Identity. Derivation in order to the external sources
will lead to relations among different Green functions as a consequence of the symmetry
of the theory. For gauge theories the correct expression is a bit more complicated. The
reason being, as we shall see, that in the quantization of gauge theories one normally has
to introduce terms that break the symmetry, known as gauge fixing terms. In this case
we can write,

Seff = SI + SNI (5.151)

where δSI

δφi
Fi = 0 and δSNI

δφi
Fi 6= 0. Then, if the measure is still invariant, we should have

the more complicated expression for the Ward identities,

(
δSNI
δφi

[
δ

iδJ

]
+ Ji

)
Fi

[
δ

iδJ

]
Z(J) = 0 (5.152)

In the next chapter we will apply this expression to obtain the Ward identities for QED
and for the non-Abelian gauge theories. For these last ones the question of the invariance
of the measure is more subtle and will be discussed there, after we have learned how to
quantize these theories.
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Problems for Chapter 5

5.1 Evaluate G4
c starting from 5.21 and show that it is indeed the connected Green

function with four external legs.

5.2 Show that for a real scalar field we have

Z0[J ] = exp

{
−1

2

∫
d4xd4yJ(x)∆(0)(x, y)J(y)

}
(5.153)

where

∆(0)(x− y) =

∫
d4k

(2π)4
eik·(x−y)

i

k2 −m2 + iǫ
(5.154)

Hint: Use a convenient generalization of the result

∫ +∞

−∞
dx1 · · · dxNe−

1
2
xiMijxj+bixi = πN/2(detM)−1/2e

1
2
bi(M

−1)ijbj (5.155)

5.3 Determine the symmetry factors for the following diagrams:

5.4 Consider the theory φ3, that is, V (φ) = λ
3!φ

3. Using

Z[J ] = exp

{
−i
∫
d4xV

[
δ

iδJ

]}
Z0(J) (5.156)

where

Z0(J) = exp[−1

2

∫
d4xd4x′J(x)G(0)

F (x− x′)J(x′)] (5.157)

and

G
(0)
F (x− x′) = i

∫
d4keik(x−x

′) 1

k2 −m2 + iε
(5.158)
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show that the symmetry factor of the diagram

is S = 1
2 .

5.5 Given the Lagrangian for the free Dirac field

L0 = ψ(iγµ∂µ −m)ψ , (5.159)

show that the generating functional for the Green functions is

Z0[η, η] = e−
∫

d4xd4y η(x)S0
F (x,y)η(y) (5.160)

where

S0
Fαβ(x, y) =

∫
d4p

(2π)4
e−ip·(x−y)

(
i

p/−m+ iε

)

αβ

=
δ2Z0

iδηα(y) iδηβ(x)

= 〈0|Tψβ(x)ψα(y) |0〉 .

5.6 As we will show in Chapter 6 the generating functional for the Green functions in
QED is given by,

Z(Jµ, η, η) =

∫
D(Aµ, ψ, ψ) e

i
∫

d4x(LQED+LGF+JµAµ+ηψ+ψη) . (5.161)

where

LQED = −1

4
FµνF

µν + ψ(iD/ −m)ψ

LGF = − 1

2ξ
(∂ · A)2

Dµ = ∂µ + ieAµ .

a) Determine Z0[J
µ, η, η]

b) Show that

Z[Jµ, η, η] = exp

{
(−ie)

∫
d4x

δ

δηα(x)
(γµ)αβ

δ

δηβ(x)

δ

δJµ(x)

}
Z0[J

µ, η, η] . (5.162)

c) Expand
Z = Z0

[
1 + (−ie)Z1 + (−ie)2Z2 + · · ·

]
(5.163)

where we have subtracted the vacuum-vacuum amplitudes in Zi, that is, Zi[0] = 0 →
Z[0] = 1. Show that
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Z1 = −i (5.164)

Z2 =
1

2
Z2
1 +

1

2
+

− +
1

2
(5.165)

d) Discuss the numerical factors and signs of the previous diagrams.
e) Evaluate in lowest order

〈0|TAµ(x)ψβ(y)ψα(z) |0〉 =
δ3Z

iδηα(z)iδηβ(y)iδJµ(x)
(5.166)

and verify that it coincides with the Feynman rules for the vertex
f) Determine the amplitude for the Compton scattering in lowest order, that is,

〈0|TAµ(x)Aν(y)ψβ(z)ψα(w) |0〉 =
δ4Z

iδηα(w)iδηβ(z)iδJν (y)iδJµ
(5.167)

and verify that it reproduces the result obtained from the usual Feynman rules.

5.7 The Ward identities for QED derived in section 5.7 have not the form

JiFi

[
∂

i∂J

]
Z(J) = 0 (5.168)

where δφi = Fi[φ] because

SGF =

∫
d4x

(
− 1

2ξ
(∂ ·A)2

)
(5.169)

it is not gauge invariant. Introduce the functional

Z ′(Jµ, η, η) =
∫

D(Aµ, ψ, ψ, ω, ω) e
i
∫

d4x(Leff+J
µAµ+ηψ+ψη) (5.170)

where

Leff = LQED + LGF + LG (5.171)

and

LG = −ω⊔⊓ω . (5.172)
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where ω and ω are anti-commutative scalar fields.
a) Show that

Z ′(Jµ, η, η) = N Z(Jµ, η, η) (5.173)

where N do not depend neither on the fields nor on the sources. Explain why this nor-
malization does not affect the Green functions. Therefore either Z or Z ′ are good for its
calculation. b) Show that the integration measure D(Aµ, ψ, ψ, ω, ω) and

∫
d4xLeff are

invariants under the transformation

δψ = −ieωθψ δψ = ieψωθ

δAµ = ∂µωθ

δω = 1
ξ (∂ · A)θ δω = 0

(5.174)

where θ is an anti-commutative parameter (Grassmann variable). c) Introduce the anti-

commutative sources for the fields, ω and ω, that is

Z(Jµ, η, η, ζ, ζ) =

∫
D(Aµ, ψ, ψ, ω, ω)e

i
∫

d4x(Leff+J
µAµ+ηψ+ψη+ωζ+ζω) (5.175)

Show that

Z(Jµ, η, η, ζ, ζ) = ZG(ζ, ζ) Z(Jµ, η, η) (5.176)

where

Z(Jµ, η, η) =

∫
D(Aµ, ψ, ψ) e

i
∫

d4x(LQED+LGF+JµAµ+ηψ+ψη) . (5.177)

Consider the functionals W , WG and W as well Γ,ΓG and Γ defined in a similar way.
What is the relation between W , WG and W and the set Γ, ΓG and Γ . d) Show that the

Dyson-Schwinger equation for the fields ω and ω is

δΓ

δω
= −⊔⊓ω . (5.178)

e) Show that the Ward identities can now be written as

JiFi[
δ

iδJ
]Z = 0 . (5.179)

Write the Ward identities for Γ(Aµ, ψ, ψ, ω, ω). Show that you recover the known results.

f) Show that a mass term for the photon, although it breaks the gauge symmetry does
not spoil the Ward identities, if the ghosts also have mass. If the photon mass term were
1
2 µ

2AµA
µ what would be the mass of the ghosts?
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Chapter 6

Non-Abelian Gauge Theories

6.1 Classical theory

6.1.1 Introduction

We will start by reviewing briefly how to construct the classical action for a non-abelian
(Yang-Mills) theory. Let us consider a compact group G corresponding to some inter-
nal symmetry. Let φi, (i = 1, · · · , N) be a set of fields that transform under G in a
representation of dimension N .

φ(x) → φ′(x) = U(g)φ(x) (6.1)

where U(g) is a N ×N matrix. In an infinitesimal transformation

g = 1− iαata a = 1, · · · , r (6.2)

where αa are infinitesimal parameters and ta are the generators of the group. For the
fundamental representation they satisfy

[
ta, tb

]
= ifabctc

Tr
(
tatb
)
=

1

2
δab (6.3)

Examples of these generators are

SU(2) ta =
σa

2
; a = 1, 2, 3

SU(3) ta =
λa

2
; a = 1, · · · , 8 (6.4)

where σa and λa are the Pauli and Gell-Mann matrices, respectively. In the representation
associated with the fields φi, the matrices T a are of dimension (N ×N) and they form a
representation of the Lie algebra, that is

[T a, T b] = ifabcT c (6.5)

185
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Its normalization is given by
Tr(T aT b) = δabT (R) (6.6)

where T (R) is a number that characterizes the representation R. For a given representation
one can show the identity (see Problem 6.1),

T (R) r = d(R)C2(R) (6.7)

where r is the dimension of the group G and d(R) is the dimension of the representation
R. In an infinitesimal transformation

δφ = −iαaT aφ ≡ −iα∼φ (6.8)

where we have introduced the useful notation α∼ ≡ αaT a.

6.1.2 Covariant derivative

In a local gauge theory we have the usual problem that the derivative does not transform
as the fields, that is,

∂µφ
′ 6= U∂µφ (6.9)

because the parameters depend on the coordinates, xα. To solve this we introduce the
covariant derivative,

Dµφ = (∂µ − igA∼µ)φ ; A∼µ = AaµT
a (6.10)

where Aaµ are the gauge fields, in equal number to the generators of the group. The
transformation properties of Aaµ are obtained requiring that Dµφ transforms in the same
way as φ, that is,

(Dµφ)
′ = (∂µ − igA∼

′
µ)φ
′ = (∂µ − igA∼

′
µ)Uφ

= ∂µUφ+ U∂µφ− igA∼
′
µUφ

= UDµφ+ (igUA∼µ − igA∼
′
µU + ∂µU)φ (6.11)

Therefore (Dµφ)
′ = U(Dµφ) requires

A∼
′
µ = UA∼µU

−1 − i

g
∂µUU

−1 (6.12)

For infinitesimal transformations U ≃ 1− iα∼ and we get

δA∼µ ≡ A∼
′
µ −A∼µ = −i

[
α∼, A∼µ

]
− 1

g
∂µα∼ (6.13)

This can be written in components

δAaµ = −1

g
∂µα

a + f bcaαbAcµ = −1

g
(∂µα

a − gf bcaαbAcµ) (6.14)

As in the adjoint representation, (T c)ab = −if bca, we get

δAaµ = −1

g

(
∂µδab − ig(T c)abA

c
µ

)
αb = −1

g
(Dµα)

a (6.15)

that is, the gauge fields transform proportionally to the covariant derivative of the param-
eters of the gauge transformation.
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6.1.3 Tensor Fµν

Let us calculate the commutator of two covariant derivatives,

[Dµ,Dν ]φ =
[
∂µ − igA∼µ, ∂ν − igA∼ν

]
φ

= −ig
(
∂µA∼ν − ∂νA∼µ − ig

[
A∼µ, A∼ν

])
φ

≡ −ig F∼µν φ (6.16)

We have defined the tensor F∼µν ≡ F aµνT
a, known as curvature,

F∼µν = ∂µA∼ν − ∂νA∼µ − ig
[
A∼µ, A∼ν

]
(6.17)

In components

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν (6.18)

which shows that it is a generalization of the Maxwell tensor. Let us see how Fµν trans-
forms under gauge transformations,

F∼
′
µν = ∂µA∼

′
ν − ∂νA∼

′
µ − ig

[
A∼
′
µ, A∼

′
ν

]

=

[
∂µ(UA∼νU

−1)− i

g
∂µ(∂νUU

−1)− (µ↔ ν)

]

−igU [A∼µ, A∼ν ]U
−1 −

[
∂µUU

−1, UA∼νU
−1
]

−
[
UA∼µU

−1, ∂νUU
−1
]
+
i

g

[
∂µUU

−1, ∂νUU
−1] (6.19)

Using

∂µU
−1 = −U−1∂µUU−1 (6.20)

we get

F∼
′
µν = UF∼µνU

−1 (6.21)

For infinitesimal transformations this gives,

δF∼µν = −i
[
α∼, F∼µν

]
(6.22)

It easy to see that one can construct an invariant with the tensor Fµν . In fact the quantity,

Tr(F∼
′
µνF

′
∼
µν) = Tr(F∼µνF∼

µν) =
1

2
F aµνF

aµν (6.23)

is an invariant and can be used to construct the action. Generalizing the Maxwell action
for the Yang-Mills theories we get,

LYM = −1

2
Tr(F∼µνF∼

µν) = −1

4
F aµνF

aµν (6.24)
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6.1.4 Choice of gauge

As we will see later in this chapter, gauge invariance can be used to choose some particular
configuration, or gauge for the gauge fields. We call pure gauge to the field A∼

µ such that
F∼µν = 0. One can easily show that

Fµν = 0 ⇐⇒ ∃U : A∼µ = ∂µUU
−1 (6.25)

Two important examples of gauge choices are, the Axial gauge defined by,

nµAaµ(x) = 0 (6.26)

where nµ is a constant four vector, and the Lorenz gauge defined by,

∂µAaµ(x) = 0 (6.27)

6.1.5 The action and the equations of motion

The action for the pure gauge theory (without matter fields), is

S = −1

2

∫
d4xTr(F∼µνF∼

µν) = −1

4

∫
d4xF aµνF

µνa (6.28)

and it is invariant under gauge transformations, because Tr(F∼µνF∼
µν) is. The Euler-

Lagrange equations

∂µ
δL

δ(∂µAaν)
− δL
δAaν

= 0 (6.29)

can be easily obtained noticing that we have

δL
δ(∂µAaν)

=
δL
δF bρσ

δF bρσ
δ(∂µAaν)

= −F aµν (6.30)

and
δL
δAaν

=
δL
δF bρσ

δF bρσ
δAaν

= gf bcaAbµF
cµν (6.31)

We get therefore
∂µF

µνa + gf bcaAbµF
µνc = 0 (6.32)

As we have in the adjoint representation, (T c)ab = −if bca, we get

(∂µδab − ig(T c)abA
c
µ)F

µνb = 0 (6.33)

that is
Dab
µ F

µνb = 0 (6.34)

which is the equivalent of the Maxwell equations in the absence of external sources. As in
the Maxwell theory, from the antisymmetry of Fµνa we can derive the Bianchi identities,

Dab
µ Fνρb +Dab

ν Fρµb +Dab
ρ Fµνb = 0 (6.35)

which are equivalent to the homogeneous Maxwell equations.
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6.1.6 Energy–momentum tensor

As in the case of Electromagnetism, the canonical energy momentum tensor is not gauge
invariant. In fact 1

θ̃µν = − δL
δ(∂µAaρ)

∂νAaρ + gµνL

= Fµρa∂νAaρ −
1

4
gµνF ρσaF aρσ (6.36)

To make it gauge invariant we proceed as in the Electromagnetism. We subtract from
θ̃µν a quantity that is a four divergence, in such a way that the conservation laws are not
changed. The relevant quantity is,

∆θµν = ∂ρ(F
µρaAνa)

= ∂ρF
µρaAνa + Fµρa∂ρA

νa

= gf bcaAbρF
ρµcAνa + Fµρa∂ρA

νa

= Fµρa(−F νaρ + ∂νAaρ) (6.37)

We get therefore

θµν ≡ θ̃µν −∆θµν

= FµρaF νaρ − 1

4
gµνF ρσaF aρσ (6.38)

which is analogous to the electromagnetism. Introducing the analog of the electric and
magnetic fields,

Eia = F i0a ; Bk
a = −1

2
εijkF

ij
a i, j, k = 1, 2, 3 (6.39)

we get 



θ00 = 1
2(
~Ea · ~Ea + ~Ba · ~Ba)

θ0i = ( ~Ea × ~Ba)i
(6.40)

with an interpretation similar to the case of the electromagnetism.

6.1.7 Hamiltonian formalism

From the component θ00 we get for the Hamiltonian

H =

∫
d3x

1

2
( ~Ea · ~Ea + ~Ba · ~Ba) =

∫
d3xH (6.41)

1One should note an overall sign difference with respect to the general definition of Eq. (1.75). This is
to maintain the component θ00 with the meaning of a positive energy density. Obviously, the overall sign
in Eq. (1.75), has no meaning prior to make contact with the model.
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where H is the Hamiltonian density. We are now going to show that the relation between
the Hamiltonian and the Lagrangian is not the usual one. For this it is convenient to write
the action using the so-called first order formalism,

S =

∫
d4x

{
−1

2
(∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν)F

µνa +
1

4
F aµνF

µνa

}
(6.42)

where Aaµ e F aµν are now taken as independent variables. It is easy to show that the
variation of S in order to F aµν gives back its definition,

F aµν = ∂µA
a
ν − ∂νA

a
ν + gfabcAbµA

c
ν (6.43)

and therefore if we substitute in S, Eq. 6.42, we get back the usual action. Using the
definitions of ~Ea and ~Ba we get

S =

∫
d4x−(∂0 ~Aa + ~∇A0a − gfabcA0b ~Ac) · ~Ea − 1

2
( ~Ea · ~Ea + ~Ba · ~Ba)

=

∫
d4x

{
−∂0 ~Aa · ~Ea − 1

2
( ~E2 + ~B2) +A0a(~∇ · ~Ea − gfabc ~Ab · ~Ec)

}
(6.44)

The Lagrangian density is then

L = −Eka∂0Aka −H(Eka, Aka) +A0aCa (6.45)

where 



H ≡ 1
2(
~Ea · ~Ea + ~Ba · ~Ba)

Bka ≡ −1
2ǫ
kmnFmna

Ca = ~∇ · ~Ea − gfabc ~Ab · ~Ec
(6.46)

The variables Aak and −Eak are canonical conjugate variables, H(Eak , A
a
k) is the Hamil-

tonian density. The variables A0a play the role of Lagrange multipliers for the conditions,

~∇ · ~Ea − gfabc ~Ab · ~Ec = 0 (6.47)

which are just the equations of motion for ν = 0 (Gauss’s Law). If we introduce an equal
time Poisson bracket

{Aia(x), Ejb(y)}x0=y0 = δijδabδ3(~x− ~y) (6.48)

one can show that

{Ca(x), Cb(y)}x0=y0 = −gfabcCc(x)δ3(~x− ~y) (6.49)

{H, Ca(x)} = 0 (6.50)

This shows that gauge theories, both abelian and non-abelian, are what it is known as
Hamiltonian Generalized Systems, first introduced by Dirac.
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To define these systems let us consider a system with canonical variables (pi, qi) that
generate the phase space Γ2n (i = 1, . . . , n). Then the action of the Hamiltonian Gener-
alized Systems is given by,

S =

∫
L(t)dt where L(t) =

n∑

i=1

piq̇i − h(p, q)−
m∑

α=1

λαϕα(p, q) (6.51)

The variables λα(α = 1, ...m) are Lagrange multipliers and ϕα are the constraints. To be
an Hamiltonian generalized system the following conditions should be verified,

{ϕα, ϕβ} =
∑

γ

fαβγ(p, q)ϕγ (6.52)

{h, ϕα} = fαβ(p, q)ϕβ (6.53)

The case of gauge theories is a particular case with fαβ = 0. Therefore to be able to
quantize gauge theories we have to learn first how to quantize Hamiltonian generalized
systems.

6.2 Quantization

6.2.1 Systems with n degrees of freedom

Let us consider an Hamiltonian Generalized Systems, described before. The Lagrangian is

L(t) = piq̇i − h(p, q)− λαϕα(p, q) (6.54)

which leads to the following equations of motion,





q̇i =
∂h
∂pi

+ λα ∂ϕ
α

∂pi

ṗi = − ∂h
∂qi

− λα
∂ϕα

∂qi

ϕα(p, q) = 0 α = 1, . . . ,m

(6.55)

One can show that an Hamiltonian Generalized System, (HGS) is equivalent to an usual
Hamiltonian system (HS) defined in a phase space Γ∗2(n−m). That is, a HGS it is equiv-
alent to an HS with n−m degrees of freedom. To prove this we construct explicitly the
HS Γ∗. For this consider m conditions,

χα(p, q) = 0 ; α = 1, . . . ,m (6.56)

such that they satisfy, {
χα, χβ

}
= 0 (6.57)

and

det
∣∣∣{ϕα, χβ}

∣∣∣ 6= 0 (6.58)
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Then, the subspace of Γ2n defined by the conditions





χα(p, q) = 0

ϕα(p, q) = 0
α = 1, . . . ,m (6.59)

is the space Γ∗2(n−m). The canonical variables p∗ and q∗ in Γ∗2(n−m) can be found in the
following way. Due to the requirement

{
χα, χβ

}
= 0 we can choose the variables qi in Γ2n

in such a way that the χα coincide with the first m variables of the coordinate type, that
is

q︸︷︷︸
n

≡ ( χα︸︷︷︸
m

, q∗︸︷︷︸
n−m

) (6.60)

Let now p = (pα, p∗) be the corresponding conjugate momenta. In these variables, the
condition in the determinant takes the form,

det

∣∣∣∣
∂ϕα

∂pβ

∣∣∣∣ 6= 0 (6.61)

This means that, in principle the conditions ϕα(p, q) = 0 can be solved for pα, that is,

pα = pα(p∗, q∗) . (6.62)

The subspace Γ∗ it is therefore defined by the conditions,





χα ≡ qα = 0

pα = pα(p∗, q∗)
. (6.63)

The variables p∗ and q∗ are canonical and the Hamiltonian is given by

h∗(p∗, q∗) = h(p, q)
∣∣
(χ=0 ; ϕ=0) . (6.64)

The equations of motion are now

q̇∗ =
∂h∗

∂p∗
ṗ∗ = −∂h

∗

∂q∗
, (6.65)

in a total of 2(n −m) equations. The fundamental result can be formulated in a form of
a theorem.

Theorem 6.1

The two representations lead to the same equations of motion and are therefore
equivalent.

Proof:

The relations qα = 0 =⇒ q̇α = 0, which means, in the (p, q) description,

∂h

∂pα
+ λβ

∂ϕβ
∂pα

= 0 ; α = 1, . . . ,m . (6.66)
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Let us now consider the equations of motion in for the coordinates q∗ in the two
representations

q̇∗ =
∂h

∂p∗
+ λα

∂ϕα
∂p∗

q̇∗ =
∂h∗

∂p∗
=

∂h

∂p∗
+

∂h

∂pα
∂pα
∂p∗

(6.67)

The two equations will be equivalent if

λα
∂ϕα
∂p∗

=
∂h

∂pα
∂pα
∂p∗

(6.68)

which means, using the previous relations,

λα
(
∂ϕα
∂p∗

+
∂ϕα
∂pβ

∂pβ
∂p∗

)
= 0 (6.69)

But this relation is true due to the constraints ϕα = 0. Therefore the two represen-
tations are equivalent which proves the theorem (the equations for p∗ could be treated
in a similar way).

If we want to quantize these systems we can use the expressions for the evolution
operator in terms of a path integral in the variables (p∗, q∗) as these correspond to an
usual Hamiltonian system. We have then,

U(q∗f , q
∗
i ) =

∫ ∏

t

dp∗dq∗

(2π)
ei

∫

[p∗q̇∗−h(p∗,q∗)]dt . (6.70)

Although this is a possible way of quantizing the theory, it is normally not very convenient
in most situations. This is because in real situations it is difficult to invert the relations
ϕα = 0 to get pα = pα(p∗, q∗). It is normally more convenient to use the variables (p, q)
with appropriate restrictions. This can be easily done substituting,

∏

t

dp∗dq∗

(2π)
→
∏

t

dpdq

2π

∏

t

δ(qα)δ(pα − pα(p∗, q∗)) . (6.71)

Then

U(qf , qi) =

∫ ∏

t

dpdq

2π

∏

t

δ(qα)δ(pα − pα(p∗, q∗))ei
∫

dt(pq̇−h(p,q)) . (6.72)

This expression can be written in terms of the constraints if we recall that

δ(qα) = δ(χα)

δ(pα − pα(p∗, q∗)) = δ(ϕα) det

∣∣∣∣
∂ϕα
∂pβ

∣∣∣∣ . (6.73)

Then we get

∏

t

δ(qα)δ(pα − pα(p∗, q∗)) =
∏

t

δ(ϕα)δ(χα) det |{ϕα, χβ}| . (6.74)
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Finally we use the identity

δ(ϕα) =

∫
dλ

2π
e−i

∫

dtλαϕα , (6.75)

to get

U(qf , qi) =

∫ ∏

t

dpdq

2π

dλ

2π

∏

t,x

δ(χα) det |{ϕα, χβ}| eiS(p,q,λ) , (6.76)

where

S(p, q, λ) =

∫
[pq̇ − h(p, q)− λϕ]dt . (6.77)

It will be this expression in Eq. (6.76) that we will apply to the gauge theories. Note that
the expression in the parenthesis is precisely the Lagrangian for generalized Hamiltonian
systems, Eq. (6.54). It can be shown that the physical results do not depend on the
auxiliary conditions χα = 0. In gauge theories these are known as the gauge choice.

6.2.2 QED as a simple example

Let us consider the electromagnetic field coupled to an external conserved current, Jµ =
(ρ, ~J), with ∂µJ

µ = 0. The Lagrangian is,

L = −1

4
FµνF

µν − JµAµ . (6.78)

The action can be written using the first order formalism,

S =

∫
d4x

[
− ~E · (~∇A0 + ~̇A)− ~B · ~∇× ~A+

~B2 − ~E2

2
− ρA0 + ~J · ~A

]
. (6.79)

The equations of motion are obtained by varying with respect to ~E and ~B





~E = −(~∇A0 + ~̇A)

~B = ~∇× ~A

→





~∇ · ~B = 0 ,

~∇× ~E = −∂
~B

∂t
.

(6.80)

Varying with respect to A0 and ~A,





~∇ · ~E = ρ ,

~∇× ~B − ∂ ~E

∂t
= ~J .

(6.81)

If we substitute ~B = ~∇× ~A we get after an integration by parts,

S =

∫
d4x

{
− ~E · ~̇A−

(
~E2 + (~∇×A)2

2
− ~J · ~A

)
+A0(~∇ · ~E − ρ)

}
. (6.82)

It is clear that A0 plays the role of a Lagrange multiplier. The canonical variables are
~A and ~E but they are not free, as there exists one constraint to be obeyed, ~∇· ~E = ρ. This
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constraint is linear in the fields. Here resides the big simplification of the electromagnetism.
If we choose a linear gauge condition, then det{ϕα, χβ} will not depend either in ~E or ~A
and will be a constant that only will modify the normalization. Such a gauge condition is
obtained, for instance, with the Lorenz gauge

χ = ∂µA
µ − c(~x, t) , (6.83)

where c(~x, t) is an arbitrary function. Then the generating functional for Green functions
is (the term that comes from det{ϕα, χβ} is absorbed in the normalization)

Z[Jµ] = N
∫

D( ~E, ~A,A0)
∏

x

δ(∂µA
µ − c(x))eiS , (6.84)

where

S =

∫
d4x

{
− ~E · ~̇A−

[
E2 + (~∇×A)2

2
+ ( ~J · ~A)

]
+A0(~∇ · ~E − ρ)

}

=

∫
d4x

{
−E

2

2
− ~E · (~∇A0 + ~̇A)− (~∇×A)2

2
− JµA

µ

}
. (6.85)

The integration in ~E is Gaussian and can be done immediately (we keep the notation N
although this normalization will be different after the integration)

Z[Jµ] = N
∫

D(Aµ)
∏

x

δ(∂µA
µ − c(x))eiS , (6.86)

where now

S =

∫
d4x

[
−1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ)− JµA
µ

]

=

∫
d4x

[
−1

4
FµνF

µν − JµA
µ

]
. (6.87)

As the functions c(x) are arbitrary we can integrate over them with a weight

exp

(
− 1

2ξ

∫
d4xc2(x)

)
. (6.88)

We get then the familiar result,

Z[Jµ] = N
∫

D(Aµ)e
i
∫

d4x
[

− 1
4
F 2− 1

2ξ
(∂·A)2−J ·A

]

. (6.89)

As we will see later, if we had chosen a non-linear gauge condition the det |{q, χ}| would
depend on ~E or ~A and it would not be possible to absorb it in the normalization (which
is irrelevant as we can always choose it such that Z[0] = 1). In that case it would be
necessary to use the methods of non-abelian gauge theories that we will discuss in the
next section.
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6.2.3 Non abelian gauge theories. Non covariant gauges

We have seen before that the action for the non-abelian gauge theories, could be written
in the form,

S =− 2

∫
d4x Tr

[
~E∼ · ∂0 ~A∼ +

1

2
(~E∼

2
+ ~B∼

2
)−A∼

0(~∇ · ~E∼+ g[~A∼, ~E∼])

]
(6.90)

=

∫
d4x

[
−Eak∂0Aak −H(Ek, Ak) +A0aCa

]
, (6.91)

where

Ca = ~∇ · ~Ea − gfabc ~Ab · ~Ec . (6.92)

If we introduce the equal time Poisson brackets

{
−Eia(x), Ajb(y)

}
x0=y0

= δijδabδ
3(~x− ~y) , (6.93)

one can then show that

{
Ca(x), Cb(y)

}
x0=y0

= −gfabcCc(x)δ3(~x− ~y)

{H,Ca(x)} = 0 , (6.94)

where

H =

∫
d3xH(Ek, Ak) =

1

2

∫
d3x

[
(Eka)2 + (Bka)2

]
. (6.95)

We see then that the non-abelian gauge theories are an example of generalized Hamiltonian
systems, like we saw with the electromagnetism. The variables of the type coordinate are
Aak, and the conjugate momenta are −Eak . The variables A0a are Lagrange multipliers for
the constraints,

~∇ · ~Ea − gfabc ~Ab · ~Ec = 0 , (6.96)

which are part of the equations of motion.

To proceed with the quantization we have to use the formalism of the HGS. For that
we have to impose r auxiliary conditions (where r is the dimension of the Lie group and
therefore of its adjoint representation where the gauge fields are), that is, as many as the
constraints Ca(x) = 0, a = 1, . . . , r. Choose these conditions is what is known as choosing
or fixing the gauge. This choice is arbitrary, and the physical results should not depend
on it. However intermediate expressions as, for instance, the Feynman rules can depend
on the choice.

As we saw in the case of the electromagnetism if it is possible to make a gauge fixing
that is linear in the dynamical variables, ~Aa and ~Ea, then the path integral will simplify
because the determinant will not depend on these variables and can be absorbed into the
normalization. For the non-abelian case, a gauge where this is possible is the axial gauge
that we now study.
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Axial Gauge

It is always possible to make a gauge transformation such that the component of ~Aa along
some direction vanishes in all points, that is,

A3a = 0 a = 1, . . . , r , (6.97)

where we have chosen the direction along the z axis. These r conditions are our auxiliary
conditions necessary to proceed with the quantization of the theory. The advantage of
this gauge choice is the following. If we calculate {Ca, A3b} we get

{Ca(x), A3
b(y)} = {∂kEka(x), A3

b (y)} − gfadcA
k
d{Ekc (x), A3

b (y)}

= −g δab
∂

∂x3
δ3(~x− ~y) =

δ

δαa(x)
(δA3

b (y)) , (6.98)

where we have used the fact that A3
b = 0. We see then that {Ca, A3

b} does not depend on
~Aa and ~Ea and the determinant that appears in the expression for the path integral can
be absorbed in the normalization. We can then write the generating functional for the
Green functions in this gauge as

Z[Jµa] =

∫
D( ~E, ~A,A0)

∏

x

δ(A3)eiS(
~E, ~A,A0,Jµ) , (6.99)

where

S( ~E, ~A,A0, Jµ) =

∫
d4x

[
− ~Ea · ∂0 ~Aa − 1

2

[
( ~Ea)2 + ( ~Ba)2

]
+A0aCa +Aa · Ja

]
,

(6.100)
and

Ca = ~∇ · ~Ea − gfabc ~Ab · ~Ec . (6.101)

As the integration in ~E is Gaussian we can easily get

ZA[J
µa] =

∫
D(Aµ)

∏

x

δ(A3)ei
∫

d4x
[
L(x)+Aa·Ja

]
. (6.102)

After the integration the Lagrangian is then

L = −1

4
(F aµνF

aµν) . (6.103)

The index A in ZA[J
µa] reminds us that this generating functional corresponds to the

axial gauge. Although the expression for the generating functional can be easily written
in this gauge it has the disadvantage that the Feynman rules are not covariant. Before we
introduce the covariant gauges, let us look at another non-covariant gauge, the so-called
Coulomb gauge.
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Coulomb Gauge

This gauge is defined by the auxiliary conditions,

~∇ · ~Aa = 0 a = 1, . . . , r . (6.104)

These auxiliary conditions have a non-trivial Poisson bracket with the constraints Ca(x).
In fact one can show (see problems) that

δ ~Aa = −1

g

∫
d3y

{
~Aa(x), α

b(y)Cb(y)
}
x0=y0

. (6.105)

Therefore {
~Aa(x), Cb(y)

}
x0=y0

= −g δ

δαb(y)
(δ ~Aa(x)) , (6.106)

and {
~∇ · ~Aa(x), Cb(y)

}
x0=y0

= −g δ

δαb(y)
~∇ · (δ ~Aa(x)) . (6.107)

As we have

δ ~Aa(x) =
1

g
~∇αa(x) + fabcα

b(x) ~Ac(x) , (6.108)

we get (with the condition ~∇ · ~Aa = 0)

− g~∇ · (δ ~Aa(x)) = −∇2
xαa(x)− gfabc ~Ac(x) · ~∇αb(x) . (6.109)

This gives finally

{
~∇ · ~Aa(x), Cb(y)

}
=
[
−∇2

xδab − gfabc ~Ac(x) · ~∇x

]
δ3(~x− ~y) ≡ Mc

ab(x, y) . (6.110)

As detM, although depending on ~A it does not depend on ~E, the Gaussian integration
in ~E can still be done and we get

ZC [J
µa] =

∫
D(Aµ)

∏

x

[detMC

∏

x

δ(~∇ · ~A)]ei
∫

d4x[L+Aa·Ja] . (6.111)

Now it is not possible to absorb detMC in the normalization. The Feynman rules that
can be obtained from ZC [J

µ] are again non-covariant.

6.2.4 Non abelian gauge theories in covariant gauges

The gauge conditions chosen up to now (axial and Coulomb gauges) lead to Feynman
rules where the Lorentz covariance is lost. Of course the final physical results should not
depend on this, but the non-covariance in the intermediate stages of the calculations is
a complication. We are now going to generalize the previous results to covariant gauges.
The method to follow will be a sub-product of the answer to the following question: How
can we show the equivalence between the axial and Coulomb gauges? For the argument
that follows it is convenient to work with gauge invariant quantities. Then, instead of the
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functional ZA[J
µ] we are going to consider the integral ZA[J = 0] that, as we have seen,

has the meaning of a vacuum → vacuum transition in the absence of external sources,

ZA[0] =

∫
D(Aµ)

∏

x,a

δ(A3a(x)) exp{iS[Aµ]} , (6.112)

where S[Aµ] is the action. In a gauge transformation,

A∼µ → A∼
′
µ = gA∼µ = U(g)A∼µU

−1(g) − i

g
∂µUU

−1 , (6.113)

the action S[Aµ] and the measure D(Aµ) are invariant, therefore we get

ZA[J = 0] =

∫
D(Aµ)

∏

x,a

δ(gA3a(x)) exp{iS[Aµ]} . (6.114)

We define now the functional ∆C [Aµ] through the relation

∆−1C [Aµ] =

∫
D(g)

∏

x,a

δ(~∇ · g~Aa) , (6.115)

where D(g) represents the infinite product of the invariant measures for the group G at
each space-time point, that is

D(g) =
∏

x

dg(x) . (6.116)

The invariance of the integration measure of the group G, Dg′ = D(gg′) has the
consequence that ∆C is gauge invariant. In fact

∆−1C [gAµ] =

∫
D(g′)

∏

x,a

δ(~∇ · g′g~Aa)

=

∫
D(g′g)

∏

x,a

δ(~∇ · g′g~Aa)

= ∆−1C [Aµ] . (6.117)

We introduce now in the expression for ZA[J = 0] the identity

1 = ∆C [Aµ]

∫
D(g)

∏

x,a

δ(~∇ · g ~Aa) . (6.118)

We therefore get

ZA(J = 0) =

∫
DAµeiS[Aµ]

∏

x,a

δ
(
A3a(x)

)
∆C [Aµ]

∫
D(g)

∏

y,b

δ(~∇ · g~Ab)

=

∫
DAµeiS[Aµ]∆C [Aµ]

∏

y,b

δ
(
~∇ · ~Ab

) ∫
D(g)

∏

x,a

δ(g
−1
A3a) , (6.119)
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where we have used the gauge invariance of D, S[Aµ] and ∆C [Aµ]. As the measure is
invariant, we can write in the last integral g−1 → gg0. Then

∫
D(g)

∏

x,a

δ
(
g−1
A3a(x)

)
=

∫
D(g)

∏

x,a

δ
(
gg0A3a(x)

)
. (6.120)

where g0 is the gauge transformation that takes from the gauge ~∇ · ~A = 0 to the gauge
A′3 = 0, that is

A′3 = g0A3 = 0 , (6.121)

with ~∇ · ~A = 0. We still have to calculate the integral over the group, that now takes the
form, ∫

D(g)
∏

x,a

δ
(
gA′3a(x)

)
, (6.122)

with A′3a = 0. As A′3a = 0 it is enough to consider infinitesimal transformations in the
vicinity of the unit,

g(x) = e− iα∼(x) = e− iαa(x)ta , (6.123)

where αa(x) are infinitesimal. In these conditions, the integration measure dg(x) is given
by,

dg(x) =
∏

a

dαa(x) . (6.124)

On the other hand to first order in αa we have

gA′3a(x) =
1

g

∂αa

∂x3
, (6.125)

and therefore the integral is now

∫
D(g)

∏

x,a

δ
(
gA′3a(x)

)
=

∫
D(α)

∏

x,a

δ

(
1

g

∂αa

∂x3

)
= N . (6.126)

The integral is independent of Aµ and therefore it can be absorbed in the normalization.
We get then

ZA[J = 0] = N
∫

D(Aµ)∆C [Aµ]
∏

x,b

δ(~∇ · ~Ab)eiS[Aµ] . (6.127)

We have obtained before an expression for ZC [J = 0], which was,

ZC [J = 0] =

∫
D(Aµ)

∏

x

detMC

∏

x,b

δ(~∇ · ~Ab)eiS[Aµ] . (6.128)

Therefore to show that the two path integrals, that represent the the vacuum → vacuum
amplitudes in the absence of external sources, we still have to show that ∆C [Aµ] = detMC .
This can be easily shown true. In fact,

∆−1C [Aµ] =

∫
D(g)

∏

x,a

δ
(
~∇ · g~Aa

)
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=

∫
D(α)

∏

x,a

δ

[
~∇ ·
(
1

g
~∇αa(x) + fabcαb ~Ac

)]

=

∫
D(α)

∏

x,a

δ

(
1

g
∇2
xα

a(x) + fabc~∇αb · ~Ac
)

∝ det−1MC , (6.129)

where

Mab
C (x, y) = −g δ

δαb(y)

(
~∇ · g ~Aa

)
α=0

=
(
−∇2

xδab − gfabc ~Ac · ~∇x

)
δ3(~x− ~y) . (6.130)

Therefore ∆C [Aµ] ∝ detMC , and except for an irrelevant normalization we have, ZA[0] =
ZC [0].

The way we have shown this equivalence between the axial and Coulomb gauges sug-
gests a way to define the vacuum → vacuum amplitude for an arbitrary gauge defined by
the gauge conditions,

F a[Aµ] = 0 a = 1, . . . , r (6.131)

For that we define ∆F [Aµ] by the expression

∆−1F [Aµ] =

∫
D(g)

∏

x,a

δ (F a[gAµ]) (6.132)

and, like before, we introduce

1 = ∆F [Aµ]

∫
D(g)

∏

x,a

δ (F a[gAµ]) , (6.133)

in the expression for ZA[J = 0]. We therefore get

ZA[J = 0] =

∫
D(Aµ)

∏

x,a

δ
(
A3a(x)

)
eiS[Aµ]∆F [Aµ]

∫
D(g)

∏

y,b

δ
(
F b[gAµ]

)

=

∫
D(Aµ)

∏

y,b

δ
(
F b[Aµ]

)
∆F [Aµ]e

iS[Aµ]

∫
D(g)

∏

x,a

δ
(
g−1

A3a(x)
)

=N
∫

D(Aµ)∆F [Aµ]
∏

x,a

δ
(
F b[Aµ]

)
eiS[Aµ]

=NZF [J = 0] , (6.134)

showing that the axial gauge and general gauges of the type F are equivalent. The vacuum
→ vacuum amplitude in the gauge F a = 0, is therefore given by

ZF [J = 0] =

∫
D(Aµ)∆F [Aµ]

∏

x,a

δ (F a[Aµ]) e
iS[Aµ] . (6.135)
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To finish we still have to be able to evaluate ∆F [Aµ]. As in the definition ∆F [Aµ]
appears multiplied by

∏
δ (F a[Aµ]), we only need to know ∆F [Aµ] for Aµ that satisfy

F a[Aµ] = 0. Then for g in the vicinity of the identity we have

F a[gAbµ] = F a[Abµ] +
δF a

δAbµ
δAbµ

= −1

g

δF a

δAbµ
(Dµα)

b , (6.136)

where we have used F a[Abµ] = 0 and δAbµ = −1
g (Dµα)

b. Let us calculate ∆F . We get

∆−1F [Aµ] =

∫
D(g)

∏

x,a

δ
(
F a[gAbµ]

)

=

∫
D(α)

∏

x,a

δ

(
−1

g

δF a

δAbµ
(Dµα)

b

)

∝ det−1MF , (6.137)

where

Mab
F (x, y) =

δF a

δAcµ(x)
Dcb
µ δ

4(x− y) = −g δF
a[gA(x)]

δαb(y)
, (6.138)

and therefore

∆F [Aµ] = detMF = det

(
−g δF

a(x)

δ(αb(y))

)
. (6.139)

We have discovered how to write the vacuum → vacuum amplitude in the absence
of external sources. However this is not the more interesting quantity, but rather the
vacuum → vacuum amplitude in the presence of sources, ZF [J ] because this is the one
that generates the Green functions of the theory. In all this discussion the source terms,∫
d4xJaµA

µa, were put to zero because they are not gauge invariant, and our derivation
relied upon gauge invariance. If we define ZF [J

a
µ ] by the relation

ZF [J
a
µ ] ≡

∫
D(Aµ)∆F [Aµ]

∏

x,a

δ(F a[Abµ(x)])e
i(S[Aµ]+

∫

d4xJa
µA

µa) , (6.140)

then it is clear that the functional ZF will not be equivalent for different choices of F a = 0.
This means that the Green functions obtained from ZF [J

µ] will depend on the gauge
F a = 0. In the section 6.2.5 we will show that although the Green functions depend on
the gauge, this is not really a problem, because the physical results for the elements of
the renormalized S matrix are gauge independent and these are the ones that we compare
with the experiments.

Before we finish let us make a transformation in the functional ZF [J
a
µ ] to get rid of the

δ function. For the calculations it is important to exponentiate
∏
δ(F a[Aµ]). This can be

done in the following way. We start by defining a more general gauge condition,

F a[Abµ]− ca(x) = 0 , (6.141)
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where ca(x) are arbitrary functions of space-time but that do not depend on the fields.
Then ∆F [A] will not be changed and we write,

ZF [J
a
µ ] = N

∫
D(Aµ)∆F [Aµ]

∏
δ(F a[Aµ]− ca)ei(S[Aµ]+

∫

d4xJa
µA

µ) . (6.142)

The left side of this equation does not depend on ca(x) and therefore we can integrate
over ca(x) with a convenient weight, more specifically,

exp

{
− i

2

∫
d4x c2a(x)

}
, (6.143)

where x is a real parameter. We finally get

ZF [J
a
µ ] = N

∫
D(Aµ)∆F [Aµ]e

i(S[Aµ]+
∫

d4x(− 1
2
F 2
a+J

µaAa
µ))

= N
∫

D(Aµ)∆F [Aµ]e
i
∫

d4x[L(x)− 1
2
F 2
a+J

µaAa
α] . (6.144)

This expression is the starting point for the calculation of the Green functions in an
arbitrary gauge defined by the gauge fixing F a. To be able to establish the Feynman rules
for this theory we still have to exponentiate ∆F [Aµ]. This will be done in the section 6.2.6
with the introduction of the Faddeev-Popov ghosts.

6.2.5 Gauge invariance of the S matrix

In the previous section we have defined the generating functional for the Green functions,
ZF [J

a
µ ], for a gauge condition given by the function, F a[Abµ], through the relation,

ZF [J
a
µ ] ≡ N

∫
D(Aµ)∆F [A]

∏

x,a

δ(F a[Abµ(x)])e
i(S[Aµ]+

∫

d4xJa
µA

µa) . (6.145)

We have shown the equivalence between different gauges in the case of vanishing sources.
We are now going to show what happens when Jaµ 6= 0. For this we will go back and redo
the proof of the equivalence in the presence of the source terms. We choose for this, the
case of the Coulomb and Lorenz gauges defined by





F a = ~∇ · ~Aa Coulomb gauge

F a = ∂µA
µa Lorenz gauge .

(6.146)

We define the generating functionals ZC [j
a
µ] and ZL[J

a
µ ] by the expressions

ZC [j
a
µ] ≡ N

∫
D(Aµ)∆c[A]

∏

x,a

δ(~∇ · ~Aa)ei(S[A]+
∫

d4xjaµA
µa) , (6.147)

and

ZL[J
a
µ ] = N

∫
D(Aµ)∆L[A]

∏

x,a

δ(∂µA
µa)ei(S[A]+

∫

d4xJa
µA

µa) . (6.148)
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Let us derive the relation between them. Following the methods of last section we introduce
in ZC [j

a
µ] the identity given by,

1 = ∆L[A]

∫
D(g)

∏

x,a

(∂µ
gAµa) . (6.149)

We get then,

ZC [j
a
µ]

= N
∫
D(Aµ)∆C [A]

∏
x,a δ(

~∇ · ~Aa)ei(S[A]+
∫

d4xjaµA
µa)∆L[A]

∫
D(g)

∏
y,b δ(∂µ

gAµa)

= N
∫
D(Aµ)∆L[A]

∏
y,b δ(∂µA

µb)eiS[A]∆C [A]
∫
D(g)

∏
x,a δ(

~∇ · g−1~Aa)ei
∫

d4xjaµ
g−1

Aµa

= N
∫
D(Aµ)∆L[A]

∏
y,b δ(∂µA

µb)eiS[A]∆C [A]
∫
D(g)

∏
x,a δ(

~∇ · gg0~Aa)ei
∫

d4xjaµ
gg0Aµa

(6.150)
where g0 is the gauge transformation that goes from the gauge ∂µA

µa = 0 to the gauge
~∇ · ~A′a = 0, ~A′a = g0~A. It is obtained solving the equation

~∇ · ~A′ = ~∇ ·
[
U(g0) ~AU−1(g0)− i

g
~∇U(g0)U−1(g0)

]
= 0 (6.151)

where ∂µA
µa = 0. Due to the factor

∏
x δ(

~∇ · g~A′) we are only interested in infinitesimal
transformations, and therefore

ZC [j
a
µ] = N

∫
D(Aµ)∆L[A]

∏

y,b

δ(∂µA
µb)eiS[A]ei

∫

d4xjaµ
g0Aµ

, (6.152)

where we have used, like before, the result

∫
D(g)

∏

x,a

δ(~∇ · g~A′) = ∆−1C [A] . (6.153)

To compare with ZL[J
a
µ ] it is necessary to write g0Aµ as a function of Aµ, solving the

equation for g0. This can be done formally in a series in the potentials Aµ. We should
then have

A′i =

(
δij −∇i

1

∇2
∇j

)
Aj +O(A2

λ) . (6.154)

If we restrict the Coulomb source to be transverse, j0 = 0 and ~∇ · ~j = 0, we can then
write,

ZC [j
a
µ] = N

∫
D(Aµ)∆L[A]

∏

y,b

δ(∂µA
µb)eiS[A]+

∫

d4xF a
µ j

µa

, (6.155)

where FCµ [A] = Aaµ+O(A2
λ). Comparing with the expression for the functional ZL[J

a
µ ] we

finally get,

ZC [j
a
µ] = exp

{
i

∫
d4xjaµF

µa

[
δ

iδJb

]}
ZL[J

a
µ ] . (6.156)
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This is the expression that relates ZC with ZL. As Fµ[A] is a complicated functional,
we see that the expressions will be different in the two gauges. But what has a physi-
cal meaning and can be compared with the experiment are the matrix elements of the
renormalized S matrix. The equivalence theorem that we will prove next shows that these
matrix elements are gauge invariant. For simplicity we will make the proof for the λφ4

case, but the reasoning also applies to the gauge theories.

Theorem 6.2

If two generating functionals, Z and Z̃, differ only by the terms of the external
sources, then they will lead to the same renormalized S matrix.

Proof:

Let us consider the generating functional of the Green functions,

Z[J ] = N
∫

D(φ)ei(S[φ]+
∫

d4xJφ) , (6.157)

where

S[φ] +

∫
d4xJφ =

∫
d4x

[
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 + Jφ

]
. (6.158)

What happens if we couple the external source to φ + φ3 instead of coupling to just
φ?

The generating functional Z̃[j] will then be,

Z̃[j] = N
∫

D(φ)ei[S[φ]+
∫

d4x j(φ+φ3)] . (6.159)

We can writeZ̃[j] in terms of Z[J ] using the usual trick,

Z̃[j] = exp

{
i

∫
d4x j(x)F

[
δ

iδJ

]}
Z[J ] , (6.160)

where F [φ] = φ+φ3. Let us now consider the four-point Green function, G̃(1, 2, 3, 4)
generated by Z̃[j]

G̃(1, 2, 3, 4) = (−i)4 δ4Z̃[j]

δj(1)δj(2)δj(3)δj(4)
. (6.161)

A typical diagram that contributes to G̃(1, 2, 3, 4) is shown in Fig.6.1, where the part
inside the square corresponds to a Green function generated by Z[J ].

Let us consider now the propagators G̃(1, 2) and G(1, 2) generated by Z̃[j] and Z[J ]
respectively. We get the following expansion of G̃(1, 2) in terms of G(1, 2)

G
~

= + +

+ + +
(6.162)
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Figure 6.1: Green functions generated by Z[J ] and Z̃[j].

If we examine the propagators near the physical mass pole, we get (Z2 and Z̃2 are
the renormalization constants in the schemes)

lim
p2→m2

R

G̃ =
iZ̃2

p2 −m2
R

; lim
p2→m2

R

G =
iZ2

p2 −m2
R

. (6.163)

Now, if we multiply the previous expansion near the mass pole by p2 −m2
R and take

the limit p2 → m2
R we get,

Z̃2 = Z2

[
1 + 2 +

( )2
+ · · ·

]
. (6.164)

From here we get

σ ≡
(
Z̃2

Z2

)1/2

= 1 + + · · · , (6.165)

The unrenormalized S matrix is given by,

SNR(k1, . . . , kn) =

n∏

i=1

lim
k2i→m2

R

(k2i −m2
R)G(k1, . . . , kn) , (6.166)

for the Green functions obtained through Z[J ]. We define in the same way,

S̃NR(k1, . . . , kn) =
n∏

i=1

lim
k2i→m2

R

(k2i −m2
R)G̃(k1, . . . , kn) , (6.167)

for the Green functions calculated from Z̃[j]. In these expressions n is the number
of external particles. From the argument used to relate lim(k2 −m2

R)G̃(k1, . . . , kn)
with lim(k2 −m2

R)G(k1, . . . , kn) it is easy to see that in relating
∏

lim(k2i −m2
R)G̃

with
∏

lim(k2i −m2
R)G only contribute the diagrams with poles in the variables k2i .

Therefore we obtain

n∏

i=1

lim
k2i→m2

R

(k2i −m2
R)G̃ =

(
Z

Z̃

)−n
2

n∏

i=1

lim
k2i→m2

R

(k2i −m2
R)G

= σn
n∏

i=1

lim
k2i→m2

R

(k2i −m2
R)G . (6.168)

From this we get a relation between the unrenormalized S matrices in the two schemes,

S̃ NR = σnS NR , (6.169)
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which van be written as,

1

Z̃
n
2

S̃NR(k1, . . . , kn) =
1

Z
n
2

SNR(k1, . . . , kn) . (6.170)

But
1

Z
n
2

SNR(k1, . . . , kn) it is precisely the definition of the renormalized S matrix,

so we get

S̃R = SR . (6.171)

We conclude that two generating functionals that only differ by the coupling to the
external source lead to the same renormalized S matrix and then to the same physical
quantities. This completes the proof of the equivalence theorem.

The application of our result is now clear, because

ZC [j
a
µ] = exp

{
i

∫
d4xjaµF

µa

[
δ

iδJx

]}
ZL[J

c
µ] , (6.172)

where F aµ [A] = Aaµ+O(A2
λ). The difference between ZC [jµ] and ZL[Jµ] lies in the coupling

to the external source, and although the Green functions are in general gauge dependent,
the renormalized S matrix is gauge independent and hence physical.

6.2.6 Faddeev-Popov ghosts

Having shown the gauge invariance of the renormalized S matrix, let us go back to the
generating functional in an arbitrary gauge defined by the gauge condition F a[Abµ]. We
have seen in section 6.2.4 that this functional in given in the form,

ZF [J
a
µ ] = N

∫
D(Aµ)∆F [A]e

i
∫

d4x[L(x)− 1
2ξ

(F a)2+Ja
µA

µa]
, (6.173)

where

∆F [A] = detMF = det

(
−g δF

a(x)

δαb(y)

)
. (6.174)

In this form the Feynman rules are complicated because detMF will lead to a non-local
interaction among the gauge fields. If, in some way, we could exponentiate the determinant
and add it to the action, that would solve our problem.

The idea to exponentiate a determinant comes from using Gaussian integrals with
Grassmann variables we have (see Appendix),

∫
D(ω, ω)e−

∫

d4xωMFω = detMF . (6.175)

Using this result, and making the change MF → iMF (an irrelevant change in the nor-
malization), we get

ZF [J
a
µ ] = N

∫
D(Aµ, ω, ω)e

i
∫

d4x[Leff+J
a
µA

µa] , (6.176)
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where ω and ω are anti-commutative scalar fields and Leff is given by,

Leff = L+ LGF + LG , (6.177)

with

L = −1

4
F aµνF

µνa

LGF = − 1

2ξ
(F a)2

LG = −ωaMab
F ω

b . (6.178)

The fields ω and ω are auxiliary fields and are called Faddeev-Popov ghosts. The
name comes from the wrong spin-statistics connection, but there is no problem with this,
as they are not physical fields.

Let us now evaluate more explicitly the ghost part of the Lagrangian,

Mab
F (x, y) = −g δF

a(x)

δαb(y)
=
δF a[A(x)]

δAcµ(y)
Dcb
µ , (6.179)

where we have used,

δAaµ(y) = −1

g
Dab
µ α

b .

We get

∫
d4xd4yωa(x)Mab

F (x, y)ωb(y) =

∫
d4x

∫
d4y ωa(x)

δF a(x)

δAcµ(y)
Dcb
µ ωb(y) , (6.180)

or

LG(x) = −
∫
d4y ωa(x)

δF a(x)

δAbµ(y)
Dbc
µ ωc(y) . (6.181)

To have a more explicit form we have to specify the gauge. In the Lorenz gauge F a = ∂µA
µa

and therefore

LG(x) = −
∫
d4yωa(x)∂µx

[
δ4(x− y)

]
Dab
µ ω

b(y)

= ∂µωa(x)Dab
µ ω

b(x) . (6.182)

In the last step we have used integration by parts and that the covariant derivative in the
adjoint representation where the ghosts, like the gauge fields, are is given by,

Dab
µ = ∂µδ

ab − gfabcAcµ . (6.183)

6.2.7 Feynman rules in the Lorenz gauge

We are now ready to write the Feynman rules that will enable us to evaluate, in perturba-
tion theory any process in a theory that can be described by an non-abelian gauge theory.
All the work done so far just lead us to an effective Lagrangian with which we can obtain
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the Feynman rules as if it was a normal theory without the problem of the mismatch of
the degrees of freedom. Our effective Lagrangian is then

Leff = L+ LGF + LG , (6.184)

where

L = −1

4
F aµνF

µνa ; F aµν = ∂µA
a
ν − ∂νA

a
ν + gf bcaAbµA

c
ν

LGF = − 1

2ξ
(Fa)

2

LG = −ωa
∫
d4y

δF a

δAbµ
Dbc
µ ωc . (6.185)

The structure constants fabc are defined by the commutation of the generators of the
group G. Our conventions are,

[ta, tb] = ifabctc

Tr(tatb) =
1

2
δab . (6.186)

To fix things, let us consider the Lorenz gauge, defined by

F a[A] = ∂µA
µa(x) . (6.187)

We get then

Leff = −1

4
F aµνF

µνa − 1

2ξ
(∂µA

µa)2 + ∂µωaDab
µ ω

b . (6.188)

Using the fact that the ghosts are in the adjoint representation of the group, we get

(Dµω)
a =

(
∂µδ

ab − igAcµ(T
c)ab
)
ωb , (6.189)

with
(T c)ab ≡ −if bca = −ifabc . (6.190)

Therefore we have
Dab
µ ω

b = (∂µδ
ab − gfabcAcµ)ω

b . (6.191)

We can therefore separate the Lagrangian in kinetic and interaction parts

Leff = Lkin + Lint , (6.192)

where

Lkin = −1

4
(∂µA

a
ν − ∂νA

a
µ)

2 − 1

2ξ
(∂µA

µa)2 + ∂µω
a∂µωa

=
1

2
Aµa

[
⊔⊓gµν −

(
1− 1

ξ

)
∂µ∂ν

]
δabAνb − ωa⊔⊓ δabωb , (6.193)

where we have done integrations by parts and neglected total divergences. For the inter-
action Lagrangian we have

Lint = −gfabc∂µAaνAµbAνc −
1

4
g2fabcfadeAbµA

c
νA

µdAνe + gfabc∂µωaAbµω
c . (6.194)

We are now in position to get the Feynman rules for a non-abelian gauge theory. We
get with the usual conventions,



210 CHAPTER 6. NON-ABELIAN GAUGE THEORIES

Propagators

i) Gauge fields

− iδab

[
gµν

k2 + iǫ
− (1− ξ)

kµkν

(k2 + iǫ)2

]
(6.195)a b

µ ν

k

ii) Ghosts
i

k2 + iǫ
δab (6.196)a b

k

Vertices

i) Gauge bosons triple vertex

−gfabc[ gµν(p1 − p2)
ρ + gνρ(p2 − p3)

µ

+gρµ(p3 − p1)
ν ]

(6.197)

µ, a ν, b

ρ, c

p1

p2

p3

ii) Gauge bosons quartic vertex

−ig2
[

f eabf ecd(gµρgνσ − gµσgνρ)

+f eacf edb(gµσgρν − gµνgρσ)

+f eadf ebc(gµνgρσ − gµρgνσ)
]

(6.198)

µ, a ν, b

ρ, cσ, d

p1 p2

p3p4

iii) Gauge boson-Ghost interaction

g fabcpµ1 (6.199)

µ, c

a b
p1

p2

p3

Notes:

1. The dot in the vertex of the ghosts with the gauge fields corresponds to the leg where
the derivative applies. This corresponds to the line exiting the diagram (the ghost
lines are oriented as they have ghost number, as we will see)
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2. The other rules are as usual not forgetting the minus sign for the ghost loop because
of their anti-commuting character.

6.2.8 Feynman rules for the interaction with matter

We have just seen the Feynman rules for the pure gauge theory, without interaction with
matter. This already non trivial due to the non-abelian character. Interaction with matter
is done in the usual way, changing normal derivatives into covariant derivatives. In general
matter is described by scalar fields, as

φi ; i = 1, ...M (6.200)

We consider also fermion fields

ψj ; j = 1, ...N (6.201)

They belong to the representations of dimension M and N , respectively. The Lagrangian
will then be

Lmatter = (Dµφ)
†Dµφ−m2

φφ
†φ− V (φ)

+iψDµγµψ −mψψψ

≡ Lkin + Lint . (6.202)

The interaction Lagrangian between matter and the gauge fields is easily obtained
from the covariant derivative

Dµ
ij = ∂µδij − igAaµT

a
ij (6.203)

where T aij are the generators in the representations appropriate for the matter fields φ and
ψ.

We get then,

Lint = igφ∗i (∂
→

− ∂
←
)µφjT

a
ijAµa + g2φ∗i T

a
ijT

b
jkφkA

a
µA

µb

+gψiγ
µψjT

a
ijA

a
µ (6.204)

This leads to the following vertices:

Triple Vertices

ig(γµ)βαT
a
ij (6.205)

µ, a

α, jβ, i
p1

p2

p3
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ig(p1 − p2)
µT aij (6.206)

µ, a

i j
p1

p2

p3

Quartic Vertex

ig2gµν{T a, T b}ij (6.207)

µ, a ν, b

i j

Group Factors

The factors fabc and T aij that appear in the Feynman rules do not need in fact to be known.
In the calculations in the end will appear combinations of those that can expressed in terms
of invariant quantities that characterize the group and the representation. Our generators
are hermitian (T a† = T a) and satisfy the normalization conditions,

[T a, T b] = ifabcT c

Tr(T aT b) = δabT (R) (6.208)

In these definitions T (R) is a number that characterizes the representation R. Other
frequently used quantity is the Casimir of the representation, defined by

∑

a,k

T aikT
a
kj = Tr[T aT a] = δijC2(R) (6.209)

For the adjoint representation we get

facdf bcd = δabC2(G) . (6.210)

T (R) and C2(R) are not independent, they obey the relation

T (R)r = d(R)C2(R) (6.211)

where r is the dimension of the group G (number of generators) and d(R) is the dimension
of the representation R. For the adjoint representation we have

d(Adjoint) = r
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In many applications we are interested in the SU(N) family of Lie groups. For these
we have the results

r = N2 − 1 ; d(N) = N ; d(adj) ≡ d(G) = r (6.212)

T (N) =
1

2
; C2(N) =

N2 − 1

2N
(6.213)

T (G) = C2(G) = N (6.214)

Symmetry Factors

For the calculation of some diagrams there appear symmetry factors different from one.
They were discussed before, in section5.5.5, but for completeness we recall their definition
here. The symmetry factor is given by the # of different ways in which the lines can
be connected with the same final diagram, divided by the permutations factors for the
vertices involved and by the permutation factors for the number of equal vertices.

6.3 Ward Identities

6.3.1 BRS transformation

We are now going to study the Ward identities2 for the non-abelian gauge theories. The
more convenient method is that of the Becchi, Rouet e Stora (BRS) transformations. The
BRS transformations are a generalization of the gauge transformations that make invariant
the effective action.

As we saw for non-abelian gauge theories the effective action is given by (A = gauge
field, φ = matter field)

Seff [A,φ] = S[A,φ]− 1

2ξ

∫
d4xF 2

a [A,φ] −
∫
d4xωaMab , ω

b (6.215)

where S[A,φ] is the classical action, invariant under the (infinitesimal) gauge transforma-
tions,

δAaµ = −1

g
Dab
µ α

b

δφi = −i(T a)ijφjαa , (6.216)

and where Fa[A,φ] are the gauge conditions and the operator Mab is such that

Mabω
b =

δFa
δAcµ

Dcb
µ ω

b +
δFa
δφi

ig(T b)ijφjω
b . (6.217)

The effective action, Seff , is not invariant under gauge transformations due to the non-
invariance of the gauge fixing term and of the ghost Lagrangian. This non-invariance can

2We use here the generic name of Ward identities for the more general identities for non-abelian gauge
theories, discovered by Ward, Takahashi, Slavnov and Taylor.
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disappear if we choose appropriate transformations for the ghosts in order to compensate
the non-invariance of

∫
d4xF 2

a . These transformations, known as BRS transformations,
are defined by, 




δBRSA
a
µ = Dab

µ ω
bθ

δBRSφi = ig(T b)ijφjω
bθ

δBRSω
a = 1

ξFa[A,φ]θ

δBRSω
a = 1

2gf
abcωbωcθ

(6.218)

where θ is an anti-commuting parameter independent of the space-time point (Grassmann
variable).

We see that for the fields Aaµ and φi the BRS transformations are gauge transformations
with parameter αa(x) = −gωa(x)θ. Notice the anti-commuting character of θ is necessary
for the product ωaθ to have a bosonic (commutative) character. To show the invariance of
Seff [A,φ] we are going to prove a series of theorems needed for the general proof. Before
we do that it is convenient to introduce the Slavnov operator, s, defined by the relations,

δBRSA
a
µ = sAaµθ

δBRSφi = sφiθ

δBRSω
a = sωaθ

δBRSω
a = sωaθ

(6.219)

This operator is distributive with respect to multiplication (like a derivative) and obeys
the following relations,

s(B1B2) = sB1B2 +B1sB2

s(F1B2) = sF1B2 + F1sB2

s(B1F2) = −sB1F2 +B1sF2

s(F1F2) = −sF1F2 + F1sF2 (6.220)

Theorem 6.3

The Slavnov operator s is nilpotent in the fields Aaµ, φi e ω
a, that is s2Aaµ = s2φi =

s2ωa = 0.

Proof: We show for each case. We have

a) s2Aaµ = 0

s2Aaµ =s(Dab
µ ω

b) = −
δDab

µ

δAcν
sAcνω

b +Dab
µ sω

b

=− δνµ(−gfabc)Dcd
ν ω

dωb +
1

2
gf bcdDab

µ (ωcωd)

=

[
gfabc∂µω

cωb +
1

2
gfacd∂µω

cωd +
1

2
gfacdωc∂µω

d

]

+

[
gfabc(−g)f cdeAeµωdωb +

1

2
g(−g)f bcdfabeAeµωcωd

]
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=(gfabc∂µω
cωb − gfabc∂µω

cωb)

− 1

2
g2(fabcf cde − fadcf cbe + f cdbface)Aeµω

dωb = 0 (6.221)

b) s2φi = 0

s2φi =s [ig(T
a)ijφjω

a]

=− ig(T a)ijsφjω
a + ig(T a)ijφjsω

a

=g2(T a)ij(T
b)jkφkω

bωa + ig(T a)ijφj
1

2
gfabcωbωc

=
1

2
g2[T c, T b]ikω

bωcφk +
i

2
g2(T a)ijφjf

abcωbωc

=
i

2
g2(T a)ijφj(f

acb + fabc)ωbωc

=0 (6.222)

c) s2ωa = 0

s2ωa =s

(
1

2
gfabcωbωc

)

=− 1

2
gfabcsωbωc +

1

2
gfabcωbsωc

=− gfabcsωbωc

=− 1

2
g2fabcf befωeωtωc

=− 1

6
g2(fabcf bef + fabef bfc + fabff bce)ωeωtωc

=0 (6.223)

where we have used the anti-commutation of the ghost fields and the Jacobi identity.
The theorem is then proved.

For linear gauge fixing, we can show an important result that we also give in the form
of a theorem.

Theorem 6.4

For linear gauge fixings, the Slavnov operator verifies the relation

s(Mabω
b) = 0 (6.224)
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Proof:

We saw before that

Mabω
b(x) =

∫
d4y

[
δFa(x)

δAcµ(y)
Dcb
µ ω

b(y) +
δFa(x)

δφi(y)
ig(T b)ijφjω

b(y)

]
(6.225)

If we use the definitions of δBRS and of the Slavnov operator, we can write

Mabω
b(x) =

∫
d4y

[
δFa(x)

δAcµ(y)
sAcµ(y) +

δFa(x)

δφi(y)
sφi(y)

]
. (6.226)

If the gauge fixing is linear δFa

δAc
µ
and δFa

δφi
do not depend on the on the fields and then

s
[
Mabω

b(x)
]
=

∫
d4y

[
δFa(x)

δAµ(y)
s2Acµ(y) +

δFa(x)

δφi(y)
s2φi(y)

]
= 0 . (6.227)

where we have used the previous results. This proves the theorem.

Using theses results we can then show that the effective action is invariant under BRS
transformations. We are going to show this result also in the form of a theorem.

Theorem 6.5

The action Seff is invariant under BRS transformations.

Proof:

The effective action is

Seff [A,φ] = S[A,φ] +

∫
d4x

[
− 1

2ξ
F 2
a [A,φ] − ωaMabω

b

]
. (6.228)

As the classical action is invariant under gauge transformations we should have

s (S[A,φ]) = 0 . (6.229)

For the other terms we have

s

(
− 1

2ξ
F 2
a − ωaMabω

b

)
= −1

ξ
FasFa + sωaMabω

b − ωas(Mabω
b) . (6.230)

But

sFa(x) =

∫
d4y

[
δFa

δAbµ(y)
sAbµ(y) +

δFa
δφi(y)

sφi(y)

]
= Mabω

b(x) , (6.231)

and using one of the previous theorems we get

s(Mabω
b) = 0 . (6.232)
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Therefore

s

(
− 1

2ξ
F 2
a − ωaMabω

b

)
=

(
−1

ξ
Fa + sωa

)
Mabω

b = 0 , (6.233)

where we have used the fact that sωa = 1
ξFa. Putting everything together we get,

sSeff [A,φ] = 0 . (6.234)

For the applications we still need another result on the invariance of the integration
measure that we also present as a theorem.

Theorem 6.6

The measure D(Aµ, φi, ω
a, ωb) is invariant under BRS transformations.

Proof:

Simple calculations lead to the following relations

δ(sAaµ)

δAaµ
= −gfabaδµµωb = 0

δ(sφi)

δφi
= ig(T a)iiω

a = 0 ; (Tr(T a) = 0)

δ(sωa)

δωa
= gfaacωc = 0

δ(sωa)

δωa
= 0 (6.235)

As we saw in the last chapter these relations imply that the integration measure is
invariant proving the theorem (see Eq. (5.121)).

6.3.2 Ward-Takahashi-Slavnov-Taylor identities

We are now in position to derive the generalization of the Ward-Takahashi identities to
non-abelian gauge theories. This extension was done, among others, by Slavnov and
Taylor, but frequently we use the short designation of Ward identities even for the non-
abelian case. In a generic form Ward identities are relations among the Green functions
that result from the gauge symmetry of the theory. As we discuss the more convenient
way to describe them is through the generating functionals of the Green functions. Let us
then consider a non-abelian gauge theory. For simplicity we just consider that the matter
fields are scalars φi. Fermions can be introduced later easily. The generating functional is
then

Z[Jaµ , Ji, η
a, ηa] =

∫
D(Aµ, φi, ω, ω)e

i
∫

d4x[Leff+J
a
µA

µa+Jiφi+ηaωa+ωaηa ] (6.236)

where we have also introduced sources for the ghosts.

A BRS transformation is a change of variables in the integral. The value of the integral
should not be changed by this. As Seff and the measure are invariant we should have the
following theorem:
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Theorem 6.7

Given any Green function

G(x1, ..., y1, ..., z1, ..., w1, ...) = 〈0|TAaµ1(x1) · · ·φi1(y1) · · ·ωa(z1) · · ·ωb(w1) · · · |0〉
(6.237)

we have the following relations:

i) s 〈0|TAaµ(x1) · · · φi1(y1) · · ·ωa(z1) · · ·ωb1(w1) |0〉 = 0

ii) 0 = 〈0|TsAaµ(x1) · · · |0〉+ · · ·+ 〈0|T · · · sφi · · · |0〉+ · · ·

+ 〈0|T · · · sωa · · · |0〉 · · · + 〈0|T · · · sωa · · · |0〉 (6.238)

Proof: The proof is clear if we write

〈0|TAaµ(x1) · · ·φi1(y1) · · ·ωa(z1) · · ·ωb(w1) |0〉 =

=

∫
D(Aµ, φi, ω, ω)A

a
µ(x1) · · · φi1(y1) · · ·ωa(z1) · · ·ωb(w1)e

iSeff . (6.239)

Then the BRS transformation should leave the integral invariant proving the first
relation. Then the second relation results from the first and from the invariance of
the measure and of the effective action.

This theorem constitutes a quick way to establish relations among Green functions
for particular cases, as we shall see below. However to establish general results for the
renormalization and gauge invariance of the S matrix, we are interested in the Ward
identities expressed in terms of the generating functionals. Using the invariance of the
integral for a change of variables, the invariance of the measure D and of Seff , we get for
the Ward identity for the generating functional Z,

0 =

∫
D(Aµ, φi, ω, ω)

∫
d4x(JµasAaµ + Jisφi + ηasωa − sωaηa)ei(Seff+sources) . (6.240)

The more useful Ward identities are for the functional Γ. The previous expression can not
directly lead to Γ functional, because sAaµ, sφi and sωa are not linear in the fields. To
solve this problem we introduce sources for these non-linear operators. We generalize the
effective action defining a new quantity Σ such that

Σ[Aaµ, φi, ω
a, ωa,Ka

µ,Ki, L
a]

≡ Seff [A
a
µ, φi, ω

a, ωa] +

∫
d4x(KaµsAaµ +Kisφi + Lasωa) , (6.241)

where Kaµ,Ki and L
a are sources for the non-linear operators sAaµ, sφi and sω

a respec-
tively. Using the previous theorems it is easy to show that Σ is invariant under BRS
transformations, that is

sΣ = 0 . (6.242)
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Let us consider now the generating functional for the Green functions in the presence
of the sources Jaµ , Ji, η

a, ηa,Kµa,Ki and La, that is

Z[Jaµ , Ji, η, η,Kµ,Ki, L] =

∫
D(Aµ, φi, ω, ω)e

i
[
Σ+

∫

d4x(Ja
µA

µa+Jiφi+ηω+ωη)
]

(6.243)

We can now repeat the previous reasoning for invariance under BRS transformations. Like
before we get (recall that sΣ = 0)

0 =

∫
D(· · · )

∫
d4x[Jµa sA

a
µ + J isφi + ηasωa − sωaηa]ei(Σ+sources) , (6.244)

only now we have composite operators sA, sφ e sω, that is

sAaµ =
δΣ

δKµa
, sφi =

δΣ

δKi
, sωa =

δΣ

δLa
, sωa =

1

ξ
F a (6.245)

We get then
∫

D(· · · )
∫
d4x

[
Jµa

δΣ

δKµa
+ J i

δΣ

δKi
+ ηa

δΣ

δLa
− 1

ξ
F aηa

]
ei(Σ+sources) = 0 (6.246)

or in another form
∫
d4x

[
Jµa

δ

iδKµa
+ J i

δ

iδKi
+ ηa

δ

iδLa
− 1

ξ
F a
[

δ

iδJµ
,
δ

iδJi

]
ηa
]
eiW [Ja

µ,Ji,η,η,Kµ,Ki,L] = 0

(6.247)
For a linear gauge condition all the differential operators in the square bracket are of first
order and therefore we can write

∫
d4x

[
Jµa

δ

δKµa
+ J i

δ

δKi
+ ηa

δ

δLa
− 1

ξ
Faη

a

]
W = 0 . (6.248)

This is the expression of the Ward identities for the generating functional of the con-
nected Green functions, W . Normally the Ward identities are more useful for generating
functional of the irreducible Green functions. This defined by,

Γ[Aµ, φi, ω, ω,Kµ,Ki, L] ≡W [Jµ, Ji, η, η,Kµ,Ki, L]−
∫
d4x[JaµA

aµ + Jiφi + ηω + ωη]

(6.249)
with the usual relations

φi = δW
δJi

Aaµ = δW
δJµa

ωa = δW
δηa

ωa = −δW
δηa

(6.250)

as usual as the inverse relations,

Ji = − δΓ
δφi

Jaµ = − δΓ
δAµa

ηa = δΓ
δωa

ηa = − δΓ
δωa

(6.251)
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As the Legendre transform leaves the sources Ka
µ,Ki and La unchanged, we should

have.
δW

δKa
µ

=
δΓ

δKa
µ

;
δW

δKi
=

δΓ

δKi
;

δW

δLa
=

δΓ

δLa
(6.252)

We then get easily
∫
d4x

[
δΓ

δKa
µ(x)

δΓ

δAµa(x)
+

δΓ

δKi(x)

δΓ

δφi(x)
− δΓ

δLa(x)

δΓ

δωa(x)
− 1

ξ
F a

δΓ

δωa(x)

]
= 0 (6.253)

This is the generating functional for the Ward identities for the irreducible Green func-
tions. The Ward identities for specific Green functions are obtained by taking appropriate
functional derivatives of the fields.

In the applications the previous equation is used in connection with another functional
identity, the equation of motion (or Dyson-Schwinger) for the ghosts. This can be easily
obtained doing the following change of variables in the functional integral,

{
δAaµ = δφi = δωa = 0

δωa = fa = infinitesimal constant
(6.254)

Then

δZ = 0 =

∫
D(· · · )

(
i
δΣ

δωa
+ iηa

)
faei(Σ+sources) (6.255)

but

δΣ

δωa(x)
= −Mabω

b(x) = −sFa(x)

= −
∫
d4y

[
δFa(x)

δAbµ(y)
sAbµ(y) +

δFa(x)

δφi(y)
sφi(y)

]

= −
∫
d4y

[
δFa(x)

δAbµ(y)

δΣ

δKbµ(y)
+
δFa(x)

δφi(y)

δΣ

δKi(y)

]
(6.256)

We therefore obtain

0 =

∫
D(· · · )

{
−i
∫
d4y

[
δFa(x)

δAbµ(y)

δΣ

δKbµ(y)
+
δFa(x)

δφi(y)

δΣ

δKi(y)

]
+ iηa(x)

}
ei(Σ+sources)

=

{
−
∫
d4y

[
δFa(x)

δAbµ(y)

δ

δKbµ(y)
+
δFa(x)

δφi(y)

δ

δKi(y)

]
+ iηa(x)

}
eiW

(6.257)

Using now

ηa = − δΓ

δωa
(6.258)

we finally get (for linear gauges)

∫
d4y

[
δFa(x)

δAbµ(y)

δΓ

δKµb(y)
+
δFa(x)

δφi(y)

δΓ

δKi(y)

]
= − δΓ

δωa(x)
(6.259)

which the generating functional for the Dyson-Schwinger equations for the ghosts.
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6.3.3 Example: Transversality of vacuum polarization

We are going to give an example of the application of the Ward identities. For this we
will show that the vacuum polarization is transversal. As the pure gauge theory is already
non-trivial, we only consider this case, the generalizations being straightforward. To show
the details of the calculations that will shed some light on the more formal expression we
just proved, we are going to do this example using two methods. The first one, that we
will call formal method, will use the general expression for the Ward identities satisfied
by the generating functional of the irreducible Green functions, Γ. The second method,
which we call practical method, will use the results of one of the theorems on the BRS
transformations that we proved before. The comparison between the two methods will be
important to clarify the meaning of the expressions.

i) Formal Method

For the pure gauge theory case, the expression for the Ward identities for the generating
functional Γ is,

∫
d4x

[
δΓ

δKa
µ(x)

δΓ

δAµa(x)
− δΓ

δLa(x)

δΓ

δωa(x)
− 1

ξ
F a(x)

δΓ

δωa(x)

]
= 0 (6.260)

where we will choose a covariant linear gauge,

F a(x) = ∂µA
aµ(x) (6.261)

To proceed it is necessary to know what is the meaning of the functional derivatives, δΓ
δKa

µ

and δΓ
δLa . From their definition we have

δΓ

δKa
µ(x)

=
δW

δKa
µ

=
δ

iδKa
µ

lnZ =
1

Z

δZ

iδKa
µ(x)

=
1

Z

∫
D(· · · )sAaµ(x)ei(Σ+sources) (6.262)

As sAaµ(x) = Dab
µ ω

b = ∂µω
a(x)− gfabcωb(x)Acµ(x), we then get

δΓ

δKa
µ(x)

= ∂xµ
1

Z

δZ

iδηa(x)
− gfabc

1

Z

δ2Z

iδJcµ(x)iδη
b(x)

(6.263)

Introducing now Z ≡ exp(iW ), the previous expression becomes,

δΓ

δKa
µ(x)

= ∂µx
δ(iW )

iδηa(x)
− gfabc

[
δ2iW

iδJcµ(x)iδη
b(x)

+
δiW

iδJcµ(x)

δiW

iδηb(x)

]
, (6.264)

which has the following diagrammatic representation

a µµ

b
b

c
c

iW

iWiW

iW

δΓ

δKa
µ(x)

= ∂µx −gfabc −gfabc (6.265)
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where W is the generating functional for the connected Green functions.

In a similar way we can show that (sωa = 1
2gf

abcωbωc)

δΓ

δLa(x)
=

1

2
g fabc

1

Z

δ2Z

iδηc(x)iδηb(x)

=
1

2
g fabc

[
δ2(iW )

iδηc(x)iδηb(x)
+

δ(iW )

iδηc(x)

δ(iW )

iδηb(x)

]
(6.266)

In diagrammatic form this gives

b
b

c
c

iW

iW

iW

δΓ

δLa(x)
=

1

2
g fabc +

1

2
g fabc (6.267)

We want to apply δ2

δωb(y)δAcν(z)
to the original equation. We get

δ2

δωb(y)δAcν(z)

(
δΓ

δKa
µ(x)

δΓ

δAµa(x)

)∣∣∣∣
=0

=
δ2Γ

δωb(y)δKa
µ(x)

∣∣∣∣
=0

δ2Γ

δAcν(z)δA
µa(x)

∣∣∣∣
=0

(6.268)

But we have

δ2Γ

δωb(y)δKa
µ(x)

∣∣∣∣
=0

=

∫
d4w

(
−i δ2Γ

δωb(y)δωf (w)

) (
δ2Γ

iδηf (w)δKa
µ(x)

)∣∣∣∣
=0

= ∂µx

∫
d4w

(
−i δ2Γ

δωb(y)δωf (w)

) (
δ2(iW )

iδηf (w)iδηa(x)

)∣∣∣∣
=0

− g fab
′c

∫
d4w

(
−i δ2Γ

δωb(y)δωf (w)

) (
δ3iW

iδηf (w)iδηb
′
(x)iδJcµ(x)

)∣∣∣∣∣
=0

= ∂µx δ
4(x− y)δab − gfab

′c

∫
d4w

(
−i δ2Γ

δωb(y)δωf (w)

)

(
δ3iW

iδηf (w)iδηb
′
(x)iδJcµ(x)

)∣∣∣∣∣
=0

(6.269)

In a similar way we have for the second term,

δ2

δωb(y)δAcν(z)

(
δΓ

δLa
δΓ

δωa

)∣∣∣∣
=0

= 0 (6.270)

δ2

δωb(y)δAcν(z)

(
1

ξ
∂ρA

ρa(x)
δΓ

δωa(x)

)∣∣∣∣
=0

=
1

ξ
∂νxδ

4(x− z)
δ2Γ

δωb(y)δωa(x)

∣∣∣∣
=0

(6.271)
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Using these results we get

−∂yµ
δ2Γ

δAbµ(y)δA
c
ν(z)

− gfade
∫
d4xd4w

(
−i δ2Γ

δωb(y)δωf (w)

)

(
δ3iW

iδηf (w)iδηd(x)iδJeµ(x)

)(
δ2Γ

δAaµ(x)δA
c
ν(z)

)
+

1

ξ
∂νz

δ2Γ

δωb(y)δωc(z)
= 0

(6.272)

We now apply the Fourier transform, with the conventions shown in the Fig. 6.2, we

p

z y

Figure 6.2: Momentum definition for the Fourier Transform.

get

− ipµ(i)G−1cbνµ(p)− gfadeiG−1caνµ(p)∆
−1fbXµdef + (−ipν) i

ξ
∆−1cb(p) = 0 (6.273)

This can be written as

pµG−1cbνµ = −1

ξ
∆−1cbpν + ig fadeG−1caνµ(p) ∆

−1fbXµdef (6.274)

where

Xµdef =FT
[
< 0|Tωd(x)ωf (w)Aµe(x)|0 >c

]

≡ (6.275)µ

d

e

f
iW

To prove the Transversality we also need the equation of motion for the ghosts. For
our case this is

δΓ

δωa(z)
= −∂µz

δΓ

δKµa(z)
(6.276)

Applying the operator δ
δωb(y)

, we get

δ2Γ

δωb(y)δωa(z)
=− ⊔⊓ δabδ4(y − z)

+ gfadc
∫
d4w

(
−i δ2Γ

δωb(y)δωf (w)

)
∂µz

(
δ3iW

iδJcµ(z)iδη
f (w)iδηd(z)

)
(6.277)
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Applying now the Fourier transform, we get

i∆−1ab = p2δab + gfadc(−ipµ)Xdcf
µ ∆−1fb (6.278)

The previous equations allow now to complete the proof of the transversality of the
vacuum polarization. For this we write,

G−1abµν = G−1T
ab
µν + i

a

ξ
δabpµpν (6.279)

where pµG−1T
ab
µν = 0. For the free propagator we have a = 1. To show the transversality

we just have to show that the longitudinal part is not renormalized and that therefore the
value of a remains always a = 1. Using

pµG−1abµν = i
a

ξ
δabp2pν (6.280)

and multiplying equation by pν we obtain

i
a

ξ
p4δcb = −1

ξ
p2∆−1cb − a

ξ
p2g f cdepµX

µdef∆−1fb (6.281)

Using now equation Eq. (6.278) we get after some trivial algebra

0 = −1

ξ
p2∆−1cb +

a

ξ
p2∆−1cb (6.282)

This implies

a = 1 (6.283)

as we wanted to shown.

2) Practical Method

Now we are going to use the so-called practical method based in Theorem 6.7 Using

sωb(x) =
1

ξ
∂µA

µb(x) (6.284)

and

sAaν = ∂νω
a − gfadcωdAcν (6.285)

it is easy to see that the starting Green function should be
〈
0|TAaν(x)ωb(y)|0

〉
. Then

Theorem 6.7 tells us that

s
〈
0|TAaµ(x)ωb(y)|0

〉
= 0 (6.286)

that is

1

ξ

〈
0|TAaν(x)∂µAµb(y)|0

〉
=

〈
0|T∂νωa(x)ωb(y)|0

〉

−gfadc
〈
0|Tωd(x)Acν(x)ωb(y)|0

〉
(6.287)
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We now take the Fourier transform obtaining

i

ξ
pρGabνρ(p) = −ipν∆ab(p)− gfadcXdcb

ν (6.288)

where Xdcb
ν has been defined before. Multiplying by G−1νµ∆−1 we then get

pµG−1acνµ = −1

ξ
pν∆

−1ac + igf fdeχdebν ∆−1bcG−iνµaf (6.289)

which is precisely Eq. (6.274) The result in Eq. (6.278) can be easily obtained knowing
that the only vertex of the ghosts is

gfabcpµ (6.290)

µ, c

a b

p

Then

µ

daa abb b

c
p

iW iW= + (6.291)

which means

∆ab(p) =
i

p2
δab +

i

p2
gfadcpµXdcb

µ (6.292)

or in another form
i∆−1ab = p2δab − igfadcpµXdcb′

µ ∆−1b
′b (6.293)

which is precisely Eq. (6.278). The proof of transversality follows now the same steps as
in the formal case.

6.3.4 Gauge invariance of the S matrix

We have shown before the gauge invariance of the S matrix using the equivalence theorem
and the fact that the generating functionals corresponding to different gauge conditions
only differ in the source terms. The proof used some properties of the Coulomb gauge and
this can raise some doubts about the genera validity of the argument.

We are going to show here, using the Ward identities, that the functionals ZF and
ZF+∆F corresponding to the gauge conditions F and F +∆F , respectively, only differ in
the source terms. As F and ∆F are arbitrary the proof is general. We have

ZF [J
a
µ , Ji] =

∫
D(· · · )ei[Seff+

∫

d4x(Ja
µA

µa+Jiφi)] (6.294)
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Then

ZF+∆F − ZF =

∫
D(· · · )

∫
d4x i

[
−1

ξ
F a∆F a − ωa

∫
d4y

δ∆F a(x)

δAbµ(y)
sAbµ(y)

−ωa
∫
d4y

δ∆F a(x)

δφi(y)
sφi(y)

]
ei(Seff+sources) (6.295)

We use now the Ward identities in the form that corresponds to the generating functional
Z, that is

0 =

∫
D(· · · )

∫
d4x[JµasAaµ + J isφi + ηsω − sωη] e{i(Seff+J

a
µA

µa+Jiφi+ωη+ηω)} (6.296)

Taking the derivative in order to ηa(x) and after setting the ghost sources to zero, we get

0 =

∫
D(· · · )

[
1

ξ
F a(x) + iωa(x)

∫
d4y[JµbsAbµ + J isφi]

]
ei[Seff+

∫

d4x(Ja
µA

µi+Jiφi)] (6.297)

or

−1
ξ
F a
[
δ
iδJ

] ∫
D(· · · )ei(Seff+sources) =

=

∫
D(· · · )iωa(x)

∫
d4y[JµbsAbµ + Jisφi]e

i(Seff+sources)

(6.298)

Then

∫
D(· · · )

(
−1
ξ
F a∆F a

)
ei(Seff+sources) =

= ∆F a
[
δ
iδJ

] (
−1
ξ
F a
[
δ
iδJ

])∫
D(· · · )ei(Seff+sources)

= ∆F a
[
δ
iδJ

] ∫
D(· · · )iωa(x)

∫
d4y[JµbsAbµ + J isφi]e

i(Seff+sources)

=

∫
D(· · · )

{
ωa(x)

∫
d4y

[
δ∆F a(x)

δAbµ(y)
sAbµ(y) +

δ∆F a(x)

δφi(y)
sφi(y)

]

+iωa(x)∆F a(x)

∫
d4y[JµbsAbµ + J isφi]

}
ei(Seff+sources)

(6.299)

We get therefore

∫
D(· · · )

(
−1

ξ
F a∆F a−ωa(x)

∫
d4y

[
δ∆F a(x)

δAbµ(y)
sAbµ(η)+

δ∆F a

δφi(y)
sφi(y)

])
ei(Seff+sources)

=

∫
D(· · · )iωa(x)∆F a(x)

∫
d4y

[
JµbsAbµ + J isφi

]
ei(Seff+sources)

(6.300)
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We can then write

ZF+∆F −ZF

=

∫
D(· · · )i

∫
d4x
[
iωa(x)∆F a(x)

∫
d4y(JµbsAbµ + Jisφi)

]
ei(Seff+sources)

=

∫
D(· · · )e

i
{
Seff+

∫
d4y[Jaµ(y)Aµa(y) + JiΦi(y)]

}

(6.301)
where

Φi(y) ≡ φi(y) + i

∫
d4x[ωa(x)∆F a(x)sφi(y)] (6.302)

and

Aa
µ(y) ≡ Aaµ(y) + i

∫
d4x[ωb(x)∆F b(x)sAaµ(y)] (6.303)

The difference between the generating functionals ZF+∆F and ZF is only in the functional
form of the source terms. We can then use the equivalence theorem to show that the
renormalized S matrix are equal in both cases.

SRF+∆F = SRF . (6.304)

6.4 Ward Takahashi Identities in QED

6.4.1 Ward-Takahashi identities for the functional Z[J ]

We will now derive again the Ward identities for QED, that we found in our study of
renormalization, using now the functional methods. The generating functional for the
Green functions for QED is given by, in a linear gauge,

Z(Jµ, η, η) =

∫
D(Aµ, ψ, ψ)e

i(Seff+
∫

d4x(JµAµ+ηψ+ψη) (6.305)

where Jµ, η e η are the sources for Aµ, ψ and ψ respectively. The effective action is given
by,

Seff =

∫
d4x

[
LQED − 1

2ξ
(∂ ·A)2

]
= SQED + SGF (6.306)

where

LQED = −1

4
FµνF

µν + ψ(iγµDµ −m)ψ . (6.307)

where
Dµ = ∂µ − i eAµ (6.308)

with our convention that e = |e| and the electron charge is given by qe = −e < 0. SQED
is invariant under local gauge transformation of the group U(1) that we write as,





δAµ = ∂µΛ

δψ = ieΛψ

δψ = −ieΛψ
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The Seff contains the part of the gauge fixing that it is not invariant under these trans-
formations. Therefore the Ward identities take the form,

(
δSGF
δφi

[
δ

iδJ

]
+ Ji

)
Fi

[
δ

iδJ

]
Z(J) = 0 (6.309)

This can be written in our case as, putting back the explicit integrations,

0 =

∫
d4x

[
1

ξ
∂µ∂ν

(
δ

iδJν

)
∂µΛ+ Jµ∂µΛ+ ieΛη

δ

iδη
− ieΛη

δ

iδη

]
Z(Jµ, η, η) (6.310)

After an integration by parts we get,
∫
d4x Λ

[
−1

ξ
⊔⊓∂ν

(
δ

iδJν

)
− ∂µJ

µ + ieη
δ

iδη
− ieη

δ

iδη

]
Z(Jµ, η, η) = 0 (6.311)

This can be written as[
1

ξ
⊔⊓∂µ

(
δ

iδJµ

)
+ ∂µJ

µ − ieη

(
δ

iδη

)
+ ieη

(
δ

iδη

)]
Z(J, η, η) = 0 (6.312)

6.4.2 Ward-Takahashi identities for the functionals W and Γ

From the point of view of the applications it is more useful the Ward identity for the
generating functional of the irreducible Green functions. This problem is simpler than in
the case of non-abelian gauge theories, that we just discuss, as the the previous equation
is linear in the functional derivatives with respect to the different sources (we notice that
if we had chosen a non-linear gauge fixing this would not be true, even in QED). The
linearity allow us to write immediately

∂µJ
µ +

[
1

ξ
⊔⊓∂µ

(
δ

iδJµ

)
− ieη

δ

iδη
+ ieη

δ

iδη

]
W (J, η, η) = 0 (6.313)

where W is the generating functional for the connected Green functions,

Z(Jµ, η, η) ≡ eiW (Jµ,η,η) (6.314)

As we saw the generating functional for the irreducible Green functions is given by,

Γ(Aµ, ψ, ψ) =W (Jµ, η, η)−
∫
d4x[JµAµ + ηψ + ψη] (6.315)

We also have the relations

Aµ =
δW

iδJµ
; ψ =

δW

iδη
; ψ = −δW

iδη
(6.316)

and

Jµ = − δΓ

δAµ
; η = − δΓ

δψ
; η =

δΓ

δψ
(6.317)

where, as usual, the fermionic derivatives are left derivatives. We can them write

1

ξ
⊔⊓∂µAµ − ∂µ

δΓ

δAµ
− ie

δΓ

δψ
ψ − ieψ

δΓ

δψ
= 0 (6.318)

This equation is the starting point to generate all the Ward identities in QED. Its applica-
tion it is much easier than the equivalent expression that was proved using the canonical
formalism. The functional methods make this expressions particularly simple.
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6.4.3 Example: Ward identity for the QED vertex

To convince ourselves that this equation reproduces the Ward identities that we already

know, let us derive the Ward identity for the vertex in QED. We apply
δ2

δψα(y)δψβ(z)
to

the master equation. We get then

∂µx
δ3Γ

δψα(y)δψβ(z)δA
µ(x)

=− i e

[
δ2Γ

δψα(y)δψβ(x)
δ4(z − x)− δ2Γ

δψα(x)δψβ(z)
δ4(y − x)

]
(6.319)

This equation means

∂µxΓµβα(x, z, y) = −i e
[
Γβα(x, y)δ

4(z − x)− Γβα(z, x)δ
4(y − x)

]
(6.320)

Taking now the Fourier transform to both sides of the equation, with the momenta
defined as the Fig. 6.3, we get,

µ

β α

pp′

q = p′ − p

Figure 6.3: Definition of the momenta for the vertex.

qµΓµ(p
′, p) = −i e[S−1(p)− S−1(p′)] (6.321)

This is precisely the well known3 Ward identity, Eq. (4.155).

6.4.4 Ghosts in QED

We said before that the generating functional for QED was given by,

Z(Jµ, η, η) =

∫
D(Aµ, ψ, ψ)e

i
∫

d4x[LQED+LGF+JµAµ+ηψ+ψη] (6.322)

3Note that our convention is that e = |e|.



230 CHAPTER 6. NON-ABELIAN GAUGE THEORIES

where LQED is the usual Lagrangian for QED and the gauge fixing term was,

LGF = − 1

2ξ
(∂ · A)2 . (6.323)

In fact this is not strictly true. If we use the prescription for the gauge theories, we would
get instead,

Z̃(Jµ, η, η, ζ, ζ) =

∫
D(Aµ, ψ, ψ, ω, ω)e

i
∫

d4x[Leff+J
µAµ+ηψ+ψη+ωζ+ζω] (6.324)

In this expression ω e ω are anti-commuting scalar fields known as the Faddeev-Popov
ghosts as we saw before. Although in physical process they never appear as external states,
it is useful to introduce also sources for them to discuss the Ward identities.

In the previous action, the Lagrangian Leff is

Leff = LQED + LGF + LG (6.325)

where
LG = −ω ⊔⊓ ω (6.326)

The reason why in QED we can work with the functional Z instead of Z̃ is because the
ghosts do not have interactions with the gauge fields and can be integrated out (Gaussian
integration) and absorbed in the normalization. Nevertheless, for the Ward identities
it is useful to keep them. The effective Lagrangian, Leff , is invariant under the BRS
transformations given by, 




δψ = i eωθψ

δψ = −i eψωθ
δAµ = ∂µωθ

δω = 1
ξ (∂ ·A)θ

δω = 0

(6.327)

The parameter θ is an anti-commuting (Grassmann variable). The BRS transformations
on the physical fields are gauge transformations with parameter Λ = ωθ and therefore
LQED is left invariant. The transformations in the ghosts ω and ω are such that the
variation of LGF cancels that of LG, just like in the non-abelian case. The invariance of
the integration measure and of Seff allows us to write immediately the Ward identities
for the generating functionals. The BRS transformations allow us to obtain the Ward
identities in a quick way without having to resort to the functional Γ̃. This method is
based on the fact, as we saw in Theorem 6.7, that the application of the operator δBRS to
any Green function gives zero, that is

δBRS 〈0|TAµ1 · · ·ω · · ·ω · · ·ψ · · ·ψ · · · |0〉 = 0 (6.328)

Let us show two simple applications of the method in QED.

1) The non-renormalization of the longitudinal photon propagator
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This result is equivalent, as we have seen, to the statement that the vacuum polarization
is transversal. It is proved easily starting with the Green function, 〈0|TAµω |0〉, and using

δBRS 〈0|TAµω |0〉 = 0 (6.329)

This gives
1

ξ
〈0| |TAµ∂νAν |0〉 θ − 〈0|T∂µωω |0〉 θ = 0 (6.330)

After taking the Fourier transform we get

1

ξ
kµGµν(k) = −kν∆(k) (6.331)

where the ghost propagator is the free propagator

∆(k) =
i

k2
(6.332)

because the ghosts have no interactions. Multiplying by the inverse propagator of the
photon we get

1

ξ
kµ = −ikν

k2
G−1νµ(k) (6.333)

Therefore

kνG
−1νµ(k) =

i

ξ
kµk2 = kνG

−1νµ
(0)

(k) (6.334)

This shows that the longitudinal part of the photon propagator is equal to the free longi-
tudinal part and therefore does not get any renormalization.

2) Ward Identity for the Vertex

For the vertex we start from

δBRS 〈0|Tωψψ |0〉 = 0 (6.335)

This means

1

ξ
〈0|T∂µAµψψ |0〉 = −ie 〈0|Tωωψψ |0〉+ ie 〈0|Tωψψω |0〉 (6.336)

After taking the Fourier transform we get

i

ξ
qµ i Tµ = i T (6.337)

where we have defined

iTµ = = Gµν(q)S(p
′)iΓνS(p) (6.338)

µ

p

q
p′
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iT =ie − ie

=+ ie∆(q)S(p) − ie∆(q)S(p′) (6.339)

p

q
p′

p

q
p′

The last equality results from the fact that ghosts have no interactions in QED in a
linear gauge4. Putting everything together we get

i

ξ
qµGµν(q)S(p

′)iΓνS(p) = ie∆(q)S(p)− ie∆(q)S(p′) (6.340)

Using
1

ξ
kµGµν(k) = −kν∆(k) (6.341)

and multiplying by the inverse of the fermion propagators we get again the well known
the Ward identity for the vertex,

qµΓ
µ(p′, p) = −i e

[
S−1(p)− S−1(p′)

]
(6.342)

6.5 Unitarity and Ward Identities

6.5.1 Optical Theorem

The S matrix, (Heisenberg 1942), can be written in the form

S = 1 + iT (6.343)

Then its unitarity SS† = 1 implies,

2 ImT = TT † (6.344)

If we insert this relation between the same initial and final state (elastic scattering) we
get

2 Im 〈i|T |i〉 =
〈
i|TT †|i

〉

=
∑

f

| 〈f |T |i〉 |2 (6.345)

4Also note that ∆(q) = FT 〈0|Tωω |0〉 and = 〈0| Tωωψψ |0〉 = −〈0| Tωωψψ |0〉, hence the change of
signs in Eq. (6.339).
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where we have introduced a complete set of states. This relation can still be written in
the form,

σtotal = 2 Im T elastic
forward (6.346)

known as the optical theorem. What we call here σtotal it is not exactly the cross section,
because the flux factors are mixing. It is for our purpose the quantity defined by

σtotal ≡
∑

f

| 〈f |T |i〉 |2 (6.347)

Unitarity establishes therefore a relation between the total cross section and the imag-
inary part of the elastic amplitude in the forward direction (the initial and final state have
to be the same).

6.5.2 Cutkosky rules

To show that unitarity is obeyed in a given process we have to know how to calculate the
imaginary part of Feynman diagrams. Of course there is always the possibility of doing
explicitly the calculations and retrieve the imaginary part, but this only possible for simple
diagrams (see below). Therefore it is useful to have rules, known as Cutkosky rules, that
give us the imaginary part of any diagram. We will state them now.

Rule 1

The imaginary part of an amplitude is obtained using the expression

2 Im T = −
∑

cuts

T (6.348)

Rule 2

The cut is obtained by writing the amplitude iT = · · · and substituting in this expression
the propagators of the lines we cut by the following expression,

• Scalar fields

∆(p) ⇒ 2πθ(po)δ(p2 −m2) (6.349)

• Fermion fields

S(p) ⇒ (p/+m)2πθ(po)δ(p2 −m2) (6.350)

• Vector gauge fields (in the Feynman gauge)

Gµν(p) ⇒ −gµν2πθ(p0)δ(p2 −m2) (6.351)

In these expression the θ functions ensure the energy flux. The Cutkosky rules are
complicated to prove in general (see G. ’t Hooft, ”Diagrammar”, CERN Report 1972) but
we are going to show in the two explicit examples how they work.
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Example 6.1 Free propagator

For the free propagator of a scalar field the amplitude is

iT =
i

p2 −m2 + iε
(6.352)

The imaginary part is obtained using

1

x+ iε
= P

(
1

x

)
− iπδ(x) (6.353)

Therefore

T = P

(
1

p2 −m2

)
− iπδ(p2 −m2) (6.354)

The imaginary part is then

2 ImT = −2πδ(p2 −m2) (6.355)

Using the Cutkosky rule we get

2 ImT = −2πδ(p2 −m2)θ(p0) (6.356)

which is precisely the same result. The function θ(p0) tell us that the flux of energy
is from left to right.

Example 6.2 Self-energy in φ3

Let us consider the self-energy in the theory given by the Lagrangian,

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

3!
φ3 (6.357)

The self-energy is given by the diagram in the Fig. 6.4. The corresponding amplitude

p

kk

p− k

Figure 6.4: Self-energy

is

iT = (−iλ)2
∫

d4p

(2π)4
i

p2 −m2 + iε

i

(p− k)2 −m2 + iε
(6.358)

Let us calculate the imaginary part of T by two methods, first doing the explicit
calculation and second using the Cutkosky rule.
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i) Explicit Calculation

iT =λ2
∫

d4p

(2π)4
1

(p2 −m2 + iε)[(p − k)2 −m2 + iε]

=λ2
∫

d4p

(2π)4

∫ 1

0
dx

1

(p2 + 2p · P −M2 + iε)2

=λ2
∫

d4p

(2π)4

∫ 1

0
dx

1

[(p + P )2 −∆]2
(6.359)

where {
P = −x k
∆ = P 2 +M2 = m2 − k2x(1− x)− iε

(6.360)

The amplitude is then

iT = λ2
∫

d4p

(2π)4

∫ 1

0
dx

1

(p2 −∆)2
(6.361)

The integral is divergent. Using dimensional regularization we get

T =
λ

16π2
µεΓ

(
2− d

2

)∫ 1

0
dx∆−(2−

d
2) (6.362)

Choosing on-shell renormalization, TR(k
2 = m2) = 0, we get

TR =T − T (k2 = m2)

=
λ2

16π2
Γ
(ε
2

)∫ 1

0
dx

[(
∆(k2)

µ2

)− ε
2

−
(
∆(k2 = m2)

µ2

)− ε
2

]

=
λ2

16π2

(
2

ε
− C +O(ε)

)∫ 1

0
dx

[
1− 1− ε

2
ln
m2 − k2x(1− x)− iε

m2 −m2x(1− x)− iε

]

=− λ2

16π2

∫ 1

0
dx ln

[
1− βx(1− x)− iε

1− x(1− x)− iε

]
= − λ2

16π2
[L(β)− L(1)] (6.363)

In this expression β = k2

m2 and the function L(β) is given by

L(β) ≡
∫ 1

0
dx ln

[
1− β(1− x)x− iε

]
(6.364)

It satisfies

ImL(β) = −π
√
1− 4

β
θ(β − 4) (6.365)

Therefore

ImT = − λ2

16π2
[
ImL(β)− ImL(1)

]
(6.366)

and we get finally,

ImT =
λ2

16π

√
1− 4m2

k2
θ

(
1− 4m2

k2

)
(6.367)
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The θ functions ensures that there is only imaginary part when the intermediate
state could also be a final state (production of two particles of mass m).

ii) Using the Cutkosky rules

Using the rules we get

2ImT =− (iλ)2
∫

d4p

(2π)4
(2π)2θ(p0)θ(k0 − p0)δ(p2 −m2)δ((p − k)2 −m2)

=λ2
∫

d4p

(2π)4
d4p′(2π)2θ(p0)θ(k0 − p0)δ(p2 −m2)δ(p′2 −m2)δ4(p′ − k + p)

(6.368)

Using now the result
∫
d4p θ(p0)δ(p2 −m2) =

∫
d3p

1

2p0
(6.369)

We get

2ImT = λ2
∫

d3p

(2π)3
d3p′

1

2p0
1

2p′0
2πδ4(p′ − k + p) (6.370)

or

2ImT = λ2
∫

d3p

(2π)3
1

2p0
1

2p′0
2πδ(k0 − p0 − p′0) (6.371)

k = (
√
s,~0) ; p = (

√
|~p|2 +m2, ~p) ; p′ = (

√
|~p′|2 +m2,−~p) (6.372)

Therefore we get

2ImT =λ2
∫

d3p

(2π)3
1

4(|~p|2 +m2)
2πδ(

√
s− 2

√
|~p|2 +m2)

=
λ2

4π

∫
d|~p| |~p|2

|~p|2 +m2

δ(|~p| −
√

s
4 −m2)

2|~p|√
|~p|2+m2

θ

(
1− 4m2

s

)

=
λ2

8π

√
1− 4m2

s
θ

(
1− 4m2

s

)
(6.373)

Using s = k2 we get

ImT =
λ2

16π

√
1− 4m2

k2
θ

(
1− 4m2

k2

)
(6.374)

which is the same result as we got in the explicit calculation.

6.5.3 Example of Unitarity: scalars and fermions

As an example of checking the unitarity let us consider a theory described by the La-
grangian,

L = iψ∂/ψ −mψψ +
1

2
∂µφ∂

µφ− 1

2
M2φ2 + gψψφ (6.375)

We will show unitarity in two cases (cutting fermions lines):
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i) Scalar Self-energy

The self-energy of the scalars is given by the diagram in Fig. 6.5, to which corresponds
the amplitude,

p

kk

p− k

Figure 6.5: Fermion contribution to the scalar self-energy.

iT = g2
∫

d4p

(2π)4
Tr

[
i

p/−m+ iε

i

p/− k/ −m+ iε

]
(6.376)

Applying Cutkosky rules we get,

2 ImT =−
∑

cuts

T

=− g2
∫

d4p

(2π)4
Tr[(p/+m)(p/− k/+m)](2π)θ(p0)δ(p2 −m2)

(2π)θ(k0 − p0)δ((p − k)2 −m2) (6.377)

To show the unitarity we calculate the cross section,

σ =
∑

f

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

(6.378)
k

p

p′

We get

σ =
∑

f

|igu(p)v(p′)|2 = −g2
∑

f

Tr[(p/+m)(−p/′ +m)] (6.379)

where we have used
∑

spins v(p
′)v(p) = −(−p/′+m) and

∑
spins u(p)u(p

′) = p/+m. Therefore

σ = −g2
∫
dρ2Tr[(p/+m)(−p/′ +m)] (6.380)

where dρ2 is the phase space of two particles, that is,
∫
dρ2 ≡

∫
d3p

(2π)3
d3p′

(2π)3
1

2p0
1

2p′0
(2π)4δ4(k − p− p′)

=

∫
d4p

(2π)4
d4p′

(2π)4
(2π)θ(p0)δ(p2 −m2)(2π)θ(p′0)δ(p′2 −m2)(2π)4δ4(k−p−p′)

(6.381)



238 CHAPTER 6. NON-ABELIAN GAUGE THEORIES

We conclude then that

σ =− g2
∫

d4p

(2π)4
(2π)θ(p0)δ(p2 −m2)(2π)θ(k0 − p0)δ((p − k)2 −m2)

Tr[(p/+m)(p/− k/ +m)] (6.382)

Comparing we obtain

2ImT = σ (6.383)

ii) General case

Let us consider the general case of two internal fermion lines. The amplitude iT is repre-
sented by the diagram

k1k1

k2k2

knkn

p

−p′
≡ iT

p′ =
n∑

i=1

ki − p (6.384)

The amplitude iT is given by

iT = −
∫

d4p

(2π)4
Tr
[
T ′S(p)T ′S(−p′)

]
(6.385)

Where we have defined the amplitude iT ′ by

≡ u(p)iT ′v(p′) (6.386)

k1

k2

kn

p

−p′

Therefore

2 ImT =−
∫

d4p

(2π)4
(2π)2δ(p2 −m2)θ(p0)δ(p′2 −m2)θ(p′0)
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Tr
[
T ′(p/+m)T ′(−p/′ +m)

]

=−
∫
dρ2Tr

[
T ′(p/+m)T ′(−p/′ +m)

]
(6.387)

On the other hand

σ =
∑

f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
∑

f

|u(p)T ′v(p′)|2

= −
∫
dρ2Tr

[
(p/+m)T ′(−p/′ +m)T ′

]
(6.388)

k1

k2

kn

p

−p′

Therefore

σ = 2ImT (6.389)

If the lines to be cut were scalars the result would be the same. In this case there will
be no minus sign from the loop but there will be no minus sign from the spins sum. The
proof is left as an exercise.

k1k1 k1
k2k2 k2

knkn kn

p p

−p′ −p′
2 Im =

∑

f

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(6.390)

6.5.4 Unitarity and gauge fields

In the previous slides we have shown that unitarity holds for theories with scalar and
fermion fields. We are now going to show that the proof of unitarity for gauge theories
is more complicated and requires the use of the ward identities. The problem resides
in the fact that the gauge fields in internal lines have unphysical polarizations while the
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final states should have only physical degrees of freedom. This difference would lead to
a violation of unitarity in gauge theories. However we will show that the ghosts in the
internal lines will compensate for the this and will make the theory unitary as it should.
Let us define the following amplitudes

iT =

iT abµν =

iT ab = (6.391)

+

k1k1

k2k2

p1p1p1p1

p2p2p2p2

k1

k2

p1

p2

µ, a

ν, b

k1

k2

p1

p2

a

b

where

k2 = p1 + p2 − k1 (6.392)

Using these definitions we can write the amplitude in the form (the factor 1/2 is a
symmetry factor for the gauge fields and the minus sign is for the loop of ghosts)

iT =

∫
d4k1
(2π)4

{
1

2
T abµνG

aa′

µµ′(k1)G
bb′

νν′(k2)T
∗a′b′µ′ν′ − T ab∆aa′(k1)∆

bb′(k2)T
∗a′b′

}
(6.393)

Applying the Cutkosky rules we find for the imaginary part

2 ImT =

∫
d4k1
(2π)4

(2π)2θ(k01)θ(k
0
2)δ(k

2
1)δ(k

2
2)

{
1

2
T abµνT

∗abµν − T abT ∗ab
}

≡
∫
dρ2

[
1

2
T abµνT

∗abµν − T abT ∗ab
]

(6.394)

Now we have to evaluate σtotal. As the ghosts are not physical we have
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σ =
∑

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

2

=
1

2

∫
dρ2

∑

Pol

∣∣∣εµ(k1)εν(k2)T abµν
∣∣∣
2

(6.395)

k1

k2

p1

p2

µ, a

ν, b

where the factor 1/2 comes now from identical particles in the final state. Writing
∑

Pol

εµ(k1)ε
µ′∗(k1) = Pµµ

′

(k1) (6.396)

we get

σ =

∫
dρ2

1

2
T abµνT

∗ab
µ′ν′P

µµ′(k1)P
νν′(k2) (6.397)

We now use the result (see problems)

Pµν(k) = −gµν + kµην + kνηµ

k · η (6.398)

where ηµ is a four-vector that satisfies η · ε and η2 = 0. We get

1

2
T abµνT

∗ab
µ′ν′P

µµ′(k1)P
νν′(k2) =

=
1

2
T abµνT

∗abµν − 1

2
(T ab · k2) · (T ∗ab · η)

1

k2 · η

− 1

2
(T ab · η) · (T ∗ab · k2)

1

k2 · η
− 1

2
(k1 · T ab) · (η · T ∗ab)

1

k1 · η

− 1

2
(η · T ab) · (k1 · T ∗ab)

1

k1 · η
+

[
1

2
(k1 · T ab · η)(η · T ∗ab · k2)+

+
1

2
(k1 · T ab · k2)(η · T ∗ab · η) +

1

2
(η · T ab · η)(k1T ∗ab · k2)

+
1

2
(η · T ab · k2)(k1 · T ∗ab · η)

]
1

(k1 · η)(k2 · η)
(6.399)

Using the following Ward identities (see problems),

kµ1T
ab
µν = k2νT

ab

kµ2T
ab
µν = k1νT

ab
=⇒ k1 · T ab · k2 = 0 (6.400)

we get

1

2
T abµνT

∗ab
µ′ν′P

µµ′(k1)P
νν′(k2) =
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=
1

2
T abµνT

∗abµν − 1

2
T ab(k1 · T ∗ab · η)

1

k2 · η

− 1

2
T ∗ab(k1 · T ab · η)

1

k2 · η
− 1

2
T ab(η · T ∗ab · k2)

1

k1 · η

− 1

2
(η · T ab · k2)T ∗ab

1

k1 · η
+

1

2
T abT ∗ab +

1

2
T abT ∗ab

=
1

2
T abµνT

∗abµν − T abT ∗ab (6.401)

Therefore after the sum over polarizations is correctly taken in account we obtain,

σ =

∫
dρ2

[
1

2
T abµνT

∗abµν − T abT ∗ab
]

(6.402)

Comparing with the expression for 2 ImT we get

σ = 2 ImT (6.403)

as we wanted to show.

It should be clear that the ghosts with their minus sign of the loop played a crucial
role in subtracting the extra degrees of freedom. Also the Ward identities were necessary
to relate the gauge field amplitudes with the ghost amplitude.
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Problems for Chapter 6

6.1 Show that T (R) is related with the Casimir operator of the representation R , C2(R),
through the relation,

T (R)r = d(R)C2(R) (6.404)

where r is the dimension of the Group G and d(R) is the dimension of the representation
R. The Casimir operator, C2(R), is defined by

∑

a,k

T aikT
a
kj = δij ...C2(R) . (6.405)

6.2 Show that a different choice for the auxiliary conditions χiα = 0 leads to the same
result. For this consider an infinitesimal variation

χα + δχα = 0 α = 1, ...m (6.406)

Show that one gets

παδ(ϕα)δ(χa) det({ϕ,χ}) → παδ(ϕαδ(χα + δχα) det({ϕ,χ + δχ}) . (6.407)

6.3 Show that for infinitesimal transformations

δ ~Ea(x) = −1

g

∫

xo=yo

d3y{~Ea(x), αb(y)Cb(y)}

δ ~Aa(x) = −1

g

∫

xo=yo

d3y{ ~Aa(x), αb(y)Cb(y)} (6.408)

that is, the constraints Ca are the generators for the time independent gauge transforma-
tions.

6.4 Show that it is always possible to find a gauge where A3
a = 0 a = 1, ...r .

6.5 Derive the results of Eq. 6.94.

6.6 Show that the imaginary part of the amplitude does not depend on the renormalization
scheme. For this evaluate it in MS and MS for the theory described by the Lagrangian of
Eq. 6.357 as in Example 6.2.
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6.7 Consider the λ
3!φ

3 theory of Problem 6.7. Prove unitarity for the self energy of this
theory, that is show,

2 Im =
∑

f

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

2

(6.409)

6.8 Consider the theory described by the Lagrangian of Eq. (6.375). Redo the proof for
the case where the intermediate states are scalars, that is,

k1k1 k1

k2k2 k2

knkn kn

p p

−p′ −p′
2 Im =

∑

f

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(6.410)

6.9 Show that the integral that results from cutting n internal lines is equal to the phase
space integral of n particles. Use this result to make a general proof of the unitarity.

6.10 Show that

Pµν(k) = −gµν + kµην + kνηµ

k · η (6.411)

where kµ, εν(k, 1), ερ(k, 2) and ησ are four independent 4-vectors satisfying,

η · ε(k, σ) = 0 σ = 1, 2

ε(k, 1) · ε(k, 2) = 0

k · ε(k, σ) = 0 σ = 1, 2

k2 = 0

η2 = 0 (escolha conveniente)

ε2(k, σ) = −1 σ = 1, 2 (6.412)

Hint: The most general expression for Pµν is

Pµν = agµν + bkµkν + cηµην + d(kµην + kνηµ) . (6.413)

Use the previous relations to find a, b, c, d.

6.11 Prove the Ward identities,
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kµ1T
ab
µν = k2νT

ab

kµ2T
ab
µν = k1νT

ab
=⇒ k1 · T ab · k2 = 0 (6.414)

where T abµν and T ab are defined in Eq. (6.391).

6.12 Show that the tensor F aµν for the Yang-Mills fields satisfy the Bianchi identities,

Dab
µ F

b
ρσ +Dab

ρ F
b
σµ +Dab

σ F
b
µρ = 0 (6.415)

or

Dab
µ
∗Fµν b = 0 (6.416)

where
∗Fµν a =

1

2
εµνρσF aρσ (6.417)

6.13 Explain the geometrical meaning of the Bianchi identities.
Hint: See the article of R.P. Feynman in Les Houches, Session XXIX, 1976, North Holland,
1977, Pags: 135-140.

6.14 Consider the Yang-Mills (YM) theory without matter fields.
a) Show that the equations of motion can then be written as





~∇ · ~Ea = ρa

~∇ · ~Ba = ∗ρa

~∇× ~Ea = −∂ ~Ba

∂t + ~Ja

~∇× ~Ba = −∂ ~Ea

∂t + ∗~Ja

(6.418)

Evaluate ρa, ∗ρa, ~Ja and ∗ ~Ja.

b) Show that the 4-currents jaµ ≡ (ρa, ~Ja) e ∗jaµ ≡ (∗ρa, ∗ ~Ja) are conserved.

6.15 Show that Tr (∗FµνFµν) is a 4-divergence. Comment on its inclusion in the action.

6.16 Show that the following Ansatze (S. Coleman, Phys. Lett70B (77), 59)

A1a = A2a = 0

A0a = −A3a = x1fa(x0 + x3) + x2ga(x0 + x3) (6.419)

where fa and ga are arbitrary functions, is solution of the YM equations of motion in the
absence of matter fields. Discuss this solution.

6.17 Consider the Ansatze of Wu-Yang for static solutions of the SU(2) YM equations of
motion.

A0a = xa
G(r)

r2
Aia = εaij xj

F (r)

r2
(6.420)

a) Derive the equations that F and G should obey.
b) Show that they are satisfied for F = −1/g and G = constant. Show that this solutions
correspond to ρa = ∗ρa = 0 and ~Ja = ∗ ~Ja = 0. (ρa, ... are defined in Problem 6.14).
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c) For these solutions describe the potential, the fields and evaluate the energy.

6.18 Consider QED with a non-linear gauge condition

F = ∂µA
µ +

λ

2
AµA

µ . (6.421)

a) Write the Leff and show that sLeff = 0, where s is the Slavnov operator.

b) Evaluate the vacuum polarization at 1-loop. Discuss the renormalization program,
giving special attention to the vertices proportional to λ. Consider the theory without
fermions (pure gauge).
c) Show the invariance of the renormalized S matrix with respect to the parameter λ.

d) Verify the previous result, showing that the diagram of the figure below, potentially
dangerous for the anomalous magnetic moment of the electron, does not give a contribu-
tion.

ee

γ

e) Derive the Ward identities for the functionals Z and Γ. Write the generating functional
of the Dyson-Schwinger equation for the ghosts, that is

δΓ

δω
= · · · (6.422)

f) Evaluate at tree level γ + γ → γ + γ. Compare with the result in the linear gauge.
g) Evaluate at tree level the amplitude T µν for e+ + e− → γ + γ. Verify that k1µT

µν 6= 0
and k2µT

µν 6= 0 where k1 and k2 are the photons 4-momenta. Use the Ward identities to
verify these results. Is there any problem with this result?

6.19 Consider the theory that describes the interactions of the quarks with the gluons,
Quantum ChromoDynamics (QCD) given by the following Lagrangian

LQCD = −1

4
F aµνF

µνa +
n∑

α=1

ψ
α
i (iD/ −mα)ijψ

α
j (6.423)

where

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν

(Dµ)ij = δij∂µ − ig

(
λa

2

)

ij

Aaµ . (6.424)

The index α = 1, 2, . . . , n labels the different quark flavours, (up, down, · · · , top). To
quantize the theory consider the gauge condition,

LGF = − 1

2ξ
(∂µA

µa)2 , (6.425)
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for which the ghost Lagrangian is

LG = ∂µω
a∂µωa + gfabc∂µωaAbµω

c . (6.426)

To renormalize the theory we need the following counterterm Lagrangian,

∆L = −1

4
(Z3 − 1)

(
∂µA

a
ν − ∂νA

a
µ

)2 − (Z4 − 1)gfabc∂µA
a
νA

µbAνc

−1

4
g2(Z5 − 1)fabcfadeAbµA

c
νA

µdAνe +
∑

α

(Z2 − 1)iψ
α
i γ

µ∂µψ
α
i

−
∑

α

mα(Zmα − 1)ψ
α
i ψ

α
i + (Z1 − 1)g

∑

α

ψ
α
i γ

µ

(
λa

2

)

ij

ψαj A
a
µ

+(Z6 − 1)∂µω
a∂µωa + (Z7 − 1)gfabc∂µωaAbµω

c . (6.427)

a) Verify the expression for LG.
b) Consider the amplitude

iT abµν ≡ (6.428)

k1

k2

p1

p2

µ, a

ν, b

Evaluate at tree level T abµν . Verify that kµ1T
ab
µν 6= 0.

c) Verify the calculation of the previous item evaluating kµ1T
ab
µν through the Ward identities.

d) Supposing that the gluons could be final states, the amplitude for the physical process
q + q → g + g where g is the gluon is given by

M = εµ(k1)s
aT abµνε

ν(k2)s
b , (6.429)

where εµ(k1) and s
a are polarization vectors for spin and color, respectively (and also for

εν(k2) e s
b). It is known that for a physical process M should vanish when one makes the

substitution εµ(k) → kµ. How is this result compatible with the previous statements?
e) Show that the following relations must hold,

Z1

Z2
=
Z4

Z3
=
Z7

Z6
=

√
Z5√
Z3

(6.430)

f) Evaluate Z1, Z2, Z3, Z6 and Z7, using minimal subtraction and verify explicitly that
Z1Z6 = Z2Z7.
g) Evaluate the contribution from the fermions to Z4 e Z5 and verify that they also obey
the above relations.
h) Evaluate the renormalization group functions β, γA and γF .
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Chapter 7

Renormalization Group

7.1 Callan -Symanzik equation

7.1.1 Renormalization scheme with momentum subtraction

In Quantum Field Theory a renormalization scheme has two components. First there is
the process, known as regularization, that isolates and controls the infinities that appear
in the Feynman diagrams. The regularization is arbitrary, the only requirement is that
is should maintain the symmetries of the theory. For theories without gauge fields there
are many alternatives. For gauge theories it turns out that the best, and perhaps unique,
method is dimensional regularization.

After the regularization we have to specify a systematic method to remove the di-
vergences and to define the parameters of the renormalized theory. We call this process
renormalization scheme. There is a great arbitrariness in the choice of the subtraction
method that leads to the renormalized theory. The physical results should not depend on
this choice. This is the content of the renormalization group: The physical results should
be invariant under transformations that only change the renormalization scheme.

We will start by studying the renormalization schemes with momentum subtraction.
Depending on the point in the external momenta space that we choose, we can have
different forms of this scheme. We will exemplify with the λφ4 theory.

On–shell renormalization

The on-shell scheme is defined by a Taylor series for the external momenta on-shell. For
the self-energy, for instance, we get,

Σ(p2) = Σ(m2) + (p2 −m2)Σ′(m2) + Σ̃(p2) (7.1)

With the on-shell conditions,





Σ̃(m2) = 0

∂Σ̃(p2)

∂p2

∣∣∣∣
p2=m2

= 0
(7.2)

249
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In terms of the irreducible two point function, Γ
(2)
R (p2), defined by,

Γ2
R(p) = p2 −m2 − Σ̃(p2) (7.3)

We get, 



Γ
(2)
R (m2) = 0

∂Γ
(2)
R

∂p2

∣∣∣∣∣
p2=m2

= 1
(7.4)

For Γ
(4)
R a convenient choice it is,

Γ
(4)
R (p1, p2, p3) = −λ for





p2i = m2

s = t = u = 4m2

3

(7.5)

In this case the parameters m2 and λ are the physical mass, and except for kinematical
factors, the cross section for s = t = u = 4

3m
2 respectively.

Intermediate renormalization

This scheme corresponds to a Taylor expansion around zero momenta, that is,

Σ(p2) = Σ(0) + Σ′(0)p2 + Σ̃(p2) (7.6)

The finite part of Σ̃(p2) obeys the conditions,





Σ̃(0) = 0

∂Σ̃
∂p2

∣∣∣∣
p2=0

= 0
(7.7)

These conditions translated to Γ
(2)
R can be written as,





Γ
(2)
R (0) = −m2

∂Γ
(2)
R

∂p2
= 1

(7.8)

We still need a condition for the normalization of the coupling constant λ. This is obtained

from Γ
(4)
R with the following condition,

Γ
(4)
R (p1, p2, p3) = −λ for p1 = p2 = p3 = 0 (7.9)

In this scheme m2 is not the physical mass and λ cannot be measured directly experi-
mentally, because the condition pi = 0 does not belong to the physical region. As we will
see, we can nevertheless express the physical quantities in terms of these parameters.
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General case

The two previous examples are particular cases of a general scheme, where the normaliza-
tion conditions are functions of several reference momenta, ξ1, ξ2... such that





Γ
(2)
R (ξ21) = −m2

∂Γ
(2)
R

∂p2

∣∣∣∣∣
p2=ξ22

= 1

Γ
(4)
R (ξ3, ξ4, ξ5) = −λ

(7.10)

7.1.2 Renormalization Group

Let us now consider two renormalization schemes R and R′. As they both start from the
same unrenormalized Lagrangian,

L = LR +∆LR = LR′ +∆LR′ (7.11)

we should have

φR = Z
−1/2
φ (R)φ0 ; φ′R = Z

−1/2
φ (R′)φ0 . (7.12)

Therefore we get,

φ′R = Z
−1/2
φ (R′, R)φR (7.13)

where

Zφ(R
′, R) =

Zφ(R
′)

Zφ(R)
(7.14)

These relations indicate that the renormalized fields in the two schemes are related by
a multiplicative constant. The constant should be finite as both φR′ as φR are finite. In
a similar way,

λR′ = Z−1λ (R′, R)Z2
φ(R

′, R)λR

m2
R′ = m2

R + δm2(R′, R) (7.15)

where

Zλ(R
′, R) =

Zλ(R
′)

Zλ(R)

δm2(R′, R) = δm2(R′)− δm2(R) (7.16)

are finite quantities The operation that takes the quantities from one renormalization
scheme, R, into another scheme, R′, can be seen as a transformation from R into R′. The
set of these transformation constitutes the Renormalization Group.
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7.1.3 Callan - Symanzik equation

We are going now to give a mathematical form to this invariance under the renormalization
group. The form of the renormalization group (RG) equation depends on the renormal-
ization scheme used. We are going to start by obtaining the equations for the RG in the
scheme with momentum subtraction, the so-called Callan-Symanzik equation.

We start by noticing the identity,

∂

∂m2
0

(
i

p2 −m2
0 + iε

)
=

i

p2 −m2
0 + iε

(−i) i

p2 −m2
0 + iε

(7.17)

This means that the derivative of an unrenormalized Green function with respect to the
bare mass, is equivalent to the insertion of a composite operator 1

2φ
2 with zero momentum,

that is,
∂Γ(n)(pi)

∂m2
0

= −iΓ(n)
φ2

(0, pi) (7.18)

The irreducible renormalized Green functions are given by,




Γ
(n)
R (pi;λ;m) = Z

(n/2)
φ Γ(n)(pi;λ0;m0)

Γ
(n)
φ2R

(p; pi;λ;m) = Z−1
φ2
Z
n/2
φ Γ

(n)
φ2

(p; pi;λ0;m0)

(7.19)

Using this we can write the previous equation as,

∂

∂m2
0

[
Z
−n/2
φ Γ

(n)
R (pi, λ,m)

]
= −iZφ2Z−n/2φ Γ

(n)
φ2R

(0, pi, λ,m) (7.20)

and therefore

− n

2
Z−1φ

∂Zφ
∂m2

0

Z
−n/2
φ Γ

(n)
R + Z

−n/2
φ

∂

∂m2
0

Γ
(n)
R = −iZφ2Z−n/2φ Γ

(n)
φ2R

(0, pi, λ,m) (7.21)

We therefore get,
[
∂

∂m2
0

− n

2

∂ lnZφ
∂m2

0

]
Γ
(n)
R = −i Zφ2Γ(n)

φ2R

[
∂m2

∂m2
0

∂m

∂m2

∂

∂m
+

∂λ

∂m2
0

∂

∂λ
− n

2

∂ lnZφ
∂m2

0

]
Γ
(n)
R = −iZφ2Γ(n)

φ2R
(7.22)

This can still be written as
[
m

∂

∂m
+ β

∂

∂λ
− nγ

]
Γ
(n)
R = −im2αΓ

(n)
φ2R

(7.23)

which is the Callan-Symanzik equation for the φ4 theory, where α, β and γ are dimension-
less functions. These functions are defined by

β = 2m2

∂λ
∂m2

0

∂m2

∂m2
0

(7.24)
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γ = m2

∂ lnZφ
∂m2

0

∂m2

∂m2
0

(7.25)

α = 2
Zφ2

∂m
∂m2

0

(7.26)

The function α is not independent of γ. In fact, if we choose the normalization condi-
tions at pi = 0 




Γ
(2)
R (0, λ,m) = −m2

Γ
(2)
φ2R

(0, 0, λ,m) = i

(7.27)

We get then,

α = 2(γ − 1) (7.28)

As the quantities Γ
(n)
R and Γ

(n)
φ2R

do not depend on the cut-off, we expect that α, β and γ

are cut-off independent. To see that we put n = 2 and take a derivative in order to p2

[
m

∂

∂m
+ β

∂

∂λ
− 2γ

]
∂

∂p2
Γ
(2)
R (p, λ,m) = −im2α

∂

∂p2
Γ
(2)
φ2R

(0, p, λ,m) (7.29)

Setting p2 = 0 and using

∂Γ
(2)
R

∂p2

∣∣∣∣∣
p2=0

= 1 (7.30)

We get then

γ = im2(γ − 1)

[
∂

∂p2
Γ
(2)
φ2R

(0, p, λ,m)

]

p2=0

(7.31)

which shows that γ is cut-off independent. Then, as α = 2(γ − 1), we must have that α is
also independent of the cut-off. As α and γ are cut-off independent, so is β. As α, β e γ are
dimensionless and independent of the cut-off they can only depend on the dimensionless
coupling constant λ, that is,

α =α(λ)

β =β(λ) (7.32)

γ =γ(λ)

We will mostly interested in the Minimal Subtraction (MS) scheme (see below), so
we will not calculate the functions α, β and γ for the Callan-Symanzik equation in the
φ4 theory. We will indicate, however, how they can be easily obtained. Consider, for
instance, the function β(λ). Noticing that

∂λ

∂m2
0

(λ0,Λ/m) =
∂m2

∂m2
0

∂

∂m2
λ(λ0,Λ/m)
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=
∂m2

∂m2
0

1

2m

∂

∂m
λ(λ0,Λ/m) (7.33)

we obtain from its definition,

β = m
∂

∂m
λ(λ0,Λ/m) = m

∂

∂m
[Z(λ0,Λ/m)λ0] = −λ0Λ

∂

∂Λ
[Z(λ0,Λ/m)] (7.34)

or in other form

β = −λ ∂

∂ ln Λ
[lnZ(λ0,Λ/m)] (7.35)

where, by definition, λ = Zλ0), and therefore Z = Z−1λ Z2
φ .

The one-loop result gives,

Zλ =1 +
3λ0
32π2

ln
Λ2

m2
+O(λ20)

Zφ =1 +O(λ20) (7.36)

Therefore

Z = 1− 3λ0
32π2

ln
Λ2

m2
+ · · · (7.37)

and to first order,

lnZ = − 3λ0
16π2

ln
Λ

m
+ · · · (7.38)

Therefore, for φ4, we have

β(λ) =
3λ2

16π2
+O(λ3) . (7.39)

7.1.4 Weinberg’s theorem and the solution of the RG equations

We now discuss an important theorem due to Weinberg. This theorem deals with the
asymptotic behavior of the one-particle irreducible Green functions (1-PI), in the Eu-
clidean region (p2i < 0) for values non-exceptional of the momenta (no partial sum van-
ishes).

Theorem 7.1

If the momenta are not exceptional and if we parameterize them by, pi = σki, then

the 1-PI Green functions Γ
(n)
R behave in the deep Euclidean region (σ → ∞ and ki

fixed, p2i < 0) in the following way:

lim
σ→∞

Γ(n)(σki, λ,m) = σ4−n[a0(lnσ)
b0 + a1(lnσ)

b1 + · · · ] (7.40)

and

lim
σ→∞

Γ
(n)
φ2

(σki, λ,m) = σ2−n[a′0(lnσ)
b′0 + a′1(lnσ)

b′1 + · · · ] (7.41)
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We will not make the proof of the theorem (see for instance the second volume of
Bjorken and Drell) but we just note that the powers of σ are the canonical dimensions,
in terms of mass, of the respective Green functions. If the canonical behavior is the one
observed asymptotically depends on the sum of the logarithms. If this sum gives a power
of σ, for instance, σ−γ , then the asymptotic behavior is modified to σ4−n−γ . The exponent
γ is known as the anomalous dimension. We will show how to use the Renormalization
Group to perform this sum of logarithms and therefore obtain the anomalous dimensions.

7.1.5 Asymptotic solution of the RG equations

From Weinberg’s theorem we have that Γ
(n)
R ≫ Γ

(n)
φ2R

for any finite order in λ in the deep

Euclidean region (σ → ∞). If we assume that this remains true, even after summing all
the orders in perturbation theory, we can neglect the second term in the Callan-Symanzik
equation and we obtain an homogeneous differential equation,

[
m

∂

∂m
+ β(λ)

∂

∂λ
− nγ(λ)

]
Γ(n)
asy(pi, λ,m) = 0 (7.42)

where Γ
(n)
asy is the asymptotic form of Γ

(n)
R . The meaning of this equation is that, in

this asymptotic region, a change in the mass parameter can always be compensated by
appropriate changes in the coupling constant and in the scale of the fields.

To solve this equation we start by defining a dimensionless quantity Γ
(n)
R using dimen-

sional analysis,

Γ(n)
asy(pi, λ,m) = m4−nΓ

(n)
R (pi/m, λ) . (7.43)

This dimensionless function, Γ
(n)
R , obeys the relation

(
m

∂

∂m
+ σ

∂

∂σ

)
Γ
(n)
R

(
σ
pi
m
,λ
)
= 0 . (7.44)

Then we have (
m

∂

∂m
+ σ

∂

∂σ

)
mn−4Γ(n)

asy(σpi, λ,m) = 0 (7.45)

or [
m

∂

∂m
+ σ

∂

∂σ
+ (n− 4)

]
Γ(n)
asy(σpi, λ,m) = 0 (7.46)

Using this equation we can exchange the derivative with respect to the mass with the
derivative with respect to the scale in the Callan-Symanzik. We get then

[
σ
∂

∂σ
− β(λ)

∂

∂λ
+ nγ(λ) + (n− 4)

]
Γ(n)
asy(σpi, λ,m) = 0 (7.47)

To solve this equation we remove the terms without derivatives with the transformation,

Γ(n)
asy(σpi, λ,m) = σ4−nen

∫ λ
0

γ(x)
β(x)

dx
F (n)(σpi, λ,m) . (7.48)
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Substituting in the differential equation we see that those terms disappear and we get a
differential equation for F (n)

[
σ
∂

∂σ
− β(λ)

∂

∂λ

]
F (n)(σp, λ,m) = 0 (7.49)

Now we introduce t = lnσ. We can the write,

[
∂

∂t
− β(λ)

∂

∂λ

]
F (n)(etp, λ,m) = 0 (7.50)

To solve this equation we introduce the effective coupling constant λ(t, λ) as solution
of the equation,

∂λ(t, λ)

∂t
= β(λ) (7.51)

with the boundary condition λ(0, λ) = λ. To see that this definition will give us the
solution we write,

t =

∫ λ(t,λ)

λ

dx

β(x)
(7.52)

and take the derivative with respect to λ. We get,

0 =
1

β(λ)

∂λ

∂λ
− 1

β(λ)
(7.53)

or

β(λ)− β(λ)
∂λ

∂λ
= 0 (7.54)

Using now the definition of λ we get

[
∂

∂t
− β(λ)

∂

∂λ

]
λ(t, λ) = 0 (7.55)

The differential operator in the last equation is exactly the same that in the equation
for F (n)(etp, λ,m). Therefore F (n) obeys that equation if it depends on t and λ through

the combination λ(t, λ). Then the general solution for Γ
(n)
asy is

Γ(n)
asy(σpi, λ,m) = σ4−nen

∫ λ
0

γ(x)
β(x)

dx
F (n)(pi, λ(t, λ),m) (7.56)

To have a physical meaning for this result we notice that

e
n
∫ λ

0
γ(x)
β(x)

dx
=e

n
∫ λ

0
γ(x)
β(x)

dx
e
n
∫ λ

λ

γ(x)
β(x)

dx

=e
n
∫ λ

0
γ(x)
β(x)

dx
e
−n

∫ λ

λ

γ(x)
β(x)

dx

=e
n
∫ λ
0

γ(x)
β(x)

dx
e−n

∫ t
0 γ(λ(t

′,λ))dt′ (7.57)
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Therefore

Γ(n)
asy(σpi, λ,m) = σ4−ne−n

∫ t

0
γ(λ(t′,λ))dt′e

−n
∫ λ

0
γ(x)
β(x)

dx
F (n)(pi, λ(t, λ),m) (7.58)

If we set σ = 1(t = 0), we get the result that e
n
∫ λ

0
γ
β
dx
F (n) is Γ

(n)
asy. Then we get finally the

solution for the RG equation,

Γ(n)
asy(σpi, λ,m) = σ4−ne−n

∫ t

0
γ(λ(t′,λ))dt′Γ(n)

asy(pi, λ(t, λ),m) (7.59)

In this form the solution has a simple interpretation. The effect of making a change of

scale in the momenta pi in the functions, Γ
(n)
R it is equivalent to substitute the coupling

constant λ, by the effective coupling constant λ, except for multiplicative factors. The

first factor results simply from the fact that Γ
(n)
R has canonical mass dimension 4 − n in

terms of mass. The exponential factor is the anomalous dimension term. It results from
summing up all the logarithms in perturbation theory. This factor is controlled by γ, the
anomalous dimension. We will see later how to calculate the anomalous dimension in any
theory.

7.2 Minimal subtraction (MS) scheme

7.2.1 Renormalization group equations for MS

Let us look now at other forms that the renormalization group equation can have. The
statement that the renormalization is multiplicative can be expressed in the form,

Γ(n)(pi, λ0,m0) = Z
−n/2
φ Γ

(n)
R (pi, λ,m, µ) (7.60)

where µ is the scale used to define the Green functions. The left side of this equation does
not depend on µ, but the right-hand side does, both explicitly and implicitly through λ
and m. We have then

µ
∂

∂µ

[
Z
−n/2
φ Γ

(n)
R (pi, λ,m, µ)

]
= 0 (7.61)

or (
µ
∂

∂µ
+ β

∂

∂λ
+ γmm

∂

∂m
− nγ

)
Γ
(n)
R = 0 (7.62)

We have defined the RG functions,

β

(
λ,
m

µ

)
= µ

∂λ

∂µ

γm

(
λ,
m

µ

)
= µ

∂ lnm

∂µ
(7.63)

γ

(
λ,
m

µ

)
=

1

2
µ
∂ lnZφ
∂µ

This equation has the advantage over the Callan-Symanzik equation of being homo-
geneous, without approximations. The difficulty comes from the fact that these functions
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depend on two variables, λ and m
µ , making it difficult to get a solution for the equation.

There is, however, a renormalization scheme where the dependence onm/µ disappears and
therefore the equation has a simple solution. This scheme is called Minimal Subtraction
(MS) that we will describe now.

7.2.2 Minimal subtraction scheme (MS)

The minimal subtraction scheme is related to the method of dimensional regularization.

The divergences of the integrals appear, in this method, as poles in
1

ε
where ε = 4 − d.

The minimal subtraction scheme consists in choosing the counter-terms to cancel just these
poles. Let us give the example of the self-energy in λφ4. This corresponds to the diagram
of the Fig. 7.1

k

pp

Figure 7.1: Diagram for self-energy in φ4.

We get

−iΣ(p) = (−iλ)µε 1
2

∫
ddk

(2π)d
i

p2 −m2 + iε

= −iλ 1

32π2
µε

Γ(1− d/2)

m2−d 2επε/2 (7.64)

where ε = 4− d.

Σ(p2) = λ
1

32π2
µε

Γ(−1 + ε/2)

m−2+ε
(2
√
π)ε

= λ
m2

32π2

( µ
m

)ε
Γ(−1 + ε/2) (2

√
π)ε (7.65)

We now use the result (γ is the Euler constant and ψ(x) the logarithm derivative of the
Γ function)

Γ
(
−1 +

ε

2

)
= −


2
ε
+

ψ(2)︷ ︸︸ ︷
1− γ+O(ε)


 (7.66)

and ( µ
m

)ε
= 1 + ε ln

( µ
m

)
(7.67)

to get the final result,

Σ(p2) = − λm2

32π2

[
2

ε
+ ψ(2) + 2 ln(µ/m) + 2 ln 2

√
π +O(ε)

]
(7.68)
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Therefore in the minimal subtraction we have to add the counter-term

∆LMS
φ2 = − λm2

32π2
1

ε
φ2 (7.69)

If we had used momentum subtraction at the scale µ, that is, ΣR(p
2 = µ2) = 0 we

would get a different counter-term differing by finite terms.

∆LMOM
φ2 = − λm2

32π2

[
1

ε
+

1

2
ψ(2) + ln(µ/m) + ln 2

√
π

]
φ2 (7.70)

We see that, by definition, the counter-term Lagrangian when expanded in Laurent series
in ε only contains the divergent terms.

As usual the counter-term constants are defined by

φ0 =
√
Zφφ

m0 =Zmm (7.71)

λ0 =µ
εZλλ

The renormalization constants, Zφ, Zm and Zλ in minimal subtraction should have the
form,

Zλ =1 +

∞∑

r=1

ar(λ)/ε
r

Zm =1 +

∞∑

r=1

br(λ)/ε
r (7.72)

Zφ =1 +

∞∑

r=1

cr(λ)/ε
r

Therefore the coefficients of the renormalization group equation are independent of µ
and, as they are dimensionless and also independent of m, they should depend only the
coupling constant. This simplifies the solution of the renormalization group equation,

(
µ
∂

∂µ
+ β

∂

∂λ
+ γmm

∂

∂m
− nγ

)
Γ
(n)
R = 0 (7.73)

Using dimensional analysis we have

[
m

∂

∂m
+ (n − 4) + µ

∂

∂µ
+ σ

∂

∂σ

]
Γ
(n)
R (σp,m, λ, µ) = 0 (7.74)

and therefore we can write,

[
σ
∂

∂σ
− β

∂

∂λ
− (γm − 1)m

∂

∂m
+ nγ + (n− 4)

]
Γ
(n)
R (σp,m, λ, µ) = 0 (7.75)
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This equation has the solution,

Γ
(n)
R (σpi,m, λ, µ) = σ4−ne−n

∫ t

0
γ(λ(t′))dt′Γ

(n)
R (pi,m(t), λ(t), µ) (7.76)

where we have introduced the effective mass m(t) and the effective coupling constant λ(t).
These are defined by,





dλ
dt

= β(λ) ; λ(t = 0) = λ

dm(t)
dt

=
[
γm(λ)− 1

]
m(t) ; m(t = 0) = m

(7.77)

The solution of this equation is

m(t) = m e
∫ t

0
[γm(λ(t′))−1]dt′

= m e−te
∫ t

0
γm(λ(t′))dt′

= m e−te
∫ λ(t)
λ

dx γm(x)
β(x) (7.78)

7.2.3 Physical parameters

The parameters defined by the minimal subtraction are not physical parameters. We can
however calculate the physical parameters as function of those. As physical parameters
we mean an element of the S matrix or the position of the pole of the propagator. For
these the following theorem is valid:

Theorem 7.2

Any physical parameter P (λ,m, µ) satisfies the following renormalization group equa-
tion:

DP (λ,m, µ) ≡
[
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ γmm

∂

∂m

]
P (λ,m, µ) = 0 (7.79)

Proof: Let us consider first the propagator ∆(p2) that satisfies the renormalization
group equation,

[D + 2γ]∆(p2, λ,m, µ) = 0 (7.80)

We can write a Laurent series in the neighborhood of the polep2 = m2
p

∆(p2, λ,m, µ) =
R2

p2 −m2
p

+ ∆̃ (7.81)

The position of the pole mp(λ,m, µ) and its residue R2(λ,m, µ) satisfy renormaliza-
tion group equations that can be obtained by the application of the operator (D+2γ)
to the previous equation. Equating the residue of the poles we get

Dmp(λ,m, µ) = 0 (7.82)
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[D + γ(λ)]R(λ,m, µ) = 0 (7.83)

for the physical mass and for the residue at the pole. Now for an element of the S
matrix we have (SR = RnΓ(n))

D lim
p2i→m2

p

RnΓ(n) = lim
p2i→m2

p

D(RnΓn)

= lim
p2i→m2

p

[nDRRn−1Γn +RnDΓn]

= lim
p2i→m2

p

[−nγ + nγ]RnΓn = 0 (7.84)

and this ends the proof.

We will see later how these results can be used to relate the physical parameters with
the parameters of the theory.

7.2.4 Renormalization group functions in minimal subtraction

We saw before that we have





φ0 =
√
Zφφ

m0 = Zmm

λ0 = µεZλλ

(7.85)

and that in MS the renormalization constants have the form,





Zλ = 1 +
∑∞

r=1 ar(λ)/ε
r

Zm = 1 +
∑∞

r=1 br(λ)/ε
r

Zφ = 1 +
∑∞

r=1 cr(λ)/ε
r .

(7.86)

Let us now see how to evaluate β, γm and γ.

i) Determination of β(λ)

By definition

β(λ) = µ
∂λ

∂µ
. (7.87)

This quantity is finite in the limit ε→ 0. This means that before we take the limit ε→ 0
it must be an analytic function of ε. It is then convenient to define

β(λ) = β̂(λ, ε = 0) = d0 , (7.88)

where
β̂(λ, ε) = d0 + d1ε+ d2ε

2 + · · · (7.89)
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with coefficients dr to be determined. Now we use the fact that λ0 does not depend on
the scale µ. Then

0 = µ
∂

∂µ
(µεZλλ)

= εµεZλλ+ µεβ̂(λ, ε)λ
∂Zλ
∂λ

+ µεZλβ̂(λ, ε) . (7.90)

This can be rewritten as

ελZλ + β̂(λ, ε)

(
Zλ + λ

∂Zλ
∂λ

)
= 0 . (7.91)

Using the expressions for Zλ and β̂ we get

ελ+ a1λ+ λ

∞∑

r=1

ar+1

εr
+ (d0 + d1ε+ d2ε

2 + · · · )
[
1 +

∞∑

r=1

1

εr

(
ar + λ

dar
dλ

)]
= 0 . (7.92)

We conclude then that dr = 0 for r > 1 and that

ε(λ+ d1)+

[
a1λ+ d0 + d1

(
a1 + λ

da1
dλ

)]
+
∑

r

1

εr

[
ar+1λ+ d0

(
ar + λ

dar
dλ

)

+ d1

(
ar+1 + λ

dar+1

dλ

)]
= 0 . (7.93)

Equating equal powers of ε we obtain,

λ+ d1 = 0

a1λ+ d0 + d1

(
a1 + λ

da1
dλ

)
= 0

ar+1λ+ d0

(
ar + λ

dar
dλ

)
+ d1

(
ar+1 + λ

dar+1

dλ

)
= 0 . (7.94)

This gives,

d1 = −λ (7.95)

β(λ) = d0 = λ2
da1
dλ

(7.96)

λ2
d

dλ
(ar+1) = β(λ)

d

dλ
(λar) . (7.97)

Therefore the β(λ) function depends only in the coefficient of 1
ε in Zλ, that it is easily

obtained in perturbation theory. Also we see that the residues of the higher order poles
can be calculated in terms of the simple pole (lowest order in perturbation theory). For
example for λφ4 one can easily obtain,

Zλ = 1 +
3λ

16π2
1

ε
+ · · · (7.98)
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Using this we obtain for the β function,

β(λ) = λ2
da1
dλ

= λ2
d

dλ

(
3λ

16π2

)
=

3λ2

16π2
, (7.99)

given exactly the same result as we have obtained using the momentum subtraction
method.

For gauge theories there is a small modification because we have in this case g0 =
µε/2Zgg. A trivial calculation gives,

d1 =− g/2 (7.100)

β(g) =
1

2
g2
da1
dg

(7.101)

1

2
g2
dar+1

dg
=β(g)

d

dg
(gar) , (7.102)

where, as before,

Zg = 1 +

∞∑

r=1

ar(g)/ε
r . (7.103)

ii) Determination of γm(λ)

We start from m0 = Zmm. Applying µ ∂
∂µ we get

0 = µ
∂Zm
∂µ

m+ Zmµ
∂m

∂µ

= β̂(λ, ε)
∂Zm
∂λ

m+mZmµ
∂ lnm

∂µ
(7.104)

As µ∂ lnm∂µ = γm, we get the equation
[
β̂(λ, ε)

∂

∂λ
+ γm

]
Zm = 0 (7.105)

which leads to
(
γm + d1

db1
dλ

)
+

∞∑

r=1

1

εr

[
d0
dbr
dλ

+ γmbr + d1
dbr+1

dλ

]
= 0 (7.106)

Comparing the powers of ε we get

γm = −d1
db1
dλ

, (7.107)

− d1
dbr+1

dλ
= β(λ)

dbr
dλ

+ γmbr , (7.108)

where

d1 =





−λ λφ4 theory

− g/2 gauge theories

(7.109)

As in the case of β, we see that γm only depends on the residue of the simple pole.
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iii) Determination γ(λ)

Here it is easier to start from the definition of γ(λ)

γ(λ) =
1

2
µ
∂

∂µ
lnZφ =

1

2

1

Zφ
µ
∂

∂µ
Zφ . (7.110)

Rearranging we get [
β̂(λ, ε)

∂

∂λ
− 2γ(λ)

]
Zφ = 0 . (7.111)

Using the expansion of Zφ we obtain,

− 2γ(λ) + d1
dc1
dλ

+
∞∑

r=1

1

εr

[
d0
dcr
dλ

− 2γcr + d1
dcr+1

dλ

]
= 0 . (7.112)

Comparing now the powers of ε we get,

γ(λ) =
1

2
d1
dc1
dλ

, (7.113)

− d1
dcr+1

dλ
= β(λ)

dcr
dλ

− 2γcr , (7.114)

where the coefficient d1 was obtained before. We can conclude by saying that the coefficient
of the simple pole in the renormalization constants uniquely determines the the functions
β, γm and γ as well as the residues of higher order poles.

7.2.5 β and γ properties

We have adopted a particular renormalization scheme. With other scheme we would have
another definition of the parameters of the theory and different β, γm and γ functions. We
are now going to discuss the aspects that are independent of the renormalization scheme
used. Let us consider then two different schemes (both mass independent). Then

g′ = gFg(g) Fg(g) = 1 +O(g2)

Z ′m(g
′) = Zm(g)Fm(g) Fm(g) = 1 +O(g2)

Z ′φ(g
′) = Zφ(g)Fφ(g) Fφ(g) = 1 +O(g′)

. (7.115)

The 1 in the functions F expresses the fact that in lowest order (tree level) there is no
ambiguity. Using the above relations we can see how are related the functions β, γm and
γ in the two schemes. For definiteness we consider the case of a gauge theory.

We have

β′(g′) = µ
∂

∂µ
g′ = µ

∂

∂µ
(gFg(g)) = β(g)

(
Fg + g

∂Fg
∂g

)

γ′m(g
′) = µ

∂

∂µ
lnm′ = µ

∂ ln

∂µ
(F−1m (g)m) = γm(g) − β(g)

∂

∂g
lnFm
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γ′(g′) =
1

2
µ
∂

∂µ
lnZ ′φ(g

′) = γ(g) +
1

2
β(g)

∂

∂g
lnFφ . (7.116)

The functions β, γm and γ will only coincide if the schemes are identical, in which case
Fg = Fm = Fφ = 1. However the following properties are scheme independent:

i) The existence of a zero of β(g)

If β(g0) = 0 then β′(g′0) = 0 for g′0 = g0Fg(g0). Notice that, in general, g0 depends on the
scheme, that is g0 6= g′0.

ii) The first derivative of β(g) at the zero

Let β(g0) = 0. Then

∂β′(g′0)
∂g′

=

{
∂g

∂g′
∂

∂g

[
β(g)

(
Fg + g

∂Fg
∂g

)]}

g0

=


Fg + g

∂Fg
∂g

+ g
∂β

∂g
+ β(g)

1

Fg + g
∂Fg

∂g

∂
(
Fg + g

∂Fg

∂g

)

∂g



g0

=
∂β

∂g
(g0) . (7.117)

iii) The first two terms of β(g)

Let β(g) = b0g
3 + b1g

5 +O(g7), and

Fg(g) = 1 + ag2 +O(g4) · (7.118)

Then

g′ = g + ag3 +O(g5) , (7.119)

and

g = g′ − ag′3 +O(g5) . (7.120)

Therefore

β′(g′) = β(g)
∂

∂g
(gFg) = (b0g

3 + b1g
5 +O(g7))(1 + 3ag2 +O(g4))

= b0g
3 + (3ab0 + b1)g

5 +O(g7)

= b0(g
′3 − 3ag′5 +O(g′7) + (3ab0 + b1)(g

′5 +O(g′7))

= b0g
′3 + b1g

′5 +O(g′7) . (7.121)
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iv) The first term in γ(g) and γm(g)

Let

γ(g) = cg2 +O(g4)

γm(g) = dg2 +O(g4) . (7.122)

Then as β(g) = O(g3) it is clear that,

γ′(g′) = cg′2 +O(g′4)

γ′m(g
′) = dg′2 +O(g′4) . (7.123)

v) The value of γ(g0) and γm(g0) if β(g0) = 0

This result is obvious. As we will see next, all these results are necessary because they
control the physical results and these can not depend on the renormalization scheme used.

7.2.6 Gauge independence of β and γm in MS

The renormalization group equation in MS was written for the λφ4 theory. Let us now
consider the modifications that appear in gauge theories. For these we have to introduce
a gauge fixing term,

LGF = − 1

2ξ
(∂ · A)2 , (7.124)

where we have chosen covariant gauges of the Lorenz type. As there are no corrections to
the longitudinal part of the propagator there is no need of a counter-term for this gauge
fixing term. Therefore if we define, as usual,

Aµ = Z
−1/2
A Aµ0 , (7.125)

we get
1

2ξ
(∂ ·A)2 = 1

2ξZA
(∂ · A0)

2 =
1

2ξ0
(∂ ·A0)

2 . (7.126)

This means that the gauge parameter gets renormalized in the following way,

ξ0 = ZAξ . (7.127)

The renormalized irreducible Green functions, in general will depend on ξ, that is,

Γ
(n)
R (g,m, ξ, µ) = Z

n/2
A Γ

(n)
0 (g0,m0, ξ0, ε) . (7.128)

The renormalization group equation takes then the form,

[
µ
∂

∂µ
+ β(g, ξ)

∂

∂g
+ γm(g, ξ)m

∂

∂m
+ δ(g, ξ)

∂

∂ξ
− γA(g, ξ)

]
Γ
(n)
R (g,m, ξ, µ) = 0 , (7.129)
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where

δ(g, ξ) = µ
∂

∂µ
ξ = µ

∂

∂µ
(Z−1A ξ0)

= −ξ0
1

Z2
A

∂

∂µ
ZA

= −2ξγA(g, ξ) (7.130)

and we assumed that β, γm and γA could depend on the parameter ξ. However the
dependence on ξ is not arbitrary and should obey certain constraints. To see that let us
consider a dimensionless Green function corresponding to gauge invariant operators. Then

∂

∂ξ0
G0(g0,m0, ξ0, ε) = 0 (gauge independent) (7.131)

and

G0(g0,m0, ξ0, ε) = G(g,m, ξ, µ) . (dimensionless) (7.132)

Therefore
∂

∂ξ
G = 0 , (7.133)

and this gives

DGG ≡
[
∂

∂ξ
+ ρ(g, ξ)

∂

∂g
+ σ(g, ξ)m

∂

∂m

]
G(g,m, ξ, µ) = 0 , (7.134)

where

ρ(g, ξ) =
∂g

∂ξ
; σ(g, ξ) =

∂

∂ξ
lnm . (7.135)

But now G also obeys the renormalization group equation

DG ≡
[
µ
∂

∂µ
+ β

∂

∂g
+ γmm

∂

∂m
+ δ

∂

∂ξ

]
G = 0 . (7.136)

Using the equation for DGG = 0 we can substitute the derivative with respect to ξ by
derivatives in order to the other parameters, obtaining a renormalization group equation
similar to that of theories that are not gauge theories, that is,

[
µ
∂

∂µ
+ β

∂

∂g
+ γmm

∂

∂m

]
G = 0 , (7.137)

where

β ≡ β − ρδ γm = γm − σδ (7.138)

Let us now evaluate the commutator [DG,D]G = 0. We get

{[
∂β

∂ξ
+ β

∂β

∂g
− β

∂ρ

∂g
− δ

∂ρ

∂ξ

]
∂

∂g
+

[
∂δ

∂ξ
+ ρ

∂δ

∂g

]
∂

∂ξ
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+

[
∂γm
∂ξ

+ ρ
∂γm
∂g

− β
∂σ

∂g
− δ

∂σ

∂ξ

]
m

∂

∂m

}
G = 0 . (7.139)

We introduce now the functions β and γm and the operator

D ≡ ∂

∂ξ
+ ρ

∂

∂g
, (7.140)

to write the previous equation as,
[
(Dδ) ∂

∂ξ
+

(
D β +D(ρδ)− β

∂ρ

∂g
− δDρ

)
∂

∂g

+

(
Dγm +D(σδ) − β − ∂σ

∂g
− δDσ

)
m

∂

∂m

]
G = 0 . (7.141)

Multiplying the equation DGG = 0 by (Dδ) we get
[
(Dδ) ∂

∂ξ
+ ρ(Dδ) ∂

∂g
+ σ(Dδ)m ∂

∂m

]
G = 0 . (7.142)

Comparing both equations we see that

D β = β
∂ρ

∂g
and D γm = β

∂σ

∂g
. (7.143)

These equations ensure that the physical results are gauge independent. In fact β = 0
has physical consequences. Then D β = 0 and D γm = 0 showing the the zeros of β
and the anomalous dimension of the mass, γm are gauge independent. Also, if β = 0 we
obtain,

D
(
∂β

∂g

)
=

∂

∂g
D β +

[
D, ∂

∂g

]
β

=
∂

∂g
D β − ∂ρ

∂g

∂β

∂g
= 0 . (7.144)

This shows that the first derivative of β at the zero is gauge independent. Finally as
ρ = O(g3) and δ = O(g2) we also get,

β = β +O(g5) . (7.145)

These results do not depend on the scheme adopted. If we adopt now MS we obtain
the following theorem,

Theorem

In the minimal subtraction scheme we have ρ = σ = 0 and therefore

D =
∂

∂ξ
; β = β and γm = γm (7.146)

and β and γm are gauge independent in all orders.
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Dem: We just give the proof for ρ, for σ it is similar.

ρ = g
∂

∂ξ
ln g = − g

Zg

∂Zg
∂ξ

. (7.147)

Then

0 = Zgρ+ g
∂

∂ξ

(
1 +

a1
ε

+
a2
ε2

+ · · ·
)

= ρ+
1

ε

(
ρa1 + g

∂a1
∂ξ

)
+O(1/ε2) , (7.148)

and we get therefore,
ρ = 0 . (7.149)

7.3 Effective gauge couplings

7.3.1 Fixed points

As we saw in the last section the asymptotic behavior of the irreducible Green functions
depends on the asymptotic behavior of the solutions of the equations for the effective
coupling constant, λ(t), and effective mass, m(t), which are,





dλ
dt

= β(λ) ; λ(0) = λ

dm
dt

=
[
γm(λ)− 1

]
m(t) ; m(0) = m

(7.150)

From these equations we see that variation of the effective coupling and effective mass with
the scale are controlled by the functions β and γm, respectively. To study the asymptotic
behavior of λ we are going to assume that β(λ) has the form given in Fig. 7.2.

β(λ)

λλ1 λ20

Figure 7.2: β(λ) as function of λ.

The points 0, λ1 e λ2 where β(λ) vanishes are called fixed points. This is because if
λ is at one of these points at t = 0 then it will stay there for any momentum scale as(
dλ
dt = 0

)
. The fixed points can be of two types:

1. Ultra-Violet (UV) stable fixed point
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Are those in which β′(λ) < 0. It is the case for the point λ1 in the figure. In this
case β(λ) > 0 for λ < λ1 and β(λ) < 0 for λ > λ1. Then if for t = 0 0 < λ < λ1
then t → ∞ λ → λ1. On the other hand if λ1 < λ < λ2 as t → ∞ also λ → λ1.
Therefore in the interval 0 < λ < λ2 the coupling constant is always lead to λ1 when
t → ∞, that is, for large momenta.

2. Infra-Red (IR) stable fixed point

Are those for which β′(λ) > 0. This is the case of points 0 and λ2 in the figure. We
can easily see that as t → ∞ the coupling constant moves away from 0 and λ2, but
it is attracted to them in the limit t→ 0.

We can now study the asymptotic behavior of the solutions of the renormalization
group equations. Let us suppose that 0 < λ < λ2. Then

lim
t→∞

λ(t, λ) = λ1 (7.151)

The way it goes into λ1 depends on the first derivative of β(λ). Let us assume that near
λ1 we have

β(λ) = a(λ1 − λ) ; a > 0

β′(λ1) = −a < 0 (7.152)

Then
λ(t, λ) = λ1 + (λ− λ1)e

−at (7.153)

that is, the way it approaches the fixed point is exponential in the variable t. It will be
larger if |β′(λ1)| = a gets larger. We saw that the solution for the effective mass equation
was,

m(t) = me−te
∫ t

0
γm(λ)dt′ . (7.154)

If lim
t→∞

λ = λ1 then we have for t→ ∞

m = me−t(1−γm(λ1)) . (7.155)

This shows that if γm(λ1) < 1 then m(t) → 0 as t→ ∞. In the same approximation
∫ t

0
γ(λ(t′))dt′ ≃ γ(λ1)t , (7.156)

and therefore the asymptotic solution is

lim
σ→∞

Γn(σpi,m, λ, µ) = σ4−n[1+γ(λ1)]Γ(n)(pi,m, λ1, µ) . (7.157)

This shows the the effective dimension of the fields is not 1 but 1 + γ(λ1). This explains
the name of anomalous dimension for γ(λ).

In general it is difficult to determine the zeros of the β function. This is because for
that one would need, in general, results beyond perturbation theory. However β(λ), γm(λ)
and γ(λ) have a trivial zero at the origin. If it happens that it is a UV stable fixed point,
then it means that as the scale gets larger the coupling constant get smaller. In the limit
t → ∞, λ → 0. For this reason these theories are called asymptotically free. It is easy to
see that this happens if β′(0) < 0. In the following we will discuss in which theories this
can happen.
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7.3.2 β function for theories with scalars, fermions and gauge fields

We will now show that only non-abelian gauge theories can be asymptotically free, that
is, only these verify the property β′(0) < 0.

i) Theories with scalars

We have already seen that for the simplest scalar theory, λφ4, we have

β(λ) =
3λ2

16π2
+O(λ4) (7.158)

and therefore it is not asymptotically free. Let us now consider a more general theory
with scalar fields φi with couplings

LI = −λijkℓφiφjφkφℓ (7.159)

where repeated indices are summed over. Then

βijkℓ =
dλijkℓ(t)

dt
= A(λiℓmnλkjmn + λijmnλkℓmn + λikmnλjℓmn) (7.160)

with A > 0. The theory is not asymptotically free because there are always β functions
with positive derivatives. As an example we have

dλ1111
dt

= β1111 = 3A|λ11mn|2 > 0 ; ∀t (7.161)

ii) Scalar and fermion theories with Yukawa interactions

The most general interaction term for this theory is

LI = −
∑

i,j,k,ℓ

λijkℓφiφjφkφℓ +
∑

a,b,k

ψ
a
(Akab + iBk

abγ5)ψ
b
φk , (7.162)

where A and B are real matrices. Now it is no longer possible to show that
dλiiii
dt

> 0

because of the fermion loop of order A2 or B2 with a negative sign. If we define (gi)ab ≡
Aiab + iBi

abγ5, we get

16π2
dgi

dt
= (Trgigj†)gj +Tr(gi†gj)gj +M ijgj

+
1

2
gig†jgj +

1

2
gjg†jgi + 2gjg†igj , (7.163)

where M ij ≡ 1
4λikℓmλjkℓm. Using this result we can prove the following theorem:

Theorem

The most general theory with fermions and scalars is not asymptotically free
because d

dtTr(g
i†gi) > 0 and therefore it is not possible to have gi → 0 as

t→ ∞.
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Proof:

8π2
d

dt
Tr(gi†gi) = 8π2

d

dt

∑

a,b,i

|giab|2

= Tr(gigj†)Tr(gi†gj) + Tr(gigj†)(Trgigj†)

+
1

2
Tr(gigi†gjgj†) +

1

2
Tr(gi†gigj†gj)

+2Tr(gigj†gigj†) +M ijTr(gi†gj) (7.164)

Now the last four terms are positive. Also the first is larger that the second. This gives

8π2
d

dt
Tr(gi†gi) ≥ 2

[
Tr(gigj†)Tr(gigj†) + Tr(gigj†gigj†)

]
(7.165)

The right-hand side is positive as it can be written as

8π2
d

dt
Tr(gi†gi) ≥ (giabg

i
cd + giadg

i
cd)(g

j†
bag

j†
dc + gj†dag

j†
bc ) ≥ 0 (7.166)

as we wanted to show.

iii) Abelian gauge theories

Let us consider the case of QED. We have

Ze = Z1Z
−1
2 Z

−1/2
3 = Z

−1/2
3 (7.167)

The renormalization constant Z3 can be calculated in the vacuum polarization represented
in Fig. 7.3,

Figure 7.3: Vacuum polarization in QED.

The result is

Z
−1/2
3 = 1 +

e2

12π2
1

ε
+ · · · (7.168)

Therefore

β(e) =
1

2
e2
da1
de

=
e3

12π2
> 0 . (7.169)

If we had scalar electrodynamics, the renormalization constant Z3 would be obtained from
the diagrams in Fig. 7.4

The result is

Z
−1/2
3 = 1 +

e2

48π2
1

ε
(7.170)

and this gives β(e) = e3

48π2 > 0. Therefore the abelian gauge theories are also not asymp-
totically free.
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Figure 7.4: Vacuum polarization in scalar electrodynamics.

iv) Non-abelian gauge theories

Let us start with the pure gauge theory. The wave function renormalization for the
gauge fields is obtained from the one-lop diagrams of Fig. 7.5. In MS we obtain

Figure 7.5: Vacuum polarization in a pure non-abelian gauge theory.

ZA = 1 +
g2

16π2

(
13

3
− ξ

)
C2(V )

1

ε
(7.171)

where C2(V ) is the Casimir operator defined before. In this case it is for the adjoint
representation to which belong the gauge fields (vectors).

The renormalization constant for the triple vertex, Z1, is obtained from the diagrams
in Fig. 7.6. We get

Figure 7.6: Vertex in a pure non-abelian gauge theory.

Z1 = 1 +
g2

16π2

(
17

6
− 3ξ

2

)
C2(V )

1

ε
+ · · · (7.172)
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Therefore we get for the renormalization of the coupling constant,

Zg ≡ Z1Z
−3/2
A = 1− g2

16π2

(
11

3
C2(V )

)
1

ε
+ · · · (7.173)

Using ZA and Zg and the definitions of β and γ we get

β = − g3

16π2
11

3
C2(V ) < 0 (7.174)

and

γA = − g2

16π2
1

2

(
13

3
− ξ

)
C2(V ) (7.175)

Therefore the pure gauge theories, without matter fields, are asymptotically free. Notice
that the dependence on the gauge parameter, ξ, has disappeared from β in agreement
with a general result that we have shown before.

The inclusion of fermions and scalars minimally coupled it is now trivial. The interac-
tion Lagrangian is dictated by the covariant derivatives,

Lint = gψiγ
µψjT

a
F ijA

a
µ

+igφ∗i ∂
↔
µφjT

a
SijA

µa

+g2φ∗iT
a
SijT

b
SjkφkA

a
µA

µb (7.176)

where T aF and T aS are the generators in the representations to which the fermions and
scalars belong, respectively. To find the contribution of these articles to the β function we
have to calculate their contribution to Zg. The easiest is to use the results that generalize
QED, that is,

Zg = Z
−1/2
A (7.177)

and calculate the contributions of the fermions and scalars to ZA. This comes from the
diagrams in Fig. 7.7. The result is

Figure 7.7: Contribution from fermions and scalars to vacuum polarization.

Zg(fermions + scalars) = 1 +
g2

16π2

[
4

3
T (RF ) +

1

3
T (RS)

]
1

ε
+ · · · (7.178)

Therefore for fermions,

β(fermions) =
g3

16π2
4

3
T (RF ) , (7.179)
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and for the scalars,

β(scalars) =
g3

16π2
1

3
T (RS) (7.180)

Putting everything together we get

β =
g3

16π2

[
−11

3
C2(V ) +

4

3
T (RF ) +

1

3
T (Rs)

]
(7.181)

where the quantities T (R) are defined for a given representation by

Tr(T aT b) = T (R)δab (7.182)

For a theory with Majorana fermions or real scalars, the coefficients in front of T (RF ) and
T (RS) are multiplied by an additional factor of 1/2.

β function for QCD

Let us now consider a simple and important example, QCD (SU(3)) with three families
of quarks. For SU(N) we have

C2(V ) = N (7.183)

and as the quarks are in the fundamental representation we have,

T (RF ) =
1

2
(7.184)

Then

β =
g

16π2

[
−33

3
+

4

3
× 1

2
× 2Ng

]
(7.185)

where Ng = is the number of families or generations. We get then

β =
g3

16π2

[
−33− 4Ng

3

]
(7.186)

Therefore for SU(3) the theory is asymptotically free if

33− 4Ng > 0 (7.187)

which gives

Ng <
33

4
→ Ng ≤ 8 (7.188)

Therefore there are allowed 8 families of quarks, or 16 triplets of SU(3).

7.3.3 The vacuum of a NAGT as a paramagnetic medium (µ > 1)

There is an interesting argument (Nielsen 1981, Hughs 1981) that allows to understand
what is different in the non-abelian gauge theories for them to be asymptotically free.
The fact that charge decreases at short distance can be seen as an anti - shielding of the
vacuum, that is,

ε < 1 (7.189)
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The problem in understanding this result derives from the fact that we do not known
any material with ε < 1. In QED the charge grows at short distances and therefore the
vacuum is a normal dielectric with ε > 1. The vacuum must have a permeability given by
(we use c = 1),

µε = 1 (7.190)

Therefore the anti-screening corresponds to µ > 1. Therefore the vacuum of a non-abelian
gauge theory is a paramagnetic and this concept can be better understood.

The magnetic permeability can be obtained from the density of energy of the vacuum
in an exterior field,

u0 =
1

2µ
B2
ext (7.191)

Nielsen and Hughes have shown that µ = 1 + χ, where the magnetic susceptibility χ is
given by

χ ∼ (−1)2sq2
∑

s3

(
−1

3
+ γ2s23

)
(7.192)

where s is the spin, q the charge, γ the gyromagnetic ratio and s3 the projection of the
spin along the external magnetic field. We have therefore for the different types of fields:

• Scalars

χS ∼ −1

3
q2S < 0 (diamagnetic) (7.193)

• Fermions (γF = 2)

χF ∼ (−1)q2F 2

(
−1

3
+ 1

)
= −4

3
q2F (diamagnetic) (7.194)

• Gauge bosons (γV = 2)

χV ∼ q2V 2

(
−1

3
+ 4

)
=

22

3
q2V (paramagnetic) (7.195)

Therefore we get,

χTotal ∼
22

3
q2V − 4

3
q2F − 1

3
q2S (7.196)

Comparing with the β function we can make the correspondence

q2V → 1

2
C2(V )

q2F → T (RF )

q2S → T (RS) (7.197)

This analogy tells us that the vacuum of a non-abelian gauge theory can be understood
as a paramagnetic medium.
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7.4 Renormalization group applications

We consider the Grand Unified Theory (GUT) with the gauge group SU(5), that is

SU(5) ⊃ SUc(3)× SUL(2)× UY (1) . (7.198)

The unification takes place at the GUT scale MX . Using the renormalization group
equations and the low energy data on the coupling constants, it is possible to determine
the scale MX as well as other predictions for the theory at the low scale, which we take
to be the scale MZ . For this we need to know how the different coupling constants evolve
with the scale.

7.4.1 Scale MX

We start by writing the covariant derivatives for the unified theory and for the theory with
the broken symmetry.

SU(5) : Dµ = ∂µ + ig5

23∑

a=0

Aaµ
λa

2
(7.199)

SU(3)× SU(2)× U(1) : Dµ = ∂µ + ig3

8∑

α

Gaµ
λ

2

a

+ig2

3∑

α

Aaµ
σ

2

a
+ ig′

Y

2
Bµ (7.200)

At the scale MX where the unification takes place we have

g5 = g3 = g2 = g1 (7.201)

where g1 is the coupling constant of the abelian subgroup of SU(5). However for the
abelian groups there are no constraints in the normalization of the generators, and there-
fore the the generator λ0 of that U(1) can be normalized in a different way from the
hypercharge. We must have

g1λ
0 = g′Y (7.202)

As λ0 is a generator of SU(5) it is normalized according to

TF (λ
aλb) = 2δab (7.203)

that is, for the fundamental representation we must have

λ0 =
1√
15




2
2

2
−3

−3




(7.204)



278 CHAPTER 7. RENORMALIZATION GROUP

Now, for the fundamental representation, we have

5 =




d1

d2

d3

e+

νce



R

(7.205)

and the hypercharge1 can be read directly. We obtain,

Y =




−2/3
−2/3

−2/3
1

1




(7.206)

Therefore Y = −
√

5
3λ

0 and g′ = −
√

3
5g1. This allows to determine sin2 θW at the GUT

scale MX ,

sin2 θW (MX) =
g′2

g2 + g′2
=

3
5g1

g2 +
3
5g1

=
3

8
(7.207)

Also, for future reference, we note that

g′2 =
3

5
g21 . (7.208)

7.4.2 Scale MZ

Let us look now at what happens at the scaleMZ . The evolution of the coupling constants
is governed by the RGE equations for the three gauge groups in the broken phase

dgi
dt

= βi (7.209)

These β functions are given by

βi =
g3i

16π2


−11

3
C2(V ) +

∑

j

4

3
T (RFj

) +
∑

k

1

3
T (RSk

)


 (7.210)

where the sums are over all the fermion and scalar physical states of the theory at a given
scale. Given the form of Eq. (7.210), it is usual to define

βi ≡
1

16π2
big

3
i (7.211)

1Remember that our convention is such that Q = T3 +
Y

2
.



7.4. RENORMALIZATION GROUP APPLICATIONS 279

and therefore the bi are defined by the bracket in Eq. (7.210). Before we evaluate them
let us introduce Eq. (7.211) into Eq. (7.209). We get

dgi
dt

=
bi

16π2
g3i (7.212)

Let us solve this equations before we evaluate the beta function coefficients bi. For that
it is usual to introduce the generalization of the fine structure constant, that is, we define

αi ≡
g2i
4π

(7.213)

Multiplying both sides of Eq. (7.212) by gi and doing some trivial algebra we get,

dαi
dt

=
bi
2π

α2
i (7.214)

Rearranging and integrating between some initial (µi), and final scale (µf ), we get

∫ f

i

dαi
α2
i

=
bi
2π

∫ f

i
dt (7.215)

or2 [
− 1

αi

]f

i

=
bi
2π

(tf − ti) =
bi
2π

ln

(
µf
µi

)
(7.216)

and finally

α−1i (µf ) = α−1i (µi)−
bi
4π

ln

(
µ2f
µ2i

)
(7.217)

As at the unification scale MX we have, by definition (see Eq. (7.201)), that

α1 = α2 = α3 = α5 (7.218)

where α5 is the SU(5) unified value, and we can write the final solution

α−1i (µ) = α−15 +
bi
4π

ln

(
M2
X

µ2

)
, i = 1, 2, 3 (7.219)

We can rewrite these equations in terms of electromagnetic fine structure constant α(µ)
and of the strong coupling equivalent αsµ), that are measured at the weak scale, to obtain





α−1s (µ) = α−15 +
b3
4π

ln

(
M2
X

µ2

)

α−1(µ) sin2 θW (µ) = α−15 +
b2
4π

ln

(
M2
X

µ2

)

3
5 cos2 θW (µ)α−1(µ) = α−15 +

b1
4π

ln

(
M2
X

µ2

)
(7.220)

2Remember that t = ln(µ).
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From these equations we obtain,

ln
M2
X

µ2
=

12π

−8b3 + 3b2 + 5b1

[
1

α(µ)
− 8

3

1

αs(µ)

]
(7.221)

That allows to determine MX , once α(µ) and αs(µ) are known, at a given scale µ, and

sin2 θW (µ) =
3(b2 − b3)

5b1 + 3b2 − 8b3
+

5(b1 − b2)

5b1 + 3b2 − 8b3

α(µ)

αS(µ)
(7.222)

which allows to determine sin2 θW at the scale µ = MZ , once α(MZ) and αs(MZ) are
known. Finally we can also solve for the value of α−15 . We get

α−15 = α−1(µ)
1

5b1 + 3b2 − 8b3

[
−3b3 + (5b1 + 3b2)

α(µ)

αS(µ)

]
(7.223)

Now we turn to the evaluation of the coefficients bi first in the Standard Model (SM)
and the in the Minimal Supersymmetric Standard Model (MSSM).

Standard Model

In the SM we have the gauge fields, Ng = 3 families of leptons, NF = 2Ng = 6 quark
flavours and one Higgs. With this information we can find the coefficients bi for the SM
using the definition

bi = −11

3
C2(Vi) +

∑

j

2

3
T (RFj

) +
∑

k

1

3
T (RSk

) (7.224)

where we have modified Eq. (7.210), as the sum in the fermions is done separately for
each chirality. This is important for the SM as the model is described in terms of left and
right-handed fermions.

• SU(3)

For SU(3), we have C2(V3) = 3 and the quarks are in the fundamental representation,
therefore T (RFj

) = 1/2. Then the counting goes as follows,

b3 = −11

3
× 3

︸ ︷︷ ︸
Gauge

+ Ng ×




2

3
× 1

2
× (2 + 1 + 1)

︸ ︷︷ ︸
quarks


 = −7 (7.225)

where the meaning of (2 + 1 + 1) is that we count the up and down components of each
(SU(2)L) doublet and then the corresponding right-handed quarks for each generation.

• SU(2)

For the SU(2) we get
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b2 = −11

3
× 2

︸ ︷︷ ︸
Gauge

+ Ng ×


 Nc ×

2

3
× 1

2︸ ︷︷ ︸
quarksL

+
2

3
× 1

2︸ ︷︷ ︸
leptons


+

1

3
× 1

2︸ ︷︷ ︸
Higgs

= −19

6
(7.226)

where Nc = 3 is the number of colors.

• U(1)

Finally for the U(1) part, with the correct normalization, we have

b1 =
3

5
×


2
3
×
∑

fL,fR

(
Y

2

)2

+
1

3
×
∑

scalars

(
Y

2

)2

 (7.227)

and therefore,

b1 =
3

5
×


Ng ×



2

3
×
(
−1

2

)2

× 2

︸ ︷︷ ︸
LeptonsL

+
2

3
× (−1)2

︸ ︷︷ ︸
LeptonsR

+Nc ×
2

3
×
(
1

6

)2

× 2

︸ ︷︷ ︸
QuarksL

+Nc ×
2

3
×
(
2

3

)2

︸ ︷︷ ︸
Up−QuarksR

+Nc ×
2

3
×
(
1

3

)2

︸ ︷︷ ︸
Down−QuarksR


+

1

3
×
(
1

2

)2

× 2

︸ ︷︷ ︸
Higgs




= 4 +
1

10︸︷︷︸
Higgs

=
41

10
(7.228)

So in summary we have for the SM,

b1 =
41

10
, b2 = −19

6
, b3 = −7 (7.229)

Now let us look to see what are the results for MX , sin
2 θW (MZ) and α−15 . We will

use the current values from the Particle Data Group. These are (without worrying about
errors)3

α−1(MZ) = 127.916, αs(MZ) = 0.118, MZ = 91.1896 GeV (7.230)

we get

MX = 6.7 × 1014 GeV, sin2 θW (MZ) = 0.208, α−15 = 41.48 (7.231)

3Not only errors but also the difference between different renormalization schemes. Also this discussion
is at one-loop level.
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At the time that this GUT model was proposed by the first time, the constants were
not known so precisely as today. Also the bound on the lifetime of the proton was much
lower than today. So at that time the model was completely consistent. However after
many years of dedicated experiments for find the decay of the proton, the lower limit was
substantially improved and also after LEP the coupling constants are known with greater
precision. So today the value for MX is too low, the same being true for the value of
sin2 θW (MZ) (the best value today is around sin2 θW (MZ) = 0.230 4).

This can be seen very clearly if we use Eq. (7.217), with µi =MZ and plot the α−1i as
a function of ln(µ2/M2

Z). This is shown in Fig. 7.8. We clearly see that the agreement is
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Figure 7.8: Evolution of αi as function of the scale µ in the Standard Model for a SU(5)
minimal GUT theory.

quite poor with today’s values.

Minimal Supersymmetric Standard Model

Let us now turn to the MSSM. Below the GUT scale the gauge group is the same as in
the SM, but the particle content is larger, more than duplicated in relation to the SM.
We summarize in the Table 7.1 the particle content and their quantum numbers under
G = SUc(3)⊗ SUL(2) ⊗ UY (1).

With the values in Table 7.1 we can calculate the contribution of the various particles
to the bi coefficients. We will do it in succession for the three groups and for the different
supermultiplets.

• SU(3)

– Gauge Supermultiplet

4Again, without discussing the very small errors and the dependence on the renormalization scheme.
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Supermultiplet SUc(3) ⊗ SUL(2)⊗ UY (1)
Quantum Numbers

V̂1 ≡ (λ′,W µ
1 ) (1, 1, 1)

V̂2 ≡ (λa,W µa
2 ) (1, 3, 0)

V3 ≡ (g̃b,W µb
3 ) (8, 1, 0)

L̂i ≡ (L̃, L)i (1, 2,−1)

R̂i ≡ (ℓ̃R, ℓ
c
L)i (1, 1, 2)

Q̂i ≡ (Q̃,Q)i (3, 2, 13)

D̂i ≡ (d̃R, d
c
L)i (3, 1, 23)

Ûi ≡ (ũR, u
c
L)i (3, 1,−4

3 )

Ĥd ≡ (Hd, H̃d) (1, 2,−1)

Ĥu ≡ (Hu, H̃u) (1, 2, 1)

Table 7.1: Particle content of the MSSM. Note that Q = T3 + Y/2.

We first do it in general for any gauge group and then apply it to the cases of interest.
The gauge multiplet has a gauge boson contributing with

b gauge boson = −11

3
C2(V ) (7.232)

and the left-handed gauginos in the adjoint representation of the gauge group. These
therefore contribute

b gauginos =
2

3
C2(V ) (7.233)

and therefore

b gauge SM = −3 C2(V ) (7.234)

where SM stands here for super-multiplet. Applying now to SU(3) we get

b gauge SM
3 = −9 (7.235)

– Left-handed Lepton Supermultiplet

bLeptonsL SM
3 = 0 (7.236)

– Right-handed Lepton Supermultiplet

bLeptonsR SM
3 = 0 (7.237)

– Left-handed Quark Supermultiplet
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bQuarksL SM
3 =

2

3
× 1

2
× 2

︸ ︷︷ ︸
QuarksL

+
1

3
× 1

2
× 2

︸ ︷︷ ︸
SquarksL

= 1 (7.238)

– Right-handed Up-Quark Supermultiplet

bUp−QuarkR SM
3 =

2

3
× 1

2︸ ︷︷ ︸
Up−QuarksR

+
1

3
× 1

2︸ ︷︷ ︸
Up−SquarksR

=
1

2
(7.239)

– Right-handed Down-Quark Supermultiplet

bDown−QuarkR SM
3 =

2

3
× 1

2︸ ︷︷ ︸
Down−QuarksR

+
1

3
× 1

2︸ ︷︷ ︸
Down−SquarksR

=
1

2
(7.240)

– Up type Higgs Supermultiplet

bUp−Higgs SM
3 = 0 (7.241)

– Down type Higgs Supermultiplet

bDown−Higgs SM
3 = 0 (7.242)

• SU(2)

Gauge Supermultiplet

We get
b gauge SM
2 = −6 (7.243)

– Left-handed Lepton Supermultiplet

bLeptonsL SM
2 =

2

3
× 1

2︸ ︷︷ ︸
LeptonsL

+
1

3
× 1

2︸ ︷︷ ︸
SleptonsL

=
1

2
(7.244)

– Right-handed Lepton Supermultiplet

bLeptonsR SM
2 = 0 (7.245)
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– Left-handed Quark Supermultiplet

bQuarksL SM
2 = Nc

2

3
× 1

2︸ ︷︷ ︸
QuarksL

+Nc
1

3
× 1

2︸ ︷︷ ︸
SquarksL

= Nc
1

2
=

3

2
(7.246)

– Right-handed Up-Quark Supermultiplet

bUp−QuarkR SM
2 = 0 (7.247)

– Right-handed Down-Quark Supermultiplet

bDown−QuarkR SM
2 = 0 (7.248)

– Up type Higgs Supermultiplet

bUp−Higgs SM
2 =

1

3
× 1

2︸ ︷︷ ︸
Higgsu

+
2

3
× 1

2︸ ︷︷ ︸
Higgsinou

=
1

2
(7.249)

– Down type Higgs Supermultiplet

bDown−Higgs SM
2 =

1

3
× 1

2︸ ︷︷ ︸
Higgsd

+
2

3
× 1

2︸ ︷︷ ︸
Higgsinod

=
1

2
(7.250)

• U(1)

Gauge Supermultiplet

We get

b gauge SM
1 = 0 (7.251)

– Left-handed Lepton Supermultiplet

bLeptonsL SM
1 =

3

5
×



2

3
×
(
−1

2

)2

× 2

︸ ︷︷ ︸
LeptonsL

+
1

3
×
(
−1

2

)2

× 2

︸ ︷︷ ︸
SleptonsL


 =

3

10
(7.252)
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– Right-handed Lepton Supermultiplet

bLeptonsR SM
1 =

3

5
×



2

3
× (−1)2

︸ ︷︷ ︸
LeptonsR

+
1

3
× (−1)2

︸ ︷︷ ︸
SleptonsR


 =

3

5
(7.253)

– Left-handed Quark Supermultiplet

bQuarksL SM
1 =

3

5
×Nc×



2

3
×
(
1

6

)2

× 2

︸ ︷︷ ︸
QuarksL

+
1

3
×
(
1

6

)2

× 2

︸ ︷︷ ︸
SquarksL


 = Nc×

3

5
× 1

18
=

1

10
(7.254)

– Right-handed Up-Quark Supermultiplet

bUp−QuarksR SM
1 =

3

5
×Nc ×



2

3
×
(
2

3

)2

︸ ︷︷ ︸
Up−QuarksR

+
1

3
×
(
2

3

)2

︸ ︷︷ ︸
Up−SquarksR


 = Nc ×

3

5
× 4

9
=

4

5
(7.255)

– Right-handed Down-Quark Supermultiplet

bDown−QuarksR SM
1 =

3

5
×Nc×



2

3
×
(
−1

3

)2

︸ ︷︷ ︸
Down−QuarksR

+
1

3
×
(
−1

3

)2

︸ ︷︷ ︸
Down−SquarksR


 = Nc×

3

5
× 1

9
=

1

5
(7.256)

– Up type Higgs Supermultiplet

bHiggsu SM
1 =

3

5
×



1

3
×
(
1

2

)2

× 2

︸ ︷︷ ︸
Higgsu

+
2

3
×
(
1

2

)2

× 2

︸ ︷︷ ︸
Higgsu


 =

3

5
× 1

2
=

3

10
(7.257)

– Down type Higgs Supermultiplet
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bHiggsd SM
1 =

3

5
×



1

3
×
(
−1

2

)2

× 2

︸ ︷︷ ︸
Higgsd

+
2

3
×
(
−1

2

)2

× 2

︸ ︷︷ ︸
Higgsd


 =

3

5
× 1

2
=

3

10
(7.258)

Now we put everything together to obtain fro the MSSM,

b1 =Ng ×
(

3

10
+

3

5
+

1

10
+

4

5
+

1

5

)
+

3

10
+

3

10
= 3× 2 +

3

5
=

33

5

b2 =− 6 +Ng ×
(
1

2
+

3

2

)
+

1

2
+

1

2
= 1

b3 =− 9 +Ng ×
(
1 +

1

2
+

1

2

)
= −3 (7.259)

Now let us look to see what are the results for MX , sin2 θW (MZ) and α−15 in the
MSSM. Using the same inputs as for the SM, Eq. (7.230) 5 , we get

MX = 2.1 × 1016 GeV, sin2 θW (MZ) = 0.231, α−15 = 24.27 (7.260)

we immediately see that these values are quite good. This can be seen very clearly if we
use Eq. (7.217), with µi =MZ and plot the α−1i as a function of ln(µ2/M2

Z). This is shown
in Fig. 7.9 and the agreement is excellent.
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Figure 7.9: Evolution of αi as function of the scale µ in the MSSM for a SU(5) minimal
GUT theory.

5Again we do not take into account errors and the difference between different renormalization schemes.
Also this discussion is at one-loop level and the effects of the supersymmetric particles not decoupling at
the same scale (thresholds) are not taken in account.
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We can still go a step further. We know that supersymmetry must be broken above
the electroweak scale, so what we have done in Fig. 7.9 is not quite correct because we
are running with the MSSM content down to the weak scale. Of course each particle will
decouple at its mass, but assuming that their masses are not much different we can assume
that there will a scale MSUSY, below which we will have the SM RGEs. We can redo the
calculation taking now the evolved SM values at MSUSY as the boundary conditions for
the MSSM evolution. In Fig. and Fig. the results are shown for various values of the
SUSY scale. We see from these results that if the SUSY scale is much higher than, say
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Figure 7.10: Evolution of αi as function of the scale in the MSSM for a SU(5) minimal
GUT theory. On the left panel MSUSY = 500 GeV and on the right panel MSUSY = 1000
GeV.

-1

 (GeV)

1
-1

2
-1

3
-1

 0

 10

 20

 30

 40

 50

 60

100 104 108 1012 1016

a

a

a

a i

µ

-1

 (GeV)

1
-1

2
-1

3
-1

 0

 10

 20

 30

 40

 50

 60

100 104 108 1012 1016

a

a

a

a i

µ

Figure 7.11: Evolution of αi as function of the scale in the MSSM for a SU(5) minimal
GUT theory. On the left panel MSUSY = 104 GeV and on the right panel MSUSY = 108

GeV.

1 TeV, the good agreement starts do disappear. Before we end we should emphasize that
these are one loop results, without many fine details, like thresholds (talking in account
that not all the supersymmetric particles decouple at the same scale) and the important
two-loop effects.
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Problems for Chapter 7

7.1 Verify Eq. (7.163). For this notice that βi = dgi

dt where βi is determined from the
following diagrams

µ,

ii

i

i

i

7.2 Evaluate in minimal subtraction (MS) the renormalization constant Z3 for QED,
Eq. (7.168).

7.3 Evaluate in MS the renormalization constant Z3 in scalar electrodynamics, Eq. (7.170).

7.4 Consider a non-abelian gauge theory, with symmetry group G and without matter
fields. Evaluate the renormalization constants for the gauge field ZA, and for the triple
vertex, Z1.

7.5 Consider a non-abelian gauge theory in interaction with scalar and fermion fields.
Evaluate the contribution of these to ZA and Z1. Use these results together with those of
Problem 7.4, to determine the β function of the renormalization group for this theory.

7.6 Consider the Standard Model of the electroweak interactions. Considering all the
fields in the theory, determine the coefficients b1, b2 e b3 defined in Eq. (7.224).

7.7 Consider now the Minimal Supersymmetric Standard Model (MSSM).Considering all
the fields in the theory, determine the coefficients b1, b2 e b3 defined in Eq. (7.224) for this
theory.
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Appendix A

Path Integral in Quantum
Mechanics

A.1 Introduction

The ususal formulation of Quantum Mechanics is given by the Schrödinger equations,

ih̄
∂

∂t
|a(t)〉 = H |a(t)〉 (A.1)

onde

H =
P 2

2m
+ V (Q) (A.2)

and

[Q,P ] = ih̄ (A.3)

This formulation it is equivalent to another made using path integrals, due to an idea
of Dirac and developed by Feynman [11, 12]. To see this we observe that in quantum
mechanics. we know how to answer any question about a system, if we know how to
calculate the transition amplitudes,

〈
b(t′)|a(t)

〉
= 〈b| e−iH(t′−t) |a〉 (A.4)

São estas amplitudes de transição que são definidas em termos de integrais de caminho.
Conforme a representação escolhida para os estados |a〉 e |b〉 as expressões para o integral de
caminho vêm diferentes. Assim vamos analisar separadamente os casos das representações
no espaço das configurações (coordenadas), no espaço de fase e por meio de estados coe-
rentes (espaço de Bargmann-Fock).

A.2 Configuration space

Introduzimos os estados |q〉 e |p〉 tais que

291
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Q |q〉 = q |q〉 ; P |p〉 = p |p〉

〈q′|q〉 = δ(q′ − q) ; 〈p′|p〉 = δ(p′ − p)

〈q|p〉 = 〈p|q〉∗ = 1√
2π
eipq (A.5)

Então

〈qf , tf |qi, ti〉 =
∫

D(q)e
i
h̄

∫ tf
ti

dtL(q,q̇) (A.6)

onde D é uma medida de integração definida pelo limite

D(q) = lim
n→∞

n−1∏

1

dqp

[
nme−iπ/2

2π(tf − ti)

]n
2

(A.7)

sendo n o número de intervalos em que se fez a partição do intervalo (ti, tf ). O limite
n→ ∞ é bastante complicado e só existe prova matemática para certas classes de potenci-
ais. A Eq. (A.6) permite uma interpretação da mecânica clássica como limite da mecânica
quântica. De facto quando h̄ → 0 a maior contribuição para a amplitude vem das tra-
jectórias que minimizam a ac cão, isto é, as trajectórias clássicas. A mecânica quântica é
então vista como o estudo das flutuações à volta da trajectória clássica.

A.2.1 Matrix elements of operators

Usando a propriedade dos integrais de caminho

∫
D(q)eiS(f,i) =

∫
dq(t)

∫
D(q)eiS(f,t)

∫
D(q)eiS(t,i) (A.8)

onde ti < t < tf , é fácil mostrar que

〈qf , tf | O(t) |qi, ti〉 =

∫
dq′dq′′

∫
D(q)eiS(qf ,tf ;q

′′,t)

〈
q′′
∣∣O
∣∣q′
〉 ∫

D(q)eiS(q
′,t;qi,ti) (A.9)

Então se O for diagonal no espaço das coordenadas, isto é, se

〈
q′′
∣∣O
∣∣q′
〉
= O(q′)δ(q′ − q′′) (A.10)

obtemos

〈qf , tf | O |qi, ti〉 =
∫

D(q) eiS(f,i)O(q(t)) (A.11)
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A.2.2 Time ordered product of operators

Seja O1(t1)O2(t2) · · · On(tn) com t1 ≥ t2 ≥ · · · ≥ tn. Então é fácil de mostrar que a
ordenação no tempo é automática no integral de caminho, isto é,

〈qf , tf | O1(t1)O2(t2) · · · On(tn) |qi, ti〉 =
∫

D(q)eiS(f,i)O1O2 · · · On (A.12)

Este resultado é particularmente importante, pois permitirá escrever as funções de Green
de produtos de operadores ordenados no tempo como simples integrais de caminho de
produtos dos equivalentes clássicos desses operadores.

A.2.3 Exact results I: harmonic oscillator

Para alguns potenciais é posśıvel calcular exactamente o limite introduzido em (A.5). Para
esses casos o integral de caminho é portanto perfeitamente bem definido. Esses potenciais
não são muitos, mas são particularmente importantes. Para o seguimento interessa-nos
discutir dois deles. O primeiro é o oscilador harmónico definido pelo potencial

V (Q) = m
ω2

2
Q2 (A.13)

Para este caso obtém-se, (os integrais são gaussianos e por isso podem ser explicitamente
calculados)

〈f |i〉 =
(
mωe−iπ/2

2π sinωt

) 1
2

exp

{
i
mω

2

[
(q2f + q2i ) cotωt−

2qfqi
sinωt

]}
(A.14)

Este resultado vai ser útil adiante.

A.2.4 Exact results II: external force

Consideremos agora uma força exterior tal que o potencial é dado por

V (Q) = −QF (t) (A.15)

Neste caso obtemos

〈f |i〉F =

[
me−iπ/2

2π(tf − ti)

] 1
2

eiS(f,i) (A.16)

onde S(f, i) é a acção calculada ao longo da trajectória clássica,

S(f, i) =
m

2

(qf − qi)
2

tf − ti
+

∫ tf

ti

dtF (t)

(
qf

t− ti
tf − ti

+ qi
tf − t

tf − ti

)
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+
1

2m

∫ tf

ti

∫ tf

ti

dt′dt′′F (t′)G(t′, t′′)F (t′′) (A.17)

onde G(t′, t′′) = t′t′′

T −Inf(t′, t′′) é a função de Green simétrica para o problema q
..
= F (t)/m

com as condições na fronteira G(0, t′′) = G(t′, 0) = 0.

A.2.5 Perturbation theory

A importância do resultado exacto para a força exterior deve-se ao facto que usando
esse resultado podemos formalmente resolver o problema dum potencial qualquer. Para
isso notemos que a derivação funcional em realação à fonte F (t) faz baixar Q(t). Mais
explicitamente

〈f |Q(t) |i〉F =
δ

iδF (t)
〈f |i〉F (A.18)

onde 〈|〉F significa calculado na presença da fonte exterior (i.e. para o hamiltoniano
H = P 2/2m−QF (t)). Então para um potencial arbitrário V (q) temos

〈f |i〉 =

∫
D(q)e

i
∫ tf
ti

dt[ 12mq̇
2−V (q)]

= exp

{
−i
∫ tf

ti

dtV

[
δ

iδF (t)

]}
〈f |i〉F

∣∣∣
F=0

(A.19)

Esta expressão formal torna-se muito útil quando a exponencial é expandida em série.
Então todos os integrais são do tipo gaussiano e podem ser exactamente executados.
Obtemos assim a teoria das perturbações. Claro que só terá significado se houver um
parâmetro pequeno no potencial. É importante notar que enquanto se faça teoria das per-
turbações não há qualquer problema com a indefinição matemática do integral de caminho,
pois todas as integrações são gaussianas.

A.3 Phase space formulation

Para este caso obtemos

〈qf , tf |qi, ti〉 =
∫

D(p, q)ei
∫ tf
ti

dt
[
pq̇−h(p,q)

]
(A.20)

onde h(p, q) é o hamiltoniano clássico e a medida é dada pelo limite

D(p, q) = lim
n→∞

n∏

1

dps

n−1∏

1

dqr

(2π)n
(A.21)
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A fase da exponencial é novamente a acção clássica expressa nas variáveis canónicas p
e q. Se h(p, q) depender quadraticamente de p como é usual, pode-se fazer a integração
gaussiana em p e a expressão reduz-se à do caso anterior, equação (A.4).

A.4 Bargmann-Fock space (coherent states)

Nesta representação usamos funções anaĺıticas de variável complexa para descrevermos os
operadores a e a† ( [a, a†] = 1). A correspondência é feita do modo seguinte. As funções
anaĺıticas geram um despaço de Hilbert com o produto interno definido por

〈g|f〉 ≡
∫
dzdz

2πi
e−zz g(z)f(z) (A.22)

Os operadores a e a† são representados neste espaço por

a→ ∂

∂z

a† → z (A.23)

Dado um estado |f〉, representado pela função f(z), a acção do operador A em |f〉 produz
outro estado que também pode ser representado por funções anaĺıticas. Se designarmos
por g(z) essa função temos

g(z) ≡ 〈z|A |f〉 ≡
∫
dξdξ

2πi
e−ξξA(z, ξ)f(ξ) (A.24)

onde A(z, ξ) é o kernel do operador A. Uma representação explicita para o kernel é fácil
de obter. Para isso introduzimos os estados |n〉, definidos por

|n〉 = a†n√
n!

|0〉 (A.25)

É fácil de verificar (ver Problema A.2) que com a definição de produto interno acima
introduzida estes estados são ortonormados, isto é 〈fm|fn〉 = δmn.

Então

〈z|A |f〉 =
∑

n,m

zn√
n!

〈n|A |m〉 〈m|f〉

=
∑

n,m

zn√
n!

An,m

∫
dξdξ

2πi
e−ξξ

ξm√
m!
f(ξ)

=

∫
dξdξ

2πi
e−ξξ

[∑

n,m

zn√
n!
An,m

ξm√
m!

]
f(ξ) (A.26)
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Portanto

A(z, ξ) ≡
∑

n,m

zn√
n!
An,m

ξm√
m!

(A.27)

O kernel de qualquer operador é assim obtido desde que se conheçam os seus elementos
de matriz na base |n〉.

Já vimos como se representam estados e operadores. Vamos ver como representar
produtos de operadores. Sejam dois operadores A1 e A2 e um estado |f〉. Seja ainda

g(η) = 〈η|A2 |f〉 =
∫
dξdξ

2πi
e−ξξA2(η, ξ)f(ξ) (A.28)

Então

〈z|A1 |g〉 =

∫
dξdξ

2πi
e−ξξA1(z, η)g(η)

=

∫
dηdη

2πi

dξdξ

2πi
e−ξξe−ηη A1(z, η)A2(η, ξ)f(ξ)

=

∫
dξdξ

2πi
e−ξξ

[∫
dηdη

2πi
e−ηη A1(z, η)A2(η, ξ)

]
f(ξ)

=

∫
dξdξ

2πi
e−ξξ A3(z, ξ)f(ξ) (A.29)

Portanto o kernel do operador A3 = A1A2 é obtido por convolução dos kernéis de A1 e
A2, isto é

A3(z, η) =

∫
dηdη

2πi
e−ηη A1(z, η)A2(η, ξ) (A.30)

A.4.1 Normal form for an operator

Como já sabemos representar estados, operadores e produtos de operadores já temos toos
os ingredientes para fazer mecânica quântica neste espaço. Há contudo um outro assunto
que é importante tendo em atenção que pretendemos aplicar este formalismo em teoria
quântica dos campos. Trata-se da forma normal dum operador1. O operador A na sua
forma normal é definido por

A =
∑

n,m

ANn,m
a†nam√
n!
√
m!

(A.31)

isto é, os operadores de destruição estão à direita dos operadores de criação. O kernel
normal é definido por

1 Notar que em teoria quântica dos campos tem que se proceder ao ordenamento normal do hamiltoniano
para definir o zero da energia.
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AN (z, z) ≡
∑

n,m

zn√
n!

ANn,m
zm√
m!

(A.32)

isto é, é obtido por subtituição directa dos operadores de destruição por z e dos de criação
por z. Para um operador dado na sua forma normal este é o kernel imediato de obter. É
contudo diferente do kernel atrás definido. Para ver a relação entre eles notemos a seguinte
relação

f(z) =
∑

n

z√
n!

〈n|f〉

=
∑

n

∫
dξdξ

2πi
e−ξξ

znξn

n!
f(ξ)

=

∫
dξdξ

2πi
e−ξξ ezξ f(ξ) (A.33)

O kernel ezξ é portanto uma função delta neste espaço. Usando este resultado obtemos

〈z|A |f〉 =
∑

n,m

ANn,m√
n!
√
m!

zn
dm

dzm
f(z)

=
∑

n,m

ANn,m√
n!
√
m!

∫
dξdξ

2πi
e−ξξ ezξ znξmf(ξ)

=

∫
dξdξ

2πi
e−ξξ ezξ AN (z, ξ)f(ξ) (A.34)

donde resulta

A(z, ξ) = ezξ AN (z, ξ) (A.35)

Esta relação é muito importante pois permite imediatamente escrever o kernel dum ope-
rador qualquer uma vez que seja conhecida a sua forma normal. Isto é particularmente
útil em teoria quântica dos campos onde o hamiltoniano é dado na sua forma normal.

A.4.2 Evolution operator

Podemos obter agora a expressão para o operador de evolução nesta representação. De
acordo com aquilo que acabámos de dizer, para um intervalo infinitesimal, devemos ter
para o kernel de U

U(z, ξ,∆t) = ezξ e−i∆t h(z,ξ) (A.36)
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onde h(z, ξ) é o kernel normal obtido por substituição directa dos operadores a† e a pelas
variáveis complexas z e ξ. Notar que quando ∆t→ 0 o kernel do operador de evolução se
reduz ao kernel da identidade, ezξ, que como vimos é a função δ neste espaço.

Para um intervalode tempo finito t = tf − ti, dividimos o intervalo em n intervalos

∆t =
t

n
z0 z1 z2 · · · zn−1 zn (A.37)

Então

U(z1, z0) ≃ ez1z0−i∆th(z1,z0)

U(z2, z1) ≃ ez2z1−i∆th(z2,z1)
...

...
...

U(zn, zn−1) ≃ eznzn−1−i∆th(zn,zn−1) (A.38)

Aplicando agora a regra de multiplicação dos kernéis obtemos

U(zf , tf ; zi, ti) = lim
n→∞

∫ n−1∏

k=1

dzkdzk
2πi

exp
[ n∑

k=1

zk zk−1

−
n−1∑

k=1

zkzk − i

n∑

k=1

h(zk, zk−1)∆t
]

(A.39)

ou seja

U(zf , tf ; zi, ti) ≡
∫

D(z, z) e
1
2

(zfzf+zizi)+i
∫ tf
ti
[ 1
2i
(żz−zż)−h(z,z)]dt (A.40)

Nesta expressão zf (tf ) e zi(ti) são fixados pelas condições fronteiras mas zf (ti) e zi(tf )
são arbitrários. A fase da exponencial é novamente a acção, agora escrita nas variáveis
complexas z e z. Para ver isso basta lembrar que

1

2
(pdq + qdp) =

1

2i
(zdz − zdz) (A.41)

A.4.3 Exact results I: harmonic oscillator

Também aqui vamos analisar os casos importantes em que há resultados exactos, nomeada-
mente o oscilador hamónico e o caso das fontes externas. Comecemos pelo oscilador
harmónico. O hamiltoniano é dado por

H0 = ω a†a (A.42)
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Trata-se portanto dum caso em que o hamiltoniano é dado na forma normal. Este problema
pode ser resolvido exactamente. Temos

U(zf , zi, t) = lim
n→∞

∫ n−1∏

k=1

dzkdzk
2πi

exp
[ n∑

k=1

zk zk−1

−
n−1∑

k=1

zkzk − iω
t

n

n∑

k=1

zkzk−1
]

= lim
n→∞

∫ n−1∏

k=1

dzkdzk
2πi

e[−XAX+XB+BX] (A.43)

onde

X =




z1
z2
...

zn−1


 ; X = (z1, z2, · · · , zn−1) (A.44)

e

B =




z0a
0
...
0


 ; B = (0, 0, · · · , 0, zna) (A.45)

com z0 = zi e zn = zf . A matriz A de dimensão (n− 1)× (n− 1) é dada por




1 0 · · · · · · · · · · · ·
−a 1 0 · · · · · · · · ·
0 −a 1 0 · · · · · ·
...

. . .
. . .

. . .
. . .

...
· · · · · · 0 −a 1 0
· · · · · · · · · 0 −a 1




(A.46)

onde se definiu

a ≡ 1− ih̄ω
t

n
(A.47)

As (n − 1) integrações gaussianas podem ser facilmente feitas usando o resultado (ver
Problema A.3),

∫ ∏ dzkdzk
2πi

e−zAz+uz+zu = (detA)−1 euA
−1u (A.48)

obtemos então
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U0(zf , zi; t) = lim
n→∞

[
(detA)−1 eBA

−1B
]

= lim
n→∞

[
(detA)−1 ezf zia

2(A−1)n−1,1

]
(A.49)

É fácil de verificar que para a matriz A se tem

(A−1)k,m =





ak−m se k ≥ m

0 se k < m

(A.50)

e portanto

detA = 1 (A.51)

e

A−1n−1,1 = (−1)n(−a)n−2 (A.52)

donde se conclui que

lim
n→∞

a2(A−1)n−1,1 = lim
n→∞

(
1− iωt

n

)n
= e−iωt (A.53)

Obtemos então finalmente

U0(zf , zi; t) = exp
{
zfzie

−iωt} (A.54)

Podemos verificar que este resultado é da forma eiS onde S é a acção calculada ao longo
da trajectória clássica. De facto a estacionaridade do expoente da exponencial dá

δ

{
1

2
(zfz(tf ) + z(ti)zi) +

∫ tf

ti

[
żz − zż

2
− iωzz

]
dt

}

=
1

2
zf δz(tf ) +

1

2
ziδz(ti)−

1

2
zf δz(tf )−

1

2
ziδz(ti)

+

∫ tf

ti

[
δz(ż − iωz)− δz(ż + iωz)

]
dt (A.55)

pois δzf = δzi = 0. As equações de movimento são portanto





ż − iωz = 0

ż + iωz = 0

com





z(tf ) = zf

z(ti) = zi

(A.56)
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que têm como solução





z(t) = zi e
iω(ti−t)

z(t) = zf e
iωt−tf )

(A.57)

Substituindo estas soluções no expoente obtemos

1

2
[zfz(tf ) + ziz(ti)] +

∫ tf

ti

[
1

2
(żz − zż)− iωzz

]
dt

= zfzi e
iω(ti−tf )

= zfzi e
−iωt (A.58)

para t ≡ tf − ti, como queŕıamos mostrar.

Um outro resultado importante do oscilador harmónico é que a evolução dum estado
sob a acção de H0 = ωa†a é particularmente simples neste espaço das funções de variável
complexa. Seja f(z) a representação do estado |f〉. A evolução debaixo de H0 é dada por

U0(t)f(z) =

∫
dξdξ

2πi
e−ξξ ezξe

−iωt

f(ξ)

= f(ze−iωt) (A.59)

isto é, é reduzida à multiplicação por e−iωt

z → z e−iωt (A.60)

Isto é importante para descrever a matriz S, em que os estados assimptóticos evoluem de
acordo com o hamiltoniano livre.

A.4.4 Exact results II: external force

Seja o hamiltoniano

H = ωa†a− f(t)a† − f(t)a (A.61)

Este hamiltoniano também conduz a um resultado exacto. Usando os mesmos métodos
que foram utilizados para o oscilador harmónico pode-se mostrar que neste caso também
temos

U(zf , zi; t) = eiS(f,i) (A.62)

onde S(f, i) é a acção calculada ao longo das trajectórias clássicas (ver Problema A.1).
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A.5 Fermion systems

Vamos generalizar os resultados anteriores ao caso de sistemas de fermiões. Começamos
com sistemas com dois ńıveis com os operadores a† e a tais que

{
a†, a

}
= 1 ; a2 = a2† = 0 (A.63)

Para efectuar a construção anterior vamos tentar representar estes operadores num espaço
de Hilbert de funções anaĺıticas. Isto é posśıvel se considerarmos funções (de facto polinó-
mios) com coeficientes complexos em duas variáveis que anticomutam η e η, designadas
por variáveis de Grassmann e que obedecem a

ηη + ηη = 0 ; η2 = η2 = 0 (A.64)

Então qualquer função P (η, η) terá a forma

P (η, η) = p0 + p1η +
∼
p1η + p12ηη (A.65)

A.5.1 Derivatives

Neste espaço a derivação é definida por (as derivadas são esquerdas)

∂P

∂η
=
∼
p1 + p12η

∂P

∂η
= p1 − p12η (A.66)

De entre todas as funções nas variáveis η e η definimos o subconjunto das funções anaĺıticas
tais que

∂

∂η
f = 0 (A.67)

isto é as funções anaĺıticas têm a forma

f = f0 + f1η (A.68)

A.5.2 Dot product

No espaço das funções anaĺıticas define-se o produto interno

(g, f) = g0 f0 + g1 f1 (A.69)

este produto interno pode ser representado por um integral desde que definamos a inte-
gração convenientemente (ver equação (A.74)) .
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A.5.3 Integration

A integração nas variáveis de Grassmann é definida pelas relações

∫
dη η =

∫
dη η = 1

∫
dη 1 =

∫
dη 1 = 0 (A.70)

Notar que a integração assim definida é semelhante à derivação. De facto2

∫
dη P = ∂P ;

∫
dη P = ∂P

∫
dηdη P = ∂∂P (A.72)

Devido à forma da equação A.62 é claro que se tem

∂
2
= ∂2 = 0 (A.73)

e que portanto o integral duma derivada é zero. Consideremos agora a mudança de
variáveis nos integrais. Seja

(
η
η

)
= A

(
ξ

ξ

)
(A.74)

Então obtemos

ηη = (A11ξ +A12ξ)(A21ξ +A22ξ)

= (A11A22 −A12A21)ξξ

= detA ξξ (A.75)

Pelo que

∫
dηdηP (η, η) =

∫
dξdξ(detA)−1Q(ξ, ξ) (A.76)

onde Q(ξ, ξ) é o polinómio que se obtém de P (η, η) por substituição de η e η por ξ e ξ.

2 Estamos a usar a notação compacta

∂≡ ∂
∂η

; ∂≡ ∂
∂η

(A.71)
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Finalmente notemos que se definirmos a conjugação complexa de f por

f = f0 + f1η (A.77)

então podemos encontrar uma representação integral para o produto interno dada por

(g, f) ≡
∫
dηdη e−ηη g f (A.78)

Para vermos isso calculemos o integral. Obtemos

∫
dηdη e−ηη g f

=

∫
dηdη(1− ηη)(g0 + g1η)(f0 + f1η)

= g0f0 + g1f1

= (g, f) (A.79)

A.5.4 Representation of operators

Os operadores a e a† podem ser representados por

a→ ∂

a† → η (A.80)

É fácil de ver que com estas definições temos a2 = a†2 = 0 e aa† + a†a = 1.

Consideremos agora os estados |0〉 e |1〉 = a† |0〉 a que correspondem as funções 1 e η.
Então podemos encontrar o kernel de qualquer operador

A =
∑

n,m

|n〉An,m 〈m| (A.81)

De facto

(Af)η =
∑

n,m

ηnAn,m 〈m|f〉

=

∫
dξdξ eξξ

∑

n,m

ηn An,m ξm f(ξ)

=

∫
dξdξ e−ξξ A(η, ξ) f(ξ) (A.82)



A.5. FERMION SYSTEMS 305

onde

A(η, ξ) ≡
∑

n,m

ηn An,m ξm ; n,m = 0, 1 (A.83)

Para o produto de operadores é fácil de ver que temos como anteriormente

A1A2(η, η) =

∫
dξdξ e−ξξ A1(η, ξ) A2(ξ, η) (A.84)

A.5.5 Normal form for operators

Seja um operador definido por

A =
∑

n,m

|n〉An,m 〈m| =
∑

n,m

a†n |0〉 〈0| am An,m (A.85)

O projector do estado base é

|0〉 〈0| =: e−a
†a : (A.86)

logo

A =
∑

n,m

An,m : a†n e−a
†a am :

≡
∑

n,m

ANn,m a†nam (A.87)

O kernel normal é então definido pela substituição a† → η e a→ η, isto é

AN (η, η) =
∑

n,m

ANn,m ηnηm (A.88)

O kernel da identidade é eηη, isto é

f(η) =

∫
dξdξ e−ξξ+ηξ f(ξ) (A.89)

o que permite obter a relação entre o kernel usual e kernel normal. De facto

[
a†namf

]
η = ηn

∂m

∂ηm
f(η)

=

∫
dξdξ e−ξξ eηξ ηnξm f(ξ) (A.90)
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o que permite escrever a relação procurada

A(η, η) = eηη AN (η, η) (A.91)

Finalmente seguindo um racioćınio análogo ao do sistema de bosões é fácil obter o kernel
do operador de evolução

U(ηf , tf ; ηi, ti) =

∫
D(η, η) e

1
2
(ηfηf+ηiηi) ei

∫ tf
ti

dt[ 1
2i
(ηη̇−η̇)−h(η,η)] (A.92)
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Problems for Appendix A

A.1 Show the result expressed in Eq. (A.62). Show also that

iS(f, i) = zf e
−iω(tf−ti) zi + i

∫ tf

ti

dt
[
zf e

−iω(tf−t) f(t) + f(t) e−iω(t−ti) zi
]

−
∫ tf

ti

dt

∫ tf

ti

dt′ f(t) e−iω(t−t
′) f(t′)θ(t− t′) (A.93)

This result it is useful in many applications (see, for instance, Eq. (B.9)).

A.2 Show that the representative of the states |n〉 and |m〉, zn√
n!

and zm√
m!

, respectively,are

orthonormalized, thyat is, 〈fn|fm〉 = δn,m.

A.3 Show that for gaussian integrals we have

∫ ∏ dzkdzk
2πi

e−zAz+uz+zu = (detA)−1 euA
−1u (A.94)

Notice that the exponent is the staionary point.

A.4 Show that for gaussian integrals of Grassmann variables we have

∫ n∏

1

dηkdηk e
∑

ηkAkℓηℓ+
∑

(ηkξk+ξkηk)

= detA e
∑

ξk(A
−1)kℓξℓ (A.95)

Compare with the result of Problem A.3.
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Appendix B

Path Integral in Quantum Field
Theory

B.1 Path integral quantization

Vamos aqui generalizar os resultados do apêndice A para o caso de sistemas com um
número infinito de graus de liberdade que são os que interessam em teoria quântica dos
campos. Para evitar complicações com ı́ndices e com problemas decorrentes da invariância
de gauge vamos estudar o caso do campo escalar cuja acção clássica em presença duma
fonte exterior é

S(φ, J) = S0(φ, J) +

∫
d4x V (x) (B.1)

onde

S0(φ, J) =

∫
d4x

[
1

2
∂µφ∂

µφ− 1

2
m2φ2 + Jφ

]
(B.2)

é a acção do campo escalar livre acoplada a uma fonte exterior. Vamos primeiro estudar
este caso, isto é, supor que V = 0. O caso geral é fácil, de obter a partir deste, como
veremos mais à frente. O hamiltoniano é dado por

H =

∫
d3x

[
1

2
π2op +

1

2
(∇φop)

2 +
1

2
m2φ2op − Jφop

]
(B.3)

e podemos introduzir os operadores a(k) e a†(k) tais que num certo instante

φop =

∫
d̃k
[
a(k) ei

~k·~x + a†(k) e−i
~k·~x
]

(B.4)

e

πop = −i
∫
d̃k
[
a(k) ei

~k·~x − a†(k) e−i
~k·~x
]
ω(k) (B.5)

309
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então

H =

∫
d̃k
[
ω(k)a†(k)a(k) − f(t,~k)a†(k)− f(t,~k)a(k)

]
(B.6)

onde introduzimos a transformada de fourier espacial da fonte,

f(t,~k) =

∫
d3x e−i

~k·~x j(t, ~x) (B.7)

e onde definimos

d̃k ≡ d3k

(2π)32ωk
=

d4k

(2π)4
2πδ(k2 −m2)θ(k0) (B.8)

usando os resultados do problema A.1 podemos escrever imediatamente o kernel do oper-
ador de evolução

U(zf , tf ; zi, ti) = exp

{∫
d̃k

[
zf (k) e

−iω(k)(tf−ti) zi(k)

+i

∫ tf

ti

dt
[
zf (k) e

−iω(k)(tf−t) f(t,~k) + f(t,~k) e−iω(k)(t−ti) zi(k)
]

−1

2

∫ tf

ti

dt

∫ tf

ti

dt′ f(t,~k) e−iω(k)(t−t
′) f(t′, ~k)

]}
(B.9)

A matriz S é então definida como o limite

lim
−ti,tf→∞

eitfH0 U(tf , ti) e
−itiH0 (B.10)

onde H0 é obtido a partir de H fazendo J = 0. Na representação que estamos a usar a
acção de e−itH0 é uma simples multiplicação (ver eq. A.60).

z → z e−iωt (B.11)

Portanto o kernel da matriz S é

S(zf , zi) = lim
−ti,tf→∞

exp

[∫
d̃kzf (k)zi(k)

]
exp

{∫
d̃k

[

i

∫ tf

ti

[
zf (k) e

iω(k)t f(t,~k) + f(t,~k) e−iω(k)tzi(k)
]

−1

2

∫ tf

ti

∫ tf

ti

dtdt′f(t,~k) e−iω(k)(t−t
′) f(t′, ~k)

]}
(B.12)

O primeiro factor é aquilo que é necessário para passar do kernel usual para o kernel
normal. O restante pode ser interpretado se definirmos
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φas ≡
∫
d̃k
[
zi(k) e

−ik·x + zf (k) e
ik·x
]

(B.13)

Como zf não é o complexo conjugado de zi então φas é dado em termos de condições na
fronteira com frequências positivas para t → −∞ e frequências negativas para t → ∞.
Estas são precisamente as condições na fronteira de Feynman. Com estas convenções e
notações obtemos para o primeiro termo

∫
d̃k

∫ tf

ti

dt
[
zf (k) e

iω(k)t f(t,~k) + f(t,~k) e−iω(k)t zi(k)
]

=

∫
d4x

∫
d̃kJ(x)

[
zfe

iω(k)t−i~k·~x + zi(k) e
−iω(k)t+i~k·~x

]

=

∫
d4xJ(x)φas(x) (B.14)

e para o segundo

∫
d̃k

∫
dt

∫
dt′ f(t,~k) e−iω(k)(t−t

′) f(t′, ~k)

=

∫
d4xd4x′J(x)J(x′)

∫
d̃k e−iω(k)(t−t

′)+i~k·(~x−~x′)

=

∫
d4xd4x′ J(x)GF (x− x′)J(x′) (B.15)

pois

∫
d̃k e−iω(k)(t−t

′)+i~k·(~x−~x′)

=

∫
d̃k e−iω(k)(t−t

′)+i~k·(~x−~x′) θ(t− t′)

+

∫
d̃k eiω(k)(t−t

′)+i~k·(~x−~x′) θ(t′ − t)

= i

∫
d4k e−ik·(x−x

′) 1

k2 −m2 + iε

= GF (x− x′) (B.16)

Notar que as condições na fronteira mistas conduzem ao propagador de Feynman. Podemos
portanto finalmente escrever o kernel normal da matriz S na presença da fonte J ,

SN (zf , zi)
∣∣
J
= ei

∫

d4x j(x)φas(x) e−
1
2

∫

d4xd4x′ J(x)G0
F (x−x′)J(x′) (B.17)
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Para se obter o operador S substituimos φas por φop e fazemos o ordenamento normal,
isto é

S0(J) =: ei
∫

d4x J(x)φop(x) : e−
1
2

∫

d4xd4x′ J(x)G0
F (x−x′)J(x′) (B.18)

Como o funcional gerador das funções de green é 〈0|S0(J)|0〉 obtemos imediatamente

Z0(J) = e−
1
2

∫

d4xd4x′J(x)G0
F (x−x′)J(x′) (B.19)

Este resultado permite resolver o problema de qualquer potencial V (x). De facto é fácil
de mostrar que no caso geral os kernéis estão relacionadoss por

SN = exp

[
−i
∫
d4xV

(
δ

iδJ(x)

)]
SN (J)

∣∣
J=0

(B.20)

e o operador S é

S =: e
∫

d4xJ(x)φop(x) : exp

[
−i
∫
d4x V

(
δ

iδJ(x)

)]
Z0(J)

∣∣
J=0

(B.21)

ou seja

Z(J) = exp

[
−i
∫
d4x V

(
δ

iδJ(x)

)]
Z0(J) (B.22)

com

Z0(J) = e−
1
2

∫

d4xd4x′ J(x)G0
F (x−x′)J(x′) (B.23)

Estas expressões permitem calcular qualquer função de green com as regras usuais da
teoria das perturbações. A quantificação usando os integrais de caminho conduziu aos mes-
mos resultados (em teoria das perturbações) que a quantificação canónica. As expressões
para os funcionais geradores embora dêem resultados perturbativos duma forma imediata
não são as mais úteis quando estamos interessados em encontrar resultados válidos para
além da teoria das perturbações. Para esses casos (identidades de Ward, etc) é mais útil
ter uma expressão formal em termos dum integral de caminho. É isso que vamos agora
estudar.

B.2 Path integral for generating functionals

O ponto de partida é a expressão para o kernel da matriz S,

S(zf , zi) = lim
−ti,tf→∞

∫
D(z, z) e

1
2

∫

d̃k[z(k,tf )z(k,tf )+z(k,ti)z(k,ti)]

exp

{
i

∫ tf

ti

dt

∫
d̃k

[
1

2i
(ż(k, t)z(k, t) − z(k, t)ż(k, t))



B.2. PATH INTEGRAL FOR GENERATING FUNCTIONALS 313

−ω(k)z(k, t)z(k, t) − V (z, z)

]}
(B.24)

com as condições na fronteira1





z(k, tf ) = zf (k) e
iωtf

z(k, ti) = zi(k) e
−iωti

(B.25)

Em vez das variáveis z(k, t) e z(k, t) vamos introduzir os campos clássicos φ(~x, t) e π(~x, t)
definidos por

φ(~x, t) =

∫
d̃k
[
z(k, t) ei

~k·~x + z(k, t) e−i
~k·~x
]

(B.26)

e

π(~x, t) = −i
∫
d̃k ω(k)

[
z(k, t) ei

~k·~x − z(k, t) e−i
~k·~x
]

(B.27)

Estas fórmulas são obviamente sugeridas pelas relações entre φop, πop e a(k), a†(k) expres-
sas nas equações B.4 e B.5, só que aqui não se trata de operadores mas sim de campos
clássicos. Comecemos por escrever a acção em termos das novas variáveis,

∫ tf

ti

dt

∫
d̃k

[
1

2i
(ż(k, t)z(k, t) − z(k, t)ż(k, t))

−ω(k)z(k, t)z(k, t) − V (z, z)]

=

∫
d3x

∫ tf

ti

dt

[
1

2
(π∂0φ− ∂0πφ)−

1

2
π2

−1

2
(∂kφ)

2 − 1

2
m2φ2 − V (φ)

]
(B.28)

Introduzimos agora novas variáveis φ1(~x, t) e π1(~x, t) definidas do modo seguinte





φ(~x, t) ≡ φas(~x, t) + φ1(~x, t)

π(~x, t) ≡ ∂0φ(~x, t) + φ1(~x, t)

(B.29)

onde

φas,in(~x, t) =

∫
d̃k
[
zin(k) e

ik·x + zin(k) e
−ik·x

]
(B.30)

e

1 Não há restrições em z(k,ti) e z(k,tf ).
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φas,out(~x, t) =

∫
d̃k
[
zout(k) e

ik·x + zout(k) e
−ik·x

]
(B.31)

onde in ≡ t → −∞ e out ≡ t→ +∞ com





zout(k) ≡ zf (k)

zin(k) ≡ zi(k)

(B.32)

O campo φas tem portanto as condições fronteira apropriadas para o problema e satisfaz
à equação de Klein-Gordon

(⊔⊓+m2)φas = 0 (B.33)

Escrevemos a acção nas novas variáveis

∫
d3x

∫ tf

ti

dt

[
1

2
(π∂0φ− ∂0πφ)−

1

2
π2 − 1

2
(∂kφ)

2 − 1

2
m2φ2 − V (φ)

]

=

∫
d3x

[
−1

2
πφ

]tf

ti

+

∫
d3x

∫ tf

ti

dt

[
π∂0φ− 1

2
(π21 + 2π∂0φ− (∂0φ)

2)− 1

2
(∂kφas)

2 − 1

2
(∂kφ1)

2

−∂kφas∂kφ1 −
1

2
m2φ2as −

1

2
m2φ21 −m2φasφ1 − V (φ)

]

=

∫
d3x

[
−1

2
πφ

]tf

ti

+

∫
d3x

∫ tf

ti

dt

[
−1

2
π21 +

1

2
(∂0φas)

2 + ∂0φas∂0φ1 +
1

2
(∂0φ1)

2 − 1

2
(∂kφas)

2

−1

2
(∂kφ1)

2 − ∂kφas∂kφ1 −
1

2
m2φ2as −

1

2
m2φ21 −m2φasφ1 − V (φ)

]

=

∫
d3x

[
1

2
∂0φasφas + ∂0φasφ1 −

1

2
πφ

]tf

ti

+

∫
d3x

∫ tf

ti

dt

[
−1

2
π21 +

1

2
∂µφ1∂

µφ1 −
1

2
m2φ21 − V (φ)

]

=

∫
d3x

[
∂0φasφ− 1

2
∂0φasφas −

1

2
πφ

]tf

ti

+

∫
d3x

∫ tf

ti

dt

[
−1

2
π21 +

1

2
∂µφ1∂

µφ1 −
1

2
m2φ21 − V (φ)

]
(B.34)
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Vemos que no segundo termo as variáveis φ1 e π1 estão separadas e π1 aparece quadrati-
camente. Isto permitirá eliminar π1 como veremos no seguimento. Analisemos contudo
primeiro o termo que tem as condições na fronteira. Usando as definições de φas, φ e π
podemos escrever

i

∫
d3x

[
∂0φasφ− 1

2
∂0φasφas −

1

2
πφ

]tf

ti

=

∫
d̃k

{
zf (k)zi(k)−

1

2

[
z(k, tf )z(k, tf ) + z(k, ti)z(k, ti)

]

−1

4

[
z(k, tf )− zi(k) e

−iωtf ]2 − 1

4

[
z(k, ti)− zf (k) e

iωti
]2
}
(B.35)

Nesta expressão o primeiro termo dá a passagem do kernel usual para o kernel normal,
o segundo cancela exactamente o termo na fronteira na definição inicial de S(zf , zi) e os
últimos têm que ser estudados em detalhe. Reunindo tudo até este ponto a expressão do
kernel normal da matriz S é

SN (φas) = lim
−ti,tf→∞

∫
D(φ, π) exp

{
−1

4

∫
d̃k
[(
z(k, tf )− zi(k) e

−iωtf )2

+
(
z(k, ti)− zf (k) e

iωti
)2]}

exp

{∫
d3x

∫ tf

ti

dt

[
−π21 +

1

2
∂µφ1∂

µφ1 −
1

2
m2φ21 − V (φ)

]}
(B.36)

Esta expressão já está próxima do resultado final. Falta só mostrar que os termos dentro
da primeira exponencial tendem para zero quando −ti, tf → ∞. Esta é a parte mais
delicada do argumento. Vamos expô-lo por passos:

i) Funções rapidamente decrescentes

Queremos que I(t) =
∫
d3x π21(~x, t) seja integrável. Dizemos então que funções como

π1(~x, t) são rapidamente decrescentes (RD) quando |t| → ∞.

ii) Informação sobre z1,out(k, t) e z1,in(k, t)

Da definição φ = φas + φ1 resultam as definições





z(k, t) = zi(k) e
−iωt + z1(k, t)

z(k, t) = zf (k) e
iωt + z1(k, t)

(B.37)

As condições na fronteira dizem-nos que z1,out(k, t) e z1,in(k, t) são funções RD quando
t→ +∞ e t→ −∞ respectivamente, mas não nos dizem nada sobre z1,in e z1,out, que são
precisamente os limites que precisamos.

iii) Informação sobre os limites z1,out e z1,in

Informação sobre os limites z1,out e z1,in obtém-se a partir do seguinte racioćınio,
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π1 = π − ∂0φ

=

∫
d̃k
{
[iω(k)z(k, t) − ∂0z(k, t)] e

−i~k·~x

− [iω(k)z(k, t) + ∂0z(k, t)] e
i~k·~x
}

≡ −
∫
d̃k
[
z2(k, t) e

−i~k·~x + z2(k, t) e
i~k·~x
]

(B.38)

Para que π1 seja do tipo RD quando |t| → ∞ também teremos que ter z2(k, t) e z2(k, t)
RD nesses limites. Vejamos qual a informação contida neste resultado.

• t→ +∞
Obtemos então que a função

z2(k, t) ≡ ∂0z(k, t) + iω(k)z(k, t) (B.39)

é RD quando t → +∞. A informação sobre z2(k, t) não trás nada de novo já que está
contida nas condições fronteiras. De facto

lim
t→+∞

z2(k, t) ≡ lim
t→+∞

[∂0z(k, t)− iω(k)z(k, t)]

= iω(k)zf (k) e
iωt + ∂0z1,out(k, t)

−iω(k)zf (k) eiωt − iω(k)z1,out(k, t)

= RD t→ +∞ (B.40)

• t→ −∞
A informação contida nas condições na fronteira é

z2(k, t) ≡ ∂0z(k, t)− iω(k)z(k, t) = RD t→ −∞ (B.41)

iv) Demonstração que z1,out e z1,in são RD

Da definição

φ(~x, t) = φas + φ1 (B.42)

resulta





φ(~x, t) = φas,in(~x, t) + φ1,in(~x, t) t→ −∞

φ(~x, t) = φas,out(~x, t) + φ1,out(~x, t) t→ +∞
(B.43)
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ou seja





z(k, t) = zin(k) e
iωt + z1,in(k, t) t→ −∞

z(k, t) = zout(k) e
−iωt + z1,out(k, t) t→ +∞

(B.44)

Mas usando os resultados anteriores

∂0z(k, t) − iω(k)z(k, t) = RD t→ −∞

= iω(k)zin(k) e
iωt + ∂0z1,in(k, t)

−iω(k)z in(k) eiωt − iω(k)z1,in(k, t) (B.45)

ou seja

z1,in(k, t) = RD t→ −∞ (B.46)

e igualmente

z1,out(k, t) = RD t → +∞ (B.47)

Isto quer dizer que





φ1,in = RD t→ −∞

φ1,out = RD t→ +∞
(B.48)

isto é, assimptoticamente

φ = φas +RD (B.49)

v) Resultado final

Estamos agora em condições de atacar o nosso problema. Temos

lim
ti→−∞

∫
d̃k
[
z(k, ti)− zf (k) e

iωti
]2

= lim
ti→−∞

∫
d̃k
[
(zin(k)− zf (k)) e

iωti + z1,in(k, ti)
]2

= lim
ti→−∞

∫
d̃k
[
(zin(k)− zf (k))

2 e2iωti + 2 (zin(k)− zf (k)) e
iωtiz1,in(k, ti)

+z21,in(k, ti)
]
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= 0 (B.50)

Para o outro termo obter-se-ia o mesmo resultado. Chegamos portanto ao resultado

SN (φas) =

∫
D(φ, π) exp

{
− i

2

∫
d4x π21

}

× exp

{
i

∫
d4x

[
1

2
∂µφ1∂

µφ1 −
1

2
m2φ21 − V (φ)

]}
(B.51)

onde a integração é feita sobre os campos φ = φas + φ1 com as condições fronteiras
apropriadas. Fazendo a integração sobre π1 obtemos ( a menos duma normalização)

SN (φas) =

∫
D(φ) ei

∫

d4x[ 12∂µφ1∂
µφ1− 1

2
m2φ21−V (φ)]

=

∫

φ=φas+φ1

D(φ) ei
∫

d4x[L(φ1)−(V (φ)−V (φ1))] (B.52)

Na presença de fontes exteriores obtemos

SN (φas, J) =

∫

φ=φas+φ1

D(φ) ei
∫

d4x[L(φ1)−(V (φ)−V (φ1))+Jφ] (B.53)

Normalmente não estamos interessados na matriz S mas no funcional gerador das
funções de Green. Por definição

Z(J) ≡ S(φas, J)
∣∣∣
φas=0

(B.54)

Obtemos portanto a expressão fundamental

Z(J) =

∫
D(φ) ei

∫

d4x[L(φ)+Jφ] (B.55)

B.3 Fermion systems

O uso de variáveis de Grassmann permite escrever expressões de integrais de caminho para
a matriz S e para o funcional gerador das funções de Green Z para este caso. Não vamos
aqui repetir os cálculos que fizémos para os sistemas de bosões, mas antes apresentar
somente os resultados deixando as demonstrações para os problemas.

O ponto de partida é a definição do funcional gerador das funções de Green em presença
das fontes exteriores fermiónicas. Este é dado por2

2 Comparar com a definição do caso bosónico, equação 5.15.
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Z[η, η] = 〈0|T exp

[
i

∫
d4x

(
η(x)ψ(x) + ψ(x)η(x)

)]
|0〉 (B.56)

Então as funções de Green

G2n(x1, . . . , yn) ≡ 〈0|Tψ(x1) · · ·ψ(xn)ψ(y1) · · ·ψ(yn) |0〉 (B.57)

são dadas por

G2n(x1, . . . , yn) =
δ2nZ

iδη(yn) · · · iδη(y1)iδη(xn) · · · iδη(x1)
(B.58)

onde as derivadas são esquerdas, isto é

δ

δη(x)

∫
d4yη(y)ψ(y) = ψ(x)

δ

δη(x)

∫
d4yψ(y)η(y) = −ψ(x) (B.59)

e por convenção a ordem da derivação é a indicada, isto é

δ

iδη(yn)
· · · δ

iδη(x1)
(B.60)

Consideramos agora o lagrangeano de Dirac livre

L = ψ(i∂/ −m)ψ (B.61)

Pode-se mostrar (ver problema B.2) que o funcional gerador é neste caso dado por

Z0[η, η] = e−
∫

d4xd4y η(x)S0
F (x−y)η(y) (B.62)

onde S0
F (x− y) é o propagador de Feynman para a teoria de Dirac livre, dado por

S0
F (x− y) =

∫
d4p

(2π)4
e−ip·(x−y)

i

p/−m+ iε
(B.63)

Seguindo métodos semelhantes ao do caso bosónico podemos também mostrar que este
funcional gerador pode ser representado pelo integral de caminho,

Z0[η, η] =

∫
D(ψ,ψ) ei

∫

d4x [L(x)+ηψ+ψη] (B.64)

Tendo o funcional gerador para a teoria livre podemos formalmente escrever o funcional
gerador para qualquer teoria fermiónica com interacções. Um exemplo é dado no Problema
B.4.
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Problems Appendix B

B.1 Mostre que as funções de Green

G2n(x1, . . . , yn) ≡ 〈0|Tψ(x1) · · ·ψ(xn)ψ(y1) · · ·ψ(yn) |0〉 (B.65)

são dadas por

G2n(x1, . . . , yn) =
δ2nZ

iδη(yn) · · · iδη(y1)iδη(xn) · · · iδη(x1)
(B.66)

B.2 Mostre que o funcional gerador das funções de Green para a teoria de Dirac livre é
dado por

Z0[η, η] = e−
∫

d4xd4y η(x)S0
F (x−y)η(y) (B.67)

B.3 Mostre que o funcional gerador das funções de Green para a teoria de Dirac livre se
pode representar pelo seguinte integral de caminho

Z0[η, η] =

∫
D(ψ,ψ) ei

∫

d4x [L(x)+ηψ+ψη] (B.68)

B.4 Considere o lagrangiano seguinte,

L(x) = ψ(i∂/−m)ψ +
1

2
∂µφ∂

µφ− 1

2
mφ2

−gψ(x)ψ(x)φ(x) (B.69)
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que descreve a interacção dum campo de Dirac com um campo escalar.

a) Mostre que

Z[η, η, J ] = exp

{
−ig

∫
d4x

(
δ

iδη

)(
δ

iδη

)(
δ

iδJ

)}
Z0[η, η, J ] (B.70)

onde

Z0[η, η, J ] = e−
∫

d4xd4y[η(x)S0
F (x−y)η(y)+ 1

2
J(x)∆F (x−y)J(y)] (B.71)

e ∆F é o propagador livre do campo escalar.

b) Mostre que Z[η, η, J ] se pode exprimir por meio do integral de caminho

Z[η, η, J ] =

∫
D(ψ,ψ, φ) ei

∫

d4x[L(x)+Jφ+ηψ+ψη] (B.72)
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Appendix C

Useful techniques for
renormalization

C.1 µ parameter

The reason for the µ parameter introduced in section C.10.1 is the following. In dimension
d = 4− ǫ, the fields Aµ and ψ have dimensions given by the kinetic terms in the action,

∫
ddx

[
−1

4
(∂µAν − ∂νAµ)

2 + i ψγ · ∂ψ
]

(C.1)

We have therefore

0 = −d+ 2 + 2[Aµ] ⇒ [Aµ] = 1
2 (d− 2) = 1− ǫ

2

0 = −d+ 1 + 2[ψ] ⇒ [ψ] = 1
2(d− 1) = 3

2 − ǫ
2

(C.2)

Using these dimensions in the interaction term

SI =

∫
ddx eψγµψA

µ (C.3)

we get

[SI ] = −d+ [e] + 2[ψ] + [A]

= −4 + ǫ+ [e] + 3− ǫ+ 1− ǫ

2

= [e]− ǫ

2
(C.4)

Therefore, if we want the action to be dimensionless (remember that we use the system
where h̄ = c = 1), we have to set

323
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[e] =
ǫ

2
(C.5)

We see then that in dimensions d 6= 4 the coupling constant has dimensions. As it is more
convenient to work with a dimensionless coupling constant we introduce a parameter µ
with dimensions of a mass and in d 6= 4 we will make the substitution

e→ eµ
ǫ
2 (ǫ = 4− d) (C.6)

while keeping e dimensionless.

C.2 Feynman parameterization

The most general form for a 1–loop is 1

T̂
µ1···µp
n ≡

∫
ddk

(2π)d
kµ1 · · · kµp

D0D1 · · ·Dn−1
(C.7)

where

Di = (k + ri)
2 −m2

i + iǫ (C.8)

and the momenta ri are related with the external momenta (all taken to be incoming)
through the relations,

rj =

j∑

i=1

pi ; j = 1, . . . , n − 1

r0 =

n∑

i=1

pi = 0 (C.9)

as indicated in Fig. (C.1). In these expressions there appear in the denominators products

1

2

3

n-1
k+r1

k+r3

ν, b

i

k p

p

p
p

p

p

Figure C.1: Conventions for the momenta in the loop.

of the denominators of the propagators of the particles in the loop. It is convenient to

1 We introduce here the notation T̂ to distinguish from a more standard notation that will be explained
in subsection C.9.
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combine these products in just one common denominator. This is achieved by a technique
due to Feynman. Let us exemplify with two denominators.

1

ab
=

∫ 1

0

dx

[ax+ b(1− x)]2
(C.10)

The proof is trivial. In fact
∫
dx

1

[ax+ b(1− x)]2
=

x

b [(a− b)x+ b]
(C.11)

and therefore Eq. (C.10) immediately follows. Taking successive derivatives with respect
to a and b we get

1

ap bq
=

Γ(p+ q)

Γ(p)Γ(q)

∫ 1

0
dx

xp−1(1− x)q−1

[ax+ b(1− x)]p+q
(C.12)

and using induction we obtain a general formula

1

a1a2 · · · an
=Γ(n)

∫ 1

0
dx1

∫ 1−x1

0
dx2 · · ·

∫ 1−x1−···−xn−2

0

dxn−1
[a1x1 + a2x2 + · · ·+ an(1− x1 − · · · − xn−1)]

n (C.13)

Complement C.1

Let us take a closer look at Eq. (C.13) and derive it in a different way that will make more clear
the range of variation of the Feynman parameters. We follow closely the argument of Gross [13].

We start with the definition of the Γ function,

Γ(α) =

∫ ∞

o

dt tα−1e−t (C.14)

Making a change of variables we also get

Γ(α)

aα
=

∫ ∞

0

dt tα−1e−t a (C.15)

We consider first the case of two denominators using Eq. (C.15) with α = 1. We get

1

a b
=

∫ ∞

0

∫ ∞

0

dt1 dt2 e
−(t1 a+t2 b) (C.16)

Now we introduce 1 in the form

1 =

∫ ∞

0

dt δ(t− t1 − t2) (C.17)

in Eq. (C.16) to get

1

a b
=

∫ ∞

0

∫ ∞

0

∫ ∞

0

dt dt1 dt2 δ(t− t1 − t2) e
−(t1a+t2b) (C.18)

To continue we scale the variables t1 = t x1 and t2 = t x2. We then get

1

a b
=

∫ ∞

0

∫ ∞

0

dx1 dx2 δ(1 − x1 − x2)

∫ ∞

0

dt t e−t(x1a+x2b) (C.19)



326 APPENDIX C. USEFUL TECHNIQUES FOR RENORMALIZATION

Now we use the definition in Eq. (C.15) to obtain

1

a b
=Γ(2)

∫ ∞

0

∫ ∞

0

dx1 dx2 δ(1− x1 − x2)
1

[x1a+ x2b]2

=

∫ 1

0

dx1
1

[x1a+ (1− x1b]2
(C.20)

in agreement with Eq. (C.10). The nice thing about this procedure is that it can generalized easily
to obtain

1

a1a2 · · · an
=Γ(n)

∫ ∞

0

dx1 · · ·
∫ ∞

0

dxn
δ(1− x1 − · · · − xn)

[a1x1 + a2x2 + · · ·+ anxn]
n (C.21)

=Γ(n)

∫ 1

0

dx1 · · ·
∫ 1−x1···xn−1

0

dxn−1
1

[a1x1 + a2x2 + · · ·+ an(1− x1 · · ·xn−1)]
n

where the limits in the last equation can be understood by the fact that the delta function defines
an hyperplane that constrains the variables. For instance consider the case of n = 3. One gets the
condition that defines a plane in the 3 dimensional space,

1− x1 − x2 − x3 = 0 , (C.22)

as can be seen in Fig. C.2. As the xi are positive, we immediately see that they obey, for the case

x1
x1

x2

x2

x3

1

10

Figure C.2: Graphical representation of the constraint of Eq. (C.22) on the Feynman
parameters. On the right panel the projection on the x1x2 plane.

of n denominators,

x1 < 1, x2 < 1− x1, x3 < 1− x1 − x2, · · · , xn−1 < 1− x1 − · · · − xn−2 (C.23)

Before closing the section let us give an example that will be useful in the self-energy
case. Consider the situation with the kinematics described in Fig. (C.3).

We get

I =

∫
ddk

(2π)d
1[

(k + p)2 −m2
1 + iǫ

] [
k2 −m2

2 + iǫ
]
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p+k

k

pp

Figure C.3: Kinematics for the self-energy in φ3.

=

∫ 1

0
dx

∫
ddk

(2π)d
1

[
k2 + 2p · k x+ p2 x−m2

1 x−m2
2 (1− x) + iǫ

]2

=

∫ 1

0
dx

∫
ddk

(2π)d
1

[k2 + 2P · k −M2 + iǫ]2

=

∫ 1

0
dx

∫
ddk

(2π)d
1

[(k + P )2 − P 2 −M2 + iǫ]2
(C.24)

where in the last line we have completed the square in the term with the loop momenta
k. The quantities P and M2 are, in this case, defined by

P = xp (C.25)

and

M2 = −x p2 +m2
1 x+m2

2 (1− x) (C.26)

They depend on the masses, external momenta and Feynman parameters, but not in the
loop momenta. Now changing variables k → k−P we get rid of the linear terms in k and
finally obtain

I =

∫ 1

0
dx

∫
ddk

(2π)d
1

[k2 − C + iǫ]2
(C.27)

where C is independent of the loop momenta k and it is given by

C = P 2 +M2 (C.28)

Notice that the iǫ factors will add correctly and can all be put as in Eq. (C.27).

C.3 Wick Rotation

From the example of the last section we can conclude that all the scalar integrals can be
reduced to the form

Ir,m =

∫
ddk

(2π)d
k2

r

[k2 − C + iǫ]m
(C.29)
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It is also easy to realize that also all the tensor integrals can be obtained from the scalar
integrals. For instance

∫
ddk

(2π)d
kµ

[k2 − C + iǫ]m
= 0

∫
ddk

(2π)d
kµkν

[k2 − C + iǫ]m
=

1

d
gµν

∫
ddk

(2π)d
k2

[k2 − C + iǫ]m
(C.30)

and so on. Therefore the integrals Ir,m are the important quantities to evaluate. We will
consider that C > 0. The case C < 0 can be done by analytical continuation of the final
formula for C > 0.

To evaluate the integral Ir,m we will use integration in the complex plane of the variable
k0 as described in Fig. C.4. We can then write

x

x

0Re

Im 0k

k

Figure C.4: Integration contour path for the Wick rotation.

Ir,m =

∫
dd−1k
(2π)d

∫
dk0

k2
r

[
k20 − |~k|2 − C + iǫ

]m (C.31)

The function under the integral has poles for

k0 = ±
(√

|~k|2 + C − iǫ

)
(C.32)

as shown in Fig. C.4. Using the properties of functions of complex variables (Cauchy the-
orem) we can deform the contour, changing the integration from the real to the imaginary
axis plus the two arcs at infinity. This can be done because in deforming the contour we
do not cross any pole. Notice the importance of the iǫ prescription to be able to do this.
The contribution from the arcs at infinity vanishes in dimension sufficiently low for the
integral to converge, as we assume in dimensional regularization (see the details below in
Complement C.2). This means that

∫ +∞

−∞
dk0 +

∫ −i∞

+i∞
dk0 = 0 =⇒

∫ +∞

−∞
dk0 =

∫ +i∞

−i∞
dk0 (C.33)
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We can then change the integration along the real axis into an integration along the
imaginary axis in the plane of the complex variable k0. If we write

k0 = ik0E com

∫ +∞

−∞
dk0 → i

∫ +∞

−∞
dk0E (C.34)

and k2 = (k0)2 − |~k|2 = −(k0E)
2 − |~k|2 ≡ −k2E , where kE = (k0E ,

~k) is an euclidean
vector. By this we mean that we calculate the scalar product using the euclidean metric
diag(+,+,+,+),

k2E = (k0E)
2 + |~k|2 (C.35)

We can them write

Ir,m = i(−1)r−m
∫

ddkE
(2π)d

k2
r

E[
k2E + C

]m (C.36)

where we do not need the iǫ because the denominator is strictly positive (C > 0). This
procedure is known as Wick Rotation. We note that the Feynman prescription for the
propagators that originated the iǫ rule for the denominators is crucial for the Wick rotation
to be possible.

Complement C.2

In the argument that allowed for the Wick rotation it was claimed that the integrals over the circles
at infinite vanish. Let us be more careful on this point. We just start with the simplest integral,

I0,m =

∫
ddk

(2π)d
1

[k2 − C + iǫ]
m (C.37)

We begin by using the following representation for the denominator,

1

[k2 − C + iǫ]
= (−i)

∫ ∞

0

dz e−i z(C−k2−iǫ) (C.38)

which can verified by direct integration noticing the crucial role of the iǫ prescription. This
representation is related to the Schwinger proper time method [14]. Now we differentiate both
sides with respect to C to obtain,

1

[k2 − C + iǫ]m
=

(−i)m
Γ(m)

∫ ∞

0

dz zm−1e−i z(C−k2−iǫ) (C.39)

Now introduce this in Eq. (C.37) and separate the integral in k0. We get,

I0,m =

∫
dd−1k

(2π)d

∫
dk0

1

[k2 − C + iǫ]
m

=

∫
dd−1k

(2π)d

∫
dk0

(−i)m
Γ(m)

∫ ∞

0

dz zm−1e−i z(C−k2−iǫ)

=

∫
dd−1k

(2π)d
(−i)m
Γ(m)

∫ ∞

0

dz zm−1

∫
dk0 e−i z(C−(k0)2+~k·~k−iǫ) (C.40)
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We now go to the plane of complex k0 = |k0|(cos θ + i sin θ). Therefore

(k0)2 = |k0|2 (cos 2θ + i sin 2θ) (C.41)

and the integral in k0 will be

∫
dk0 e−i z(C−(k0)2+~k·~k−iǫ) = e−i z(C+~k·~k−iǫ)

∫
dk0e−z|k0|2 sin 2θe−iz|k0|2 cos 2θ (C.42)

and it will vanish in the circle at infinity for any value of θ. This shows that for I0,m we can perform
the Wick rotation. This is also true for the general case of Ir,m as the exponential vanishes faster
than any power. This concludes the proof that we are allowed to perform the Wick rotation that
lead to Eq. (C.36). We also note that the integration on the circles also vanish for finite values of
|k0|, as they are equal and with opposite signs.

C.4 Scalar integrals in dimensional regularization

We have seen in the last section that the scalar integrals to be calculated with dimensional
regularization had the general form of Eq. (C.36). We are now going to find a general
formula for Ir,m. We begin by writing

∫
ddkE =

∫
dk k

d−1
dΩd−1 (C.43)

where k =
√

(k0E)
2 + |~k|2 is the length of the vector kE in the euclidean space in d dimen-

sions and dΩd−1 is the solid angle that generalizes spherical coordinates in that euclidean
space. The angles are defined by

kE = k(cos θ1, sin θ1 cos θ2, sin θ1 sin θ2, sin θ1 sin θ2 cos θ3, . . . , sin θ1 · · · sin θd−1) (C.44)

We can then write ∫
dΩd−1 =

∫ π

0
sin θd−21 dθ1 · · ·

∫ 2π

0
dθd−1 (C.45)

Using now ∫ π

0
sin θm dθ =

√
π

Γ(m+1
2 )

Γ(m+2
2 )

(C.46)

where Γ(z) is the gamma function (see section C.6) we get

∫
dΩd−1 = 2

π
d
2

Γ(d2 )
(C.47)

The integration in k is done using the result

∫ ∞

0
dx

xp

(x2 + C)m
=

Γ
(
p+1
2

)
C

1
2
(p−2m+1)Γ

(
−p

2 +m− 1
2

)

2Γ(m)
. (C.48)
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and we finally get

Ir,m = iCr−m+ d
2
(−1)r−m

(4π)
d
2

Γ(r + d
2)

Γ(d2 )

Γ(m− r − d
2 )

Γ(m)
(C.49)

Before ending the section we note that the integral representation for Ir,m, Eq. (C.29), is
valid only for d < 2(m − r) to ensure convergence when k → ∞. However the final form
in Eq. (C.49) can be analytically continued for all values of d except for those where the
function Γ(m− r − d/2) has poles, that is for (see section C.6),

m− r − d

2
6= 0,−1,−2, . . . (C.50)

For the application in dimensional regularization it is convenient to rewrite Eq. (C.49)
using the relation d = 4− ǫ. We get

Ir,m = i
(−1)r−m

(4π)2

(
4π

C

) ǫ
2

C2+r−m Γ(2 + r − ǫ
2)

Γ(2− ǫ
2)

Γ(m− r − 2 + ǫ
2)

Γ(m)
(C.51)

C.5 Tensor integrals in dimensional regularization

We are frequently faced with the task of evaluating the tensor integrals of the form of
Eq. (C.7),

T̂
µ1···µp
n ≡

∫
ddk

(2π)d
kµ1 · · · kµp

D0D1 · · ·Dn−1
(C.52)

The first step is to reduce to one common denominator using the Feynman parameteriza-
tion technique. The result is,

T̂
µ1···µp
n = Γ(n)

∫ 1

0
dx1 · · ·

∫ 1−x1−···−xn−2

0
dxn−1

∫
ddk

(2π)d
kµ1 · · · kµp

[k2 + 2k · P −M2 + iǫ]n

= Γ(n)

∫ 1

0
dx1 · · ·

∫ 1−x1−···−xn−2

0
dxn−1 I

µ1···µp
n (C.53)

where we have defined

I
µ1···µp
n ≡

∫
ddk

(2π)d
kµ1 · · · kµp

[k2 + 2k · P −M2 + iǫ]n
(C.54)

that we call, from now on, the tensor integral. In principle all these integrals can be
written in terms of scalar integrals. It is however convenient to have a general formula for
them. We start with the result,

I0,n =

∫
ddk

(2π)d
1

[k2 + 2k · P −M2 + iǫ]n

=
i

(4π)d/2
(−1)n

Γ(n− d/2)

Γ(n)

(
1

C

)n−d/2
(C.55)
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where we used the result in Eq. (C.49) and use the definition of the Γ function,

(
1

C

)z
=

1

Γ(z)

∫ ∞

0
dt tz−1e−tC (C.56)

to write

∫
ddk

(2π)d
1

[k2 + 2k · P −M2 + iǫ]n
=

i

(4π)d/2
(−1)n

1

Γ(n)

∫ ∞

0
dt tn−1−d/2e−tC (C.57)

Now we use

∂

∂Pµ
1

[k2 + 2k · P −M2 + iǫ]n
= −n 2kµ

[k2 + 2k · P −M2 + iǫ]n+1 (C.58)

to show that

kµ1 · · · kµp
[k2 + 2k · P −M2 + iǫ]n

=
(−1)p

2p
Γ(n− p)

Γ(n)

∂

∂Pµ1
· · · ∂

∂Pµp

1

[k2 + 2k · P −M2 + iǫ]n−p

(C.59)
We then use Eq. (C.57) to write

∫
ddk

(2π)d
1

[k2 + 2k · P −M2 + iǫ]n−p
=

i

(4π)d/2
(−1)n−p

1

Γ(n− p)

∫ ∞

0
dt tn−p−1−d/2e−tC

=
i

16π2
(−1)n−p

(4π)ǫ/2

Γ(n− p)

∫ ∞

0
dt tn−p−3+ǫ/2e−tC

(C.60)

Inserting Eq. (C.59) and Eq. (C.60) into Eq. (C.54) we finally get the result

I
µ1···µp
n =

i

16π2
(4π)ǫ/2

Γ(n)
(−1)n

∫ ∞

0

dt

(2t)p
tn−3+ǫ/2

∂

∂Pµ1
· · · ∂

∂Pµp
e−t C (C.61)

where C = P 2 +M2. After doing the derivatives the remaining integrals can be done
using the properties of the Γ function (see section C.6). Notice that P , M2 and therefore
also C depend not only in the Feynman parameters but also in the exterior momenta.
The advantage of having a general formula is that it can be programmed [15] and all the
integrals can then be obtained automatically.

Complement C.3

The steps that lead to Eq. (C.59) and Eq. (C.60) might pose some questions when n ≤ p, as for
this case the Gamma function has poles. The other question is how are these results related to
those of section C.4? We will just give an example that illustrates this relation and shows that the
final result in Eq. (C.61) is correct.

Consider, in the notation of Eq. (C.54), the integral

Iµν2 ≡
∫

ddk

(2π)d
kµkν

[k2 + 2k · P −M2 + iǫ]
2 (C.62)
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that is n = p = 2. With the method of section C.4 we complete the square and shift the integration
momentum k → k − P . Then

Iµν2 =

∫
ddk

(2π)d
kµkν

[k2 − C + iǫ]
2 +

∫
ddk

(2π)d
PµP ν

[k2 − C + iǫ]
2 (C.63)

where we have used the fact that the odd terms in k vanish. We obtain therefore,

Iµν2 =
1

d
gµνI1,2 + PµP νI0,2 (C.64)

Now we use Eq. (C.51) and the properties of the Γ function (see section C.6) to obtain

I0,2 =
i

16π2
[∆ǫ − lnC +O(ǫ)] ,

1

d
I1,2 =

i

16π2

C

2
[∆ǫ + 1− lnC +O(ǫ)] (C.65)

where

∆ǫ =
2

ǫ
− γ + ln 4π (C.66)

Putting everything together we finally obtain,

Iµν2 =
i

16π2

1

2
[Cgµν(∆ǫ + 1− lnC) + 2(∆ǫ − lnC)PµP ν ] +O(ǫ) (C.67)

We now use Eq. (C.61) that for our case reads

Iµν2 =
i

16π2

(4π)ǫ/2

Γ(2)

∫ ∞

0

dt

(2t)2
t−1+ǫ/2 ∂

∂Pµ

∂

∂Pν
e−t C (C.68)

Now
∂

∂Pµ

∂

∂Pν
e−t C =

[
(−2t)gµν + (−2t)2PµP ν

]
e−t C (C.69)

and therefore

Iµν2 =
i

16π2
(4π)ǫ/2

[
−1

2
gµν

∫ ∞

0

dt t−2+ǫ/2e−t C + PµP ν

∫ ∞

0

dt t−1+ǫ/2e−t C

]

=
i

16π2
(4π)ǫ/2

[
−1

2
gµνC1−ǫ/2Γ(−1 +

ǫ

2
) + PµP νC−ǫ/2Γ(

ǫ

2
)

]

=
i

16π2

1

2
[Cgµν(∆ǫ + 1− lnC) + 2(∆ǫ − lnC)PµP ν ] +O(ǫ) (C.70)

where we have used the definition of the Γ function, Eq. (C.72). This coincides exactly with what
we have obtained before in Eq. (C.67).

C.6 Γ function and useful relations

The Γ function is defined by the integral

Γ(z) =

∫ ∞

0
tz−1e−tdt (C.71)

or equivalently
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∫ ∞

0
tz−1e−µtdt = µ−zΓ(z) (C.72)

The function Γ(z) has the following important properties

Γ(z + 1) = zΓ(z)

Γ(n+ 1) = n! (C.73)

Another related function is the logarithmic derivative of the Γ function, with the proper-
ties,

ψ(z) =
d

dz
ln Γ(z) (C.74)

ψ(1) = −γ (C.75)

ψ(z + 1) = ψ(z) +
1

z
(C.76)

where γ is the Euler constant. The function Γ(z) has poles for z = 0,−1,−2, · · · . Near
the pole z = −m we have (ǫ→ 0)

Γ(−m+ ǫ) =
(−1)m

m!

1

ǫ
+

(−1)m

m!
ψ(m+ 1) +O(ǫ) (C.77)

From this we conclude that when ǫ→ 0

Γ
( ǫ
2

)
=

2

ǫ
+ ψ(1) +O(ǫ) Γ(−n+

ǫ

2
) =

(−1)n

n!

[
2

ǫ
+ ψ(n+ 1)

]
(C.78)

For positive integers the function Γ(z) has no poles. But as we have to expand everything
up to order ǫ, before making ǫ → 0, we need the expansion near the positive integers.
Using the definition in Eq. (C.74) we get for a general n, up to order ǫ

Γ(n+ ǫ) = Γ(n) + Γ(n)ψ(n) ǫ (C.79)

giving, in particular,

Γ(1 +
ǫ

2
) = 1− γ

ǫ

2
+O(ǫ2) (C.80)

Using these results we can expand our integrals in powers of ǫ and separate the divergent
and finite parts. For instance for the one of the integrals of the self-energy,

I0,2 =
i

(4π)2

(
4π

C

) ǫ
2

Γ(
ǫ

2
)

=
i

16π2

[
2

ǫ
− γ + ln 4π − lnC +O(ǫ)

]
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=
i

16π2
[∆ǫ − lnC +O(ǫ)] (C.81)

where we have introduced the notation

∆ǫ =
2

ǫ
− γ + ln 4π (C.82)

for a combination that will appear in all expressions. In a similar way,

I1,2 =
i

(4π)2
(−1)

(
4π

C

) ǫ
2

C
Γ(3− ǫ

2)

Γ(2− ǫ
2)

Γ(−1 + ǫ
2)

Γ(2)

=
i

(4π)2
2C

[
∆ǫ +

1

2
− lnC

]
+O(ǫ) (C.83)

C.7 Explicit formulæ for the 1–loop integrals

Although we have presented in the previous sections the general formulæ for all the inte-
grals that appear in 1–loop, Eqs. (C.51) and (C.61), in practice it is convenient to have
expressions for the most important cases with the expansion on the ǫ already done. The
results presented below were generated with the Mathematica package OneLoop [15] from
the general expressions. In these results the integration on the Feynman parameters has
still to be done (see Eq. (C.53)). This is in general a difficult problem and we will present
in section C.9 an alternative way of expressing these integrals more convenient for a nu-
merical evaluation.

C.7.1 Tadpole integrals

With the definitions of Eqs. (C.51) and (C.61) we get

I0,1 =
i

16π2
C(1 + ∆ǫ − lnC)

Iµ1 = 0

Iµν1 =
i

16π2
1

8
C2 gµν(3 + 2∆ǫ − 2 lnC) (C.84)

where for the tadpole integrals

P = 0 ; C = m2 (C.85)

because there are no Feynman parameters and there is only one mass. In this case the
above results are final.
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C.7.2 Self–Energy integrals

For the integrals with two denominators we get,

I0,2 =
i

16π2
(∆ǫ − lnC)

Iµ2 =
i

16π2
(−∆ǫ + lnC)Pµ

Iµν2 =
i

16π2
1

2

[
Cgµν(1 + ∆ǫ − lnC) + 2(∆ǫ − lnC)PµP ν

]

Iµνα2 =
i

16π2
1

2

[
− Cgµν(1 + ∆ǫ − lnC)Pα − Cgνα(1 + ∆ǫ − lnC)Pµ

− Cgµα(1 + ∆ǫ − lnC)P ν − 2(∆ǫ − lnC)PαPµP ν
]

(C.86)

where, with the notation and conventions of Fig. (C.1), we have

Pµ = x rµ1 ; C = x2 r21 + (1− x)m2
2 + xm2

1 − x r21 (C.87)

C.7.3 Triangle integrals

For the integrals with three denominators we get,

I0,3 =
i

16π2
−1

2C

Iµ3 =
i

16π2
1

2C
Pµ

Iµν3 =
i

16π2
1

4C

[
Cgµν(∆ǫ − lnC)− 2PµP ν

]

Iµνα3 =
i

16π2
1

4C

[
Cgµν(−∆ǫ + lnC)Pα + Cgνα(−∆ǫ + lnC)Pµ

+ Cgµα(−∆ǫ + lnC)P ν + 2PαPµP ν
]

Iµναβ3 =
i

16π2
1

8C

[
C2 (1 + ∆ǫ − lnC)

(
gµαgνβ + gµβgνα + gαβgµν

)

+ 2C (∆ǫ − lnC)
(
gµνPαP β + gνβPαPµ + gναP βPµ + gµαP βP ν

+gµβPαP ν + gαβPµP ν
)
− 4PαP βPµP ν

]
(C.88)

where
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Pµ = x1 r
µ
1 + x2 r

µ
2

C = x21 r
2
1 + x22 r

2
2 + 2x1 x2 r1 · r2 + x1m

2
1 + x2m

2
2

+(1− x1 − x2)m
2
3 − x1 r

2
1 − x2 r

2
2 (C.89)

C.7.4 Box integrals

I0,4 =
i

16π2
1

6C2

Iµ4 =
i

16π2
−1

6C2
Pµ

Iµν4 =
i

16π2
−1

12C2

[
Cgµν − 2PµP ν

]

Iµνα4 =
i

16π2
1

12C2

[
C (gµνPα + gναPµ + gµαP ν)− 2PαPµP ν

]

Iµναβ4 =
i

16π2
1

24C2

[
C2 (∆ǫ − lnC)

(
gµαgνβ + gµβgνα + gαβgµν

)

− 2C
(
gµνPαP β + gνβPαPµ + gναP βPµ + gµαP βP ν

+ gµβPαP ν + gαβPµP ν
)
+ 4PαP βPµP ν

]
(C.90)

where

Pµ = x1 r
µ
1 + x2 r

µ
2 + x3 r

µ
3

C = x21 r
2
1 + x22 r

2
2 + x23 r

2
3 + 2x1 x2 r1 · r2 + 2x1 x3 r1 · r3 + 2x2 x3 r2 · r3

+x1m
2
1 + x2m

2
2 + x3m

2
3 + (1− x1 − x2 − x3)m

2
4

−x1 r21 − x2 r
2
2 − x3 r

2
3 (C.91)

C.8 Divergent part of 1–loop integrals

When we want to study the renormalization of a given theory it is often convenient to have
expressions for the divergent part of the one-loop integrals, with the integration on the
Feynman parameters already done. We present here the results for the most important
cases. These divergent parts were calculated with the help of the package OneLoop [15].
The results are for the functions T̂

µ,µ2,···µn
n defined in Eq. (C.52).
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C.8.1 Tadpole integrals

Div
[
T̂1

]
=

i

16π2
∆ǫm

2

Div
[
T̂ µ1

]
= 0

Div
[
T̂ µν1

]
=

i

16π2
1

4
∆ǫm

4 gµν (C.92)

C.8.2 Self–Energy integrals

Div
[
T̂2

]
=

i

16π2
∆ǫ

Div
[
T̂ µ2

]
=

i

16π2

(
−1

2

)
∆ǫ r

µ
1

Div
[
T̂ µν2

]
=

i

16π2
1

12
∆ǫ

[
(3m2

1 + 3m2
2 − r21)g

µν + 4rµ1 r
ν
1

]

Div
[
T̂ µνα2

]
=

i

16π2

(
− 1

24

)
∆ǫ

[
(4m2

1 + 2m2
2 − r21) (g

µνrα1 + gναrµ1 + gµαrν1 )

+ 6 rα1 r
µ
1 r

ν
1

]
(C.93)

C.8.3 Triangle integrals

Div
[
T̂3

]
= 0

Div
[
T̂ µ3

]
= 0

Div
[
T̂ µν3

]
=

i

16π2
1

4
∆ǫ g

µν

Div
[
T̂ µνα3

]
=

i

16π2

(
− 1

12

)
∆ǫ

[
gµν(rα1 + rα2 ) + gνα(rµ1 + rµ2 ) + gµα(rν1 + rν2 )

]

Div
[
T̂ µναβ3

]
=

i

16π2
1

48
∆ǫ

[
(2m2

1 + 2m2
2 + 2m2

3)
(
gµαgνβ + gαβgµν + gµβgνα

)

+gαβ
[
2rµ1 r

ν
1 + rµ1 r

ν
2 + (r1 ↔ r2)

]
+ gµβ

[
2rα1 r

ν
1 + rα1 r

ν
2 + (r1 ↔ r2)

]

+gνβ
[
2rα1 r

µ
1 + rα1 r

µ
2 + (r1 ↔ r2)

]
+ gµν

[
2rα1 r

β
1 + rα1 r

β
2 + (r1 ↔ r2)

]

+gµα
[
2rβ1 r

ν
1 + rβ1 r

ν
2 + (r1 ↔ r2)

]
+ gνα

[
2rβ1 r

µ
1 + rβ1 r

µ
2 + (r1 ↔ r2)

]
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+
(
−r21 + r1 · r2 − r22

) (
gµαgνβ + gαβgµν + gµβgνα

)]
(C.94)

C.8.4 Box integrals

Div
[
T̂4

]
= Div

[
T̂ µ4

]
= Div

[
T̂ µν4

]
= Div

[
T̂ µνα4

]
= 0

Div
[
T̂ µναβ4

]
=

i

16π2
1

24
∆ǫ

[
gµνgαβ + gµβgαν + gµαgνβ

]
(C.95)

C.9 Passarino-Veltman Integrals

C.9.1 The general definition

The description of the previous sections works well if one just wants to calculate the
divergent part of a diagram or to show the cancellation of divergences in a set of diagrams.
If one actually wants to numerically calculate the integrals the task is normally quite
complicated. Except for the self-energy type of diagrams the integration over the Feynman
parameters is normally quite difficult.

To overcome this problem a scheme was first proposed by Passarino and Veltman [16].
These scheme with the conventions of [17, 18] was latter implemented in the Mathematica
package FeynCalc [18, 19] and, for numerical evaluation, in the LoopTools package [20].
The numerical evaluation follows the code developed earlier by van Oldenborgh [21].

We will now describe this scheme. We will write the generic one-loop tensor integral
as

T
µ1···µp
n ≡ (2πµ)4−d

iπ2

∫
ddk

kµ1 · · · kµp
D0D1D2 · · ·Dn−1

(C.96)

where we follow for the momenta the conventions of section C.2 and Fig. C.1 and defined
D0 ≡ Dn and mn = m0 so that D0 = k2 − m2

0 (remember that rn ≡ r0 = 0. The
main difference between this definition and the previous one Eq. (C.7) is that a factor of
i

16π2 is taken out. This is because, as we have seen in section C.3 these integrals always
give that prefactor. So with our new convention that prefactor has to included in the
end. Factoring out the i has also the convenience of dealing with real functions in many
cases.2 From all those integrals in Eq. (C.96) the scalar integrals are, has we have seen,
of particular importance and deserve a special notation. It can be shown that there are
only four independent such integrals, namely (4− d = ǫ)

A0(m
2
0)=

(2πµ)ǫ

iπ2

∫
ddk

1

k2 −m2
0

(C.97)

B0(r
2
10,m

2
0,m

2
1)=

(2πµ)ǫ

iπ2

∫
ddk

1∏

i=0

1[
(k + ri)2 −m2

i

] (C.98)

2 The one loop functions are in general complex, but in some cases they can be real. These cases
correspond to the situation where cutting the diagram does not corresponding to a kinematically allowed
process.
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C0(r
2
10, r

2
12, r

2
20,m

2
0,m

2
1,m

2
2)=

(2πµ)ǫ

iπ2

∫
ddk

2∏

i=0

1[
(k + ri)2 −m2

i

] (C.99)

D0(r
2
10, r

2
12, r

2
23, r

2
30, r

2
20, r

2
13,m

2
0,m

2
1, . . . ,m

2
3)=

(2πµ)ǫ

iπ2

∫
ddk

3∏

i=0

1[
(k + ri)2 −m2

i

](C.100)

where
r2ij = (ri − rj)

2 ; ∀ i, j = (0, n − 1) (C.101)

Remember that with our conventions r0 = 0 so r2i0 = r2i . In all these expressions the iǫ
part of the denominator factors is suppressed. The general one-loop tensor integrals are
not independent. Their decomposition is not unique. We follow the conventions of [18, 20]
to write

Bµ ≡ (2πµ)4−d

iπ2

∫
ddk kµ

1∏

i=0

1[
(k + ri)2 −m2

i

] (C.102)

Bµν ≡ (2πµ)4−d

iπ2

∫
ddk kµkν

1∏

i=0

1[
(k + ri)2 −m2

i

] (C.103)

Cµ ≡ (2πµ)4−d

iπ2

∫
ddk kµ

2∏

i=0

1[
(k + ri)2 −m2

i

] (C.104)

Cµν ≡ (2πµ)4−d

iπ2

∫
ddk kµkν

2∏

i=0

1[
(k + ri)2 −m2

i

] (C.105)

Cµνρ ≡ (2πµ)4−d

iπ2

∫
ddk kµkνkρ

2∏

i=0

1[
(k + ri)2 −m2

i

] (C.106)

Dµ ≡ (2πµ)4−d

iπ2

∫
ddk kµ

3∏

i=0

1[
(k + ri)2 −m2

i

] (C.107)

Dµν ≡ (2πµ)4−d

iπ2

∫
ddk kµkν

3∏

i=0

1[
(k + ri)2 −m2

i

] (C.108)

Dµνρ ≡ (2πµ)4−d

iπ2

∫
ddk kµkνkρ

3∏

i=0

1[
(k + ri)2 −m2

i

] (C.109)

Dµνρσ ≡ (2πµ)4−d

iπ2

∫
ddk kµkνkρkσ

3∏

i=0

1[
(k + ri)2 −m2

i

] (C.110)

These integrals can be decomposed in terms of (reducible) functions in the following way:

Bµ = rµ1 B1 (C.111)

Bµν = gµν B00 + rµ1 r
ν
1 B11 (C.112)

Cµ = rµ1 C1 + rµ2 C2 (C.113)

Cµν = gµν C00 +
2∑

i=1

rµi r
ν
j Cij (C.114)
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Cµνρ =

2∑

i=1

(gµνrρi + gνρrµi + gρµrνi ) C00i +

2∑

i,j,k=1

rµi r
ν
j r
ρ
k Cijk (C.115)

Dµ =

3∑

i=1

rµi Di (C.116)

Dµν = gµν D00 +

3∑

i,j=1

rµi r
ν
j Dij (C.117)

Dµνρ =
3∑

i=1

(gµνrρi + gνρrµi + gρµrνi ) D00i +
3∑

i,j,k=1

rµi r
ν
j r
ρ
kDijk (C.118)

Dµνρσ = (gµνgρσ + gµρgνσ + gµσgνρ) D0000

+
3∑

i,j=1

(
gµνrρi r

σ
j + gνρrµi r

σ
j + gµρrνi r

σ
j + gµσrνi r

ρ
j (C.119)

+gνσrµi r
ρ
j + gρσrµi r

ν
j

)
D00ij

+

3∑

i,j,k,l=1

rµi r
ν
j r
ρ
kr
σ
l Dijkl (C.120)

All coefficient functions have the same arguments as the corresponding scalar functions
and are totally symmetric in their indices. In the FeynCalc [22] package one generic
notation is used,

PaVe
[
i, j, . . . , {r210, r212, . . .}, {m2

0,m
2
1, . . .}

]
(C.121)

for instance
B11(r

2
10,m

2
0,m

2
1) = PaVe

[
1, 1, {r210}, {m2

0,m
2
1}
]

(C.122)

All these coefficient functions are not independent and can be reduced to the scalar func-
tions. FeynCalc provides the command PaVeREduce[...] to accomplish that. This is
very useful if one wants to check for cancellation of divergences or for gauge invariance
where a number of diagrams have to cancel.

C.9.2 The divergences

The package LoopTools provides ways to numerically check for the cancellation of diver-
gences. However it is useful to know the divergent part of the Passarino-Veltman integrals.
Only a small number of these integrals are divergent. They are

Div
[
A0(m

2
0)
]

= ∆ǫm
2
0 (C.123)

Div
[
B0(r

2
10,m

2
0,m

2
1)
]

= ∆ǫ (C.124)

Div
[
B1(r

2
10,m

2
0,m

2
1)
]

= −1

2
∆ǫ (C.125)

Div
[
B00(r

2
10,m

2
0,m

2
1)
]

=
1

12
∆ǫ

(
3m2

0 + 3m2
1 − r210

)
(C.126)

Div
[
B11(r

2
10,m

2
0,m

2
1)
]

=
1

3
∆ǫ (C.127)
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Div
[
C00(r

2
10, r

2
12, r

2
20,m

2
0,m

2
1,m

2
2)
]

=
1

4
∆ǫ (C.128)

Div
[
C001(r

2
10, r

2
12, r

2
20,m

2
0,m

2
1,m

2
2)
]

= − 1

12
∆ǫ (C.129)

Div
[
C002(r

2
10, r

2
12, r

2
20,m

2
0,m

2
1,m

2
2)
]

= − 1

12
∆ǫ (C.130)

Div
[
D0000(r

2
10, . . . ,m

2
0, . . .)

]
=

1

24
∆ǫ (C.131)

(C.132)

These results were obtained with the package LoopTools, after reducing to the scalar
integrals with the command PaVeReduce, but they can be verified by comparing with our
results of section C.8, after factoring out the i/(16π2).

C.9.3 Useful results for PV integrals

Although the PV approach is intended primarily to be used numerically there are situations
where one wants to have explicit results. These can be useful to check cancellation of
divergences or because in some simple cases the integrals can be done analytically. We
note that as our conventions for the momenta are the same in sections C.9 and C.7 one
can read immediately the integral representation of the PV in terms of the Feynman
parameters just by comparing both expressions, not forgetting to take out the i/(16π2)
factor. For instance, from Eq. (C.114) for Cµν and Eq. (C.88) for Iµν3 we get

C12(r
2
1, r

2
12, r

2
2 ,m

2
0,m

2
1,m

2
2) = −Γ(3)

2

4

∫ 1

0
dx1

∫ 1−x1

0
dx2

x1x2
C

(C.133)

with

C = x21 r
2
1 + x22 r

2
2 + x1 x2 (r

2
1 + r22 − r212) + x1m

2
1 + x2m

2
2

+(1− x1 − x2)m
2
0 − x1 r

2
1 − x2 r

2
2 (C.134)

Explicit expression for A0

This integral is trivial. There is no Feynman parameter and the integral can be read from
Eq. (C.84). We get, after factoring out the i/(16π2),

A0(m
2) = m2

(
∆ǫ + 1− ln

m2

µ2

)
(C.135)

Explicit expressions for the B functions

Function B0

The general form of the integral B0(p
2,m2

1,m
2
2) can be read from Eq. (C.86). We obtain
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B0(p
2,m2

0,m
2
1) = ∆ǫ −

∫ 1

0
dx ln

[−x(1− x)p2 + xm2
1 + (1− x)m2

0

µ2

]
(C.136)

From this expression one can easily get the following results,

B0(0,m
2
0,m

2
1) = ∆ǫ + 1−

m2
0 ln

m2
0

µ2
−m2

1 ln
m2

1
µ2

m2
0 −m2

1

(C.137)

B0(0,m
2
0,m

2
1) =

A0(m
2
0)−A0(m

2
1)

m2
0 −m2

1

(C.138)

B0(0,m
2,m2) = ∆ǫ − ln

m2

µ2
=
A0(m

2)

m2
− 1 (C.139)

B0(m
2, 0,m2) = ∆ǫ + 2− ln

m2

µ2
=
A0(m

2)

m2
+ 1 (C.140)

B0(0, 0,m
2) = ∆ǫ + 1− ln

m2

µ2
=
A0(m

2)

m2
(C.141)

Function B′0

The derivative of the B0 function with respect to p2 appears many times. From Eq. (C.136)
one can derive an integral representation,

B′0(p
2,m2

0,m
2
1) =

∫ 1

0
dx

x(1− x)

−p2x(1− x) + xm2
1 + (1− x)m2

0

(C.142)

An important particular case corresponds to B′0(m
2,m2

0,m
2) that appears in the self-

energy of the electron. In this case m is the electron mass and m0 = λ is the photon mass
that one has to introduce to regularize the IR divergent integral. The integral in this case
reduces to

B′0(m
2, λ2,m2) =

∫ 1

0
dx

x(1− x)

m2x2 + (1− x)λ2

= − 1

m2
− 1

2m2
ln
λ2

m2
(C.143)

It is clear that in the limit λ → 0 this integral diverges. Another limit that it is useful
(for instance is needed in the vacuum polarization, see section C.10.1), is

B′0(0,m
2,m2) =

1

6m2
(C.144)

that can be easily obtained from Eq. (C.142).
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Function B1

The explicit expression can be read from Eq. (C.86). We have

B1(p
2,m2

0,m
2
1) = −1

2
∆ǫ +

∫ 1

0
dxx ln

[−x(1− x)p2 + xm2
1 + (1− x)m2

0

µ2

]
(C.145)

For p2 = 0 this integral can be easily evaluated to give

B1(0,m
2
0,m

2
1) = −1

2
∆ǫ +

1

2
ln

(
m2

0

µ2

)
+

−3 + 4t− t2 − 4t ln t+ 2t2 ln t

4(−1 + t)2
(C.146)

where we defined

t =
m2

1

m2
0

(C.147)

From Eq. (C.146) one can shown that even for p2 = 0 B1 is not a symmetric function of
the masses,

B1(p
2,m2

0,m
2
1) 6= B1(p

2,m2
1,m

2
0) (C.148)

As this might appear strange let us show with one example how the coefficient functions
are tied to our conventions about the order of the momenta and Feynman parameters. Let
us consider the contribution to the self-energy of a fermion of mass mf of the exchange of
a scalar with mass ms. We can consider the two choices in Fig. C.5,

q

q

q+r1

q+r1

(r1=p) (r1=-p)

ppp p

Figure C.5:

Now with the first choice (diagram on the left of Fig. C.5) we have

−iΣ1 =
i

16π2

[
(p/+mf )B0(p

2,m2
s,m

2
f ) + p/B1(p

2,m2
s,m

2
f )
]

=
i

16π2

[
p/
(
B0(p

2,m2
s,m

2
f ) +B1(p

2,m2
s,m

2
f )
)
+mfB0(p

2,m2
s,m

2
f )
]
(C.149)

while with the second choice we have

− iΣ2 =
i

16π2

[
− p/B1(p

2,m2
f ,m

2
s) +mfB0(p

2,m2
f ,m

2
s)
]

(C.150)

How can these two expressions be equal? The reason has precisely to do with the non
symmetry of B1 with respect to the mass entries. In fact from Eq. (C.145) we have
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B1(p
2,m2

0,m
2
1) = −1

2
∆ǫ +

∫ 1

0
dxx ln

[−x(1− x)p2 + xm2
1 + (1− x)m2

0

µ2

]

= −1

2
∆ǫ +

∫ 1

0
dx(1− x) ln

[−x(1− x)p2 + (1− x)m2
1 + xm2

0

µ2

]

= −1

2
∆ǫ +

(
∆ǫ −B0(p

2,m2
1,m

2
0)
)
−
(
1

2
∆ǫ +B1(p

2,m2
1,m

2
0)

)

= −
(
B0(p

2,m2
1,m

2
0) +B1(p

2,m2
1,m

2
0)
)

(C.151)

where we have changed variables (x → 1 − x) in the integral and used the definitions of
B0 and B1. We have then, remembering that B0(p

2,m2
s,m

2
f ) = B0(p

2,m2
f ,m

2
s),

B1(p
2,m2

f ,m
2
s) = −

(
B0(p

2,m2
s,m

2
f ) +B1(p

2,m2
s,m

2
f )
)

(C.152)

and therefore Eqs. (C.149) and (C.150) are equivalent.

Explicit expressions for the C functions

In Eq. (C.133) we have already given the general form of C12. The other functions are
very similar. In the following we just present the results for the particular case of p2 = 0.
This case is important in many situations where it is a good approximation to neglect the
external momenta in comparison with the masses of the particles in the loop. We also
warn the reader that the coefficient functions Ci, Cij obtained from LoopTools are not
well defined in this limit. Hence there is some utility in given them here.

Function C0

C0(0, 0, 0,m
2
0,m

2
1,m

2
2) = −Γ(3)

1

2

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

x1m
2
1 + x2m

2
2 + (1− x1 − x2)m

2
0

= − 1

m2
0

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

x1t1 + x2t2 + (1− x1 − x2)

= − 1

m2
0

−t1 ln t1 + t1t2 ln t1 + t2 ln t2 − t1t2 ln t2
(−1 + t1)(t1 − t2)(−1 + t2)

(C.153)

where

t1 =
m2

1

m2
0

; t2 =
m2

2

m2
0

(C.154)

Using the properties of the logarithms one can show that in this limit C0 is a symmetric
function of the masses. This expression is further simplified when two of the masses are
equal, as it happens in the µ→ eγ problem. Then t = t1 = t2,

C0(0, 0, 0,m
2
0,m

2
1,m

2
1) = − 1

m2
0

−1 + t− ln t

(−1 + t)2
(C.155)
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in agreement with Eq.(20) of [23]. In the case of equal masses for all the loop particles we
have

C0(0, 0, 0,m
2
0 ,m

2
0,m

2
0) = − 1

2m2
0

(C.156)

Before we close this section on C0 there is another particular case when it is useful to have
an explicit case for it. This in the case when it is IR divergent as in the QED vertex. The
function needed is C0(m

2,m2, 0,m2, λ2,m2). Using the definition we have

C0(m
2,m2, 0,m2, λ2,m2) = −

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

m2(1− 2x1 + x21) + x1λ2

= −
∫ 1

0
dx1

1− x1
m2(1− x1)2 + x1λ2

= −
∫ 1

0
dx

x

m2x2 + (1− x)λ2

=
1

2m2
ln
λ2

m2
= −B′0(m2, λ2,m2)− 1

m2
(C.157)

We have verified numerically, using LoopTools[20, 21], that Eqs. (C.157), (C.143) and
(C.144) are verified.

Function C00

C00(0, 0, 0,m
2
0,m

2
1,m

2
2) = Γ(3)

1

4

∫ 1

0
dx1

∫ 1−x1

0
dx2

[
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4
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]

=
1

4

(
∆ǫ − ln
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0
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)
+

3

8
− t21

4(t1 − 1)(t1 − t2)
ln t1

+
t22

4(t2 − 1)(t1 − t2)
ln t2 (C.158)

where, as before

t1 =
m2

1

m2
0

; t2 =
m2

2

m2
0

(C.159)

Using the properties of the logarithms one can show that in this limit C00 is a symmetric
function of the masses. This expression is further simplified when two of the masses are
equal. Then t = t1 = t2,

C00(0, 0, 0,m
2
0,m

2
1,m

2
1) =

1

4

(
∆ǫ − ln

m2
0

µ2

)
− −3 + 4t− t2 − 4t ln t+ 2t2 ln t

8(t− 1)2

= −1

2
B1(0,m

2
0,m

2
1) (C.160)



C.9. PASSARINO-VELTMAN INTEGRALS 347

Functions Ci and Cij

We recall that the definition of the coefficient functions is not unique, it is tied to a
particular convention for assigning the loop momenta and Feynman parameters, as shown
in Fig. C.1. For the particular case of the C functions we show our conventions in Fig. C.6.

1 2

3

x1 x2

1-x1-x2

(q,m0)

(q+r1,m1) (q+r2,m2)

p

pp

Figure C.6:

With the same techniques we obtain,

C1(0, 0, 0,m
2
0,m

2
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2
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0
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(C.161)
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(C.162)

Cij(0, 0, 0,m
2
0,m

2
1,m

2
2) = − 1

m2
0

∫ 1

0
dx1

∫ 1−x1

0
dx2

xixj
x1t1 + x2t2 + (1− x1 − x2)

(C.163)

where we have not written explicitly the Cij for i, j = 1, 2 because they are rather lengthy.
However a simple Fortran program can be developed [15] to calculate all the three point
functions in the zero external limit case. This is useful because in this case some of
the functions from LoopTools will fail. Notice that the Ci and Cij functions are not
symmetric in their arguments. This a consequence of their non-uniqueness, they are tied
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to a particular convention. This is very important when ones compares with other results.
However using their definition one can get some relations. For instance we can show

C1(0, 0, 0,m
2
0,m

2
1,m

2
2) = C1(0, 0, 0,m

2
2,m

2
1,m

2
0) (C.164)
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2
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2
2,m

2
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2
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−C2(0, 0, 0,m
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2
1,m

2
0) (C.165)

In the limit m1 = m2 we get the simple expressions,
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2
0,m

2
1,m

2
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2
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2
1,m

2
1)
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0
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4(−1 + t)3
(C.166)
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2
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2
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2
0,m

2
1,m

2
1) = 2 C12(0, 0, 0,m

2
0,m

2
1,m

2
1)

= − 1

m2
0

−11 + 18t− 9t2 + 2t3 − 6 ln t

18(−1 + t)4
(C.167)

in agreement with Eqs. (21-22) of [23]. The case of masses equal gives

C1(0, 0, 0,m
2
0,m

2
0,m

2
0) = C2(0, 0, 0,m

2
0,m

2
0,m

2
0) =

1

6m2
0

(C.168)

C11(0, 0, 0,m
2
0,m

2
0,m

2
0) = C22(0, 0, 0,m

2
0,m

2
0,m

2
0) = − 1

12m2
0

(C.169)

C12(0, 0, 0,m
2
0,m

2
0,m

2
0) = − 1

24m2
0

(C.170)

The package PVzem

As we said before, in many situations it is a good approximation to neglect the external
momenta. In this case, the loop functions are easier to evaluate and one approach is
for each problem to evaluate them. However our approach here is more in the direction
of automatically evaluating the one-loop amplitudes. If one does that with the use of
FeynCalc, has we have been doing, then the result is given in terms of standard functions
that can be numerically evaluated with the package LoopTools. However this package has
problems with this limit. This is because this limit is unphysical. Let us illustrate this
point calculating the functions C1(m

2, 0, 0,m2
S ,m

2
F ,m

2
F ) and C2(m

2, 0, 0,m2
S ,m

2
F ,m

2
F ) for

mB = 100 GeV, mF = 80 GeV and m2 ranging from 10−6 to 100 GeV. To better illustrate
our point we show two plots with different scales on the axis.

In these plots, CEx
i are the exact Ci functions calculated with LoopTools and CAp

i are
the Ci calculated in the zero momenta limit. We can see that only for external momenta
(in this case corresponding to the mass m2) close enough to the masses of the particles
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Figure C.7:

in the loop, the exact result deviates from the approximate one. However for very small
values of the external momenta, LoopTools has numerical problems as shown in the right
panel of Fig. C.7. To overcome this problem I have developed a Fortran package that
evaluates all the C functions in the zero external momenta limit. There are no restrictions
on the masses being equal or different and the conventions are the same as in FeynCalc

and LoopTools, for instance,

c12zem(m02,m12,m22) = c0i(cc12, 0, 0, 0,m02,m12,m22) (C.171)

where c0i(cc12, · · · ) is the LoopTools notation and c12zem(· · · ) is the notation of my
package, called PVzem. It can be obtained from the address indicated in Ref.[15]. The
approximate functions shown in Fig. C.7 were calculated using that package. We include
here the Fortran code used to produce that figure.

*************************************************************

* *

* Program LoopToolsExample *

* *

* This program calculates the values used in the plots *

* of Figure 20. For the exact results the LoopTools *

* package was used . The package PVzem was used for the *

* approximate results . *

* *

* Version of 14/05/2012 *

* *

* Author: Jorge C. Romao *

* e-mail : jorge. romao@ist .utl.pt *

*************************************************************

program LoopToolsExample

implicit none

*
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* LoopTools has to be used with FORTRAN programs with the

* extension .F in order to have the header file "looptools .h"

* preprocessed . This file includes all the definitions used

* by LoopTools .

*

* Functions c1zem and c2zem are provided by the package PVzem.

*

#include "looptools .h"

integer i

real *8 m2 ,mF2 ,mS2 ,m

real *8 lgmmin ,lgmmax ,lgm ,step

real *8 rc1 ,rc2

real *8 c1zem ,c2zem

mS2 =100.d0 **2

mF2 =80. d0 **2

*

* Initialize LoopTools . See the LoopTools manual for further

* details . There you can also learn how to set the scale MU

* and how to handle the UR and IR divergences .

*

call ltini

lgmmax=log10 (100.d0)

lgmmin=log10(1.d -6)

step =( lgmmax -lgmmin )/100. d0

lgm=lgmmin -step

open (10, file=plot.dat,status=unknown)

do i=1 ,101

lgm=lgm+step

m=10. d0 **lgm

m2=m**2

*

* In LoopTools the c0i (...) are complex functions . For the

* kinematics chosen here they are real , so we take the real

* part for comparison .

*

rc1=dble (c0i(cc1 ,m2 ,0.d0 ,0.d0 ,mS2 ,mF2 ,mF2 ))

rc2=dble (c0i(cc2 ,m2 ,0.d0 ,0.d0 ,mS2 ,mF2 ,mF2 ))

write (10 ,100)m,rc1*mS2 ,rc2*mS2 ,c1zem(mS2 ,mF2 ,mF2)*mS2 ,

& c2zem(mS2 ,mF2 ,mF2 )* mS2

enddo

100 format (5( e22 .14))

call ltexi

end

************** End of Program LoopToolsExample .F ************
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When the above program is compiled, the location of the header file looptools.h

must be known by the compiler. This is best achieved by using a Makefile. We give
below, as an example, the one that was used with the above program. Depending on the
installation details of LoopTools the paths might be different.

FC =

LT = /usr/local/lib/LoopTools

FFLAGS = -c -O -I$(LT)/ include

LDFLAGS =

LINKER = $(FC)

LIB = -L$(LT )/lib

LIBS = -looptools

.f.o:

$(FC) $(FFLAGS) $*.F

files = LoopToolsExample .o PVzem.o

all: $(files)

$(LINKER) $(LDFLAGS ) -o Example $(files) $(LIB) $(LIBS)

Explicit expressions for the D functions

Function D0

The various D functions can be calculated in a similar way. However they are rather
lengthy and have to handled numerically [15]. Here we just give D0 for the equal masses
case.

D0(0, · · · , 0,m2,m2,m2,m2) = Γ(4)
1

6

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3

1

(m2)2

=
1

m4

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3

=
1

6m4
(C.172)

C.10 Examples of 1-loop calculations with PV functions

In this section we will work out in detail a few examples of one-loop calculations using the
FeynCalc package and the Passarino-Veltman scheme.
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C.10.1 Vacuum Polarization in QED

We have done this example in section C.10.1 using the techniques described in sections C.3,
C.4 and C.5. Now we will use FeynCalc. The first step is to write the Matematica

program 3. We list it below:

(*********************** Program VacPol.m **************************)

(*

Version compatible with FeynCalc 9.2.0

Date : 01/06/2017

Author: Jorge C. Romao

email: jorge. romao@tecnico .ulisboa .pt

*)

(* First input FeynCalc *)

(* Uncomment below if you want to call from this program. If open a new

mathematica notebook and load FeynCalc from there you should not load

it again

*)

(*

<< FeynCalc ‘

*)

(* Now write the numerator of the Feynman diagram . We define the

constant

C=alpha /(4 pi)

I also use the FCE notation available since FeynCalc 6. See manual

for explanations .

*)

num := - C Tr[GA[mu] . (GS[q] + m) . GA[nu] . (GS[q]+GS[k]+m)]

(* Set some Options . This changed from previous versions *)

SetOptions [PaVeReduce ,A0ToB0 ->True ]

$LimitTo4 = True ;

(* Define the amplitude *)

amp :=num * FeynAmpDenominator [ PropagatorDenominator [q+k,m], \

PropagatorDenominator [q,m]]

(* Calculate the result *)

res :=(-I / Pi ^2) OneLoop [q,amp]

ans= PaVeReduce [res ,PaVeAutoReduce ->True ] // Simplify

(******************** End of Program VacPol.m **********************)

3One should check which version of Mathematica and FeynCalc is used, as conventions may change. We
will indicate in which version these programs were verified. Also the output may change as Mathematica
can order the terms differently. We will try to maintain in my web page [24] a version of the programs as
updated as possible.
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The output from Mathematica is:

2 2 2 2 2 2 2 2 2

Out [2]= (4 C (k + 6 m B0[0, m , m ] - 3 (k + 2 m ) B0[k , m , m ])

2 2

(k g[mu , nu] - k[mu] k[nu])) / (9 k )

Now remembering that,

C =
α

4π
(C.173)

and

iΠµν(k, ε) = −i k2P TµνΠ(k, ε) (C.174)

we get

Π(k, ε) =
α

4π

[
−4

9
− 8

3

m2

k2
B0(0,m

2,m2) +
4

3

(
1 +

2m2

k2

)
B0(k

2,m2,m2)

]
(C.175)

To obtain the renormalized vacuum polarization one needs to know the value of Π(0, ε).
To do that one has to take the limit k → 0 in Eq. (C.175). For that one uses the derivative
of the B0 function

B′0(p
2,m2

1,m
2
2) ≡

∂

∂p2
B0(p

2,m2
1,m

2
2) (C.176)

to obtain

Π(0, ε) =
α

4π

[
−4

9
+

4

3
B0(0,m

2,m2) +
8

3
m2B′0(0,m

2,m2)

]
(C.177)

Using

B′0(0,m
2,m2) =

1

6m2
(C.178)

we finally get

Π(0, ε) = −δZ3 =
α

4π

[
4

3
B0(0,m

2,m2)

]
(C.179)

and the final result for the renormalized vertex is:

ΠR(k) =
α

3π

[
−1

3
+

(
1 +

2m2

k2

)(
B0(k

2,m2,m2)−B0(0,m
2,m2)

)]
(C.180)

If we want to compare with our earlier analytical results we need to know that

B0(0,m
2,m2) = ∆ε − ln

m2

µ2
(C.181)

Then Eq. (C.180) reproduces the result of Eq. (4.54). The comparison between Eq. (C.180)
and Eq. (4.56) can be done numerically using the package LoopTools[20, 21].
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C.10.2 Electron Self-Energy in QED

In this section we repeat the usual calculation of using the Passarino-Veltman scheme. We
start with the Mathematica program,

(********************* Program SelfEnergy .m ***********************)

(*

Version compatible with FeynCalc 9.2.0

Date : 01/06/2017

Author: Jorge C. Romao

email: jorge. romao@tecnico .ulisboa .pt

*)

(* First input FeynCalc *)

(* Uncomment below if you want to call from this program. If open a new

mathematica notebook and load FeynCalc from there you should not load

it again

*)

(*

<< FeynCalc ‘

*)

(* Tell FeynCalc to reduce the result to scalar functions *)

SetOptions [PaVeReduce ,A0ToB0 ->False ,PaVeAutoReduce ->True ]

$LimitTo4 = True ;

(* Now write the numerator of the Feynman diagram . We define the

constant

C= - alpha/(4 pi)

The minus sign comes from the photon propagator . The factor

i/(16 pi ^2) is already included in this definition .

I also use the FCE notation available since FeynCalc 6. See manual

for explanations .

*)

num := C GA[mu] . (GS[p]+GS[k]+m) . GA[mu]

(* Define the amplitude *)

amp := num \

FeynAmpDenominator [ PropagatorDenominator [p+k,m], \

PropagatorDenominator [k]]

(* Calculate the result *)

res :=(-I / Pi ^2) OneLoop [k,amp]

ans=-res;
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(*

The minus sign in ans comes from the fact that -i \Sigma = diagram

*)

(* Calculate the functions A(p^2) and B(p^2) *)

A=Coefficient [ans ,DiracSlash [p],0];

B=Coefficient [ans ,DiracSlash [p],1];

(* Calculate deltm *)

delm =A + m B /. ScalarProduct [p,p]->m^2// Simplify

(* Calculate delZ2 *)

Ap2 = A /. ScalarProduct [p,p]->p2

Bp2 = B /. ScalarProduct [p,p]->p2

aux=2 m D[Ap2 ,p2] + Bp2 \

+ 2 m^2 D[Bp2 ,p2] /. D[B0[p2 ,0,m^2], p2]->DB0[p2 ,0,m^2]

aux2 = aux /. p2 ->m^2

aux3 = aux2 /. A0[m^2]->m^2 (B0[m^2,0,m^2] -1)

delZ2=Simplify [aux3 ]

(***************** End of Program SelfEnergy .m ********************)

The output from Mathematica is:

2 2

A = C (2 m - 4 m B0[p , 0, m ])

2 2 2 2 2 2 2

C (-p - m B0[0, 0, m ] + (m + p ) B0[p , 0, m ])

B= ---------------------------------------------------

2

p

2 2 2

delm = -(C m (-1 + B0[0, 0, m ] + 2 B0[m , 0, m ]))

2 2 2 2

delZ2 = C (-1 + B0[0, 0, m ] - 4 m DB0[m , 0, m ])
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We therefore get4 (in this case C = − α

4π
)

A =
αm

π

[
−1

2
+B0(p

2, 0,m2)

]
(C.184)

B =
α

4π

[
1 +

1

p2
A0(m

2)−
(
1 +

m2

p2

)
B0(p

2, 0,m2)

]
(C.185)

δm =
3αm

4π

[
−1

3
+

1

3m2
A0(m

2) +
2

3
B0(m

2, 0,m2)

]
(C.186)

One can check that Eq. (C.186) is in agreement with Eq. (4.80). For that one needs the
following relations,

A0(m
2) = m2

(
B0(m

2, 0,m2)− 1
)

(C.187)

B0(m
2, 0,m2) = ∆ε + 2− ln

m2

µ2
(C.188)

∫ 1

0
dx(1 + x) ln

m2x2

µ2
= −5

2
+

3

2
ln
m2

µ2
(C.189)

For δZ2 we get

δZ2 =
α

4π

[
2−B0(m

2, 0,m2) + 4m2B′0(m
2, λ2,m2)

]
(C.190)

This expression can be shown to be equal to Eq. (4.83) although this is not trivial. The
reason is that B′0 is IR divergent, hence the parameter λ that controls the divergence.

C.10.3 QED Vertex

In this section we repeat the usual calculation for the QED vertex using the Passarino-
Veltman scheme. The Mathematica program should by now be easy to understand. We
just list it here,

(********************* Program QEDVertex .m ***********************)

(*

Version compatible with FeynCalc 9.2.0

Date : 01/06/2017

Author: Jorge C. Romao

email: jorge. romao@tecnico .ulisboa .pt

4One should notice that the PV functions A0 and B0 with one or two zero arguments are not indepen-
dent. Different versions of FeynCalc, or different options, can give the output in different forms. To make
the connections the following relations (see Eqs. (C.138)-(C.141)) are useful,

B0(0, 0,m
2) = −1 +B0(m

2
, 0,m2), B0(0, 0, m

2) =
A0(m

2)

m2
, (C.182)

B0(0, m
2
,m

2) = −2 +B0(m
2
, 0,m2), B0(0, 0, m

2) = 1 +B0(0, m
2
m

2) (C.183)
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*)

(* First input FeynCalc *)

(* Uncomment below if you want to call from this program . If open a new

mathematica notebook and load FeynCalc from there you should not load

it again

*)

(*

<< FeynCalc ‘

*)

(* Tell FeynCalc to reduce the result to scalar functions *)

SetOptions [PaVeReduce ,A0ToB0 ->True ]

$LimitTo4 = True ;

(* Useful Function *)

TakeDTo4 = Function [exp , expaux1 = exp /. D -> 4 - eps;

expaux2 = Normal[Series[expaux1 , {eps , 0, 1}]];

c0 = Coefficient [expaux2 , eps , 0]; c1 = Coefficient [expaux2 , eps , 1];

c1div = c1 /. PaVe [0, {z1_}, {z2_ , z3_}] -> 2/eps;

expaux3 = c0 + eps c1div // Simplify ;

Simplify [expaux3 /. eps -> 0]]

(* Now write the numerator of the Feynman diagram . We define the

constant

C= alpha /(4 pi)

The kinematics is: q = p1 -p2 and the internal momenta is k.

*)

num:= Spinor[p1 ,m]. GA[ro ].(GS[p1]-GS[k]+m).GA[mu].( GS[p2]-GS[k]+m).GA[ro].

Spinor[p2 ,m]

amp:=C num \

FeynAmpDenominator [ PropagatorDenominator [k,lbd], \

PropagatorDenominator [k-p1 ,m], \

PropagatorDenominator [k-p2 ,m]]

(* Define the on -shell kinematics *)

onshell ={ ScalarProduct [p1 ,p1]->m^2, ScalarProduct [p2 ,p2]->m^2, \

ScalarProduct [p1 ,p2]->m^2-q2 /2}

(* Define the divergent part of the relevant PV functions *)

div={ PaVe [0,{ a_},{b_ ,c_}]-> Div}

res1 =(-I / Pi ^2) OneLoop [k,amp]

res=res1 /. onshell
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auxV1= res /. onshell

auxV2= PaVeReduce [auxV1]

auxV3= PaVeReduce [auxV2] /. div

divV = Simplify [Div* Coefficient [auxV3 ,Div]]

(* Check that the divergencies do not cancel *)

testdiv := Simplify [divV ]

ans1 =res;

var=Select[Variables [ans1 ],( Head [#]=== StandardMatrixElement )&]

Set @@ {var , {ME[1], ME[2], ME[3], ME [4]}}

(* Extract the different Matrix Elements

Mathematica writes the result in terms of 4 Standard Matrix

Elements . To have a simpler result we substitute these elements

by simpler expressions (ME[1], ME[2], ME[3], ME [4]).

PR=GA[6]

PL=GA[7]

{ StandardMatrixElement [u[p1 , m1] . PR. u[p2 , m2]],

StandardMatrixElement [u[p1 , m1] . PL. u[p2 , m2]],

StandardMatrixElement [u[p1 , m1] . ga[mu] . PR . u[p2 , m2]],

StandardMatrixElement [u[p1 , m1] . ga[mu] . PL . u[p2 , m2]]}

*)

(* We substitute PL and PR by scalar and vector Matrix Elements

ME [5] = StandardMatrixElement [u[p1 , m1] . u[p2 , m2 ]]}

ME [6] = StandardMatrixElement [u[p1 , m1] . GA[mu]. u[p2 , m2]]}

*)

(* We use Gordon Identity *)

ans2 = PaVeReduce [ PaVeReduce [ans1 ]]/.

{ME[1]->ME[5]- ME [2], ME[3]->ME [6]- ME [4]}// FCE // Simplify

CE5= Coefficient [ans2 , ME [5]]

CE6= Coefficient [ans2 , ME [6]]

CE51 = Coefficient [CE5 ,FV[p1 ,mu ]]

CE52 = Coefficient [CE5 ,FV[p2 ,mu ]]

ans3 =CE51 (FV[p1 ,mu]+FV[p2 ,mu ]) ME [5] + CE6 ME [6]

test1:= Simplify [CE51 -CE52 ]

test2:= Simplify [ans2 -ans3 ]
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ans4 = ans3 /. {(FV[p1 ,mu]+FV[p2 ,mu]) ME [5] -> 2 m ME [6] -2m ME [7]}

ans5 =TakeDTo4 [ans4 ]

CGamma := Coefficient [ans5 ,ME [6]]

CSigmaAux := Coefficient [ans5 ,ME [7]]

test3:= Simplify [ans5 -CGamma ME [6] -CSigmaAux ME [7]]

F2:= CSigmaAux /. lbd ->0// Simplify

delZ1aux = - CGamma /. q2 ->0 // Simplify

delZ1:= delZ1aux /. lbd ->0// Simplify

F1:= CGamma + delZ1 /. lbd ->0 // Simplify

(***************** End of Program QEDVertex .m ********************)

From this program we can obtain first the value of δZ1. We get

2 2 2 2 2 2 2 2 2

delZ1= C (B0[0, m , m ] - 2 (B0[m , 0, m ] + 2 m C0[0,m ,m ,m ,m , 0]))

which can be written as

δZ1 =
α

4π

[
1−B0(0, 0,m

2) + 2B0(0,m
2,m2)− 2B0(m

2, 0,m2)

−4m2C0(m
2,m2, 0,m2, λ2,m2)

]
(C.191)

where we have introduced a small mass for the photon in the function C0(m
2,m2, 0,m2, λ2,m2)

because it is IR divergent when λ→ 0 (see Eq. (C.157)). Using the results of Eqs. (C.139),
(C.140), (C.141) and Eq. (C.157) we can show the important result

δZ1 = δZ2 (C.192)

where δZ2 was defined in Eq. (C.190). After performing the renormalization the coefficient
F1(k

2) is finite and given by

2 2 2 2 2

2 C q2 C (8 m - q2) B0[0, m , m ] 2 C q2 B0[m , 0, m ]

F1 = --------- + --------------------------- - -------------------- -

2 2 2

4 m - q2 4 m - q2 4 m - q2

2 2 2

C (8 m - 3 q2) B0[q2 , m , m ] 2 2 2 2 2

------------------------------ - 4 C m C0[0, m , m , m , m , 0] +

2

4 m - q2

2 2 2 2 2

2 C (2 m - q2) C0[m , m , q2 , m , 0, m ]

In [5]:= F1 /. q2 ->0
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Out [5]= 0

or, expanding

2 2 2

q2 q2 B0[0, 0, m ] 2 q2 B0[0, m , m ]

F1 = C (-(---------) - --------------- + ------------------ -

2 2 2

q2 - 4 m q2 - 4 m q2 - 4 m

2 2 2 2 2 2 2 2

8 m B0[0, m , m ] 3 q2 B0[q2 , m , m ] 8 m B0[q2 , m , m ]

------------------ - ------------------- + -------------------

2 2 2

q2 - 4 m q2 - 4 m q2 - 4 m

2 2 2 2 2 2 2

2 q2 B0[m , 0, m ] 4 q2 m C0[m , m , 0, m , 0, m ]

+ ------------------ - -------------------------------- +

2 2

q2 - 4 m q2 - 4 m

4 2 2 2 2 2 2 2 2 2

16 m C0[m , m , 0, m , 0, m ] 2 q2 C0[m , m , q2 , m , 0, m ]

------------------------------ - ------------------------------- +

2 2

q2 - 4 m q2 - 4 m

2 2 2 2 2 4 2 2 2 2

12 q2 m C0[m , m , q2 , m , 0, m ] 16 m C0[m , m , q2 , m , 0, m ]

---------------------------------- - ------------------------------- )

2 2

q2 - 4 m q2 - 4 m

while the coefficient F2(q
2) does not need renormalization and it is given by,

2 2 2 2 2 2 2

-4 C m (2 + B0[0, m , m ] - 2 B0[m , 0, m ] + B0[q2 , m , m ])

F2 = --------------------------------------------------------------

2

4 m - q2

and for F2(0) we get

2 2 2 2

F2[0] = -2 C (1 + B0[0, m , m ] - B0[m , 0, m ])

Using the results of the Appendix (see Eqs. (C.138)-(C.141)) we can show that,

F2(0) =
α

2π
(C.193)

a well known result, first obtained by Schwinger even before the renormalization program
was fully understood (F2(q

2) is finite).
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C.11 Modern techniques in a real problem: µ → eγ

In the previous sections we have redone most of the QED standard textbook examples
using the PV decomposition and automatic tools. Here we want to present a more complex
example, the calculation of the partial width µ → eγ in an arbitrary theory where the
charged leptons couple to scalars and fermions, charged or neutral. This has been done in
Ref.[23] for fermions and bosons of arbitrary charge QF and QB , but for simplicity I will
consider here separately the cases of neutral and charged scalars.

C.11.1 Neutral scalar charged fermion loop

We will consider a theory with the following interactions,

AL PL + AR PR BL PL +BR PR 

F -

F -

l -

l -

S 0 S 0
)i ( i ( )

where F− is a fermion with mass mF and S0 a neutral scalar with mass mS. In fact
BL,R are not independent of AL,R but it is easier for our programming to consider them
completely general. The Feynman rule for the coupling of the photon with the lepton is
−i eQℓ γµ where e is the positron charge (for an electron Qℓ = −1). ℓ−i can be any of the
leptons but we will omit all indices in the program, the lepton being identified by its mass
and from the assumed kinematics

ℓ2(p2) → ℓ1(p1) + γ(k) (C.194)

The diagrams contributing to the process are given in Fig. C.8,

21 q

D1

D2 D3
D4

D5

D6

D7

2 2 11q q

D1 D1

1) 2) 3)

k

k

k

p ppp p p

Figure C.8:

where

D1 = q2 −m2
S ; D2 = (p2 + q)2 −m2

F ; D3 = (q + p2− k)2 −m2
F(C.195)
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D4 = D3 ; D6 = D2 ; D5 = (p2 − k)2 −m2
2 = −2p2 · k (C.196)

D7 = (p1 + k)2 −m2
1 = 2p1 · k = −D5 (C.197)

The amplitudes are

iM1 =
eQℓ

D1D2D3
u(p1) (ALPL +ARPR) (q/+ p/2 − k/+mF ) γ

µ (q/+ p/2 +mF )

(BLPL +BRPR) u(p2) εµ(k) (C.198)

iM2 =
eQℓ

D1D4D5
u(p1) (ALPL +ARPR) (q/+ p/2 − k/+mF ) (BLPL +BRPR)

(p2/− k/2 +m2) γ
µu(p2) εµ(k) (C.199)

iM3 =
eQℓ

D1D6D7
u(p1)γ

µ (p1/+ k/ +mF ) (ALPL +ARPR) (q/+ p/2 +m1)

(BLPL +BRPR) u(p2) εµ(k) (C.200)

On-shell the amplitude will take the form (we have p1 · k = p2 · k)

iM = 2p2 · ε(k)
[
CLu(p1)PLu(p2) + CRu(p1)PRu(p2)

]

+DLu(p1)ε/PLu(p2) +DRu(p1)ε/PRu(p2) (C.201)

If we write the amplitude as

M =Mµ ε
µ(k) (C.202)

then gauge invariance implies

Mµk
µ = 0 (C.203)

Imposing this condition on Eq. (C.201) we get the relations

DL = −m2CR −m1CL (C.204)

DR = −m1CR −m2CL (C.205)

Assuming these relations the amplitude can be written as

iM =CL [2p2 · ε(k)u(p1)PLu(p2)−m1u(p1)ε/(k)PLu(p2)−m2u(p1)ε/(k)PRu(p2)]

+CR [2p2 · ε(k)u(p1)PRu(p2)−m2u(p1)ε/(k)PLu(p2)−m1u(p1)ε/(k)PRu(p2)](C.206)

and the decay width will be
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Γ =
1

16πm3
2

(
m2

2 −m2
1

)3 (|CL|2 + |CR|2
)

(C.207)

As the coefficient of p2 · ε(k) only comes from the 3-point function (amplitude M1) this
justifies the usual procedure of just calculating that coefficient and forgetting about the
self-energies (amplitudes M2 and M3). However these amplitudes are crucial for the can-
cellation of divergences and for gauge invariance. Now we will show the power of the auto-
matic FeynCalc [22] program and calculate both the coefficients CL,R and DL,R, showing
the cancellation of the divergences and that the relations, Eqs. (C.204) and (C.205) needed
for gauge invariance are satisfied. We start by writing the mathematica program:

(************************ Program mueg -ns.m **************************)

(*

This program calculates the COMPLETE (both the 3 point amplitude and

the two self energy type on each external line ) amplitudes for

\mu -> e \gamma when the fermion line in the loop is charged and the

neutral line is a scalar. The \mu has momentum p2 and mass m2 , the

electron (p1 ,m1) and the photon momentum k. The momentum in the loop

is q.

The assumed vertices are ,

1) Electron -Scalar -Fermion :

Spinor[p1 ,m1] (AL P_L + AR P_R) Spinor [pf ,mf]

2) Fermion -Scalar -Muon :

Spinor[pf ,mf] (BL P_L + BR P_R) Spinor [p2 ,m2]

*)

dm[mu_ ]:= DiracMatrix [mu ,Dimension ->D]

dm [5]:= DiracMatrix [5]

ds[p_ ]:= DiracSlash [p]

mt[mu_ ,nu_ ]:= MetricTensor [mu ,nu]

fv[p_ ,mu_ ]:= FourVector [p,mu]

epsilon[a_ ,b_ ,c_ ,d_ ]:= LeviCivita [a,b,c,d]

id[n_ ]:= IdentityMatrix [n]

sp[p_ ,q_]:= ScalarProduct [p,q]

li[mu_ ]:= LorentzIndex [mu]

L:=dm [7]

R:=dm [6]

(*

SetOptions [{B0 ,B1 ,B00 ,B11},BReduce ->True ]

*)

gA:= AL DiracMatrix [7] + AR DiracMatrix [6]

gB:= BL DiracMatrix [7] + BR DiracMatrix [6]

num1 := Spinor[p1 ,m1] . gA . (ds[q]+ds[p2]-ds[k]+mf) . ds[Polarization [k]]\

. (ds[q]+ds[p2]+mf) . gB . Spinor[p2 ,m2]



364 APPENDIX C. USEFUL TECHNIQUES FOR RENORMALIZATION

num2 := Spinor[p1 ,m1] . gA . (ds[q]+ds[p1]+mf) . gB . (ds[p1]+m2) . \

ds[Polarization [k]] . Spinor[p2 ,m2]

num3 := Spinor[p1 ,m1] . ds[Polarization [k]] . (ds[p2]+m1) . gA . \

(ds[q]+ds[p2]+mf) . gB . Spinor[p2 ,m2]

SetOptions [OneLoop ,Dimension ->D]

amp1 := num1 \

FeynAmpDenominator [ PropagatorDenominator [q+p2 -k,mf], \

PropagatorDenominator [q+p2 ,mf], \

PropagatorDenominator [q,ms]]

amp2 := num2 \

FeynAmpDenominator [ PropagatorDenominator [q+p1 ,mf], \

PropagatorDenominator [p2 -k,m2], \

PropagatorDenominator [q,ms]]

amp3 := num3 \

FeynAmpDenominator [ PropagatorDenominator [p1+k,m1], \

PropagatorDenominator [q+p2 ,mf], \

PropagatorDenominator [q,ms]]

(* Define the on -shell kinematics *)

onshell ={ ScalarProduct [p1 ,p1]->m1^2, ScalarProduct [p2 ,p2]->m2^2, \

ScalarProduct [k,k]->0, ScalarProduct [p1 ,k]->(m2^2-m1 ^2)/2 ,\

ScalarProduct [p2 ,k]->(m2^2-m1 ^2)/2 , \

ScalarProduct [p2 ,Polarization [k]]->p2epk , \

ScalarProduct [p1 ,Polarization [k]]-> p2epk}

(* Define the divergent part of the relevant PV functions *)

div ={B0[m1^2,mf^2,ms^2]->Div ,B0[m2^2,mf^2,ms^2]->Div , \

B0[0,mf^2,ms^2]->Div ,B0[0,mf^2,mf^2]->Div ,B0[0,ms^2,ms^2]-> Div}

res1 :=(-I / Pi ^2) OneLoop [q,amp1]

res2 :=(-I / Pi ^2) OneLoop [q,amp2]

res3 :=(-I / Pi ^2) OneLoop [q,amp3]

res := res1 +res2 +res3 /. onshell

auxT1:= res1 /. onshell

auxT2:= PaVeReduce [auxT1]

auxT3:= auxT2 /. div

divT := Simplify [Div* Coefficient [auxT3 ,Div]]

auxS1:= res2 + res3 /. onshell

auxS2:= PaVeReduce [auxS1]

auxS3:= auxS2 /. div

divS := Simplify [Div* Coefficient [auxS3 ,Div]]

(* Check cancellation of divergences

testdiv should be zero because divT =-divS *)
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testdiv := Simplify [divT + divS ]

(* Extract the different Matrix Elements

Mathematica writes the result in terms of 8 Standard Matrix Elements .

To have a simpler result we substitute these elements by simpler

expressions (ME [1] ,... ME [8]). But they are not all independent . The

final result can just be written in terms of 4 Matrix Elements .

{ StandardMatrixElement [p2epk u[p1 ,m1] . ga [6] . u[p2 ,m2]],

StandardMatrixElement [p2epk u[p1 ,m1] . ga [7] . u[p2 ,m2]],

StandardMatrixElement [p2epk u[p1 ,m1] . gs[k] . ga[6] . u[p2 ,m2]],

StandardMatrixElement [p2epk u[p1 ,m1] . gs[k] . ga[7] . u[p2 ,m2]],

StandardMatrixElement [u[p1 ,m1] . gs[ep[k]] . ga[6] . u[p2 ,m2]],

StandardMatrixElement [u[p1 ,m1] . gs[ep[k]] . ga[7] . u[p2 ,m2]],

StandardMatrixElement [u[p1 ,m1] . gs[k] . gs[ep[k]] . ga [6] . u[p2 ,m2]],

StandardMatrixElement [u[p1 ,m1] . gs[k] . gs[ep[k]] . ga [7]. u[p2 ,m2 ]]} *)

ans1 =res;

var=Select[Variables [ans1 ],(Head [#]=== StandardMatrixElement )&]

Set @@ {var , {ME[1], ME[2], ME[3], ME[4], ME[5], ME [6], ME[7], ME [8]}}

identities ={ME[3]->- m1 ME [1] + m2 ME[2], ME[4]->- m1 ME [2] + m2 ME[1],

ME[7]->- m1 ME [5] - m2 ME [6] + 2 ME[1],

ME[8]->- m1 ME [6] - m2 ME [5] + 2 ME [2]}

ans2 =ans1 /. identities ;

ans=Simplify [ans2 ];

CR=Coefficient [ans ,ME [1]]/2;

CL=Coefficient [ans ,ME [2]]/2;

DR=Coefficient [ans ,ME [5]];

DL=Coefficient [ans ,ME [6]];

(* Test to see if we did not forget any term *)

test1:= Simplify [ans -2 CR*ME [1]-2 CL*ME[2]- DR*ME[5]- DL*ME [6]]

(* Test that the divergences cancel term by term *)

auxCL= PaVeReduce [CL] /. div ;

testdivCL := Simplify [ Coefficient [auxCL ,Div]]

auxCR= PaVeReduce [CR] /. div ;

testdivCR := Simplify [ Coefficient [auxCR ,Div]]

auxDL= PaVeReduce [DL] /. div ;

testdivDL := Simplify [ Coefficient [auxDL ,Div]]



366 APPENDIX C. USEFUL TECHNIQUES FOR RENORMALIZATION

auxDR=PaVeReduce [DR] /. div ;

testdivDR := Simplify [Coefficient [auxDR ,Div]]

(* Test the gauge invariance relations *)

testGI1 := Simplify [ PaVeReduce [(m2^2-m1 ^2)* CR - DR*m1 + DL*m2]]

testGI2 := Simplify [ PaVeReduce [(m2^2-m1 ^2)* CL + DR*m2 - DL*m1]]

(********************** End Program mueg -ns.m *************************)

We first do the tests. The output of mathematica is

(********************** Mathematica output *************************)

In [3]:= << FeynCalc .m

FeynCalc4 .1.0.3b Type ?FeynCalc for help or visit

http :// www.feyncalc .org

In [4]:= << mueg -ns.m

In [5]:= test1

Out [5]= 0

In [6]:= testdiv

Out [6]= 0

In [7]:= testdivCL

Out [7]= 0

In [8]:= testdivCR

Out [8]= 0

In [9]:= testdivDL

Out [9]= 0

In [10]:= testdivDR

Out [10]= 0

In [11]:= testGI1

Out [11]= 0

In [12]:= testGI2

Out [12]= 0

(******************* End of Mathematica output *********************)

Now we obtain the results for CL
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(********************** Mathematica output *************************)

In [13]:= CL

2 2 2 2 2

Out [13]= (-4 AL BL mf C0[0, m2 , m1 , mf , mf , ms ] +

2 2 2 2 2

4 AL BR m2 PaVe [2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2

4 AL BL mf PaVe [2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2

4 AR BL m1 PaVe [1, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2

4 AL BR m2 PaVe [1, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2

4 AL BR m2 PaVe [2, 2, {0, m1 , m2 }, {mf , mf , ms }]) / 4

and for CR

In [15]:= CR

2 2 2 2 2

Out [15]= (-4 AR BR mf C0[0, m2 , m1 , mf , mf , ms ] +

2 2 2 2 2

4 AR BL m2 PaVe [2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2

4 AR BR mf PaVe [2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2

4 AL BR m1 PaVe [1, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2

4 AR BL m2 PaVe [1, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2

4 AR BL m2 PaVe [2, 2, {0, m1 , m2 }, {mf , mf , ms }]) / 4

(******************* End of Mathematica output **********************)

The expressions for DL,R are quite complicated. They are not normally calculated because
they can be related to CL,R by gauge invariance. However the power of this automatic
program can be illustrated by asking for these functions. As they are very long we calculate
them by pieces. We just calculate DL because one can easily check that DR = DL(L ↔ R).

(********************** Mathematica output *************************)

In [12]:= Coefficient [ PaVeReduce [DL],AL BL]
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2 2 2 2 2 2

m1 mf B0[m1 , mf , ms ] m1 mf B0[m2 , mf , ms ]

Out [12]= ----------------------- - ----------------------- +

2 2 2 2

m1 - m2 m1 - m2

2 2 2 2 2

m1 mf C0[m1 , m2 , 0, mf , ms , mf ]

In [13]:= Coefficient [PaVeReduce [DL],AL BR]

2 2 2 2

(mf - ms ) B0[0, mf , ms ]

Out [13]= --------------------------- -

2 m1 m2

2 2 2 2 2 2

(m1 m2 - m2 mf + m2 ms ) B0[m1 , mf , ms ]

-------------------------------------------- +

2 2

2 m1 (m1 - m2 )

2 2 2 2 2 2

(m1 m2 - m1 mf + m1 ms ) B0[m2 , mf , ms ]

--------------------------------------------

2 2

2 m2 (m1 - m2 )

In [14]:= Coefficient [PaVeReduce [DL],AR BL]

2 2 2 2 2

1 (-2 m1 mf + 2 m1 ms ) B0[m1 , mf , ms ]

Out [14]= - - ---------------------------------------- +

2 2 2

2 m1 (m1 - m2 )

2 2 2 2 2

(-2 m2 mf + 2 m2 ms ) B0[m2 , mf , ms ]

----------------------------------------

2 2

2 m2 (m1 - m2 )

2 2 2 2 2 2

+ mf C0[m1 , m2 , 0, mf , ms , mf ]

In [15]:= Coefficient [PaVeReduce [DL],AR BR]

2 2 2 2 2 2

m2 mf B0[m1 , mf , ms ] m2 mf B0[m2 , mf , ms ]

Out [15]= ----------------------- - -----------------------

2 2 2 2

m1 - m2 m1 - m2

2 2 2 2 2

+ m2 mf C0[m1 , m2 , 0, mf , ms , mf ]
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(******************* End of Mathematica output **********************)

From these expressions one can immediately verify that the divergences cancel in DL,R

and that they are not present in CL,R. To finish this section we just rewrite the CL,R in
our usual notation. We get

CL =
eQℓ
16π2

[
ALBLmF

(
−C0(0,m

2
2,m

2
1,m

2
F ,m

2
F ,m

2
S)− C2(0,m

2
1,m

2
2,m

2
F ,m

2
F ,m

2
S)
)

+ALBRm2

(
C2(0,m

2
1,m

2
2,m

2
F ,m

2
F ,m

2
S) + C12(0,m

2
1,m

2
2,m

2
F ,m

2
F ,m

2
S)

+C22(0,m
2
1,m

2
2,m

2
F ,m

2
F ,m

2
S)
)

+ARBLm1C12(0,m
2
1,m

2
2,m

2
F ,m

2
F ,m

2
S)

]
(C.208)

CR = CL(L ↔ R) (C.209)

These equations are in agreement with Eqs. (32-34) and Eqs. (38-39) of Ref. [23], although
some work has to be done in order to verify that5. This has to do with the fact that the
PV decomposition functions are not independent (see the Appendix for further details on
this point). We can however use the power of FeynCalc to verify this. We list below a
simple program to accomplish that.

(******************** Program lavoura -ns.m **************************)

(*

This program tests the results of my program mueg -ns.m against the

results obtained by L. Lavoura (hepph /0302221).

*)

(* First load FeynCalc .m and mueg -ns.m *)

<< FeynCalc .m

<< mueg -ns.m

(*

Now write Lavoura integrals in the notation of FeynCalc . Be careful

with the order of the entries .

*)

c1:= PaVe [1,{ m2^2,0,m1^2},{ms^2,mf^2,mf ^2}]

c2:= PaVe [2,{ m2^2,0,m1^2},{ms^2,mf^2,mf ^2}]

d1:= PaVe [1,1,{ m2^2,0,m1^2},{ms^2,mf^2,mf ^2}]

d2:= PaVe [2,2,{ m2^2,0,m1^2},{ms^2,mf^2,mf ^2}]

f:= PaVe [1,2,{ m2^2,0,m1^2},{ms^2,mf^2,mf ^2}]

5 An important difference between our conventions and those of Ref.[23] is that p1 and p2 (and obviously
m1 and m2) are interchanged.
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(* Write Eqs. (32) -(34) of hepph /0302221 in our notation *)

k1 := PaVeReduce [m2*(c1+d1+f)]

k2 := PaVeReduce [m1*(c2+d2+f)]

k3 := PaVeReduce [mf*(c1+c2)]

(*

Now test the results . For this we should use the equivalences :

\rho -> AL BR

\lambda -> AR BL

\xi -> AR BR

\nu -> AL BL

*)

testCLALBR := Simplify [PaVeReduce [ Coefficient [CL , AL BR]-k1 ]]

testCLARBL := Simplify [PaVeReduce [ Coefficient [CL , AR BL]-k2 ]]

testCLALBL := Simplify [PaVeReduce [ Coefficient [CL , AL BL]-k3 ]]

testCRALBR := Simplify [PaVeReduce [ Coefficient [CR , AL BR]-k2 ]]

testCRARBL := Simplify [PaVeReduce [ Coefficient [CR , AR BL]-k1 ]]

testCRARBR := Simplify [PaVeReduce [ Coefficient [CR , AR BR]-k3 ]]

(****************** End of Program lavoura -ns.m **********************)

One can easily check that the output of the six tests is zero, showing the equivalence
between our results. And all this is done in a few seconds.

C.11.2 Charged scalar neutral fermion loop

We consider now the case of the scalar being charged and the scalar neutral. The general
case of both charged [23] can also be easily implemented, but for simplicity we do not
consider it here. The couplings are now

AL PL + AR PR BL PL +BR PR 

F 0

F 0

l -

l -

S - S +
i ( ) i ( )

and the diagrams contributing to the process are given in Fig. C.9, where all the denomi-
nators are as in Eqs. (C.195)- (C.197) except that

D′1 = q2 −m2
F ; D′2 = (q − p1)

2 −m2
S ; D′3 = (q − p1 − k)2 −m2

S (C.210)

Also the coupling of the photon to the charged scalar is, in our notation,

− ieQℓ (−2q + p1 + p2)
µ (C.211)
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Figure C.9:

The procedure is very similar to the neutral scalar case and we just present here the
mathematica program and the final result. All the checks of finiteness and gauge invariance
can be done as before.

(************************ Program mueg -cs.m ***************************)

(*

This program calculates the COMPLETE (both the 3 point amplitude and

the two self energy type on each external line ) amplitudes for

\mu -> e \gamma when the fermion line in the loop is neutral and the

charged line is a scalar. The \mu has momentum p2 and mass m2 , the

electron (p1 ,m1) and the photon momentum k. The momentum in the loop

is q.

The assumed vertices are ,

1) Electron -Scalar -Fermion :

Spinor[p1 ,m1] (AL P_L + AR P_R) Spinor [pf ,mf]

2) Fermion -Scalar -Muon :

Spinor[pf ,mf] (BL P_L + BR P_R) Spinor [p2 ,m2]

*)

dm[mu_ ]:= DiracMatrix [mu ,Dimension ->4]

dm [5]:= DiracMatrix [5]

ds[p_ ]:= DiracSlash [p]

mt[mu_ ,nu_ ]:= MetricTensor [mu ,nu]

fv[p_ ,mu_ ]:= FourVector [p,mu]

epsilon[a_ ,b_ ,c_ ,d_ ]:= LeviCivita [a,b,c,d]

id[n_ ]:= IdentityMatrix [n]

sp[p_ ,q_]:= ScalarProduct [p,q]

li[mu_ ]:= LorentzIndex [mu]

L:=dm [7]

R:=dm [6]

(*

SetOptions [{B0 ,B1 ,B00 ,B11},BReduce ->True ]

*)



372 APPENDIX C. USEFUL TECHNIQUES FOR RENORMALIZATION

gA := AL DiracMatrix [7] + AR DiracMatrix [6]

gB := BL DiracMatrix [7] + BR DiracMatrix [6]

num1 := Spinor[p1 ,m1] . gA . (ds[q]+mf) . gB . Spinor[p2 ,m2] \

PolarizationVector [k,mu] ( - 2 fv[q,mu] + fv[p1 ,mu] + fv[p2 ,mu] )

num11:= DiracSimplify [num1 ];

num2 := Spinor[p1 ,m1] . gA . (ds[q]+ds[p1]+mf) . gB . (ds[p1]+m2) . \

ds[Polarization [k]] . Spinor[p2 ,m2]

num3 := Spinor[p1 ,m1] . ds[Polarization [k]] . (ds[p2]+m1) . gA . \

(ds[q]+ds[p2]+mf) . gB . Spinor[p2 ,m2]

SetOptions [OneLoop ,Dimension ->D]

amp1 := num1 \

FeynAmpDenominator [ PropagatorDenominator [q,mf],\

PropagatorDenominator [q-p1 ,ms],\

PropagatorDenominator [q-p1 -k,ms]]

amp2 := num2 \

FeynAmpDenominator [ PropagatorDenominator [q+p1 ,mf], \

PropagatorDenominator [p2 -k,m2], \

PropagatorDenominator [q,ms]]

amp3 := num3 \

FeynAmpDenominator [ PropagatorDenominator [p1+k,m1], \

PropagatorDenominator [q+p2 ,mf], \

PropagatorDenominator [q,ms]]

(* Define the on -shell kinematics *)

onshell ={ ScalarProduct [p1 ,p1]->m1^2, ScalarProduct [p2 ,p2]->m2^2, \

ScalarProduct [k,k]->0, ScalarProduct [p1 ,k]->(m2^2-m1 ^2)/2 , \

ScalarProduct [p2 ,k]->(m2^2-m1 ^2)/2 , \

ScalarProduct [p2 ,Polarization [k]]->p2epk , \

ScalarProduct [p1 ,Polarization [k]]-> p2epk}

(* Define the divergent part of the relevant PV functions *)

div ={B0[m1^2,mf^2,ms^2]->Div ,B0[m2^2,mf^2,ms^2]->Div , \

B0[0,mf^2,ms^2]->Div ,B0[0,mf^2,mf^2]->Div ,B0[0,ms^2,ms^2]-> Div}

res1 :=(-I / Pi ^2) OneLoop [q,amp1]

res2 :=(-I / Pi ^2) OneLoop [q,amp2]

res3 :=(-I / Pi ^2) OneLoop [q,amp3]

res := res1 +res2 +res3 /. onshell

auxT1:= res1 /. onshell

auxT2:= PaVeReduce [auxT1]
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auxT3:= auxT2 /. div

divT := Simplify [Div* Coefficient [auxT3 ,Div]]

auxS1:= res2 + res3 /. onshell

auxS2:= PaVeReduce [auxS1]

auxS3:= auxS2 /. div

divS := Simplify [Div* Coefficient [auxS3 ,Div]]

(* Check cancellation of divergences

testdiv should be zero because divT =-divS

*)

testdiv := Simplify [divT + divS ]

(* Extract the different Matrix Elements

Mathematica writes the result in terms of 6 Standard Matrix Elements .

To have a simpler result we substitute these elements by simpler

expressions (ME [1] ,... ME [6]). Not all are independent .

{ StandardMatrixElement [p2epk u[p1 , m1] . ga [6] . u[p2 , m2]],

StandardMatrixElement [p2epk u[p1 , m1] . ga [7] . u[p2 , m2]],

StandardMatrixElement [p2epk u[p1 , m1] . gs[k] . ga [6] . u[p2 , m2]],

StandardMatrixElement [p2epk u[p1 , m1] . gs[k] . ga [7] . u[p2 , m2]],

StandardMatrixElement [u[p1 , m1] . gs[ep[k]] . ga[6] . u[p2 , m2]],

StandardMatrixElement [u[p1 , m1] . gs[ep[k]] . ga[7] . u[p2 , m2]]}

*)

ans1 =res;

var=Select[Variables [ans1 ],(Head [#]=== StandardMatrixElement )&]

Set @@ {var , {ME[1], ME[2], ME[3], ME[4], ME[5], ME [6]}}

identities ={ME[3]->- m1 ME [1] + m2 ME[2], ME[4]->- m1 ME [2] + m2 ME [1]}

ans2 =ans1 /. identities ;

ans=Simplify [ans2 ];

CR=Coefficient [ans ,ME [1]]/2;

CL=Coefficient [ans ,ME [2]]/2;

DR=Coefficient [ans ,ME [5]];

DL=Coefficient [ans ,ME [6]];

(* Test to see if we did not forget any term *)

test1:= Simplify [ans -2* CR*ME [1] -2* CL*ME[2]- DR*ME[5]- DL*ME [6]]
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(* Test that the divergences cancel term by term *)

auxCL:= PaVeReduce [CL] /. div ;

testdivCL := Simplify [Coefficient [auxCL ,Div]]

auxCR:= PaVeReduce [CR] /. div ;

testdivCR := Simplify [Coefficient [auxCR ,Div]]

auxDL:= PaVeReduce [DL] /. div ;

testdivDL := Simplify [Coefficient [auxDL ,Div]]

auxDR:= PaVeReduce [DR] /. div ;

testdivDR := Simplify [Coefficient [auxDR ,Div]]

(* Test the gauge invariance relations *)

testGI1 := PaVeReduce [(m2^2-m1 ^2)* CR - DR*m1 + DL*m2]

testGI2 := PaVeReduce [(m2^2-m1 ^2)* CL + DR*m2 - DL*m1]

(********************** End Program mueg -cs.m ***********************)

Note that although these programs look large, in fact they are very simple. Most of it are
comments and tests. The output of this program gives,

(********************* Mathematica output ************************)

In [3]:= CL

2 2 2 2 2

Out [3]= (-2 AR BL m1 C0[0, m1 , m2 , ms , ms , mf ] -

2 2 2 2 2

2 AR BL m1 PaVe [1, {m1 , 0, m2 }, {mf , ms , ms }] -

2 2 2 2 2

4 AR BL m1 PaVe [1, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2

2 AL BL mf PaVe [1, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2

2 AL BR m2 PaVe [2, {m1 , 0, m2 }, {mf , ms , ms }] -

2 2 2 2 2

2 AR BL m1 PaVe [2, {m1 , m2 , 0}, {ms , mf , ms }] +

2 2 2 2 2

2 AL BR m2 PaVe [2, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2

2 AR BL m1 PaVe [1, 1, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2

2 AR BL m1 PaVe [1, 2, {m1 , m2 , 0}, {ms , mf , ms }] +

2 2 2 2 2

2 AL BR m2 PaVe [1, 2, {m1 , m2 , 0}, {ms , mf , ms }]) / 2
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(******************* End of Mathematica output ********************)

To finish this section we just rewrite the CL,R in our usual notation. We get

CL =
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CR = CL(L↔ R) (C.212)

It is left as an exercise to write a mathematica program that proves that these equations
are in agreement with Eqs. (35-37) and Eqs. (38-39) of Ref. [23].
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Appendix D

Feynman Rules for the Standard
Model

D.1 Introduction

To do actual calculations it is very important to have all the Feynman rules with consistent
conventions. In this Appendix we will give the complete Feynman rules for the Standard
Model in the general Rξ gauge.

D.2 The Standard Model

One of the most difficult problems in having a consistent set of of Feynman rules are the
conventions. We give here those that are important for building the SM. We will separate
them by gauge group.

D.2.1 Gauge Group SU(3)c

Here the important conventions are for the field strengths and the covariant derivatives.
We have

Gaµν = ∂µG
a
ν − ∂νG

a
µ + gfabcGbµG

c
ν , a = 1, . . . , 8 (D.1)

where fabc are the group structure constants, satisfying
[
T a, T b

]
= ifabcT c (D.2)

and T a are the generators of the group. The covariant derivative of a (quark) field q in
some representation T a of the gauge group is given by

Dµq =
(
∂µ − i g GaµT

a
)
q (D.3)

In QCD the quarks are in the fundamental representation and T a = λa/2 where λa are
the Gell-Mann matrices. A gauge transformation is given by a matrix

U = e−iT
aαa

(D.4)

377
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and the fields transform as

q → e−iT
aαa

q δq = −iT aαaq

GaµT
a → UGaµT

aU−1 − i

g
∂µUU

−1 δGaµ = −1

g
∂µα

a + fabcαbGcµ (D.5)

where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,

δ(Dµq) = −i T aαa(Dµq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2)L

This is similar to the previous case. We have

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gǫabcW b

µW
c
ν , a = 1, . . . , 3 (D.7)

where, for the fundamental representation of SU(2)L we have T a = σa/2 and ǫabc is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
ψL transforming non-trivially under this group is,

DµψL =
(
∂µ − i g W a

µT
a
)
ψL (D.8)

D.2.3 Gauge Group U(1)Y

In this case the group is abelian and we have

Bµν = ∂µBν − ∂νBµ (D.9)

with the covariant derivative given by

DµψR =
(
∂µ + i g′ Y Bµ

)
ψR (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition1

Q = T3 + Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates Aµ and
Zµ. These are defined by the relations,

{
W 3
µ = Zµ cos θW −Aµ sin θW

Bµ = Zµ sin θW +Aµ cos θW
,

{
Zµ =W 3

µ cos θW +Bµ sin θW

Aµ = −W 3
µ sin θW +Bµ cos θW

. (D.13)

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y ,

ψ
′ = e

+iY αY ψ, B
′
µ = Bµ −

1

g′
∂µαY . (D.11)

This is important when finding the ghost interactions. It would have been possible to have a minus sign
in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).
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Field ℓL ℓR νL uL dL uR dR φ+ φ0

T3 −1
2 0 1

2
1
2 −1

2 0 0 1
2 −1

2

Y −1
2 −1 −1

2
1
6

1
6

2
3 −1

3
1
2

1
2

Q −1 −1 0 2
3 −1

3
2
3 −1

3 1 0

Table D.1: Values of T f3 , Q and Y for the SM particles.

For a field ψL, with hypercharge Y , we get,

DµψL =

[
∂µ − i

g√
2

(
τ+W+

µ + τ−W−µ
)
− i

g

2
τ3W

3
µ + ig′Y Bµ

]
ψL (D.14)

=

[
∂µ − i

g√
2

(
τ+W+

µ + τ−W−µ
)
+ ieQAµ − i

g

cos θW

(τ3
2

−Q sin2 θW

)
Zµ

]
ψL

where, as usual, τ± = (τ1 ± iτ2)/2 and the charge operator is defined by

Q =




1
2 + Y 0

0 −1
2 + Y


 , (D.15)

and we have used the relations,

e = g sin θW = g′ cos θW , (D.16)

and the usual definition,

W±µ =
W 1
µ ∓ iW 2

µ√
2

. (D.17)

For a singlet of SU(2)L, ψR we have,

DµψR =
[
∂µ + ig′Y Bµ

]
ψR

=

[
∂µ + ieQAµ + i

g

cos θW
Q sin2 θWZµ

]
ψR . (D.18)

We collect in Table D.1 the quantum number of the SM particles.

D.2.4 The Gauge Field Lagrangian

For completeness we write the gauge field Lagrangian. We have

Lgauge = −1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (D.19)

where the field strengths are given in Eqs. (D.1), and (D.9).
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D.2.5 The Fermion Fields Lagrangian

Here we give the kinetic part and gauge interaction, leaving the Yukawa interaction for a
next section. We have

LFermion =
∑

quarks

iqγµDµq +
∑

ψL

iψLγ
µDµψL +

∑

ψR

iψRγ
µDµψR (D.20)

where the covariant derivatives are obtained with the rules in Eqs. (D.3), (D.14) and
(D.18).

D.2.6 The Higgs Lagrangian

In the SM we use an Higgs doublet with the following assignments,

Φ =




φ+

v +H + iϕZ√
2


 (D.21)

The hypercharge of this doublet is 1/2 and therefore the covariant derivative reads

DµΦ =

[
∂µ − i

g√
2

(
τ+W+

µ + τ−W−µ
)
− i

g

2
τ3W

3
µ + i

g′

2
Bµ

]
Φ (D.22)

=

[
∂µ − i

g√
2

(
τ+W+

µ τ
−W−µ

)
+ ieQAµ − i

g

cos θW

(τ3
2

−Q sin2 θW

)
Zµ

]
Φ

The Higgs Lagrangian is then

LHiggs = (DµΦ)
†DµΦ+ µ2Φ†Φ− λ

(
Φ†Φ

)2
(D.23)

If we expand this Lagrangian we find the following terms

LHiggs = · · ·+ 1

8
g2v2W 3

µW
µ3 +

1

8
g′2v2BµB

µ +
1

4
gg′v2W 3

µB
µ +

1

4
g2v2W+

µ W
−µ

+
1

2
v ∂µϕZ

(
g′Bµ + gW 3

µ

)
+
i

2
gvW−µ ∂

µϕ+ − i

2
gvW+

µ ∂
µϕ− (D.24)

The first three terms give, after diagonalization, a massless field, the photon, and a massive
one, the Z, with the relations given in Eq. (D.13), while the fourth gives the mass to the
charged W±µ boson. Using Eq. (D.13) we get,

LHiggs = · · ·+ 1

2
M2
ZZµZ

µ +M2
WW

+
µ W

−µ

+MZZµ∂
µϕZ + iMW

(
W−µ ∂

µϕ+ −W+
µ ∂

µϕ−
)

(D.25)

where

MW =
1

2
gv, MZ =

1

cos θW

1

2
gv =

1

cos θW
MW (D.26)

By looking at Eq. (D.25) we realize that besides finding a realistic spectra for the gauge
bosons, we also got a problem. In fact the terms in the last line are quadratic in the fields
and complicate the definition of the propagators. We now see how one can use the needed
gauge fixing to solve also this problem.
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D.2.7 The Yukawa Lagrangian

Now we have to spell out the interaction between the fermions and the Higgs doublet that
after spontaneous symmetry breaking gives masses to the elementary fermions. We have,

LYukawa =− Yl LΦ ℓR − YdQΦ dR − YuQ Φ̃ uR + h.c. (D.27)

where sum is implied over generations, L (Q) are the lepton (quark) doublets and,

Φ̃ = i σ2Φ
∗ =



v +H − iϕZ√

2
−ϕ−


 (D.28)

D.2.8 The Gauge Fixing

As it is well known, we have to gauge fix the gauge part of the Lagrangian to be able to
define the propagators. We will use a generalization of the class of Lorenz gauges, the
so-called Rξ gauges. With this choice the gauge fixing Lagrangian reads

LGF = − 1

2ξ
F 2
G − 1

2ξ
F 2
A − 1

2ξ
F 2
Z − 1

ξ
F−F+ (D.29)

where

F aG =∂µGaµ, FA = ∂µAµ, FZ = ∂µZµ − ξMZϕZ

F+ =∂µW+
µ − iξMWϕ

+, F− = ∂µW−µ + iξMWϕ
− (D.30)

One can easily verify that with these definitions we cancel the quadratic terms in Eq. (D.25).

D.2.9 The Ghost Lagrangian

The last piece in writing the SM Lagrangian is the ghost Lagrangian. As it is well known,
this is given by the Fadeev-Popov prescription,

LGhost =
4∑

i=1

[
c+
∂(δF+)

∂αi
+ c−

∂(δF+)

∂αi
+ cZ

∂(δFZ )

∂αi
+ cA

∂(δFA)

∂αi

]
ci

+
8∑

a,b=1

ωa
∂(δF aG)

∂βb
ωb (D.31)

where we have denoted by ωa the ghosts associated with the SU(3)c transformations
defined by,

U = e−iT
aβa

, a = 1, . . . , 8 (D.32)

and by c±, cA, cZ the electroweak ghosts associated with the gauge transformations,

U = e−iT
aαa

, a = 1, . . . , 3, U = eiY α
4

(D.33)
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For completeness we write here the gauge transformations of the gauge fixing terms needed
to find the Lagrangian in Eq. (D.31). It is convenient to redefine the parameters as

α± =
α1 ∓ α2

√
2

αZ =α3 cos θW + α4 sin θW

αA =− α3 sin θW + α4 cos θW (D.34)

We then get

δF aG =− ∂µβ
a + gsf

abcβbGcµ

δFA =− ∂µαA

δFZ =∂µ(δZ
µ)−MZδϕZ

δF+ =∂µ(δW
+
µ )− iMW δϕ

+

δF− =∂µ(δW
−
µ ) + iMW δϕ

− (D.35)

Using the explicit form of the gauge transformations we can finally find the missing pieces,

δZµ =− ∂µαZ + ig cos θW
(
W+
µ α
− −W−µ α

+
)

(D.36)

δW+
µ =− ∂µα

+ + ig
[
α+ (Zµ cos θW −Aµ sin θw)− (αZ cos θw − αA sin θW )W+

µ

]

δW−µ =− ∂µα
− − ig

[
α− (Zµ cos θW −Aµ sin θw)− (αZ cos θw − αA sin θW )W−µ

]

and

δϕZ =− 1

2
g
(
α−ϕ+ + α+ϕ−

)
+

g

2 cos θW
αZ(v +H)

δϕ+ =− i
g

2
(v +H + iϕZ)α

+ − i
g

2

cos 2θW
cos θW

ϕ+αZ + ie ϕ+αA

δϕ− =i
g

2
(v +H − iϕZ)α

− + i
g

2

cos 2θW
cos θW

ϕ−αZ − ie ϕ−αA (D.37)

D.2.10 The Complete SM Lagrangian

Finally the complete Lagrangian for the Standard Model is obtained putting together all
the pieces. We have,

LSM = Lgauge + LFermion + LHiggs + LYukawa + LGF + LGhost (D.38)

where the different terms were given in Eqs. (D.19), (D.20), (D.23), (D.27), (D.29), (D.31).
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D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

− iδab

[
gµν

k2 + iǫ
− (1− ξ)

kµkν
(k2)2

]
(D.39)µ, a ν, b

g

δab
i

k2 + iǫ
(D.40)

ω
a b

D.3.2 Triple Gauge Interactions

gfabc[ gµν(p1 − p2)
ρ + gνρ(p2 − p3)

µ

+gρµ(p3 − p1)
ν ]

p1 + p2 + p3 = 0
(D.41)

µ, a ν, b

ρ, c

p1

p2

p3

D.3.3 Quartic Gauge Interactions

ii) Vértice quártico dos bosões de gauge

−ig2
[

feabfecd(gµρgνσ − gµσgνρ)

+feacfedb(gµσgρν − gµνgρσ)

+feadfebc(gµνgρσ − gµρgνσ)
]

p1 + p2 + p3 + p4 = 0

(D.42)
µ, a ν, b

ρ, cσ, d

p1 p2

p3p4
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D.3.4 Fermion Gauge Interactions

ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3

D.3.5 Ghost Interactions

g Cabcpµ1

p1 +p2 + p3 = 0
(D.44)

µ, c

a b
p1

p2

p3

D.4 The Feynman Rules for the Electroweak Theory

D.4.1 Propagators

− i

[
gµν

k2 + iǫ
− (1− ξ)

kµkν
(k2)2

]
(D.45)µ ν

γ

−igµν
k2 −M2

W + iǫ
(D.46)µ ν

W

−igµν
k2 −M2

Z + iǫ
(D.47)µ ν

Z

i(p/+mf )

p2 −m2
f + iǫ

(D.48)p

i

p2 −M2
h + iǫ

(D.49)
p

h

i

p2 − ξm2
Z + iǫ

(D.50)
p

ϕZ
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i

p2 − ξm2
W + iǫ

(D.51)
p

ϕ±

D.4.2 Triple Gauge Interactions

− ie [gαβ(p − k)µ + gβµ(k − q)α + gµα(q − p)β] (D.52)
p q

k

W−α

W+
β

Aµ

ig cos θW [gαβ(p− k)µ + gβµ(k − q)α + gµα(q − p)β] (D.53)
p q

k

W−α

W+
β

Zµ

D.4.3 Quartic Gauge Interactions

− ie2 [2gαβgµν − gαµgβν − gανgβµ] (D.54)

W+
α

Aµ

W−β

Aν

− ig2 cos2 θW [2gαβgµν − gαµgβν − gανgβµ] (D.55)

W+
α

Zµ

W−β

Zν

ieg cos θW [2gαβgµν − gαµgβν − gανgβµ] (D.56)

W+
α

Aµ

W−β

Zν

W+
α W−β

W+
µ W−ν

ig2 [2gαµgβν − gαβgµν − gανgβµ] (D.57)



386 APPENDIX D. FEYNMAN RULES FOR THE STANDARD MODEL

D.4.4 Charged Current Interaction

i
g√
2
γµ

1− γ5
2

(D.58)

ψd,u

ψu,d
W±µ

D.4.5 Neutral Current Interaction

(D.59)

ψf

ψf

ψf

ψf

Zµ Aµ
i

g

cos θW
γµ

(
gfV − gfAγ5

)
−ieQfγµ

where

gfV =
1

2
T 3
f −Qf sin

2 θW , gfA =
1

2
T 3
f . (D.60)

D.4.6 Fermion-Higgs and Fermion-Goldstone Interactions

− i
g

2

mf

mW
(D.61)

h

f

f

− g T 3
f

mf

mW
γ5 (D.62)

ϕZ

f

f

i
g√
2

(
mu

mW
PR,L − md

mW
PL,R

)
(D.63)

ϕ∓

ψd,u

ψu,d

D.4.7 Triple Higgs-Gauge and Goldstone-Gauge Interactions

− i e (p+ − p−)µ (D.64)
Aµ

ϕ+

ϕ−
p−

p+
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i g
cos 2θW
2 cos θW

(p+ − p−)µ (D.65)
Zµ

ϕ+

ϕ−
p−

p+

∓ i

2
g (k − p)µ (D.66)W±µ

h

ϕ∓
k

p

g

2
(k − p)µ (D.67)

p4

W±µ

ϕZ

ϕ∓
k

p

g

2 cos θ
(k − p)µ (D.68)

µ, a

Zµ

h

ϕZ

k

p

− iemW gµν (D.69)

a

Aµ

W±ν

ϕ∓

− ig mZ sin2 θW gµν (D.70)

k

Zµ

W±ν

ϕ∓

ig mW gµν (D.71)
W±µ

W∓ν

h
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i
g

cos θW
mZ gµν (D.72)

Zµ

Zν

h

D.4.8 Quartic Higgs-Gauge and Goldstone-Gauge Interactions

i

2
g2 gµν (D.73)

h

h

W±µ

W∓ν

i

2
g2 gµν (D.74)

ϕZ

ϕZ

W±µ

W∓ν

i

2

g2

cos2 θW
gµν (D.75)

h

h

Zµ

Zν

i

2

g2

cos2 θW
gµν (D.76)

ϕZ

ϕZ

Zµ

Zν
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2i e2 gµν (D.77)

f

ϕ+

ϕ−

Aµ

Aν

i

2

(
g cos 2θW
cos θW

)2

gµν (D.78)

p

ϕ+

ϕ−

Zµ

Zν

i

2
g2 gµν (D.79)

p1

ϕ+

ϕ−

W+
µ

W−ν

− i g2
sin2 θW
2 cos θW

gµν (D.80)

ρ, c

ϕ∓

h

W±µ

Zν

∓ g2
sin2 θW
2 cos θW

gµν (D.81)

b

ϕ±

ϕZ

W∓µ

Zν

− i

2
eg gµν (D.82)

ϕ±

h

W∓µ

Aν
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± 1

2
eg gµν (D.83)

ϕ∓

ϕZ

W±µ

Aν

− i eg
cos 2θW
cos θW

gµν (D.84)

ϕ+

ϕ−

Zµ

Aν

D.4.9 Triple Higgs and Goldstone Interactions

− i

2
g
m2
h

mW
(D.85)

ϕ−

ϕ+

h

− 3

2
i g

m2
h

mW
(D.86)

h

h

h

− i

2
g
m2
h

mW
(D.87)

ϕZ

ϕZ

h
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D.4.10 Quartic Higgs and Goldstone Interactions

− i

2
g2

m2
h

m2
W

(D.88)

, b

ϕ+

ϕ+

ϕ−

ϕ−

− i

4
g2

m2
h

m2
W

(D.89)

p3

ϕ+

ϕ−

h

h

− i

4
g2

m2
h

m2
W

(D.90)

p1

ϕ+

ϕ−

ϕZ

ϕZ

− 3

4
i g2

m2
h

m2
W

(D.91)

µ

h

h

h

h

− i

4
g2
m2
h

m2
W

(D.92)

ϕZ

ϕZ

h

h
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− 3

4
i g2

m2
h

m2
W

(D.93)

ϕZ

ϕZ

ϕZ

ϕZ

D.4.11 Ghost Propagators

i

k2 + iǫ
(D.94)

cA

i

k2 − ξm2
W + iǫ

(D.95)
c±

i

k2 − ξm2
Z + iǫ

(D.96)
cZ

D.4.12 Ghost Gauge Interactions

∓ ie pµ (D.97)
Aµ

c±

c±
p

± ig cos θW pµ (D.98)
Zµ

c±

c±
p

∓ ig cos θW pµ (D.99)
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p

W±µ

c±

cZ

p

± ie pµ (D.100)

i

W±µ

c±

cA

p

∓ ig cos θW pµ (D.101)

µ, c

W∓µ

c±

cZ
p

± ie pµ (D.102)

µ, a

W∓µ

c±

cA
p

D.4.13 Ghost Higgs and Ghost Goldstone Interactions

± g

2
ξ mW (D.103)

a

ϕZ

c±

c±

− i

2
g ξ mW (D.104)

h

c±

c±
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− ig

2 cos θW
ξ mZ (D.105)

h

cZ

cZ

i

2
g ξ mZ (D.106)

ϕ∓

c±

cZ

− ig
cos 2θW
2 cos θW

ξ mW (D.107)
ϕ±

c±

cZ

ie ξ mW (D.108)
ϕ±

c±

cA
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