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a b s t r a c t

We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of
the Standard Model. In general, these extensions have scalar mediated flavour changing
neutral currents which are strongly constrained by experiment. Various strategies are
discussed to control these flavour changing scalar currents and their phenomenological
consequences are analysed. In particular, scenarios with natural flavour conservation are
investigated, including the so-called type I and type II models as well as lepton-specific
and inert models. Type III models are then discussed, where scalar flavour changing
neutral currents are present at tree level, but are suppressed by either a specific ansatz
for the Yukawa couplings or by the introduction of family symmetries leading to a natural
suppression mechanism. We also consider the phenomenology of charged scalars in these
models. Next we turn to the role of symmetries in the scalar sector. We discuss the six
symmetry-constrained scalar potentials and their extension into the fermion sector. The
vacuum structure of the scalar potential is analysed, including a study of the vacuum
stability conditions on the potential and the renormalization-group improvement of these
conditions is also presented. The stability of the tree level minimum of the scalar potential
in connectionwith electric charge conservation and its behaviour under CP is analysed. The
question of CP violation is addressed in detail, including the cases of explicit CP violation
and spontaneous CP violation. We present a detailed study of weak basis invariants which
are odd under CP. These invariants allow for the possibility of studying the CP properties of
any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous
CP violation is presented, including an analysis of the conditions which have to be satisfied
in order for a vacuum to violate CP. We present minimal models of CP violation where
the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a
requirement for any realistic model of spontaneous CP violation.
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1. Introduction

The gauge boson and fermion sectors of the Standard Model of the electroweak interactions have been extremely well
probed phenomenologically; yet, its scalar sector has not yet been directly explored. In the StandardModel (SM) the simplest
possible scalar structure – just one SU(2) doublet – is assumed [1–5]; on the contrary, the fermion structure, withmore than
one family and with family mixing, is not simple at all.

One critical piece of evidence about the scalar structure is the parameter ρ. In the SU(2) × U(1) gauge theory, if there
are n scalar multiplets φi, with weak isospin Ii, weak hypercharge Yi, and vacuum expectation value (vev) of the neutral
components vi, then the parameter ρ is, at tree level [6],

ρ =

n
i=1


Ii (Ii + 1)−

1
4 Y 2

i


vi

n
i=1

1
2 Y 2

i vi

. (1)

Experimentally [7] ρ is very close to one. According to Eq. (1), both SU(2) singlets with Y = 0 and SU(2) doublets with
Y = ±1 give ρ = 1, since they both have I (I + 1) =

3
4 Y 2. Other scalars with vevs in much larger SU(2)multiplets, scalars

with small or null vevs, andmodels with triplets and a custodial SU(2) global symmetry [8], are compatible with ρ = 1; but
such scalar sectors tend to be large and complex—the simplest extension of the SM consists in simply adding scalar doublets
and singlets.

In this review we focus on one of the simplest possible extensions of the SM—the two-Higgs-doublet model (2HDM) [9].
There are many motivations for 2HDMs. The best known motivation is supersymmetry [10]. In supersymmetric theories
the scalars belong to chiral multiplets and their complex conjugates belong to multiplets of the opposite chirality; since
multiplets of different chiralities cannot couple together in the Lagrangian, a single Higgs doublet is unable to give mass
simultaneously to the charge 2/3 and charge −1/3 quarks. Moreover, since scalars sit in chiral multiplets together with
chiral spin-1/2 fields, the cancellation of anomalies also requires that an additional doublet be added. Thus, the Minimal
Supersymmetric Standard Model (MSSM) contains two Higgs doublets.

Another motivation for 2HDMs comes from axion models [11]. Peccei and Quinn [12] noted that a possible CP-violating
term in the QCD Lagrangian, which is phenomenologically known to be very small, can be rotated away if the Lagrangian
contains a global U(1) symmetry. However, imposing this symmetry is only possible if there are two Higgs doublets. While
the simplest versions of the Peccei–Quinn model (in which all the New Physics was at the TeV scale) are experimentally
ruled out, there are variations with singlets at a higher scale that are acceptable, and the effective low-energy theory for
those models still requires two Higgs doublets [11].

Still another motivation for 2HDMs is the fact that the SM is unable [13] to generate a baryon asymmetry of the Universe
of sufficient size. Two-Higgs-doublet models can do so, due to the flexibility of their scalar mass spectrum [13] and the
existence of additional sources of CP violation. There have beenmanyworks on baryogenesis in the 2HDM [14–23]. Exciting
new possibilities for explicit or spontaneous CP violation constitute one of the attractive features of 2HDMs.

With the Large Hadron Collider (LHC) starting to produce data, time seems appropriate for a review of 2HDMs. The Higgs
sector of the Standard Model is very predictive, with the Higgs mass being the only free parameter, and it will be tested
at the LHC over the entire theoretically preferred mass ranges within the next few months. In contrast, due to the larger
number of free parameters in the 2HDM, it will takemuch longer to probe the entire parameter space of the variousmodels.
Should the Higgs not be seen at the LHC in the next few months, the 2HDM will be one of the simplest alternatives. With
charged Higgs bosons, pseudoscalars and different decay modes and branching ratios, the experimental challenges will be
quite different than in the Standard Model. While it may not be possible to completely probe the entire parameter space of
the various 2HDMs at the LHC, most of the parameter space can be probed, and this is further incentive for a review of the
various forms of the 2HDM and their experimental signatures.

We shall explicitly exclude supersymmetric models from this review. The Higgs sector of supersymmetric models is
extremely well-studied and Djouadi [24] has written a very comprehensive review of it. We shall also not include models
with scalar SU(2) singlets in addition to the two doublets, since those models usually include many additional parameters.

In general, the vacuum structure of 2HDMs is very rich. Themost general scalar potential contains 14 parameters and can
have CP-conserving, CP-violating, and charge-violatingminima. In writing that potential onemust be careful in defining the
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various bases and in distinguishing parameters which can be rotated away from those which have physical implications.
However, most phenomenological studies of 2HDMs make several simplifying assumptions. It is usually assumed that
CP is conserved in the Higgs sector (only then can one distinguish between scalars and pseudoscalars), that CP is not
spontaneously broken, and that discrete symmetries eliminate from the potential all quartic terms odd in either of the
doublets; however, usually one considers all possible real quadratic coefficients, including a term which softly breaks these
symmetries.We shall alsomake those assumptions in the early chapters of this report butwill subsequently discuss relaxing
them. Under those assumptions, the most general scalar potential for two doubletsΦ1 andΦ2 with hypercharge +1 is

V = m2
11Φ

Ď
1Φ1 + m2

22Φ
Ď
2Φ2 − m2

12


Φ

Ď
1Φ2 + Φ

Ď
2Φ1


+
λ1

2


Φ

Ď
1Φ1

2
+
λ2

2


Φ

Ď
2Φ2

2
+ λ3Φ

Ď
1Φ1Φ

Ď
2Φ2 + λ4Φ

Ď
1Φ2Φ

Ď
2Φ1 +

λ5

2


Φ

Ď
1Φ2

2
+


Φ

Ď
2Φ1

2
, (2)

where all the parameters are real. For a region of parameter space, the minimization of this potential gives

⟨Φ1⟩0 =


0
v1
√
2


, ⟨Φ2⟩0 =


0
v2
√
2


. (3)

With two complex scalar SU(2) doublets there are eight fields:

Φa =


φ+

a

(va + ρa + iηa) /
√
2


, a = 1, 2. (4)

Three of those get ‘eaten’ to give mass to the W± and Z0 gauge bosons; the remaining five are physical scalar (‘Higgs’)
fields. There is a charged scalar, two neutral scalars, and one pseudoscalar. With the above minimum, the mass terms for
the charged scalars are given by

Lφ± mass =

m2

12 − (λ4 + λ5)v1v2
 
φ−

1 , φ−

2


v2

v1
−1

−1
v1

v2

φ+

1

φ+

2


. (5)

There is a zero eigenvalue corresponding to the charged Goldstone boson G± which gets eaten by the W±. The mass-
squared of the ‘charged Higgs’ is m2

+
= [m2

12/(v1v2)− λ4 − λ5]

v21 + v22


. The mass terms for the pseudoscalars are given

by

Lηmass =
m2

A

v21 + v22


η1, η2

  v22 −v1v2
−v1v2 v21


η1
η2


. (6)

This gives a pseudoscalarGoldstonemode togetherwith themass-squared of the physical pseudoscalar,m2
A = [m2

12/(v1v2)−

2λ5](v21 + v22). Note that, when m2
12 = 0 and λ5 = 0, the pseudoscalar becomes massless. This is due to the existence, in

that limit, of an additional global U(1) symmetry which is spontaneously broken. Finally, the mass terms for the scalars are
given by

Lρmass = −

ρ1, ρ2

 m2
12
v2

v1
+ λ1v

2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12
v1

v2
+ λ2v

2
2

ρ1ρ2

, (7)

with λ345 = λ3 + λ4 + λ5. The mass-squared matrix of the scalars can be diagonalized and the angle α is defined to be the
rotation angle that performs that diagonalization.

Perhaps the single most important parameter in studies of 2HDMs is

tanβ ≡
v2

v1
. (8)

The angle β is the rotation angle which diagonalizes the mass-squared matrices of the charged scalars and of the
pseudoscalars. If one redefines the doublets as H1 = cosβ Φ1 + sinβ Φ2 and H2 = − sinβ Φ1 + cosβ Φ2, one finds
that the lower component of H1 has a (real and positive) vev v/

√
2, where v ≡


v21 + v22

1/2, while H2 has null vev. The
two parameters α and β determine the interactions of the various Higgs fields with the vector bosons and (given the
fermion masses) with the fermions; they are thus crucial in discussing phenomenology. Still, one should keep in mind the
assumptions that were made in defining them.

In this review, we shall begin by discussing the phenomenology of the above restricted version of the 2HDM. A feature of
general 2HDMs is the existence of tree-level flavour-changing neutral currents (FCNC). One can avoid these potentially
dangerous interactions by imposing discrete symmetries in several possible ways. In Section 2, the phenomenological
analyses of 2HDMs without tree-level FCNCs are presented, including decays and production of neutral scalars and
pseudoscalars, bounds from LEP and the Tevatron, and expectations for the LHC.
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If one does not impose discrete symmetries, then there are tree-level FCNCs in the 2HDM. A prototypemodel of this kind,
the so-called type III 2HDM, is discussed in Section 3, along with other such models, such as the Branco–Grimus–Lavoura
(BGL) model and models of Minimal Flavour Violation.

All 2HDMs have charged scalar bosons (‘charged Higgses’). An analysis of charged-Higgs production and decay, for all the
2HDMs of Section 2, is presented in Section 4; this is followed by a discussion of charged-Higgs phenomenology in models
with tree-level FCNC.

In Section 5 we relax the rather strict assumptions made in this introduction and in Sections 2–4. An analysis of the full
scalar potential, including the vacuum structure with or without CP violation and the possible symmetries one can impose
on the potential, is presented.

As noted earlier, the 2HDMoffers possibilities for new sources of CP violation. This is analysed in some detail in Section 6.
In particular we discuss the weak-basis invariant conditions for the 2HDM Lagrangian to be CP invariant and we present a
minimal realistic extension of the Standard Model, with spontaneous CP violation.

In Section 8 we briefly summarize some of our conclusions. Some isolated topics that the reader may want to consult
separately – constraints on the parameters of the potential fromunitarity, renormalization-group running of the parameters
of 2HDMs, and contributions to the oblique parameters from the scalar sector of 2HDMs – are left to appendices.

2. Models with natural flavour conservation

The most serious potential problem facing all 2HDMs1 is the possibility of tree level flavour-changing neutral
currents(FCNC). For example, the Yukawa couplings of the Q = −1/3 quarks will, in general, be

LY = y1ijψ̄iψjΦ1 + y2ijψ̄iψjΦ2, (9)

where i, j are generation indices. The mass matrix is then

Mij = y1ij
v1
√
2

+ y2ij
v2
√
2
. (10)

In the Standard Model, diagonalizing the mass matrix automatically diagonalizes the Yukawa interactions, therefore there
are no tree-level FCNC. In 2HDMs, however, in general y1 and y2 will not be simultaneously diagonalizable, and thus the
Yukawa couplings will not be flavour diagonal. Neutral Higgs scalars φ will mediate FCNC of the form, for example, dsφ.

These FCNC can cause severe phenomenological difficulties. The dsφ interaction, for example, will lead to K–K mixing
at tree level. If the coupling is as large as the b-quark Yukawa coupling, the mass of the exchanged scalar would have to
exceed 10 TeV [25,26]. Nonetheless, under reasonable assumptions, models with these FCNC may still be viable. They will
be discussed in the next chapter. In this chapter, however, we will assume that tree level FCNC are completely absent, due
to a discrete or continuous symmetry.

It is easy to see that if all fermionswith the samequantumnumbers (which are thus capable ofmixing) couple to the same
Higgs multiplet, then FCNC will be absent. This was formalized by the Paschos–Glashow–Weinberg theorem [27,28] which
states that a necessary and sufficient condition for the absence of FCNC at tree level is that all fermions of a given charge and
helicity transform according to the same irreducible representation of SU(2), correspond to the same eigenvalue of T3 and
that a basis exists in which they receive their contributions in the mass matrix from a single source. In the Standard Model
with left-handed doublets and right-handed singlets, this theorem implies that all right-handed quarks of a given charge
must couple to a single Higgs multiplet. In the 2HDM, this can only be ensured by the introduction of discrete or continuous
symmetries.

Looking at the quark sector of the 2HDM, there are only two possibilities. In the type I 2HDM, all quarks couple to just
one of the Higgs doublets (conventionally chosen to be Φ2). In the type II 2HDM, the Q = 2/3 right-handed (RH) quarks
couple to one Higgs doublet (conventionally chosen to be Φ2) and the Q = −1/3 RH quarks couple to the other (Φ1). The
type I 2HDM can be enforced with a simple Φ1 → −Φ1 discrete symmetry, whereas the type II 2HDM is enforced with a
Φ1 → −Φ1, diR → −diR discrete symmetry. Note that the original Peccei–Quinn models as well as supersymmetric models
give the same Yukawa couplings as in a type II 2HDM, but do it by using continuous symmetries.

Wewill in this chapter consider that there is no CP violation in the vacuumexpectation values (vevs) of the scalar doublets
Φ1,2. This means that v1,2 will be assumed to be both real and (without loss of generality) non-negative. Thus

Φj =


φ+

j
vj + ρj + iηj


/
√
2


, (11)

with v1 = v cosβ and v2 = v sinβ . Then, the neutral Goldstone boson is G0
= η1 cosβ + η2 sinβ . The linear combination

of the ηj orthogonal to G0 is the physical pseudoscalar

A = η1 sinβ − η2 cosβ. (12)

1 All multi-Higgs-doublet models in general face this potential problem.
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Table 1
Models which lead to natural flavour conservation. The superscript
i is a generation index. By convention, the ui

R always couple toΦ2 .

Model ui
R diR eiR

Type I Φ2 Φ2 Φ2
Type II Φ2 Φ1 Φ1
Lepton-specific Φ2 Φ2 Φ1
Flipped Φ2 Φ1 Φ2

The physical scalars are a lighter h and a heavier H , which are orthogonal combinations of ρ1 and ρ2:

h = ρ1 sinα − ρ2 cosα, (13)
H = −ρ1 cosα − ρ2 sinα. (14)

Notice that the Standard-Model Higgs boson would be

HSM
= ρ1 cosβ + ρ2 sinβ
= h sin (α − β)− H cos (α − β) . (15)

As shown by Carena and Haber [29], one can, without loss of generality, assume that β is in the first quadrant, i.e. that
both v1 and v2 are non-negative real; also, one can add π to α, i.e. invert the sign of both the h andH fields, without affecting
any physics. In the tree-level MSSM, α is in the fourth quadrant, but this is not the case in the general 2HDM, therefore we
will choose α to be either in the first or the fourth quadrant. We will choose our independent variables to be tanβ and α,
which are single valued over the allowed range.

It is conventionally assumed, in discussions of type I and type II 2HDMs, that the right-handed leptons satisfy the same
discrete symmetry as the diR and thus the leptons couple to the same Higgs boson as the Q = −1/3 quarks. However, the
Glashow–Weinberg theorem does not require this, and there are two other possibilities. In the ‘‘lepton-specific’’ model,
the RH quarks all couple to Φ2 and the RH leptons couple to Φ1. In the ‘‘flipped’’ model, one has the Q = 2/3 RH quarks
coupling to Φ2 and the Q = −1/3 RH quarks coupling to Φ1, as in the type II 2HDM, but now the RH leptons couple to Φ2.
The phenomenology of these models is, as we will see, quite different. In one of the earliest papers [30], the names ‘‘Model
III’’ and ‘‘Model IV’’ were used for the flipped and lepton-specific models, respectively. The term ‘‘Model III’’, however, has
become associatedwith the 2HDMwith tree-level FCNCs (the subject of Chapter III). In other early papers [31–33], the terms
‘‘Model I’’ and ‘‘Model II’’ were used for the lepton-specific and flippedmodels respectively, and in even earlierworks [34,35],
the terms IIA and IIBwere used.More recently [36], the terms type X and type Ywere used for the lepton-specific and flipped
models. The four models which lead to natural flavour conservation are presented in Table 1. It is straightforward to find a
Z2 symmetry which will ensure that only these interactions exist.

In a somewhat related work, Pich and Tuzón [37,38] simply assumed that the Yukawa coupling matrices ofΦ1 andΦ2 in
flavour space are proportional. This then eliminates all tree-level FCNC, and gives three arbitrary proportionality constants.
Note that this assumption is ad hoc and, in general, is not radiatively stable [39]—one would obtain FCNC couplings being
generated radiatively, as was analysed recently in Ref. [40]. However, Serôdio has recently proposed a UV completion of
the Pich–Tuzón model [41]. Varzielas [42] has studied how family symmetries in multi-Higgs doublet models may give a
justification for the alignment hypothesis. Each of the four models (as well as the Inert Doublet model discussed later) then
arises as a specific choice of the proportionality constant (and only these choices allow for a symmetry [39]). Another recent,
very general, formulation in which the various models are special cases is shown in Ref. [43]. One should keep in mind that
even if a 2HDMwithout FCNC is correct, it will take some time to determine all of the couplings to determine which 2HDM
it is, and the Pich–Tuzon parametrization might be a valuable guide for phenomenologists. In addition, the Pich–Tuzon
parametrization might arise in other models; for example, the three doublet model of Cree and Logan [44] reproduces
the Pich–Tuzon model in its charged Higgs Yukawa couplings. Of particular interest is the fact that if the proportionality
constants are complex, one has CP violating effects. It has been noted [38,45] that loop corrections induce flavour changing
currents of the Minimal Flavour Violation form, and bounds on the charged-Higgs mass were discussed. A similar approach
was recently used by Mahmoudi and Stal [46], who studied the constraints on the charged-Higgs mass from meson decays
and FCNC transitions, using amore general model-independent approach, getting results in the fourmodels as special cases.

The Yukawa couplings can now be determined. In the Standard Model, the coupling of the fermion f to the Higgs boson
ismf /v. Following the notation of Aoki et al. [36], we define the parameters ξ fh , ξ

f
H , ξ

f
A through the Yukawa Lagrangian

L2HDM
Yukawa = −


f=u,d,ℓ

mf

v


ξ
f
h f fh + ξ

f
H f fH − iξ fA f γ5fA



−

√
2Vud

v
u

muξ

u
APL + mdξ

d
APR


dH+

+

√
2mℓξ

ℓ
A

v
νLℓRH

+
+ H.c.


(16)

where PL/R are projection operators for left-/right-handed fermions, and the factors ξ are presented in Table 2.
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Table 2
Yukawa couplings of u, d, ℓ to the neutral Higgs bosons h,H, A in the four different models. The couplings
to the charged Higgs bosons follow Eq. (16).

Type I Type II Lepton-specific Flipped

ξ uh cosα/ sinβ cosα/ sinβ cosα/ sinβ cosα/ sinβ

ξ dh cosα/ sinβ − sinα/ cosβ cosα/ sinβ − sinα/ cosβ

ξ ℓh cosα/ sinβ − sinα/ cosβ − sinα/ cosβ cosα/ sinβ

ξ uH sinα/ sinβ sinα/ sinβ sinα/ sinβ sinα/ sinβ

ξ dH sinα/ sinβ cosα/ cosβ sinα/ sinβ cosα/ cosβ

ξ ℓH sinα/ sinβ cosα/ cosβ cosα/ cosβ sinα/ sinβ

ξ uA cotβ cotβ cotβ cotβ

ξ dA − cotβ tanβ − cotβ tanβ

ξ ℓA − cotβ tanβ tanβ − cotβ

In all models, the coupling of the neutral Higgs bosons to theW and Z are the same: the coupling of the light Higgs, h, to
either WW or ZZ is the same as the Standard-Model coupling times sin(β − α) and the coupling of the heavier Higgs, H , is
the same as the Standard-Model coupling times cos(α− β). The coupling of the pseudoscalar, A, to vector bosons vanishes.

In this section, we will summarize some of the work done on these four models, and will follow with a more detailed
discussion in the following sections.

There are relatively few studies which directly compare all four models. One of the earliest papers to mention all four
models was by Barger et al. [30], who studied the charged-Higgs phenomenology but assumed fairly light top quarks. The
famous Higgs Hunter’s Guide [47] mentions all four, but concentrates only on the type I and type II 2HDMs. Grossman [31]
also discusses all four models, but focuses on models with more than two doublets, and concentrates on the charged
Higgs sector. Akeroyd has several papers in which all four models are discussed. In an early paper with Stirling [32], the
phenomenology of the charged Higgs boson at LEP2 was analysed in each model, and this was followed [33] by a study of
the neutral sector at LEP2. In addition, he looked [49] at LHC phenomenology in all four models, focusing in particular on the
Higgs branching ratios to γ γ and ττ . More recently, Barger et al. [50] performed a comprehensive analysis of the couplings
in all models with natural flavour conservation, including doublets and singlets; the four models appear as special cases.

There are two recent papers comparing Higgs decays in all four models. Aoki et al. [36] study the decays of the Higgs
bosons in each model, summarize current phenomenological constraints and look at methods of distinguishing the models
at colliders, although they focus on the type II and lepton-specificmodels and assume that the heavyHiggs bosons are not too
heavy (typically with masses below 200 GeV). Arhrib et al. [51] study the decays of the light Higgs in each model, although
the main point of their work concerns double-Higgs production at the LHC.

Recently, a new computer code was written by Eriksson et al. [52]. The code allows one to input any of the different Z2
symmetries, or evenmore general couplings, and calculates all two-body and some three-body Higgs boson decays, and the
oblique parameters S, T and U and other collider constraints.

The least studied model is the flipped model (the word was coined in Ref. [50]); even works that discuss all four models
generally focus less on this structure than the others. The only paper dedicated entirely to the flipped model was the
very recent article of Logan and MacLennan [53]. They studied the charged-Higgs phenomenology in that model, including
branching ratios and indirect constraints and analyse prospects at the LHC.

The lepton-specificmodelwas first discussed in twopapers by Barnett et al. [34,35] in the context of extremely lightHiggs
scalars. The model was recently analysed extensively by Su and Thomas [54]. They studied theoretical and experimental
constraints on the model and showed that there can be substantial enhancement of the couplings between the charged
leptons and the neutral Higgs scalar. Logan and MacLennan [55] considered the constraints on the charged-Higgs mass,
with bounds arising from lepton flavour universality and direct searches, and discuss prospects at the LHC. Goh et al. [56]
discussed whether a lepton-specific model could explain the leptonic cosmic-ray signals seen by PAMELA and ATIC, and
studied the implications for the LHC. A very recent analysis of this possibility, including analyses of astrophysical results
and direct darkmatter detection, can be found in the work of Boucenna and Profumo [57]. In another analysis, Cao et al. [58]
assumed that the 3σ discrepancy [59] between theory and experiment in the g − 2 of the muon is primarily due to the
lepton-specific model—this requirement substantially reduces the available parameter space, forcing the model to have a
very light pseudoscalar and very large values of tanβ , and they analysed this parameter space. Finally, Aoki et al. [60] looked
at neutrino masses and dark matter in the lepton-specific model, but did add singlets.

The type I 2HDM [61] is the second most studied.2 In the quark sector, it is identical to the lepton-specific model, thus
many results from studies of the type I 2HDM apply to the lepton-specific as well. A special limit of the type I 2HDM

2 Recent developments in string phenomenology [62] suggest that a type I 2HDM is generic among the vacua of the heterotic string, providing new
motivation for study of this model.
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is α = π/2, in which case the fermions all completely decouple from the lightest Higgs; this limit is referred to as the
fermiophobic limit. Note that even in this limit, the coupling does reappear at the one-loop level, but it will in any event be
very small. Later in this chapter, it will be shown that in the inert doublet models, this limit can be obtained exactly. The
earliest discussions of the fermiophobic limit in the context of imminent Tevatron data were those of Stange et al. [63], of
Diaz and Weiler [64] and of Barger et al. [65], who looked at Higgs production and decay through photon loops. Shortly
thereafter, Akeroyd [66] studied the other phenomenological implications during the early Tevatron runs. Brücher and
Santos [67] mentioned all four models, but then focused on the fermiophobic limit of the type I 2HDM, studying the decays
of the various Higgs bosons and the constraints on the model from LEP 2. The same authors together with Barroso [68,69]
used the possibility of a fermiophobic Higgs to look at h → γ γ in two different versions of the type I 2HDM, showing that
this decay could distinguish between them.

Moving away from the fermiophobic limit, there are many papers looking at the type I 2HDM. A very early discussion of
the fermiophobic, gauge-phobic and fermiophilic limits was given by Pois et al. [70], who studied top production below the
t t̄ threshold in Higgs decays. The Higgs Hunter’s Guide [47] contains some analysis (although they focus on the type II
2HDM and the MSSM), but this was before the top mass was known to be very heavy. In a series of papers, Akeroyd
and collaborators [48,71–74] considered Higgs decays into lighter Higgs bosons, charged-Higgs decays into a W and a
pseudoscalar, double-Higgs production, Higgs decays to γ γ , τ+τ− at the LHC, and the possibility of a very light Higgs,
respectively, all in the context of the type I 2HDM. There have also been studies of the contribution to the anomalous
magnetic moment of the muon in the type I 2HDM [75,76].

The type II 2HDM is by far the most studied, since it is the structure present in supersymmetric models. A voluminous
Physics Reports review article in 2008 by Djouadi [24] analyses the Higgs bosons of the MSSM in great detail. We will not
discuss the MSSM Higgs structure and phenomenology in this work, and refer the reader to Djouadi’s review article. Here,
we will only focus on the differences between the general type II 2HDM and the MSSM.

Themost crucial difference is that the general type II 2HDMdoes not have a strict upper bound on themass of the lightest
Higgs boson, which is an important characteristic of the MSSM. In addition, the scalar self-couplings are now arbitrary.
Another important difference is that the mixing parameter α, which in the MSSM is given in terms of tanβ and the scalar
and pseudoscalar masses, is now arbitrary. Finally, in the MSSM the charged-scalar and pseudoscalar masses are so close
that the decay of the charged Higgs into a pseudoscalar and a realW is kinematically forbidden, while it is generally allowed
in the type II 2HDM (although see Refs. [77,78] for possible exceptions).

The Higgs Hunter’s Guide has numerous phenomenological bounds on the type II 2HDM, but they have become quite
outdated. There have been several more recent works [79–81] on B → Xsγ ; the work by Misiak [81] would also apply to
the lepton-specific model. A recent summary of bounds on the charged-Higgs mass in the type II 2HDM is by Krawczyk
and Sokolowska [82], and detailed analyses of charged-Higgs production at hadron colliders can be found in Refs. [83–85].
Asakawa et al. [86] compare associatedW plus chargedHiggs production in the type II 2HDMwith that in theMSSM.As noted
above, the decay of the charged Higgs into a pseudoscalar and a W is forbidden in the MSSM, but not in the more general
type II 2HDM, and a detailed study of that decay is found in Ref. [72], which also discusses the type I 2HDM. Krawczyk and
Temes [87] studied constraints from leptonic tau decays. Finally, a very recent study by Kaffas et al. [88] looked at all these
(and other) processes in a very comprehensive analysis of the type II 2HDM parameter space. There are many additional
papers on the type II 2HDM; their results will be discussed in subsequent sections.

In addition, there is another model which has natural flavour conservation, in which the quarks and charged leptons all
couple toΦ2, but the right-handed neutrino couples toΦ1. In this model, there are Dirac neutrino masses, and the vacuum
expectation value of Φ1 must be O(eV). The only way to have such a small vev is through an approximate symmetry.
The model originally used a Z2 symmetry which was softly [89] or spontaneously [90] broken, but this allows for right-
handed neutrino masses. Extending the symmetry to a U(1) and breaking it softly (to avoid a Goldstone boson) gives
the model of Davidson and Logan [91]. An interesting question concerns the effects of quantum corrections to the small
vacuum expectation value and that is discussed in Ref. [92]. The phenomenology of this model (which is basically the type I
2HDMwith a right-handed neutrino added) is quite interesting, especially in the charged-Higgs sector, andwill be discussed
subsequently.

In this chapter, we will first discuss the decays of the neutral Higgs bosons in the various models, followed by an analysis
of the production of the neutral Higgs. Then the constraints due to both collider bounds as well as lower energy processes
(such as B decays, b production, the anomalous magnetic moment of the muon, etc.) will be presented. Finally, the ‘‘inert’’
doublet model will be discussed.

2.1. Higgs decays

The key methods of distinguishing the various 2HDMs from each other and from the Standard Model involve the
branching ratios in Higgs decays. In this section, we will focus on the decays of the neutral scalars (h,H, A) of the 2HDM. In
the Standard Model, the Tevatron is sensitive to the b̄b,WW , ZZ Higgs decays, whereas at the LHC the decays γ γ ,WW , ZZ
are more important. The branching ratios and total width of the Standard Model Higgs are very well studied; the most
comprehensive analysis is found in the recent review of Djouadi [93]. The results are in Fig. 1. One can see that the WW
and ZZ decays are dominant for Higgs masses above 160 GeV; they would provide the best signature at either the Tevatron
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Fig. 1. The branching ratios for the decay of the SM Higgs boson as a function of its mass.

or the LHC. Below 160 GeV, the bb̄ branching ratio is more important at the Tevatron, but that decay mode is swamped by
large backgrounds at the LHC, which must rely on the γ γ mode in the low-mass range.

We now must look at branching ratios in 2HDMs. As shown in the last section, the branching ratios will not depend
exclusively on the masses, but also on α and β . This makes plots of the various branching ratios necessarily incomplete.
Ignoring, for now, the possibility of heavy Higgs bosons decaying into lighter ones, one has branching ratios depending on
mH , α and β for each Higgs (h,H, A) and for each model. This makes a comprehensive analysis difficult.

How have other authors dealt with this previously? In the comprehensive review of all four models by Aoki et al. [36],
they plotted the branching ratios ofH and A for each of the fourmodels as a function of tanβ , setting themass to 150GeV and
cos(α− β) = 0. In this limit, the decays of the H and A toWW and ZZ vanish. While certainly an interesting and important
limit, this does correspond to a single point in the two-dimensionalmass—cos(α−β) parameter space. Akeroyd [49] plotted
the branching ratio of the light Higgs as a function of tanβ , but also chose only a few points in the parameter space. In their
analysis of the lepton-specificmodel, Su and Thomas chose a specific benchmark point forα andβ and plotted the branching
ratios as a function of the mass. These are just some examples.

In order to cut down on the complexity of the graphs, wewill not display decaymodeswhich can never be seen at the LHC
and Tevatron (at least within the next decade), although they will be included in the computation of the branching ratios.
Long before thesemodes could bemeasured, many of the parameters of the 2HDMwill be known, andmore comprehensive
analyses will be done. Thus, wewill only consider decays into t t̄ , bb̄,WW , ττ and γ γ (and possibly into other Higgs bosons).
In fact,

• In the type I and type II 2HDMs the ratio of the ττ to bb̄ modes is fixed at m2
τ/3m

2
b . Using the fact that one must use the

running b-quark mass at the 100 GeV scale (which is approximately 3.0 GeV) and including radiative corrections, this
ratio is fixed at approximately 10%, and thus we will not explicitly include the ττ mode in the figures.

• The decay width into ZZ is related to the one intoWW by only the weak mixing angle and phase–space factors, and thus
will have the same ratio as in the Standard Model. As a result, the branching ratio into ZZ will not be directly displayed.

• The decay into gluons (while important in production) cannot be directly measured due to very large backgrounds.
• Other decay modes, such as cc̄ , Zγ and µµ, have either too small branching ratios or too large backgrounds.

Again, only neutral Higgs fields will be discussed in this chapter.
In all four of the 2HDMs, a lower bound on tanβ of roughly 0.3 can be obtained from the requirement that the top-quark

Yukawa coupling be perturbative. Since large Yukawa couplings have positive beta functions, if they start out large then they
will exceed the perturbative limit (as well as unitarity) at a relatively low scale (see Section 5.7 and Appendix A). It is hard
to see how a tanβ near or below 0.3 can be accommodated. At the other extreme, in the type II 2HDM, the bottom-quark
Yukawa coupling will be non-perturbative if tanβ exceeds roughly 100. In the context of the MSSM, Barger et al. [94] and
Carena et al. [95] showed that perturbative unification could be achieved for tanβ < 60, but the MSSM has beta functions
very different from those of the 2HDM. Kanemura and collaborators [96,97] looked at bounds on tanβ from perturbative
unification in the non-supersymmetric 2HDM, and Akeroyd et al. [98,99] looked for violations of tree-level unitarity in
a large number of processes and concluded that values of tanβ greater than 30 are disfavoured, although there are some
regions of parameter space inwhich they are allowed.More recently, Arhrib et al. [51] argued that perturbative and unitarity
constraints, in all fourmodels, require that tanβ < 6 for all but a very small region of parameter space, and this is confirmed



10 G.C. Branco et al. / Physics Reports 516 (2012) 1–102

Fig. 2. The type-I 2HDM light-Higgs branching ratios intoW pairs, diphotons and bb̄ are plotted as a function of α for tanβ = 1 and for various values of
the Higgs mass (in GeV). In the left figure, the solid lines correspond to h → WW and the dashed lines to h → γ γ .

in the work of Kaffas et al. [88]. Thus, we will focus on values of tanβ between 1 and 6, but will mention the effects of larger
tanβ in a few instances.

One region of interest is the decoupling region. This is the region of parameter space in which the H , A and charged Higgs
all are much heavier than the h, and it is thus possible to integrate out the heavy fields. The resulting effective theory is then
like the Standard-Model Higgs sector, with corrections to the various couplings due to the heavy sector. This was discussed
in detail by Gunion and Haber [100]. Later, Mantry et al. [101] and Randall [102] examined Higgs decays in the decoupling
region and showed how one could obtain ameasurable sensitivity to the high scale even if the heavy scalars are inaccessible
at the LHC, pointing out the importance of accurate measurements of the branching fractions.

2.1.1. Higgs decays in the type I 2HDM
The type I 2HDM has the simplest discrete symmetry and its couplings can be easily described. The coupling of the light

neutral Higgs, h, to fermions is the same as in the Standard Model but multiplied by cosα/ sinβ while its couplings toWW
and ZZ aremultiplied by sin(α−β). For the heavy neutral Higgs,H , these factors are sinα/ sinβ and cos(α−β), respectively.
Thus one can determine the widths of the various decays by simple multiplication, with the exception of the γ γ decay, in
which the contribution of theW loop and that of the fermion loops are multiplied by their respective factors.

There are a few interesting limits. If sin(α − β) (cos(α − β)) vanishes, then the h (H) field is gauge-phobic, i.e. it does
not couple to WW and ZZ , radically changing the phenomenology of Higgs decays. If cosα (sinα) vanishes, then the h (H)
is fermiophobic. This is a particularly interesting limit, since then the γ γ decay can become dominant well below the WW
threshold. Although there is no symmetry that can enforce this limit (and a non-zero sin(α − β) would be generated at
one-loop if it is set equal to zero at tree level), the phenomenological implications are so dramatic that study of the limit is
warranted.3

For tanβ = 1, the branching ratios of the light Higgs have been plotted in Fig. 2 for various values of the Higgs mass. One
can clearly see that α = ±π/2 is the fermiophobic limit, where the branching ratio to fermions vanishes, and that α = β
is the gauge-phobic limit, where the branching ratios to WW and to ZZ vanish. Note that the branching ratio to γ γ at the
gauge-phobic point does not quite vanish since there is a small contribution from top-quark loops.

For the light Higgs hwe have considered masses ranging from 100 GeV to 190 GeV. An h heavier than 190 GeVmay have
problems with electroweak precision results [103], although in the 2HDM, such a heavy Higgs could be made compatible
with these results, as discussed in Ref. [104]. An h lighter than 100 GeVmight be allowed by the LEP data [105] if its coupling
to ZZ were suppressed by a sufficiently small value of sin(α−β); for instance, a 70GeVhwould be allowed [106] if sin2(α−β)
were no larger than 3%. For a recent discussion, see the work of Gupta andWells [107]. Since phenomenological consistency
is obtained only for a narrow range of α around the gauge-phobic point, we will not allow for mh < 100 GeV in the plots,
but any interesting physics of a lighter hwill be discussed in the text.

In the Standard Model, for a Higgs mass of 100 GeV, the decay to WW is heavily suppressed since at least one of the W s
must be far off-shell, and the bb̄mode is dominant. Thus, as seen in Fig. 2, one must be very close to the fermiophobic limit
in order for the bb̄ branching ratio to be small. As the Higgs becomes heavier, the WW decay mode is less suppressed and
eventually dominates; for larger Higgs masses, the decay into bb̄ is very small except very close to the gauge-phobic point.

3 Notice, though, that this limit corresponds to the inert model, in which only one of the doublets gains a vev.
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Note that the bb̄ branching ratio never reaches unity, even at the gauge-phobic point, due to the contribution of the gluonic
decay (which depends on the coupling of the Higgs to the top quark). Comparing with the Standard Model decays, one can
see that the relative branching ratios can differ substantially.

For larger values of tanβ , the results look very similar, with slightly different slopes. The main difference is that the
gauge-phobic point is at α = β and thus moves to the right. In the case of tanβ = 30, the gauge-phobic and fermiophobic
points are only two degrees apart, leading to very steep slopes in the curves (since the gauge-phobic and fermiophobic
points cannot coincide, the Higgs will certainly decay, but in this case its width will be quite narrow).

The diphoton decay, h → γ γ , has contributions from both W loops and t loops, therefore it does not vanish in either
the gauge-phobic or fermiophobic limit (the contribution ofW loops in the Standard Model is substantially larger than that
of top-quark loops, so the gauge-phobic limit does cause a suppression). An analysis of this mode in the type-I 2HDM was
carried out by Posch [108], who found that an enhancement over the StandardModel branching ratio of as much as 70%was
possible.

The fermiophobic limit is of special interest. Although the mass limit on the Standard-Model Higgs boson is 114.4
GeV [109], this assumes that the coupling of the Higgs boson to ZZ is not suppressed, and the bound can be much weaker
if one is fairly close to the gauge-phobic limit. Many studies have been done concerning the possibility of a Higgs much
lighter than 100 GeV in the fermiophobic limit. Note that the decay into WW drops off dramatically as the Higgs mass is
below the W mass, therefore the fermiophobic limit leads to a dominant decay into γ γ for these masses. CDF [110] and
D0 [111] have published bounds on a fermiophobic Higgs (by looking for the diphoton mode) which are slightly over 100
GeV, but they still assume that the coupling to ZZ is not suppressed, which may not be the case (note that if α = ±π/2,
then sin(α − β) = ± cosβ which can be quite small in the large tanβ limit).

In a comprehensive analysis, Akeroyd and Diaz [74] noted that if the coupling to gauge bosons is suppressed, then the
coupling of the light Higgs to a chargedHiggs and aW is not suppressed (one scales as sin(α−β) and the other as cos(α−β))
thus one can pair-produce the charged Higgs and from there a pair of light Higgs bosons. D0 [112] has looked at this and
found a lower bound on the light-Higgs mass, which is approximately 80 GeV for a charged-Higgs mass below 100 GeV
and approximately 50 GeV for a charged-Higgs mass below 150 GeV. This is based on less than a single fb−1, and will be
improved substantially in the near future. Subsequently, Akeroyd et al. [73] looked at this process at the LHC, which would
be particularly relevant if the charged Higgs boson were heavier. Finally, it was shown [67,68,113] that charged-Higgs loops
can substantially alter the diphoton branching ratio in 2HDMs, although this depends on unknown scalar self-couplings,
viz. on the coupling hH+H−. Since one can see from Fig. 2 that the dominance of the diphoton decay mode (especially for
a very light Higgs) will only occur if α is extremely close to ±π/2, the region of parameter space is very small, but the
signature is sufficiently dramatic that searches should continue. Note that the fermiophobic limit is only relevant for the
type I 2HDM.

Throughout the above we have neglected the possibility that the light Higgs can decay into other Higgs. In fact, in both
the type I and type II 2HDMs there is a decay that could be important for a range of parameter space, and yet it has not, to our
knowledge, been explored substantially. The range of parameter space will occur if the pseudoscalar mass MA is less then
mh − mZ . Specifically, one can look for h → ZA. This could occur if the pseudoscalar is very light (a few GeV) and the Higgs
is near the current bound (this would fit electroweak precision tests better), or else if the pseudoscalar mass is comparable
to the gauge-boson masses and the lightest Higgs scalar is considerably heavier. The h → ZA decay has generally not been
mentioned, and we know of no experimental searches for this mode (although it has beenmentioned by DELPHI [114]). The
primary reason for this lack of attention is that the rate is proportional to cos2(α−β), which is very small in the MSSM. But
in the general 2HDM there is no reason that cos(α − β) is small. The width is given by4

Γ (h → ZA) =
g2m3

h cos
2(α − β)

64πm2
W

λ3/2 (17)

where λ = (1 − (m2
Z − m2

A)/m
2
h)

2
− 4m2

Zm
2
A/m

4
h . One can compare this with the more well-known decay of the light Higgs

to WW , which is (for decays into real gauge bosons)

Γ (h → WW ) =
g2m3

h sin
2(α − β)

64πM2
W

λ′ (18)

where λ′
=

√
1 − 4x(1 − 4x + 12x2), with x = M2

W/m
2
h . For cos

2(α − β) > 1/2, h → ZA will actually dominate Higgs
decays. The branching ratio is plotted in Fig. 3, for a range of h masses, choosing tanβ = 1 and mA = 5 GeV. One can see
the dip at cos(α−β) = 0; this is the region expected in supersymmetric models. At α = β , one has the gauge-phobic limit,
and thus the h → ZA decay dominates (except at a Higgs mass of 100 GeV, where the bb̄ decay is still substantial). For larger
tanβ , as before, the maxima and minima simply shift to the right. For largermA, the only change will be in λ, but as long as
the light Higgs is reasonably heavier thanmZ + mA, there will be a range of parameters where this decay is large.

One sees that there is a substantial range of parameters for which this relatively unstudied decay mode could be
substantial, and even dominate. The only discussion of it that we are aware of is the analysis, in the type I 2HDM, by

4 Throughout this work, π refers to the mathematical constant [115], not the pion field.
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Fig. 3. Branching ratios of the light Higgs boson h into a Z and a pseudoscalar, for various values of the mass (in GeV) of h. The value of tanβ is chosen to
be 1 and the mass of the pseudoscalar is chosen to be 5 GeV.

Akeroyd [71], who looked at the decay of a neutral scalar into a virtual Z and a pseudoscalar. There has been no analysis
of detector capabilities. Even if the Z is real, the decay may be challenging [116]. At a hadron collider, the h longitudinal
boost will not be known, so the Z will not be monoenergetic; moreover, the decays of the pseudoscalar may not be easy to
observe (especially if it decays into b quarks). But if this is the dominant decay, further analysis is needed. As we will see
below, the decay involving the heavier of the neutral scalars, H → ZA has been discussed in detail, since this can also be
substantial in supersymmetric models.

What about Higgs decays into pairs of scalars? By definition, the H is heavier, but the pseudoscalar could be lighter,
leading to h → AA. There has been substantial discussion of the possibility of a very light A, especially in a series of papers
by Dermisek and Gunion [117–121]. One motivation is that precision electroweak fits prefer the light Higgs to be lighter
than the 114 GeV bound, and this could be allowed if the h → AA → 4τ or 4 jet signature exists. LEP has published [122]
a bound of 82 GeV for the light Higgs, independent of decay modes (assuming one is not near the gauge-phobic limit), but
there is still a substantial allowed window. If the A is heavier than twice the b quark mass, then bb̄ decays will dominate. So
bounds generally can be found for Amasses between 4 and 10 GeV and Higgs masses between 80 and 115 GeV. The bounds
are generally expressed in terms of ξ , where

ξ 2 =


ghVV
gSM
hVV

2

BR (h → AA)

BR

A → τ+τ−

2
, (19)

and in the bounds the range [0.1, 1] is typically [123] considered for ξ 2. In the type I 2HDM, however, ξ 2 will generally be
smaller. The reason is that the A can, in the type I 2HDM, decay into cc̄. Since the running c-quark mass at the 10 GeV scale
is not that much smaller than the τ mass, the rates of cc̄ and τ+τ− will be similar. Thus BR


A → τ+τ−


and, consequently,

ξ will be smaller. This will not be the case in the type II 2HDM. We will not have much to say about this mode here, since it
will depend on the completely arbitrary quartic couplings of the scalar potential (unlike the MSSM or NMSSM, where those
couplings are specified). The experimental possibility of measuring these quartic couplings in the context of the fourmodels
discussed in this section was considered by Arhrib et al. [51]. The possibility that this decay mode could suppress the other
ones should be kept in mind.

We now look at the other neutral Higgs bosons. The heavier neutral scalar, H , has a coupling to fermions proportional
to sinα/ sinβ and a coupling to vector bosons proportional to cos(α − β). These are identical to the couplings of the light
Higgs, h, if one shifts α to α − π/2. As a result, for the decay modes of H one may still use Fig. 2 after shifting the graph
to the left by π/2 (recall that a shift by π in α does not affect any physics). So the fermiophobic point will be α = 0 and,
for tanβ = 1, the gauge-phobic point will be at α = −π/4. As tanβ increases, just as in the case for h, the gauge-phobic
point moves towards the fermiophobic point. It should be emphasized that if there is a detection of a single scalar field with
a mass of, say, 190 GeV, then it will be impossible to determine if it is an h or an H by looking at the decays, since they are
identical after a redefinition of α.

Unlike the lightHiggs field, however, theH can be substantially heavier. As can be seen fromFig. 2, the branching ratio into
WW will be fairly constant for heavier masses, with a very sharp dip at the gauge-phobic point (which is now at α = −π/4
for tanβ = 1). But, the branching ratio into fermions will change as the top-quark threshold is reached. In Fig. 4 we have
plotted the branching ratio of the H into bb̄ and t t̄ . Note that the curve for H decays into bb̄ at a Higgs mass at 200 GeV is
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Fig. 4. Branching ratios of the heavy Higgs boson into bb̄ (solid lines) and t t̄ (dashed lines), for various values of the heavy-Higgs mass. We have chosen
tanβ = 1.

identical to that for h decays in Fig. 2, shifted byπ/2. As the Higgsmass increases, the branching ratio to bb̄ decreases (except
at the gauge phobic point) until the top-quark threshold is reached. As the threshold is reached, top quarks dominate (with
a branching ratio of nearly 100% at the gauge-phobic point).

Our previous discussion about Higgs bosons decaying into other Higgs bosons still applies. In this case, one can also have
H → hh if h is light enough. Since this depends on unknown scalar self-couplings, we will not have much to say about this
mode. The same is true for the H → AA mode if the pseudoscalar is very light.

It was noted above that the decay of the light Higgs into a Z and a light pseudoscalar has not been studied, primarily
because it is small in the MSSM. However, the decay of the heavy Higgs into ZA has been discussed in detail by Dermisek
and Gunion [124] and by Kao et al. [125], who note that it can, for a reasonable range of parameters, dominate the decays
of the H .

An interesting scenario that has, to our knowledge, not been studied is that the h and H could be very close in mass (a
few GeV mass difference would be within the LHC experimental resolution). While fine-tuned, this possibility leads to the
question of whether this could be distinguished from the StandardModel Higgs. If the decays intoWW or ZZ are considered,
then the h (H) will have a cos2(α − β) (sin2(α − β)) factor in the decay rate, leading to a Standard Model decay rate if both
are added. However, the production rate will depend on the top-quark coupling (since gluon fusion dominates), as will the
γ γ decay rate, leading to a more complicated and model dependent picture. This possibility deserves further analysis.

Finally, one can look at the decays of the pseudoscalar. Here, all fermion couplings are multiplied by cotβ , and there are
no couplings to a pair of vector bosons. Thus, the branching ratios will be independent of α and β , and are just given by
fermion mass ratios and phase–space. It should be remembered that all fermions are accessible (in the type I 2HDM) and
thus the branching ratio into τ+τ− will always be similar (within a factor of two) to the one into cc̄. If the A is heavier than
10 GeV, then decays into bb̄ will dominate (until the top-quark threshold is reached). Since it is difficult to detect bb̄ at a
hadron collider, one can look at other decays, such as τ+τ−, W±H∓, Zh, ZH , gg , γ γ , Zγ . A very comprehensive analysis of
all these decays in the type I 2HDM can be found in the article by Kominis [126].

If the mass of the pseudoscalar is abovemh + MZ , but below 350 GeV (when the decays into t t̄ will start to dominate), a
possible decay mode is A → hZ . Given that there are no decays to a pair of vector bosons, and the decay into bottom quarks
is suppressed bym2

b , this decay could be dominant over the region [126–128]. The decaywidth is given in the Higgs Hunter’s
Guide [47]. It does depend on cos(α−β)2 and onewould expect the decay to dominate if it is kinematically accessible and if
that quantity is not small. A recent discussion about detection at the LHC is in Ref. [107]. The other decays mentioned above
are loop effects and will generally be small, but may be experimentally easier to detect.

Kominis [126] has studied the diphoton decay channel and the Zh channel in the type I and type II 2HDMs and compared
it with the results of the MSSM. He found that in the lower end of the mass range, due to the difficulty in seeing bb̄ pairs at a
hadron collider, the diphoton mode would be the most promising one. The process A → hZ provides a very clear signature
in the intermediate mass range in which the h is between 40 and 160 GeV. These two modes are thus complementary. This
work was done in 1994, and an updated analysis would be welcome.

Recently, Bar-Shalom et al. [129] studied 2HDMs in which dynamical electroweak symmetry breaking is triggered by
condensation of 4th generation fermions. Their models have one ‘‘heavy’’ doublet with a large vev and a ‘‘light’’ doublet with
amuch smaller vev. The heavy doublet couples to the 4th generation fermions and, in one of themodels to the 3rd generation
of fermions, in another to the top quark only, and in another to only the 4th generation fermions. The phenomenology is
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Fig. 5. The type II 2HDM light-Higgs branching ratios into W pairs, diphotons and bb̄ are plotted as a function of α for tanβ = 1 and tanβ = 6 and for
various values of the Higgs mass (in GeV). In the left-hand figures, the solid lines correspond to h → WW and the dashed lines to h → γ γ . The branching
ratio into Z pairs has the same ratio to the one intoW pairs as in the Standard Model.

similar to the type I 2HDM. They study the phenomenology of the models, including precision electroweak measurements,
rare decays and collider implications.

2.1.2. Higgs decays in the type II 2HDM
The type II 2HDM is the most studied one, since the couplings of the MSSM are a subset of the couplings of the type II

2HDM. The coupling of the light neutral Higgs, h, to fermions depends on the fermion charge. The coupling of the Q = 2/3
quarks is the same as in the type I 2HDM, i.e. it is the Standard-Model coupling times cosα/ sinβ . On the other hand, the
coupling of the Q = −1/3 quarks and of the leptons is the Standard-Model coupling times − sinα/ cosβ . In the large tanβ
scenario, this means that the couplings of the Q = −1/3 quarks and of the leptons are much larger than in the type I 2HDM.
In fact, one can see that the ratio of the bottom quark Yukawa coupling to that of the top quark is approximately tanα tanβ
times the same ratio for the type I 2HDM, and this can drastically affect the phenomenology. The couplings to gauge bosons
are the same as in the type I 2HDM. Therefore, one still has the gauge-phobic limit for h if sin(α − β) = 0, but there is no
fully fermiophobic limit. If α = ±π/2 (α = 0), then the h will not couple to the Q = 2/3 quarks (Q = −1/3 quarks and
leptons), but no choice of α will eliminate all couplings to fermions.

The branching ratios of the light neutral Higgs are plotted in Fig. 5 for tanβ = 1 and tanβ = 6. Note that, as expected,
the curves for tanβ = 1 are very similar to those in Fig. 2 if one shifts α by π/2 and flips the sign. The b-phobic value of α
is zero in the type II 2HDM. At the b-phobic point, say for a Higgs mass of 100 GeV, neither the bb̄ nor the WW , ZZ modes
are substantial. In this case, the cc̄ and gluon–gluon decays dominate. Since neither can be seen at the LHC, we have not
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Fig. 6. Branching ratios of the heavy Higgs boson into fermions for tanβ = 6, 30. The solid (dashed) lines are the branching ratios into bb̄ (t t̄) for various
values of the heavy-scalar mass.

included them here, although a very similar figure with these modes included appears in Arhrib et al. [51] for mh = 110
GeV and tanβ = 1.

Unlike the type I 2HDM, however, there is in this case a strong dependence on tanβ . In Fig. 5 we also show the decays
for tanβ = 6. One sees that, as expected, the gauge-phobic point α = β moves to the right, and the b-phobic point remains
at α = 0. For a relatively light h, with a mass of 100 GeV, the enhanced coupling of the b quark when tanβ = 6 causes the
phase–space suppression of the WW decay mode to be quite dramatic, with virtually no WW pairs except at the b-phobic
point. Even at that point, the WW branching ratio is only around 10%, since the gluon–gluon decay goes through a top-
quark loopwhich is not suppressed at the b-phobic point, and thus becomes dominant. Still, slightly away from the b-phobic
point, the bb̄ mode already dominates again although, for a light h, the diphoton mode is not negligible. It is interesting to
note that this model contains a sizeable region of parameter space in which a light Higgs with a mass of 160 GeV will still
predominantly decay into b quarks rather thanW pairs.

For tanβ = 30, the gauge-phobic point is extremely close to α = π/2, and the trend becomes evenmore dramatic, with
the mh = 190 GeV curve becoming close to the mh = 130 GeV curve of the tanβ = 6 plot. At this point, even a relatively
heavy hwill have negligible couplings toWW or ZZ for most values of α.

It should be kept in mind that the branching ratio into τ+τ− is approximately 10% of the one into bb̄. The backgrounds
for the bb̄ mode are huge at the LHC, rendering that decay mode very difficult to observe, while the backgrounds for τ+τ−

aremuch less severe and therefore, even if the bb̄mode cannot be seen at the LHC, h could still be detected through its decay
to τ+τ−.

As noted earlier, the recent review article by Djouadi [24] studies the Higgs phenomenology of the MSSM in great detail,
and that is a special case of the type II 2HDM. Much of the analysis in that article will be relevant here. In the general case,
there are some differences. In the MSSM, the light Higgs cannot be much heavier than 130 GeV, as it can here. In addition, α
is determined in terms of other Higgsmasses and β and is thusmuchmore restricted. Nonetheless, the basic features shown
in Fig. 5 are, for hmasses at 130 GeV and below, also present in the MSSM. For large tanβ , the bb̄ decay mode dominates for
most of parameter space. However, the MSSM (at tree level) does not allow α = 0, and thus the b-phobic region does not
occur. The major differences, then, are that the general type II 2HDM allows for a heavier h and that it also allows for the
possibility that a fairly light h could still predominantly decay intoW pairs.

In the discussion of the type I 2HDM, we also discussed the decays of the light Higgs into a Z plus a pseudoscalar and of a
light Higgs into two pseudoscalars. Nothing much changes in the type II 2HDM. One still has a region of parameter space in
which h → ZA can be substantial, and h → AA can be significant if A is light. The only difference is that if the A has a mass
between 4 and 10 GeV, then its branching ratio into τ+τ− will be larger for large tanβ , facilitating detection.

Turning to the other neutral Higgs bosons, one can see that the couplings of the heavier scalar H are identical to those of
the h if one replaces α by α − π/2. Thus the decay modes of the H , if it is lighter than 200 GeV, will be identical to those in
Fig. 5 after α is shifted to the left by π/2. For heavier H fields, however, there is a substantial difference between the type I
and type II 2HDMs. This is because in the type II 2HDM, the ratio of the branching fraction into bottom quarks compared
to the one into top quarks varies as tan2 β tan2 α compared with the type I 2HDM. In addition, the b-phobic and t-phobic
points do not coincide. For tanβ = 1, the results for the t t̄ mode are identical to those in Fig. 4, and the results for the bb̄
are the same but with α shifted by π/2 (so the b-phobic points are at α = ±π/2). In Fig. 6, we plot the branching ratios of
the heavy Higgs into fermions for tanβ = 6 and tanβ = 30. Again, one sees that the t-phobic and b-phobic points are now
different. There is here a striking difference between the type I and type II 2HDMs.
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Fig. 7. Branching ratios of the light Higgs boson in the lepton-specific 2HDM. We have taken tanβ = 1. In the left figure, the solid (dashed) lines are the
branching ratios into WW (γ γ ); in the right figure, the solid (dashed) lines are the branching ratios into bb̄ (τ+τ−) for various values of the Higgs-boson
mass.

The pseudoscalar does not decay into gauge bosons, and thus it will decay into the heaviest fermions accessible, as in the
type I 2HDM. However, now the decay to Q = −1/3 quarks (Q = 2/3 quarks) will be multiplied by tan2 β (cot2 β), and for
large tanβ this will strongly suppress the coupling to top quarks. In fact, for tanβ greater than about 6–7, the decay into
bottom quarks will always exceed that into top quarks.

Thus, for tanβ near 1, the results for pseudoscalar decay are identical to those of the type I 2HDM. For a pseudoscalar
mass in between 4 and 10 GeV, the main decay mode is τ+τ−, with a comparable branching ratio into cc̄. Above 10 GeV,
the principal decay is into bb̄ (with τ+τ− being approximately 10% of bb̄). As discussed in detail by Kominis [126], it might
be easier, in this mass range, to look for the one-loop diphoton mode. Once the mass exceeds 200 GeV, A → hZ becomes
possible, and then above 350 GeV, decays into top quarks dominate.

For tanβ much larger, say larger than 10, the decay of a 4–10 GeV pseudoscalar is almost entirely into τ+τ−, due to the
absence of charm decays. Above 10 GeV, bb̄ dominates, and this domination continues for all masses; since the bb̄ mode is
difficult to observe at the LHC, it may be necessary to look at the diphoton mode to find the pseudoscalar. Kominis [126]
discusses these possibilities in detail.

It is straightforward to see (as discussed above) how the results of this section can be expanded to larger values of tanβ—
the results do not change substantially, except for the ratio of h decays into bottom quarks relative to top quarks. For amuch
more recent discussionwithmany references, which look at both the CP-conserving and CP-violatingmodels, see the papers
of Kaffas et al. [88,130].

There is a class of models in which the electroweak symmetry is broken by the condensation of a strongly coupled
fermion sector. Although this sector could come from a fourth generation, it need not. As noted originally by Luty [131],
if this strongly interacting sector respects isospin invariance, then the resulting low energy theory is a two-Higgs doublet
model. Using an RG-improved Nambu–Jona-Lasinio model, Burdman and Haluch [132] studied the effective low-energy
scalar sector. They found that, not surprisingly, the scalars are all fairly heavy (in the 600–800GeV region), but also found that
the pseudoscalar is light, with a mass ranging from 10 to 120 GeV. They discuss the phenomenology of the model, including
precision electroweak fits, and find it similar to a type II 2HDM with an unusual mass spectrum and with tanβ ∼ 1.

2.1.3. Higgs decays in the lepton-specific 2HDM
The couplings of the quarks to theHiggs bosons in the lepton-specific (LS) 2HDMare identical to those in the type I 2HDM,

but the couplings of the leptons are quite different. In the previous models, the branching ratio into τ+τ− was roughly 10%
of the branching ratio into bb̄ for all values of the parameters. This is not the case in the LS 2HDM. There are two major
differences between the LS 2HDM and the type I 2HDM. Firstly, the branching ratio of the h into τ+τ− can be much larger
and, compared with the branching ratio into bb̄, grows as tan2 β cot2 α. Secondly, the b-phobic value of α is ±π/2, whereas
in the LS 2HDM, the τ -phobic value of α is 0. This can dramatically affect the phenomenology—the τ+τ− branching ratio
can exceed that of bb̄ even for values of tanβ near unity.

As in the type I 2HDM, the h field (H field) will be gauge-phobic if sin(α − β) (cos(α − β)) vanishes.
In Fig. 7, we have plotted the branching ratios of the light Higgs, h, into WW , γ γ , bb̄ and τ+τ− for various h masses,

assuming tanβ = 1. With such a low tanβ , one might expect that there would be relatively little contribution from the
τ+τ− mode. However, since the τ -phobic and b-phobic points are different, one can see that near the b-phobic point, the
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Fig. 8. Branching ratios of the light Higgs boson into fermions in the LS 2HDM with tanβ = 6. The solid (dashed) lines are the branching ratios into bb̄
(τ+τ−) for various values of the Higgs-boson mass.

τ+τ− mode dominates the decays of the h for mh = 100 GeV. This is understandable, since the WW mode is phase–space
suppressed and one is near the b-phobic point. Thus, near α = ±π/2, the τ+τ− mode supersedes the other branching
ratios. Note that away from this point, the curves look virtually identical to those in the type I 2HDM, Fig. 2, as expected.
Su and Thomas [54] have pointed out that the region of parameter space near the b-phobic point will violate perturbativity
or vacuum stability in the limit where the H and A fields are quite heavy. They studied the LHC discovery potential of the
LS 2HDM in the case where the low-energy spectrum only contained one light Higgs boson.

One can also look at larger values of tanβ , where the coupling to τ s will increase substantially. We have plotted the
branching ratios into fermions for tanβ = 6 in Fig. 8. One sees a dramatic increase in the τ+τ− mode away from the
τ -phobic point. In fact, even for a Higgs mass of 160 GeV, there is a range of α [33] for which the τ+τ− mode is the dominant
decay. The fact that the curves do not add up to 100% is due to our not having included the gluon–gluon and cc̄ decaymodes
in the figure; these cannot be measured easily at the LHC. The paper of Arhrib et al. [51] has very similar figures which (for a
specific hmass of 110 GeV) show these decays as well. By comparing this figure with Fig. 7, one can see the pattern for very
large tanβ . For tanβ = 100, for example, which is still allowed by perturbation theory (although, as noted earlier, may have
difficulties with tree-level unitarity), the τ+τ− mode would completely dominate the h decays for all masses of h, except
very close to α = 0. A comprehensive analysis of the τ+τ− decay mode at the LHC can be found in the papers of Belyaev
et al. [133,134]. They note that if decays to gauge bosons are kinematically forbidden, and decays to other Higgs bosons are
not allowed, then one can write a simple formula:

BR

h → τ+τ−


=

sin2 α
cos2 β

BR

hSM → τ+τ−


sin2 α
cos2 β

−
cos2 α
sin2 β


BR (hSM → τ+τ−)+

cos2 α
sin2 β

. (20)

This equation works well for Higgs masses below 130 GeV. Above that mass, WW ∗ decays can become important. A recent
study of multi-tau-lepton signatures can be found in the work of Kanemura, et al. [135].

A decay mode of the h that may be important and is one of the easiest to detect is h → µ+µ−. The branching ratio is
0.0035 times that of the τ+τ− mode. If the latter does dominate, then the decay into muons should be clearly detectable.
Discussions of this mode can be found in Refs. [136–138].

The previous discussion of h → ZA and h → AA in the type I 2HDM also applies here. If the coupling to τ s is large, this
will suppress the branching ratios somewhat from the discussion there, but the general character of the analysis will not
change.

What about the other neutral Higgs? Just as in the type I 2HDM, the couplings of the heavier neutral scalar,H , are identical
to that of the lighter Higgs, h, if one shifts α to α − π/2. In Fig. 9, we have plotted the decays of H into top quarks, bottom
quarks, and tau leptons for tanβ = 6. We see that for H masses below the top threshold, the decays into τ+τ− dominate as
soon as one moves away from the τ -phobic point (now at α = ±π/2 for the H coupling). For heavier masses, the t t̄ mode
dominates the bb̄mode. For larger tanβ , the curves for the τ+τ− mode widen and can eventually dominate for most values
of α.

The discussion of other decays, such as H → ZA or H → AA, is the same as for the type I 2HDM.
We finally turn to the decays of the pseudoscalar A. Here, there are no decays intoWW or ZZ , and thus the pseudoscalar

decays primarily into fermions. This provides a remarkable opportunity for discovery of the pseudoscalar. The ratio of the
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Fig. 9. Branching ratios of the heavy Higgs boson into fermions for tanβ = 6. The solid (dashed, dotted) lines, which are red (blue, black) are the branching
ratios into bb̄ (τ+τ− , t t̄) for various values of the Higgs-boson mass.

branching fraction into τ+τ− to the one into bb̄ is proportional to tan4 β , which can easily exceed unity. In fact, including
the mass effects, one can show that

Γ

A → τ+τ−


Γ

A → bb̄

 =


tanβ
1.76

4

, (21)

and therefore, even for relatively small tanβ , the τ+τ− mode will dominate. In fact, for tanβ > 3, the branching ratio
exceeds 90%. This is independent of the A mass, as long as it is below the t t̄ threshold. As before, the branching ratio into
µ+µ− is 0.0035 times the one into τ+τ−, and if the latter dominates, this gives a sizeable branching ratio into an easily
observed signature.

2.1.4. Higgs decays in the flipped 2HDM
In the flipped 2HDM, the RH leptons couple to the same Higgs doublet as the RH up quarks. As in the lepton-specific

model, the τ -phobic point is different from the b-phobic point, leading to a region of parameter space in which the τ+τ−

branching ratio can exceed the bb̄ branching ratio. But unlike the lepton-specific model, the flipped model cannot have a
huge enhancement of the τ coupling to any of the scalars. This is because any enhancement of the τ coupling would also
enhance the top-quark coupling, and a large enhancement of the latter would cause serious problems with perturbation
theory and unitarity. One does not expect an enhancement of the τ+τ− mode in the flipped model as one changes tanβ ,
like the one observed in the lepton-specific model, cf. Figs. 7 and 8.

The branching ratios of the light scalar h are presented in Fig. 10 for tanβ = 1. One sees a region of parameter space
in which the τ+τ− mode dominates bb̄ decays, but it never reaches branching ratios as high as in the lepton-specific case
(the remainder of the decays in the α = 0 region is a mix of gg and cc̄). All other branching ratios are very similar to those
from the type II 2HDM. If tanβ is increased, the region of τ+τ− dominance narrows, and the region in which the bb̄ mode
dominates grows, as in the larger tanβ curves in the type II 2HDM. The α range for which the τ+τ− decay is dominant can
grow if one takes tanβ < 1, but perturbation theory breaks down for tanβ < 0.3.

We have plotted the branching ratios of the decays into fermions for tanβ = 0.3 and tanβ = 6 and mh = 100 GeV in
Fig. 11 (for such a lowmh the decays into vector bosons are very small). As expected, for tanβ = 6, the bb̄mode completely
dominates except for a very narrow region around the b-phobic point. On the other hand, for tanβ = 0.3, τ+τ− decays
dominate over bb̄ decays for most values of α (although they never exceed a 40% branching ratio due to cc̄ and gluon–gluon
decays). The fact that in this model there is a region of parameters in which the cc̄ , gluon–gluon and τ+τ− decay modes
all contribute equally was first noted in Ref. [33]. Although charm pairs will be very difficult to observe at either the LHC
or Tevatron, one can see plots of the branching ratios into charm pairs for this model in Ref. [51]. For the other modes, the
discussion is not much different from that of the type II 2HDM. In the region where the τ+τ− decay dominates one can look
at µ+µ− decays, which occur at a rate 0.0035 times the one of τ+τ−.

The couplings of the heavy Higgs, H , are identical to those of the light Higgs, when α is shifted by π/2. The difference
is that the H can, if heavy enough, decay into top quarks. For tanβ = 0.3, the decays into t t̄ and τ+τ− are both enhanced,
whereas for tanβ = 6, the decay into bb̄ is substantially enhanced, similar to Fig. 6. A discussion for fairly light H and A
bosons can be found in Ref. [36].
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Fig. 10. Branching ratios of the light Higgs boson in the flippedmodel.We have taken tanβ = 1. In the left figure, the solid (dashed) lines are the branching
ratios intoWW , (γ γ ); in the right figure, the solid (dashed) lines are the branching ratios into bb̄ (τ+τ−) for various values of the Higgs-boson mass.

Fig. 11. Branching ratios of a Higgs boson with mass 100 GeV into fermions for tanβ = 0.3 and tanβ = 6 in the flipped model. The solid (dashed) lines,
which are red (blue) are the branching ratios into bb̄ (τ+τ−).

The pseudoscalar Higgs does not decay into vector bosons, therefore its primary decays are into τ+τ− and bb̄. One has,
in the flipped 2HDM,

Γ

A → τ+τ−


Γ

A → bb̄

 =


cotβ
1.76

4

; (22)

for tanβ ≥ 1, this is 10% or less. For tanβ = 0.3, this would be roughly 10, leading to dominance of the τ+τ− decay, as in
the lepton-specific model, but for a different region of parameter space.

2.1.5. Higgs decays in the neutrino-specific 2HDM
In the neutrino-specific (NS) 2HDM the RH quarks and charged leptons all couple to Φ2, but the right-handed neutrino

couples to Φ1. In this model, there are Dirac neutrino masses, and the vacuum expectation value of Φ1 must be O(eV). As a
result, the Yukawa coupling ofΦ1 to neutrinos can be O(1). The model originally used a Z2 symmetry which was softly [89]
or spontaneously [90,139] broken, in order to have such a small vev, but this allows for right-handed neutrino masses. The
latter model, by Gabriel et al. [90] andWang [139], also has a very light scalar, with mass of O(eV). Extending the symmetry
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Fig. 12. Production cross sections for the Standard-Model Higgs at the Tevatron.
Source: This figure is from Djouadi’s review article [24].

to aU(1) and breaking it softly (to avoid a Goldstone boson) gives themodel of Davidson and Logan [91]. This model is much
less fine-tuned, since it requires that the soft U(1) breaking term be of the same order as the electron mass (the small O(eV)
vev arises in a see-saw like pattern). Thus, there are several versions of the model—those with aΦ1 vev of O(eV) and a very
light scalar, those with a similar vev and no light scalar, and those that use a see-saw type mechanism and have aΦ1 vev of
O(MeV).

The first of these models, with a light scalar, which was the original proposal of Gabriel et al. [90] andWang, et al. [139],
has very recently been excluded. Following work on the astrophysics of the model [140], Zhou [141] pointed out that there
are serious problemswith themodel. In particular, the neutrinos emitted by SN1987awould, if there is a light scalar, interact
strongly with the relic neutrino background and would not reach Earth. In addition, the effects of the neutrinos in the early
universe would cause problems with the WMAP data. Thus, these models are excluded.

Because of the small vev,mixing between theHiggs doublets is negligible, and thus one scalar behaves just as the Standard
Model Higgs. In the spontaneously broken version, they can also decay into the very light scalars, but these are invisible and
thus the Standard Model Higgs would decay invisibly. In the Davidson–Logan model [91], the light Higgs decays as in the
StandardModel. The phenomenology of the charged Higgs, which decays into charged leptons and a right-handed neutrino,
is interesting and discussed there. The phenomenology of the new neutral scalars in the model, however, is much less
interesting, since they will only decay into neutrinos, and thus appear as invisible Higgs decays.

In another version [142,143], there is relatively little fine-tuning in the potential, and theΦĎ
1Φ2 term has a coefficient as

large as 10 GeV2. Through a see-saw typemechanism, the vev ofΦ2 is O(MeV), and a further see-saw gives the light neutrino
masses. The vacuum stability of the model is discussed by Haba and Horita in Ref. [144]. A recent comprehensive analysis of
this model, including precision constraints, can be found in Ref. [145]. There are also interesting leptogenesis effects, which
can be found in works of Haba and Seto [146,147].

2.2. Higgs production

The production of the Higgs boson of the Standard Model at hadron colliders is very well studied. Calculations of two-
loop corrections, including next-to-next-to-leading order calculations and soft-gluon resummations, have all been carried
out in detail. A very extensive discussion, with hundreds of references, is in the review by Djouadi [93].

The leading channel at the Tevatron and at the LHC is gluon fusion, in which two gluons and the Higgs are at the vertices
of a triangle with a top quark going round the loop. The bottom quark plays little role since its coupling to the Higgs is so
small (note that this may not hold in a 2HDM).

The next leading channel, at the LHC, isW fusion or Z fusion. At the Tevatron, Higgsstrahlung off aW or a Z is the second
leading channel. Higgsstrahlung off a top quark might also be observable.

The production cross sections, from Djouadi’s review, are in Figs. 12 and 13. Although gluon fusion dominates, it may
not always provide the best signature. For example, in order to detect a Higgs H of mass 120 GeV at the Tevatron. One must
look for decays H → bb̄. If the Higgs is produced via gluon fusion, then the background of bb̄will be much too large. Instead,
Higgsstrahlung from a W or Z will help tag the bb̄ with the decay of the W or Z . Thus, the searches for a low-mass Higgs at
the Tevatron focus on WH and ZH production, while the searches for a high-mass Higgs focus on gluon fusion. In practice,
of course, all production modes must be considered.

In the following, we will look at each of these processes, and discuss how they are modified in the 2HDMs explored in
this chapter. In most cases we will determine the ratio of the production cross section in the 2HDM at hand to the one in
the Standard Model, and then one can use Djouadi’s figures to determine the absolute cross section.
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Fig. 13. Production cross sections for the Standard-Model Higgs at the LHC.
Source: This figure is from Djouadi’s review article [24].

2.2.1. Gluon fusion
In the Standard Model, at the parton level, the cross section for gluon fusion to a Higgs of mass mh is m2

h δ

ŝ − m2

h
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σo,
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s

512
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Here, Gµ is the Fermi constant from muon decay, αs is the strong coupling constant, τq = m2
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, and Ah
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This can be substantially simplified in the limits of large or small τ , which apply in most cases that we will consider.
In the limit mq ≫ mh, i.e. when τq ≪ 1, Ah

1/2


τq


→ 4/3, whereas in the limit mq ≪ mh, i.e. when τq ≫ 1,
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In the 2HDM, one’s first thought is that the change in the cross sectionwould be trivial. If only top-quark loops contribute,
then the only difference is in the coupling of the Higgs to the top quark, and so one would multiply the SM cross section by
(cosα/ sinβ)2 in the case of h production, or (sinα/ sinβ)2 in the case of H production, in all four 2HDMs. In the case of
gluon-fusion production of the pseudoscalar A, the form factor is instead AA

1/2


τq


= 2f

τq

/τq, and moreover one must

multiply the whole cross section by cot2 β .
While the reasoning above indeed applies in models without a substantially enhanced b-quark Yukawa coupling, such

as the type I 2HDM or the lepton-specific 2HDM, it does not necessarily apply in the cases of the type II and flipped 2HDMs
(the behaviour of the lepton couplings has no effect on gluon fusion). This is because the b-quark loops can become crucial,
and for large tanβ can actually dominate the cross section.

In the type I or lepton-specific 2HDM, the production cross section of a light Higgs, h, through gluon fusion is simply
multiplied by the factor (cosα/ sinβ)2. In the decoupling limit, i.e. when cos(α − β) is small, this is near unity, but in
general it is quite smaller. This factor is somewhat discouraging for the τ+τ− signature of the lepton-specific model. As one
can see from Fig. 7, h → τ+τ− is dominant (when tanβ = 1) near α = ±π/2, precisely where the factor (cosα/ sinβ)2

strongly suppresses the production rate. For larger tanβ , however, as seen in Fig. 8, the region in which the τ+τ− decays
dominate does extend a substantial distance away from α = ±π/2, and then the suppression would not be that severe.

In the type II or flipped 2HDM, the contribution of the top quark is alsomultiplied by (cosα/ sinβ)2, but now the diagram
with a b-quark loop can contribute for large tanβ , since then the b Yukawa coupling becomes large. The b-loop contribution
to the amplitude is multiplied by − tanα tanβ relative to the t-loop contribution. Using the limits of small τq (when q = t)
and large τq (when q = b) above, we find that the cross section increases over the type I 2HDM cross section by a factor
of |1 + (5 − 8i) tanα tanβ/100|2 for mh = 100 GeV, and that this correction roughly scales as m−2

h for other values of mh.
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Note that tanα can be of either sign in the type II 2HDM; in the MSSM it is always negative. Numerically, for positive α, this
is 1.1 (1.4, 2.9, 12.0) for tanα tanβ = 1 (3, 10, 30). For negative α, this is 0.9 (0.8, 0.9, 6.0) for tanα tanβ = −1 (−3, −10,
−30). We see that for large tanβ , one can get an increase of almost an order of magnitude in the production rate relative
to the type I 2HDM. However, one should keep in mind the discussion of the last section in which it is noted that values of
tanβ larger than 6 are allowed (by unitarity and perturbation theory) only for a very small region of parameter space, so
very large enhancements are unlikely.

For the heavy neutral Higgs, H , the results are similar. In the type I or lepton-specific 2HDM, one must multiply the SM
production cross section by the factor (sinα/ sinβ)2. As before, this is small in the region where the τ+τ− branching ratio
is large. In the type II or flipped 2HDM, the factor − tanα tanβ in the previous paragraph becomes cotα tanβ . The results
of the previous paragraph are thus qualitatively unchanged. Note that when the mass of the H mass rises beyond the mass
of the top quark, the rate of gg-fusion production of H drops quickly, just as in the Standard Model.

For gg-fusion production of the pseudoscalar A, the form factor AA
1/2 is simply 2f (τ )/τ , which in the limit mt ≫ mA is

2 instead of 4/3. There is also a factor ξ uA = cotβ in the amplitude. This yields a total factor (9/4) cot2 β in the production
cross section of an A in the type I 2HDM compared to the production cross section of an SM Higgs of identical mass. This
will be substantial for small tanβ . For the type II or flipped 2HDM, the ratio of production cross section relative to the type I
2HDM is, for mA = 100 GeV,

1 − (3.5 − 4i) tan2 β/100
2. Numerically, this is 0.93 (0.82, 0.59, 1.44) for tan2 β = 1 (3, 10,

30). The difference of production cross sections between the various 2HDMs is thus much less dramatic.

2.2.2. WH and ZH production, WW and ZZ fusion, and bb̄H and tt̄H production
It is straightforward to see how these production rates are affected in 2HDMs. First consider the production processes

involving vector bosons (W ∗
→ WH , Z∗

→ ZH , WW toH or ZZ → H where H is a neutral Higgs). In all four 2HDMs, for
the light Higgs h the SM rate is multiplied by sin2 (α − β), and for the heavy Higgs H it is multiplied by cos2 (α − β). The
pseudoscalar A cannot be produced via this mode, since there are noW+W−A and ZZA vertices.

For t t̄H production, one simply multiplies the SM rate by the appropriate coupling-constant factor. In all four models,
this is (cosα/ sinβ)2 for the light scalar h, (sinα/ sinβ)2 for the heavy scalar H , and cot2 β for the pseudoscalar.

Contrary to what happens in the Standard Model, there is in some 2HDMs the possibility of substantial bb̄H production.
The rate, well above the threshold, is, compared to the SM t t̄H production cross section, negligible for the type I and lepton-
specific 2HDMs, but for the type II and flipped 2HDMs it is (sinα/ cosβ)2 (mb/mt)

2 for the light h. A detailed study, with
numerous references, of this mode in the MSSM by Schaarschmidt [148–150], showed that an h in the 120–200 GeV mass
range can be discovered at the LHC through this process, if tanβ > 6, by looking for the signature h → τ+τ−. In fact, for
a large tanβ , which is not unnatural in the MSSM, this can become the primary discovery mode, especially for a relatively
light Higgs h. One would expect a similar result in the type II 2HDM (the flipped model would have less enhancement in the
h → τ+τ− decay mode), although, as noted earlier, large values of tanβ are not favoured in the type II 2HDM.

2.2.3. Other production mechanisms
With several neutral scalars, another production mechanism can become important. One can produce two Higgs bosons

(either the same one or different ones). (This can also occur in the Standard Model, of course.) In any diagram in which
a scalar is produced, that scalar can then convert itself into two scalars via a trilinear coupling. In addition, one can have
double-Higgsstrahlung off a W or Z , or one can have a gluon fusion into two scalars via a box diagram with a heavy quark
in the loop; the latter mechanisms are independent of the trilinear coupling. An analysis of all these mechanisms was done
in Ref. [151]. Total cross sections for the LHC were given in Djouadi’s review [93], and are dominated by gluon fusion, giving
cross sections of order 10 fb over the low-mass range for the scalars. Although detection is much more difficult due to large
backgrounds [152,153], analyses [154] indicate that it might be possible to distinguish the trilinear coupling from zero with
an integrated luminosity of 300 fb−1, for scalar masses in the 150–200 GeV range; a higher luminosity is needed for lighter
scalars.

In the MSSM there are many more possibilities involving neutral scalars. One can have qq̄ → Z∗
→ hA,HA or, through

triangle and box graphs, gg → hh,HH, hH, AA, hA,HA. In addition, one can have double Higgsstrahlung. These are discussed
in Refs. [155,156] and summarized in Djouadi’s review [24]. For the quark annihilation process, cross sections range from
10 to 100 fb asmA varies from 100 to 170 GeV, and for gluon fusion the cross sections (for tanβ = 30) are a little more than
an order of magnitude larger. Detection is difficult, but possible, and is summarized in Ref. [24].

In the general 2HDM, one has the same processes as in the MSSM, but there is now a much larger parameter space. The
quark-annihilation process has precisely the same form as in theMSSM, but nowone need no longer have a small cos(α−β),
and thus the ZhA coupling can be larger than in the MSSM. This is encouraging and leads to some interesting possibilities.
For example, in the lepton-specific model and for tanβ > 2, the dominant decay of the A is into τ+τ−, and for much of
parameter space the decay of the light Higgs is also into τ+τ−. Thus one might have four-τ events with branching ratios as
high as tens of femtobarns. This signature needs further investigation. A study of pair production of the lightest Higgs bosons
in the type II model was carried out in Refs. [157–159]. They showed that while pair production in the Standard Model is
very difficult to observe at the LHC, it can be bigger in the type II model, and they also show that there can be sensitivity to
the quartic couplings, which could help distinguish the model from the MSSM.
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For the gluon-initiated process, triangle diagrams produce a single h/H/A, real or virtual, which then converts into a pair
of scalars. Alas, this process is proportional to trilinear scalar couplings and, while these are known in the MSSM, they are
unknown in the general 2HDM. The box diagrams which give gluon fusion into two scalars will be similar to those of the
MSSM. Thus all one can really say is that the rate could be substantially larger than in the MSSM, but accurate predictions
are impossible.

2.3. The inert Higgs model

The inert Higgs model is a 2HDM with an unbroken Z2 symmetry under which one of the doublets transforms non-
trivially, viz. Φ2 → −Φ2, and all other SM fields are invariant. This ‘parity’ imposes natural flavour conservation. Initially a
similar model [160] was introduced to explain neutrino masses. More recently such a model was proposed in the context of
radiative neutrinomasses [161] and also to attack the naturalness problem of the SM by allowing for a largermass (between
400 and 600 GeV) for the SM Higgs while keeping full consistency with electroweak precision tests [162], thus solving the
‘little hierarchy’ problem [163]. Even more recently, an inert doublet was introduced to allow for the possibility of several
mirror families of fermions [164].

In the inert Higgs model the Higgs doublet Φ2 – the inert doublet – does not couple to matter and acquires no vacuum
expectation value, leaving the Z2 symmetry unbroken. The scalar spectrum consists of the SM-like Higgs obtained from Φ1
and one charged and two neutral states from Φ2. Since the Z2 is unbroken the lightest inert particle will be stable and will
contribute to the dark matter density [161,162]. This possibility has been analysed by several authors [165–172]. The early
cosmological evolution of the model has been discussed by Ginzburg et al. in [173].

The scalar potential is the one in Eq. (2) but withm2
12 = 0. The asymmetric phase, where

φ0
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2
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corresponds to a sizeable region of parameter space [161,162] and the scalar masses are given by
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where h is the usual Higgs boson obtained fromΦ1, (S + iA) /
√
2. is the neutral component of the inert Higgs doublet, and

H+ is the charged inert Higgs field. The doubletΦ1 gives mass to the gauge bosonsW± and Z0. In the limit of Peccei–Quinn
symmetry, λ5 → 0, the neutral inert scalars become degenerate. Direct detection of halo dark matter places a limit on this
degeneracy [174].

The inert scalars can be produced at colliders through their couplings to the electroweak gauge bosons subject to the
constraint of the Z2 symmetry [175,176]. In addition, they also participate in cubic and quartic Higgs couplings:
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As pointed out in Ref. [175], assuming the mass hierarchy m2
+
> m2

A > m2
S , the stable scalar S appears as missing energy

in the decays of H+ and A. Since there is no linear term in A or S in Eq. (27), the decay of A must occur through the gauge
interaction

g
2cW

Zµ (S∂µA − A∂µS) . (28)

Hence [175] the dominant decay of A is into Sf f̄ , where f is a fermion, either a lepton or a quark, and S appears as missing
energy. Concerning H±, the gauge interactions with S and A are given by:

ig
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2
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+ H.c. (29)

Hence the dominant decays of H± are into W±S and W±A, with, in the second case, subsequent decay of A into ZS.
There are also trilinear gauge interactions among H±, Z , and γ , as well as the quadrilinear terms required by gauge

invariance.
The LEP I data on the width of the Z0 gauge boson force the sum of the masses of the S and A to be larger than the mass

of the Z0 [169,175], thus preventing Z0
→ AS. The electroweak precision tests put constraints on the inert-scalar mass

splittings as a function of the h mass [162]. If the Z2-odd scalars are much lighter than the SM Higgs boson, they may have
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a great impact on the direct search for the latter, because h → SS and h → AA may become the dominant decay channels.
In particular, the h → SS channel is invisible. The lower limit mh > 114.4GeV, obtained by LEP II, was based on a direct
search via h → bb̄, which is dominant for a light Higgs boson in the SM. In the present case this limit can be relaxed down to
about 106 GeV, assuming the mass splitting of the new neutral scalars to be mA − mS = 10 GeV, due to the fact that in this
model the invisible decay of the Higgs boson may be dominant and, as a result, the decay branching ratio into bb̄ is highly
suppressed.

A scan over the parameter spacewas performed in [175], assuming the charged-Higgsmass to bemuch larger thanmh, the
mass splitting of the newneutral scalars to bemA−mS = 10GeV, and also taking into account relevant constraints including
the Z0-decay constraint mentioned above and the vacuum stability bound. The invisible decay mode h → SS is found to
dominate in the light- and intermediate-mass region ofmh, i.e.when 100 < mh < 160GeV. The 10 GeVmass gap between A
and S implies that the contribution of the SS mode to the decay of the SM-like Higgs boson h is much larger than that of the
AA mode. In particular, the branching ratio for the invisible mode is 50%–65% in the mass region 100 < mh < 150GeV and
for mS ∼ 40–60GeV. As a result, the usual decay modes of the SM Higgs boson are highly suppressed. This fact, together
with the strong suppression of the γ γ mode, will make it very difficult, in this framework, to use this mode to detect the
SM-like Higgs boson at the LHC in the mass range 100 < mh < 150GeV [175]. However, it was also shown there that it is
very promising to look for the SM-like Higgs boson through its invisible decay in the so-called weak-boson-fusion process
[177]. This process is of the form qq̄ → q′q′VV → q′q′h (V denotes a gauge boson), with the subsequent decay of h to
undetectable particles. The decay mode h → W+W− dominates over the invisible one for h heavier than 160 GeV, where
it starts behaving as in the SM. The decay pattern and decay branching ratios of the new neutral scalars have also been
examined in Ref. [175]. They conclude that an S with mass ∼50GeV should be observable at the LHC and, at the same time,
it would constitute a good dark-matter candidate. A complementary analysis of collider phenomenology of the inert Higgs
model was performed in Ref. [176].

The possibility of extending the inert Higgs model in order to introduce CP-violation in the scalar sector was considered
in Refs. [178,179]. In another extension of the inert doublet model, Barr and Kephart [180] pointed out that a difficulty with
generic multi-doublet models is that many fine-tunings are necessary to alleviate the hierarchy problem, and thus, if one
believes that the hierarchy problem of the Standard Model is solved via anthropic fine-tuning, then having more than one
Higgs doublet becomes exceedingly unlikely. They looked for the conditions under which an N doublet model only has a
single fine-tuning, and found that if the N doublets formed a representation of a global symmetry group, then only one fine-
tuning is necessary, and classified all possible symmetry groups withN ≤ 6. They found that in somemodels, such as SU(N)
with an N-plet, the extra Higgs doublets become completely inert, and the scalars and pseudoscalars are all degenerate in
mass. Different mass relations arise from different representations.

A different version of the inert Higgs model, which has recently received increasing attention, is the Lee–Wick Standard
Model (LWSM) [181–183], whose neutral sector is similar to the inert Higgs model but whose charged sector is similar to a
type II model with tanβ = 1. In this model, for every SM field, a higher-derivative kinetic term is introduced; for a Higgs
scalar, this term is quartic in the derivatives. These terms lead to the presence of additional poles in the propagators. By
introducing auxiliary fields, the model can be written as one without higher-derivative terms, but with additional fields
corresponding to Lee–Wick partners (one for each field of the SM). The signs of the kinetic andmass terms of these partners
are opposite to those of normal particles, i.e.the states have negative norm.

A major attractiveness of the LWSM is the elimination of quadratic divergences in the Higgs sector. In supersymmetry,
the minus sign which cancels those divergences arises from the different statistics of the partners; in the LWSM, it arises
from a sign difference in the propagator due to the negative-norm states. If those states are not stable, then they do not
appear as ‘out’ states in the S matrix and unitarity is preserved. While one does have microcausality violation, no logical
paradoxes arise macroscopically [182,184]. There is now an extensive literature on the LWSM [185–197].

A comprehensive analysis of the Higgs sector of the LWSM was recently carried out by Carone and Primulando [198].
Theyweremotivated by the realization [189] that electroweak precision constraints do not severely constrain the Lee–Wick
mass scale for the Higgs sector. The Higgs doublet and its Lee–Wick partner form a 2HDM, but the mixing between the
neutral states is symplectic rather than orthogonal. The neutral-scalar sector is very similar to the one of the inert Higgs
model, but with some differences in signs. The primary focus of Ref. [198] was on the charged Higgs sector (which will be
discussed in Section 4), but they did find bounds from LEP, showed that constraints in the charged sector also constrain
the neutral sector, and have plotted bounds in the neutral-Higgs-boson plane. The effects of the model on electroweak
parameters and on the Zbb̄ coupling were studied by Chivukula et al. [199] A more detailed analysis of the neutral sector,
including bounds from direct searches at LEP and the Tevatron, as well as prospects at the LHC, was very recently published
by Alvarez et al. [200]; they find interesting differences in the usual sum rules in the neutral sector; for example, the usual
relation g2

h1−V−V + g2
h2−V−V = 1 has a different sign between the two terms. They used the HiggsBounds code to study

implications at colliders.
Another 2HDM, called the ‘‘quasi-inert’’ model, was recently introduced by Cao et al. [201]. In that model, motivated by

the possible observation of W plus dijets at the Tevatron [202], there is a second doublet whose tree-level vev vanishes,
and which couples primarily to the first generation of quarks. They set to zero theΦĎ

1Φ2 +H.c. term in the potential, which
can be accomplished by a Z2 symmetry in which both Φ2 and uR change sign. This symmetry must be weakly broken to
allow the up quark to get a mass, and this results in a small vev for Φ2. Cao et al. calculate electroweak precision effects
and flavour constraints on their model. The primary motivation for the model is that the Tevatron can produce the charged
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Higgs (pp̄ → H±), which subsequently decays into H0W± or A0W±, leading to ℓ±νjj or toW± plus dijets. Since the charged
Higgs is produced resonantly, the signal can be large. Cao et al. show that a reasonable region of parameter space exists
which can explain the recent observation of W plus dijets at the Tevatron [202]. Even if this observation is not confirmed,
themodel is interesting in its own right and leads to other unique signatures. Another scenario by Chen et al. [203] switched
the role of the neutral and charged scalars, and then the dijet comes directly from the charged scalar. This can be produced
non-resonantly by W±H∓ production, and can also explain the non-observation of a resonance in ℓνjj by CDF (although
the bounds on that are much weaker and a resonance could still exist). Similar models, which focus more on explaining the
Bs → µµ rate but also discuss theW plus dijet signature, can be found in Refs. [203,204].

3. Models with tree-level flavour-changing neutral currents

3.1. The type III 2HDM

In the previous chapter it was shown that one can eliminate the potentially dangerous tree-level FCNC through a discrete
symmetry. Suppose, however, thatwe reject any such symmetry. The tree-level FCNC can certainly be suppressed bymaking
the neutral scalars extremely heavy, but scalar masses in the multi-TeV range (or higher) seem unnatural. In this section,
we examine the constraints from FCNC and show that a reasonable Ansatz for the neutral flavour-changing couplings allows
for scalar masses well below the TeV scale.

It is easiest to discuss the tree-level FCNC in the Higgs basis described in Section 5. In that basis, the scalar doublets are
rotated so that the vev is entirely in the first doublet, while the second doublet has zero vev. The general Yukawa couplings
can be written as

LYukawa = ηUij Q̄iLH̃1UjR + ηDij Q̄iLH1DjR + ηLijL̄iLH1EjR + ξ̂Uij Q̄iLH̃2UjR + ξ̂Dij Q̄iLH2DjR + ξ̂ Lij L̄iLH2EjR + H.c., (30)

where H1 and H2 are the two scalar doublets. In the Higgs basis those doublets have been rotated so that only H1 has a vev,
i.e.
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
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
, (31)

where v is real. In this basis, only the Yukawa couplings of the doublet H1, viz. the ηij, generate fermion masses; those ηij
may be bi-diagonalized and do not lead to tree-level FCNC. When that bi-diagonalization is performed, the neutral flavour-
changing couplings become

LFCNC = ξUij ŪiLH0
2

∗
UjR + ξDij D̄iLH0

2DjR + ξ Lij L̄iLH
0
2LjR, (32)

where

ξU,D,L = VU,D,L
L

Ď
ξ̂U,D,L VU,D,L

R . (33)

Since VR is completely unknown and the ξ̂ are arbitrary, these ξU,D,L coefficients are arbitrary; in order to look at specific
processes, some assumptions must be made about their magnitudes.

One of the earliest papers discussing tree-level FCNC was the one of Bjorken and Weinberg [205], who considered
radiative muon decay and chose ξ Lµe to be the Yukawa coupling of the muon. Later, in 1980, McWilliams and Li [25] and
Shanker [26] considered K–K̄ mixing, as well as many processes involving kaon and muon decays. They argued that the
heaviest fermion sets the scale for the entire Yukawa-coupling matrix. The flavour-changing vertex should be the product
of the largest Yukawa coupling and a mixing angle factor. Since they did not know the mixing angle factors, they set them
equal to one. Thus, the ξU,D,L were set equal to the top, bottom, and tau Yukawa couplings, respectively. The most stringent
bound came from K–K̄ mixing and led to a lower bound of 150 TeV on the mass of H0

2 . For most of the 1980’s, this led most
authors to assume that there must be a discrete symmetry which prohibits the FCNC, and attention focused on the type I
and type II 2HDMs.

Cheng and Sher [206] argued that this estimate of the lower bound is not reasonable. They argued that the most
conspicuous feature of the fermion mass structure is its hierarchical structure and that, therefore, setting all the flavour-
changing couplings to be equal to the heaviest-fermion Yukawa coupling was not reliable. They proposed what has since
become known as the Cheng–Sher Ansatz: that the flavour-changing couplings should be of the order of the geometricmean
of the Yukawa couplings of the two fermions. In other words,

ξij = λij
√
mimj

√
2
v
, (34)

where the λij are of order one. Since the most severe bounds on FCNC arise from the first two generations and this Ansatz
especially suppresses the Yukawa couplings of those generations, it will reduce the lower bound on the Higgs mass.

More specifically, Cheng and Sher’s argument was as follows. Consider a model with n Higgs doublets Φi (i = 1 . . . n)
and call λ′

i the matrix of Yukawa couplings to, say, the charge −1/3 quarks. First suppose that the fermion mass matrix is of
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the Fritzsch form5:

M =

0 A 0
A 0 B
0 B C


. (35)

In this case, calling the eigenvaluesm1, −m2, andm3, one has A ≃
√
m1m2, B ≃

√
m2m3, and C ≃ m3. Cheng and Sher then

simply assumed that the Yukawa-coupling matrices were given by

λ′

i =

√
2
vi

0 Ai 0
Ai 0 Bi
0 Bi Ci


, (36)

and that their matrix elements had the same structure as the full mass matrix, namely Ai = ai
√
m1m2, Bi = bi

√
m2m3, and

Ci = cim3, with coefficients ai, bi, ci of order unity. In other words, the requirements, obtained by comparing the λ′

i withM ,
i

ai =


i

bi =


i

ci = 1 (37)

are not satisfied through any fine-tuned cancellations among the different couplings. Essentially, the Ansatz states thatmass
matrix zeros are not obtained through any cancellations among non-zero matrix elements, and that non-zero mass matrix
elements are also not obtained through precise cancellations among larger terms. Cheng and Sher then pointed out that
this argument does not apply only to mass matrices with the Fritzsch structure, but to any other structure in which one
requires that the hierarchy of eigenvalues does not arise through delicate cancellations. It was later noted [208] that, if the
hierarchical structure is due to approximate flavour symmetries, then the Cheng–Sher Ansatz will be satisfied. The Ansatz is
thus quite general.

In the type III6 model the Cheng–Sher Ansatz is assumed and its implications are explored. Many papers focused on
a few specific processes, including ∆mB [210], t → ch, and h → t̄c + c̄t [209], rare µ, τ , and B decays (emphasizing
B → Kµτ ) [211], µ → eγ (at two-loop level) [212], t → cγ and t → cZ0 [213], muon–electron conversion [214], and
b → sγ [215]. In 1996, an extremely comprehensive analysis of the model by Atwood et al. [216] looked at many of these
processes as well as at implications for Z0

→ bb̄ and Z0
→ bs̄ + sb̄.

Over the years, the various bounds have steadily improved. If the type III model is correct, then one would expect the
λij in Eq. (34) to be all of order unity, but this is a fairly loose requirement since there are unknown mixing angles. Scalar
masses will enter in all specific processes. In the Higgs basis, the imaginary part of H0

2 is the usual pseudoscalar, A, whereas
the real part of H0

2 is a linear combination of h and H . Since H0
2 has no vev, its coupling to W+W− vanishes, and thus the

relevant mixing angle which rotates (H0
2 ,H

0
1 ) into (h,H) is α − β . In a model with tree-level scalar exchange one has an

effective mass in the matrix element given by

1
m2

eff
=

c2

m2
h

+
s2

m2
H
, (38)

where s ≡ sin(α − β) and c ≡ cos(α − β). Henceforth, we shall refer to the scalar mass meff and to the pseudoscalar
mass mA as free parameters. Some processes, such as Bs → µτ , proceed only through pseudoscalar exchange, while other
processes, such as Bs → Kµτ , proceed only through scalar exchange. The most stringent bounds in the quark sector come
from meson–antimeson mixing, to which both scalars and pseudoscalar contribute.

The most recent analysis of F 0–F̄ 0 mixing, where F = K , D, Bd, or Bs, was by Gupta and Wells [107], who considered the
tree-level exchange of scalars and pseudoscalar and found that

∆mF =
ξ 2ij

mF


SF
m2

eff
+

PF
m2

A


, (39)

SF =
BF f 2F m

2
F

6


1 +

m2
F

mi + mj
2

, (40)

PF =
BF f 2F m

2
F

6


1 +

11m2
F

mi + mj
2

. (41)

In these expressions,mF is the mesonmass, fF is the pseudoscalar decay constant, and BF is the vacuum insertion parameter
defined in Ref. [216]. Adding in quadrature the theoretical and experimental errors to the SM prediction, Gupta and Wells

5 At the time of Cheng and Sher’s paper the Fritzsch Ansatz gave acceptable mixing angles. A generalization of it was proposed, and its phenomenology
discussed in detail, in Ref. [207].
6 The model was first referred to as type III in Ref. [209].
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demanded that the sum of the SM value and the new contribution not exceed the experimental value by more than two
standard deviations for the Bd and Bs systems; for theD and K systems, they demanded that the new contribution not exceed
the experimental value by more than two standard deviations. The results, using the Cheng–Sher Ansatz and assuming that
meff = mA = 120GeV, are

(λds, λuc, λbd, λbs) ≤ (0.1, 0.2, 0.06, 0.06). (42)

Thismight seemproblematic for the type IIImodel, where one expectsλij ∼ 1. But, the pseudoscalar contribution is typically
a factor of 7–10 larger than the scalar contribution, therefore, increasing mA to, say, 400 GeV increases all the bounds in
Eq. (42) by more than a factor of three. This was illustrated more explicitly by Golowich et al. [217], who have shown that
the bound is increased substantially as the pseudoscalar mass increases.7In addition, as pointed out in Ref. [216], there
are additional diagrams, involving boxes and triangle graphs, some of them with a charged Higgs, and a mild cancellation
involving these contributions would also weaken the bounds. Finally, it has been argued [218] that it might be more
appropriate to use λij/tanβ rather than λij, which for large tanβ would also decrease the bounds.

Golowich et al. [217] also studied the effects of λct and λut on D–D̄ mixing. For scalar masses between 100 and 400GeV,
they found that

√
λutλct must be less than, approximately, 8–10. Thus, bounds on top-quark flavour-changing neutral

currents are much weaker. Direct bounds on λtc can be obtained from t → ch, which was first discussed by Hou [209]
and much more recently in Refs. [219–221]. For a Higgs mass of 120 GeV, the branching ratio is roughly 0.005 λ2ct . The fact
that the SM decay t → bW fits its prediction implies that the branching ratio for t → ch cannot be very large, and thus one
would expect λct to be less than 10 or so, but we know of no current experimental bounds on this process. The signature for
t → ch is quite different from that of t → H+b, as discussed in Section 4.

Other processes will bound products of the λij instead of the individual λij. For example, the processes Bs → µ+µ−, with
tree-level pseudoscalar exchange, and B → Kµ+µ−, with tree-level scalar exchange, will bound the product λbsλµµ; it has
been shown [107,222] that datawill be obtained at the Tevatron and LHCwhichwill bound the product to approximately 0.6
(for scalar or pseudoscalar masses of 120 GeV). One of the most interesting decays, since it vanishes in the SM, is B → Kµτ .
This process was searched for by BABAR [223] and, while the bounds only give


λbsλµτ to be less than O(10), the absence

of an SM rate makes this promising for future B factories.
In the above we have focused on quarks. Bounds for leptons in the type III model have also been discussed extensively—

with large mixing angles in the leptonic charged weak current, one imagines that mixing in the neutral current might be
large. The anomalous magnetic moment of the muon, with neutral-scalar exchange, is proportional to λ2µτ and does not
depend on any other couplings. Thiswas first used in Ref. [224] to obtain a boundλµτ < 50. Later, the experimental precision
improved and there is now a significant discrepancy, of approximately 3σ , between that observable and its SM prediction
(the precise discrepancy depends on the dataset used in determining hadronic corrections [225,226]). Diaz et al. [227,228]
assumed that the discrepancy arises from flavour-changing neutral-Higgs exchange and obtained a lower bound on λµτ ,
with 10 < λµτ < 80.

In the same work, Diaz et al. [227] considered µ → eγ , in which a scalar is exchanged and the internal fermion is a
τ . Taking a range of values for the scalar mass, and a heavy pseudoscalar, they obtained λeτλµτ < 0.04. This might be
marginally acceptable for the type III model, similar to the bounds on F–F̄ mixing discussed above. In this case, however,
a very recent analysis by Hou et al. [229] has a different expression for the µ → eγ width and they find that µ → eγ is
acceptable for λeτ = λµτ = 1 if the scalar mass is above 150 GeV. They also note that the contribution of the scalar and
pseudoscalar to µ → eγ have opposite signs, hence some cancellation might be possible. In any event, failure to observe
a signal in µ → eγ within the next three years at the MEG experiment – which will be sensitive to an additional two
orders of magnitude in the rate – would be a serious problem for the type III model. Diaz et al. then used the lower bound
on λµτ discussed in the previous paragraph to obtain λeτ < 10−3. Although their work did not explicitly use the Ansatz of
the type III model, their conclusion – if the discrepancy in the anomalous magnetic moment of the muon is due to scalar
exchange then there must be a substantial hierarchy between λµτ and λeτ – is robust, and the size of that hierarchy would
rule out the type III model.

Other boundsmay be obtained bymixing leptons and quarks. In Ref. [230] the process τ → µP , where P is a pseudoscalar
meson, was studied. It was claimed that this process gives λµτ < 10−3, which is stronger than the previous bounds by
several orders of magnitude. However, in Ref. [230] it was assumed that λuu, λdd, λss, λbs, and λbb are all larger than 100, and
that the light scalar and pseudoscalar have mass 120 GeV, leading to this stringent bound. Subsequently [231], in a study of
τ → µPP , these assumptions were relaxed and λµτλss < 200 was found.

Other bounds on the λij do not involve flavour-changing neutral currents. If one assumes that only λtt and λbb are non-
zero, then neutral scalars play no role, and one can bound λtt and λbb by considering the charged-Higgs contributions to
b → sγ [232–234]; one obtains a bound on λtt of approximately 1.7, for a charged-Higgs mass below 300GeV. More
recently, Mahmoudi and Stal [46] analysed b → sγ and ∆mBd as well as B, K , and Ds decays, and obtained bounds on
all the second- and third-generation diagonal λij (including for the leptons). Huang and Li [235] showed the∆mBs can also
be used to bound λcc and λss. Since we are focusing here on the FCNC, we shall not discuss these bounds further, but refer
the reader to Ref. [46] for a detailed analysis. The type III model says nothing about the flavour hierarchy problem. Blechman

7 The reader is cautioned that the parameter∆ij in Ref. [217] differs from our λij by∆ij = λij/
√
2.
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et al. [236], within a type III model scenario, looked for a basis independent constraint on the Yukawa couplings that would
generate a mass hierarchy with the Yukawa couplings being of the same order. Their constraint was that the determinant
of the Yukawa couplings of Φ2 vanish. They require a fairly large, but not unreasonable, value of tanβ . The values of the
λij in their model depend on the pseudoscalar and heavy scalar masses. The phenomenological constraints are discussed in
Ref. [236].

Over the past twenty years, bounds on the λij have steadily improved, and the type III model is now facing challenges.
In the leptonic sector, a negative result in the MEG experiment would essentially rule out the model (unless there is a
cancellation between the scalar and pseudoscalar contributions). In the quark sector, a pseudoscalar in the 100–200GeV
mass range would cause problems for B–B̄ and Bs–B̄s mixing, and one might expect an observable signal in Bs → µ+µ−.
With the large top-quark sample at the LHC, the most promising signature is likely to be t → ch; if h is light (as expected)
and the branching ratio is below 10−3, then the type III model would be in serious difficulty.

3.2. BGL models

All the tree-level flavour-changing transitions in the SM are mediated by the charged weak current, with the flavour
mixing controlled by the CKM (quark mixing) matrix. Branco et al. [237] have built explicitly a class of 2HDMs (that we
call BGL models) in which the tree-level flavour-changing couplings of the neutral scalars are related in an exact way to
elements of the CKM matrix. In BGL models the required suppression of the scalar-mediated FCNC is obtained through
relations involving the small off-diagonal elements of the CKM matrix V . Some variants of the BGL models fall into a wider
category, which was coined later on [238] as models of Minimal Flavour Violation (MFV) [239–241].

The Standard Model with three families, consisting of SU(2) doublets (QL and LL) and SU(2) singlets (UR, DR, and ER) has
a large flavour group of unitary transformations GF = U(3)5 which commutes with the gauge group. The gauge group GF
can be decomposed as

GF ≡ SU(3)3q × SU(3)2l × U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)ER , (43)

where

SU(3)3q = SU(3)QL × SU(3)UR × SU(3)DR , (44)

SU(3)2l = SU(3)LL × SU(3)ER . (45)

The notation is borrowed from Ref. [238]. The Yukawa couplings break the flavour group GF . One can formally recover this
flavour invariance by treating the Yukawa couplings as dimensionless fields (spurions), transforming in such a way that the
Yukawa interactions become GF -invariant. The MFV hypothesis consists of assuming that, even if New Physics exists, GF is
only broken by the Yukawa couplings, with dominance of the Yukawa coupling of the top quark. The most general scalar
potential under the MFV hypothesis was recently derived [242].

The relevant question for BGLmodels is: underwhat conditions the neutral-scalar couplings in 2HDMs are only functions
of the CKMmatrixV?Namely, in BGLmodels these exact functions result from the imposition of discrete symmetries. Similar
functions had been considered previously as an ad hoc assumption [208,243–245].8

Let us write down the Yukawa interactions:

LY = −Q 0
L


Y d
1Φ1 + Y d

2Φ2

d0R − Q 0

L


Y u
1 Φ̃1 + Y u

2 Φ̃2

u0
R + H.c. (46)

After spontaneous symmetry breaking the quark mass matrices are

Md =
1

√
2


v1Y d

1 + v2eiαY d
2


, Mu =

1
√
2


v1Y u

1 + v2e−iαY u
2


, (47)

where α a general phase for the vev of Φ2 and v1 and v2 are, without loss of generality, real. These matrices are bi-
diagonalized as

UĎ
dLMdUdR = Dd ≡ diag (md,ms,mb) , (48)

UĎ
uLMuUuR = Du ≡ diag (mu,mc,mt) . (49)

In terms of the quark mass eigenstates u and d, the Yukawa couplings are:

LY =

√
2H+

v
ū

VNdγR − NĎ

uVγL

d + H.c.


−

H0

v


ūDuu + d̄Dd d


−

R
v


ū

NuγR + NĎ

uγL

u + d̄


NdγR + NĎ

dγL


d


+ i
I
v


ū

NuγR − NĎ

uγL

u − d̄


NdγR − NĎ

dγL


d

, (50)

8 Another proposal for the structure of the scalar couplings to fermions is the suggestion that the two Yukawa couplings are aligned in flavour space
[38,246,247].



G.C. Branco et al. / Physics Reports 516 (2012) 1–102 29

where v ≡


v21 + v22 = (

√
2GF )

−1/2
≈ 246GeV (GF is the Fermi constant), γL = (1 − γ5)/2, γR = (1 + γ5)/2, and

H0
=

1
v
(v1ρ1 + v2ρ2) , (51)

R =
1
v
(v2ρ1 − v1ρ2) , (52)

I =
1
v
(v2η1 − v1η2) . (53)

The fieldsρj, ηj (j = 1, 2) arisewhen one expands [9] the neutral scalar fields around their vevs:φ0
j = (eiαj/

√
2)(vj+ρj+iηj).

The physical neutral-scalar fields are linear combinations of H0, R, and I .
The flavour-changing neutral currents are controlled by the matrices Nd and Nu, which are given by:

Nd =
1

√
2
UĎ
dL


v2Y d

1 − v1eiαY d
2


UdR, (54)

Nu =
1

√
2
UĎ
uL


v2Y u

1 − v1e−iαY u
2


UuR. (55)

In general these matrices are not diagonal, hence there are FCNC. Let us consider, for example, Nd and rewrite it as [248]:

Nd =
v2

v1
Dd −

v2
√
2


v2

v1
+
v1

v2


UĎ
dLe

iαY d
2UdR; (56)

clearly, the first term in the right-hand side conserves flavour, but the second one leads, in general, to FCNC. The CKMmatrix
is given by V = UĎ

uLUdL, therefore, if we want Nd to be entirely controlled by V , we need, on the one hand, to get rid of its
dependence on UdR and, on the other hand, to relate UĎ

dL to V . A solution to these two requirements by means of symmetries
was found in Ref. [237] and corresponds to the BGL models.

In Ref. [237] a flavour symmetry is imposed which constrains UuL to be of the form

UuL =


× × 0
× × 0
0 0 1


, (57)

where × denotes an arbitrary entry. This leads, from the definition of V , to:

V3j = (UdL)3j . (58)

In addition, the flavour symmetry imposes the following condition

Y d
2UdR =

0 0 0
0 0 0
× × ×


. (59)

This guarantees that only the third row of UdL appears in Nd, as can be easily checked from Eq. (56). This row is exactly the
one that coincides with the third row of V .

To get rid of UdR in Nd, the flavour symmetry also enforces the relation

v2eiα
√
2

Y d
2 = PMd, (60)

where P is a projection matrix. In order to be consistent with Eq. (59), the matrix P must be given by:

P =

0 0 0
0 0 0
0 0 1


, (61)

immediately leading to texture-zeros for Y d
2 such that Eq. (59) is verified. Furthermore, the appearance of Md in Eq. (60)

allows to absorb UdR.
Branco, Grimus, and Lavoura have imposed the following symmetry S on the 2HDM:

Q 0
L3 → eiψQ 0

L3, u0
R3 → e2iψu0

R3, Φ2 → eiψΦ2, (62)

where ψ ≠ 0, π and all other fields are invariant under S. The Yukawa couplings consistent with this symmetry have the
structure

Y d
1 =


× × ×

× × ×

0 0 0


, Y d

2 =

0 0 0
0 0 0
× × ×


, Y u

1 =


× × 0
× × 0
0 0 0


, Y u

2 =

0 0 0
0 0 0
0 0 ×


. (63)
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Notice that the matrices Y u are block diagonal; this is crucial in order for UuL to be as in Eq. (57). Furthermore, these four
matrices satisfy

PY d
1 = 0, PY d

2 = Y d
2 , PY u

1 = 0, PY u
2 = Y u

2 . (64)

The structure of zeros in the matrix Y d
2 leads to the important relation:

UĎ
dLY

d
2


ij

=


UĎ
dL


i3


Y d
2


3j = Vi3


Y d
2


3j . (65)

Together with Eq. (60) inserted in Eq. (56), one then obtains [237]

(Nd)ij =
v2

v1
(Dd)ij −


v2

v1
+
v1

v2


V Ď
i3V3j (Dd)jj , (66)

whereas

Nu = −
v1

v2
diag (0, 0,mt)+

v2

v1
diag (mu,mc, 0) . (67)

In this example there are scalar-mediated FCNC in the down sector but no FCNC in the up sector.
In general, BGLmodels are six different models, as was emphasized in [237]. Three of thesemodels have FCNC only in the

down sector, and are obtained from the three different projection matrices similar to the matrix P introduced above, but,
in each case, with the diagonal unit entry in one of the other two alternative positions. Another three models are obtained
by exchanging the patterns of zeros of the Y d

i and Y u
i matrices, i.e.by exchanging the up and down quarks. From Eq. (62)

it is straightforward to write down the flavour symmetries corresponding to each of the six cases. The relations given in
Eq. (64) result from the imposed symmetry. All BGL models obey relations of this type for the corresponding projection
matrices. These relations guarantee that the scalar flavour-changing neutral couplings can be written in terms of quark
masses and CKM-matrix entries [249]. The stability of these equations under renormalization is crucial; this feature was
analysed in [250], with the help of the one-loop renormalization-group equations for the Yukawa couplings generalized
from Ref. [39].

In each of the six models, one can study the phenomenological constraints by comparison with the type III model. For
the specific model discussed in the last paragraph, for example, one can compare the FCNC coupling bsH in the two models
directly:

λbs

√
2mbms

v
↔

mb

v


v1

v2
+
v2

v1


V ∗

tsVtb (68)

which numerically gives λbs = 0.14

v1
v2

+
v2
v1


, as compared to λbs = 1 in the type III model. Similar expressions can be

found for the other FCNC couplings, as well as for the other five models. Thus, the bounds in the previous section can be
used to find the phenomenological bounds in the BGL model as well.9

In the example given here the scalar-mediated FCNC are suppressed by the matrix elements of the third row of the CKM
matrix; this is due to the fact that P is the projection matrix with unit (33) entry. In the alternative cases, corresponding to
a different projection matrix P , the suppression is given by the row indicated by the non-zero entry in the corresponding
matrix P . In these additional cases the suppression of the scalar-mediated FCNC is not as strong as in the example above.
From the point of view of the authors of Ref. [238], these additional cases do not qualify as MFV models, since they do not
comply with the ingredients imposed by their definition of MFV. In the next section we generalize BGLmodels and compare
them with the MFV definition of Ref. [238].

3.3. MFV generalized

In Ref. [249] the question was addressed of how to find a general expansion for N0
d and N0

u which conforms with the
requirement of having all the flavour-changing couplings of the neutral scalars related in an exact way to elements of the
quark mixing matrix. Here, N0

d and N0
u denote Nd and Nu when still in a weak basis:

N0
d = UdLNdU

Ď
dR =

1
√
2


v2Y d

1 − v1eiαY d
2


, (69)

N0
u = UuLNuU

Ď
uR =

1
√
2


v2Y u

1 − v1e−iαY u
2


. (70)

9 In Ref. [251] a specific analysis of BGL models, especially their consequences for neutral-meson–antimeson mixing, has been performed.
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The strategy was imposing that N0
d and N0

u be only functions ofMd andMu with no other flavour dependence. Furthermore,
N0

d and N0
u should transform appropriately under weak-basis (WB) transformations.

Weak-basis transformations are defined by:

Q 0
L → WLQ 0

L , d0R → W d
R d

0
R, u0

R → W u
R u

0
R. (71)

Under this transformation, the quark mass matricesMd andMu transform like

Md → W Ď
L MdW d

R . Mu → W Ď
L MuW u

R , (72)

and the matrices UdL, UdR, UuL, and UuR defined in Eq. (48) and (49) transform as:

UdL → W Ď
L UdL, UuL → W Ď

L UuL, UdR → W d
R
Ď
UdR, UuR → W u

R
ĎUuR. (73)

Under a WB transformation N0
d and N0

u transform in the same way as Md and Mu, respectively. Furthermore, the Hermitian
matrices Hd,u ≡ Md,uM

Ď
d,u transform under a WB as:

Hd → W Ď
L HdWL, Hu → W Ď

L HuWL. (74)

From Eq. (48) and (49) it follows that

UĎ
dLHdUdL = D2

d, UĎ
uLHuUuL = D2

u. (75)

It is convenient, for our propose, to write Hd, Hu in terms of projection operators [252]:

Hd =


i

m2
diP

dL
i , (76)

where

PdL
i = UdLPiU

Ď
dL, (Pi)jk = δijδik. (77)

Analogous expressions hold for Hu.
Based on the above considerations, the following expansion for N0

d and N0
u , with the correct transformation properties

under WB transformations, was proposed [249]:

N0
d = λ1Md + λ2iUdLPiU

Ď
dLMd + λ3iUuLPiU

Ď
uLMd + · · · , (78)

N0
u = τ1Mu + τ2iUuLPiU

Ď
uLMu + τ3iUdLPiU

Ď
dLMu + · · · . (79)

In the quark mass eigenstate basis these equations become

Nd = λ1Dd + λ2iPiDd + λ3iV ĎPiVDd + · · · , (80)

Nu = τ1Du + τ2iPiDu + τ3iVPiV ĎDu + · · · . (81)

This meets the requirement of having all the flavour-changing couplings related in an exact way to the quarkmixingmatrix,
with no additional flavour dependence.

In Eq. (78) and (79) the lambda and tau coefficients are dimensionless. The building blocks of the expansion are given
explicitly in Eq. (77) for the index d; they are of the same form for the index u. Notice that, in addition, there is the
possibility of having different coefficients for difference values of the index i (ranging from1 to 3), corresponding to different
projectors Pi.

In Ref. [238] a different expansion is used. There, the building blocks are YdY
Ď
d and YuY

Ď
u , where Yd and Yu are the Yukawa-

coupling matrices. These matrices are also dimensionless. Such an expansion can be accommodated in Eqs. (78) and (79),
however, but in that case the lambdas and taus would become dimensionless functions of the quark masses.

In theories where the MFV requirement results from the imposition of a symmetry there are constraints on the
coefficients lambda and tau appearing in Eq. (80) and (81). This is the case for the BGL example presented in the previous
subsection, which corresponds to the truncation

N0
d =

v2

v1
Md −


v2

v1
+
v1

v2


UuLP3U

Ď
uLMd, (82)

N0
u =

v2

v1
Mu −


v2

v1
+
v1

v2


UuLP3U

Ď
uLMu, (83)

with lambdas and taus fully determined as functions of tanβ ≡ v2/v1.
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More details about different aspects of this MFV generalization can be found in Ref. [249].
A study on the effectiveness of the two different hypothesis, Natural Flavour Conservation andMinimal Flavour Violation,

in suppressing the strength of flavour-changing neutral currents inmodelswithmore than oneHiggs doubletwas performed
in Ref. [253].

3.4. Two-Higgs leptonic minimal flavour violation

In order to study the phenomenological implications of models with an extended Higgs sector it is necessary to specify
the lepton sector in addition to the quark sector. Furthermore, the analysis of stability under renormalization requires the
entire set of renormalization-group equations both in the quark and lepton sectors. In Ref. [250] the extension to the lepton
sector of models of BGL type was considered. In particular the minimal discrete symmetry required in order to implement
the models in a natural way was given and stability was analysed. Different extensions of the MFV principle to the leptonic
sector were considered previously in Refs. [254–256].

The case of Dirac-type neutrinos is straightforward. The Yukawa couplings for both the quark and the lepton sectors are
given by:

LY = −Q 0
L


Y d
1Φ1 + Y d

2Φ2

d0R − Q 0

L


Y u
1 Φ̃1 + Y u

2 Φ̃2

u0
R − L0L


Y e
1Φ1 + Y e

2Φ2

l0R − L0L


Y ν1 Φ̃1 + Y ν2 Φ̃2


ν0R + H.c., (84)

where Y e
j and Y νj denote the couplings of the left-handed leptonic doublets L0L to the right-handed charged leptons l0R and

neutrinos ν0R . If there are no additional Majorana mass terms, the parallel between the quark and leptonic sectors allows to
apply similar discussions to both sectors.

In the case of Majorana-type neutrinos there is no lepton-number conservation. In the seesaw framework with
three right-handed neutrinos, an additional invariant mass term of Majorana type for right-handed neutrinos, i.e.
(1/2)ν0R

TC−1MRν
0
R , must be included in the Lagrangian. As a result there will be three light neutrinos νi and three heavy

neutrinosNi. In order to obtain FCNC in the charged-lepton sector completely controlled by the leptonmixing (PMNS)matrix,
together with no FCNC in the light-neutrino sector, a Z4 symmetry is required. An example is [250]:

L0L3 → eiψL0L3, ν0R3 → e2iψν0R3, Φ2 → eiψΦ2, (85)

with ψ = π/2; all other fields are invariant under Z4. The most general matrices Y e
j , Y

ν
j , and MR consistent with this Z4

symmetry have the following structure:

Y e
1 =


× × ×

× × ×

0 0 0


, Y e

2 =

0 0 0
0 0 0
× × ×


, (86)

Y ν1 =


× × 0
× × 0
0 0 0


, Y ν2 =

0 0 0
0 0 0
0 0 ×


, MR =


× × 0
× × 0
0 0 ×


, (87)

where × denotes an arbitrary entry while the zeros are enforced by the symmetry Z4. Note that the choice of Z4 is crucial in
order to guarantee (MR)33 ≠ 0 and, thus, a non-vanishing detMR.

The scalar couplings to the neutrinos are more involved than those to the charged leptons, since they include couplings
to two light neutrinos, two heavy neutrinos, or one light and one heavy neutrino. They are explicitly given in Ref. [250].

As a result of the Z4 symmetry, the scalar potential acquires an exact ungauged accidental continuous symmetry, which
is not, though, a symmetry of the full Lagrangian. The simplest way of avoiding the ensuing pseudo-Goldstone boson after
spontaneous symmetry breaking is through the introduction of a soft symmetry-breaking term of the formm2

12Φ
Ď
1Φ2 +H.c.

4. Charged Higgs bosons

One of the most important features of all 2HDMs is the existence of a charged scalar H±. This state is orthogonal to the
longitudinal component G± of the gauge bosonW±. The study of the properties of H± will be essential to understand which
2HDM – if any – has been chosen by nature. Most of the phenomenological studies of 2HDMs have indeed focused on the
charged scalar. The H± can be readily pair-produced through Drell–Yan processes and – unlike the neutral scalars – can
never decay ‘‘invisibly’’. In addition to direct production, it can have sizeable indirect effects in B physics and is a major topic
of analysis in studies of rare B decays.

The first paper to include the words ‘‘charged Higgs’’10 in its title was the one by Tomozawa [258], in which the charged
scalar in a vector-like model has been studied. In the context of a 2HDM, the phenomenology of charged scalars was first

10 As emphasized by Georgi [257], the phrase ‘‘chargedHiggs’’ ismisleading. If the Higgs is defined to be the field that acquires a vev, then theHiggs cannot
be charged since electromagnetism is unbroken. If the charged Higgs is defined to be the charged member of an SU(2) doublet whose neutral component
acquires a vev, then the charged Higgs is the longitudinal component G± of the W± . The phrase ‘‘charged scalar’’ is thus preferable, yet the nomenclature
‘‘charged Higgs’’ is by now so common that we shall adopt it here.
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Table 3
The parameters X , Y , and Z in Eq. (88) for the four models without FCNC.

Type I Type II Lepton-specific Flipped

X cotβ cotβ cotβ cotβ
Y cotβ − tanβ cotβ − tanβ
Z cotβ − tanβ − tanβ cotβ

discussed in detail by Donoghue and Li [259]. Following that there was an explosion of interest in the charged Higgs. This
interest is sufficiently great that a series of three conferences studying the properties of charged scalars – CHarged 2006,
CHarged 2008, and CHarged 2010 – have been held in Uppsala; the proceedings of those conferences are readily available
[260–262] and provide an enormous source of information on both the theory and phenomenology of charged Higgs bosons.

For all four models without tree-level FCNC discussed in Section 3, the most general Yukawa couplings were written
in [30] as

LH± = −H+

√
2 Vud

v
ū (muXPL + mdYPR) d +

√
2mℓ

v
Z ν̄LℓR


+ H.c. (88)

where Vud is the element of the CKM matrix corresponding to the charge 2/3 quark u and the charge −1/3 quark d. The
values of X , Y , and Z depend on the particular model and are given in Table 3. In the type I model the couplings to all
fermions are suppressed if tanβ ≫ 1, meaning a fermiophobic charged Higgs. In the same limit tanβ ≫ 1 one has in the
lepton-specific model a quark-phobic but leptophilic model, which could lead to a huge branching ratio for H±

→ τ±ν. In
both cases, the quark-phobic nature of the model eliminates constraints from rare B decays. The type II model is the most
studied one; large contributions to rare B decays are possible in it. The flipped model has only recently been studied. In the
next section we shall review the properties of the charged Higgs in each of these models.

In models with tree-level FCNC, discussed in Section 3, it is much more convenient to use the Higgs basis, in which one
doublet has a vev and the other doublet is vev-less (see the discussion in Section 5). In the models without tree-level FCNC,
this basis is a disadvantage, since the Yukawa couplings and discrete symmetry adequately specify the basis; with FCNC this
disadvantage vanishes. This was pointed out by Atwood et al. [216]. As shown there, in the Higgs basis, the H1 field (which
acquires vev) has diagonal couplings to fermions, which are identical to those in the StandardModel, whereas the couplings
of H2 to quarks are given by

L = Q̄Li


ξ̂Uij H̃2uRj + ξ̂Dij H2dRj


+ H.c. (89)

where the quark fields aremass eigenstates and thematrices ξ̂U,D are in general not diagonal. Defining the rotationmatrices
VU,D
L,R , the neutral flavour-changing couplings are related to the original ones by VL and VR. Since the definition of the ξU,Dij

is arbitrary, one can, without loss of generality, replace the rotated couplings by the original ones. For the charged flavour
changing couplings, we then have

ξUcharged = ξUVCKM , ξDcharged = VCKMξ
D. (90)

The Cheng–Sher Ansatz discussed in Section 3 gives the matrices ξU,Dij as a constant of O(1) times the geometric mean of
the respective Yukawa couplings. Similar results are found for the leptonic sector, with VCKM replaced by the VPMNS matrix.
In the third section of this Chapter we shall review the phenomenology of the charged Higgs in these models.

4.1. Models without tree-level FCNC

The differences among the various 2HDMs concern the Yukawa couplings to fermions. At the recent CHarged 2010
meeting there have been many discussions of benchmarks for these various 2HDMs [262]. They were summarized, in the
context of LHC searches, by Guedes et al. [263]. More details, together with numerous plots, are in the talk by Santos at that
meeting [262]. A large group has studied specific benchmarks for each of the various models; that work is summarized in
the reports by Krawczyk et al. and by Osland et al. at the meeting. Some of the models, other than the type II model, have
been discussed in the talk by Akeroyd [262]. A very comprehensive analysis of charged Higgs phenomenology for all four
models can be found in the recent article of Aoki et al. [36]. Jung et al. [246] have considered many processes within their
general ‘‘aligned two Higgs doublet model’’—in which it is assumed that the Yukawa-coupling matrices are proportional,
hence FCNC are absent at tree level. Since that model hasmany parameters, we shall not go through their analysis explicitly.
However, a valuable feature of that analysis is that, from its results, one can explore the limits from indirect processes in all
four models, which are all limiting cases of the aligned two Higgs doublet model. A discussion of the decay of the top quark
into H+b in a very general 2HDM can be found in Ref. [264].

We shall summarize in the following the production and decay of the charged Higgs in each of the four models, and
discuss various constraints. In the type II model and in the flipped model there is a lower bound of about 300 GeV for the
mass of H± stemming from b → sγ ; this bound comes from charged Higgs bosons in the loop. However, this bound is only
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Fig. 14. On the left one has the prediction for rH – the ratio between the value of BR

B+

→ τ+ντ

in the type II 2HDM to that in the Standard Model

– as a function of tanβ/mH± . Given the experimental value, one has on the right the ensuing constraints in the mH±–tanβ plane; the narrow window
corresponds to the allowed region near tanβ/mH± = 0.2 and the yellow band corresponds to the region of mH± already excluded by direct searches at
LEP. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Figure from the talk by Rozanska at the CHarged 2010 workshop [262].

valid if there is no additional New Physics. If there is New Physics, even a relatively mild cancellation can weaken the bound
substantially. Therefore, we shall also examine other, somewhat weaker bounds.

4.1.1. The type II model
Since supersymmetric and Peccei–Quinn models are all of type II, the type II model is the most studied one. The Yukawa

couplings are given in Table 3; one can see that the coupling of the charged Higgs to the top and bottom quarks is governed
by either the bottom-quark mass times tanβ , which may be large, or by the top-quark mass times cotβ . As a result, one
expects potentially large virtual effects in b-quark decays andmixing. In fact, one of themajormotivations for the B factories
was the possibility of New Physics coupling strongly to the third generation; the type II 2HDM is the simplest example of
this.

A very strong bound on the mass of the charged Higgs comes from studies of B̄ → Xsγ . The charged Higgs appears in
the loop. A nice review with a comprehensive list of references is in the article of El Kaffas et al. [88]. Early analyses can
be found in Refs. [265–268]. An explosion of interest occurred after the realization that the top quark was heavy and after
QCD corrections were considered [269–274]. These models were shown to be quite scale dependent [275,276] and this
has led to a calculation of the next-to-leading (NLO) order, where the scale dependence is substantially reduced [277–280].
Discussions can be found in the reviews of Haisch [281] and of Hurth andNakao [282], andmore recent results on all B decays
in the recent talks of Rozanska [262] and Hurth [283]. The effects of the charged Higgs in the loop add constructively [79,80,
284–286]. The most detailed calculation is the O(α2

s ) calculation by Misiak [81] and gives mH± > 295GeV for virtually all
values of tanβ (the bound increases slightly for low values of tanβ , see [281]). A more recent measurement of the rate by
BELLE [287] does not change this bound.

Other bounds are even more severe, but only at large tanβ . The process B → τν has been studied. This is not a loop
process and proceeds instead through tree-level virtual H± exchange. The rate is given by [288,289]

BR

B+

→ ℓ+νℓ


BR (B+ → ℓ+νℓ)SM
=


1 −

m2
B tan

2 β

m2
H±

2

. (91)

Combining the BELLE [290,291] and BABAR [292] results, the Heavy flavour Averaging Group found [293] the branching
fraction to be (1.64 ± 0.34)× 10−4. The ratio of this measured value to the Standard Model prediction [294] is 1.37± 0.39.
This gives a lower bound which, at 95% confidence level, excludes a region which rises from 300GeV for tanβ = 40 to
1100 GeV for tanβ = 100. However, there is a small window in this region which is still allowed. The reason for that
window is shown in Fig. 14, where one can see a narrow region of tanβ which is still allowed.

That window can be closed by considering the process B → D(∗)τντ . In that process the CKM angles are better known;
also, many of the experimental and theoretical uncertainties cancel out in the ratio [295,296] in which the τ is replaced by
a lighter lepton—in which case the contribution from H± exchange is negligible. It is found (see Ref. [295] for details) that
the window is completely closed by this process—which does have its own window, but that is closed by B+

→ τ+ντ .
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Fig. 15. Bounds in themH±–tanβ plane from various B-physics constraints.
Source: This figure was extracted from the article by Haisch [281].

For small values of tanβ , the value of Rb, which is the ratio of Γ

Z → bb̄


to the total hadronic width of the Z , can be

affected at one loop through the exchange of H±. Haber and Logan found [297] that the ensuing constraints will be more
severe than those from b → sγ for values of tanβ < 1.4; radiative corrections to their results are in Ref. [298]. Very similar
bounds were obtained [299] by considering∆mB and∆mBs . Other bounds, which tend to be weaker, can be found from rare
K , D, and τ decays; a comprehensive analysis is found in the recent paper of Deschamps et al. [300]. Such a comprehensive
analysis can be very valuable since it is possible that New Physics might weaken some, but not all, of the bounds.

The results are shown in Fig. 15. There one clearly sees the various contributions. Note that the direct bound from LEP is
substantially weaker than the indirect bounds.

It is still important to look at bounds fromdirect production ofH±, because it is always possible thatNewPhysicsweakens
the bounds from b → sγ . In fact, that is precisely what occurs in supersymmetric models. It can be seen that a weakening
of this bound would allow, for smaller values of tanβ , charged-Higgs masses somewhat below 100GeV.

To study direct production bounds, and to explore prospects for the LHC, the production rates and branching ratios of
the charged Higgs are needed. The branching ratios have been studied quite thoroughly—Ref. [47] contains an extensive
review of the literature. A recent analysis [53] used the FORTRAN code HDECAY [301]. The program includes final-state
mass effects, full one-loop QCD corrections and running masses, and off-shell decays to tb̄ below threshold. In principle,
decays to S0W± are also possible, where S0 is a neutral scalar. However, the masses of these scalars are unknown and,
moreover, the branching ratios in most of the parameter space are much smaller than 1%; thus, they are neglected in much
of this discussion. We shall, however, discuss these possibilities at the end, since there could be a substantial rate in the
type II model – but not in the MSSM – for part of the parameter space, as emphasized by Kanemura et al. [302]. Note that
there is no Z0W±H∓ vertex in the 2HDM.

The results are shown in Fig. 16. We see that, above the kinematic limit, the decays into tb̄ are completely dominant, but,
for lower masses mH± , the decays into τ+ντ dominate. The decay into cs̄ can also be significant for small values of tanβ .
Now, all the current direct searches are sensitive only to charged-Higgs masses below the kinematic threshold for decays
into tb̄. Therefore, the main decay modes in the present direct searches are into τ+ντ and cs̄. The LEP combined limit on
mH± is 78.6GeV and has been calculated [303] assuming the existence of only those two decay modes (in the flipped model
the decay into cb̄ is more significant than the decay into τ+ντ [53]).

Searches have also been performed at the Tevatron. The CDF Collaboration [304] has assumed that BR

H+

→ cs̄


= 1
and has therefrom found bounds on the branching ratio of t → H+b. Logan and MacLennan [53] noted that the CDF
analysis also applies to decays into cb̄ and therefore also applies to the flipped model. However, in the type II model
the CDF assumption is valid only for small (less than 1) values of tanβ and only for charged-Higgs masses near the LEP
bound. The D0 Collaboration [305], on the other hand, has considered both scenarios in which BR


H+

→ cs̄


= 1 and
BR

H+

→ τ+ντ


= 1; the latter scenario is certainly valid at large tanβ in the type II model. D0 [306] and CDF [307] have
also looked for associated production of a charged Higgs with a W.

These papers give upper limits on the branching ratio of the top quark into a charged Higgs and a bottom quark. This
can be converted into a bound in themH+–tanβ plane. We use the well-known expressions for the branching ratio (see the
appendix of Ref. [53] for a simple expression) and find the results in Fig. 17. As expected, the present bounds only exclude
regions of parameter space for either large or small tanβ; a charged-Higgsmass of about 100 GeV is thus still allowed. Recall
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Fig. 16. The branching ratios of the charged Higgs in the type-II 2HDM. Decays into S0W± (S0 is a neutral Higgs boson) are not included.
Source: This figure is from Ref. [53].

Fig. 17. Current Tevatron bounds on the mass MH of the charged Higgs as a function of tanβ . The small sliver near the lower-right corner is excluded by
CDF but not by D0. The dashed lines are the bounds which are projected for the ATLAS experiment with 30 fb−1 of data; the regions that would then be
excluded are those outside the dashed lines.

that one is assuming that some New Physics cancels the contribution to b → sγ , and it is possible that this New Physics
could also lead to alternative production and decay mechanisms.

In the future much of this parameter space will be probed at LHC. The ATLAS [308] and CMS [309] Collaborations have
studied top-quark pair production in which one of the tops decays into H+b. They have assumed that the charged Higgs H+

subsequently decays into τ+ν, as is the case in the type II model except for very small tanβ of O(1). Techniques to improve
these studies have been discussed in Ref. [310]. Also shown in Fig. 17 is the expected reach of LHC, as found in the ATLAS
analysis for a collision energy of 14 TeV and with 30 fb−1 of data; ATLAS gave the expected reach in the t → H+b branching
ratio and we have converted this into a bound in the mH±–tanβ plane. The CMS analysis was explicitly model dependent
by using the MSSM, and in that particular case it could partially close the allowed window at intermediate tanβ . Again, for
intermediate values of tanβ there is in general a large window that can be closed neither at the Tevatron nor at the LHC.
The ILC, on the other hand, will readily be able to produce charged-Higgs pairs and thus to cover the entire parameter space
for Higgs masses lower the mass of the top. There has also been a discussion of the possibility of detecting the H±

→ µ+νµ
after 300 fb−1 in Ref. [311].

For larger Higgsmasses the decay ofH+ is overwhelmingly into tb̄. This will be subject to very large backgrounds11 and is
thus quite challenging. For moderately large tanβ the branching ratio of H+

→ τ+ντ is approximately 10% and this might
be sufficient to pick out the signal. In fact, most search strategies must study the latter decay mode.

11 If the charged Higgs is produced in associated with a top quark, it has been argued [312] that one might be able to detect the decay into t̄b.
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The primary production mechanisms at the LHC are single charged-Higgs production and pair production. The single
charged-Higgs production processes include gluon fusion [313], quark fusion [314–317], quark–gluon fusion [83,85],
associated W±H∓ production [318–324] and AH±, HH±, hH± production [325–329]. Most of these works have focused
on the MSSM, although enhancement in the general type II model is referred to in Ref. [86]. Pair production has also
been calculated: the Drell–Yan and bb̄ → H+H− processes most recently in [330], and weak-boson fusion in [331].
Another production mechanism is associated production of a charged Higgs with a top quark, which can lead to interesting
consequences for the top quark polarization and the angular correlations of its decay products [332], and also in the left–right
asymmetry in the polarized top quark production cross section [333]. Although strictly a type II model, associated W±H∓

production in a model with spontaneous CP violation (i.e. a relative phase between the vevs) was studied in Ref. [334]. They
found no observable effects from associated production, but did note that the model allows the charged Higgs mass to be
substantially smaller than the conventional type II model.

The ATLAS [308] and CMS [335] Collaborations have used the production cross sections to explore the reach of the
LHC. Their conclusions are that detection of the charged Higgs boson through its decay into tb̄ will be swamped by large
backgrounds, hence the decay mode τ+ντ is the most promising one. Both analyses use various versions of the MSSM but
one would not expect the results in the type-II 2HDM to differ substantially. In each case, the reach on the branching ratio
is give, and we have converted this into a reach in the mH±–tanβ plane. The ATLAS Collaboration finds a discovery (i.e.,
5σ ) reach which ranges (for an integrated luminosity of 30 fb−1) from tanβ = 28 for mH± = 200GeV to tanβ = 65 for
mH± = 350GeV (these values of tanβ are lower bounds). The CMS Collaboration, in a slightly differentMSSM scenario, finds
a discovery reach, for the same integrated luminosity, which varies from tanβ = 28 for mH± = 200GeV to tanβ = 65
for mH± = 450GeV. The exclusion bounds correspond to much lower values of tanβ , of course—ATLAS, for example, can
exclude tanβ > 12 (50) for charged-Higgsmasses of 200 (600)GeV. Themain productionmode is gb → tH−. For associated
W±H∓ production, a signal can be found [321] for large tanβ in the 150–300GeV mass region.

Since most of the above analyses were done in the context of the MSSM, it is important to focus on the differences in
the type II 2HDM. As noted in Ref. [321], if the mass of a neutral scalar is larger than mH± + mW , then one can resonantly
produce this neutral scalar in the s-channel, leading to a huge enhancement in the cross section for associated production.
It is difficult to make a plot of the expected reach, though, since the rate is very sensitive to the neutral-scalar couplings
and mass, but one should keep in mind the possibility that the rate for associated H±W∓ production might be considerably
larger than expected.

A detailed analysis of theway inwhich the phenomenology of the type II 2HDMmay differ from the one of theMSSMwas
recently carried out by Kanemura et al. [302]. Their main point is that the Higgs masses are very tightly constrained in the
MSSM, therefore certain decays that would otherwise be allowed cannot occur there. For example, for much of parameter
space in the MSSM the charged Higgs, the heavy neutral scalar H , and the pseudoscalar A are very close in mass, therefore
decays such as H±

→ W±A or H±
→ W±H are kinematically forbidden, and H±

→ W±h is suppressed by phase–space.
In the general type II 2HDM, on the contrary, those decays are allowed.

To be specific, Kanemura et al. [302] have considered tanβ = 1–3 and mH± > 250GeV—as noted above, the LHC will
be insensitive to such masses in all the MSSM scenarios. They also consider the case mA = mH± , mH = 150GeV, and
mh = 50GeV as an illustrative example. For sin (β − α) = 0.1, they find that, for tanβ = 3 the dominant decay mode
(over 90% branching ratio) of the charged Higgs is into W±h and for tanβ = 1 the branching ratio of that mode rises from
40% to 80% as the charged-Higgs mass goes from 250 to 600 GeV. They obtained similar results for sin (β − α) = 0.9 (now
with mh = 120GeV in order to avoid LEP bounds), except that the dominant decay mode then is W±H . Note that, for the
charged-Higgs mass region that they consider the dominant branching ratio is into tb̄ in the MSSM.

This has a huge effect on the phenomenology. By the time the LHC has been running for a few years, the neutral Higgs
bosonswill presumably have been discovered and, once theirmasses are known, the decayH±

→ W±(h,H) should be quite
straightforward to detect. Thus, for a substantial part of the parameter space, the charged Higgs will be easier to detect in
the type II 2HDM than in the MSSM.

Borzumati and Djouadi [336] have studied the observation of the decays H±
→ W±(h,H) at LEP and the Tevatron. It

should be noted that their rate can be subject to large radiative corrections [72,337]. Searches for the charged Higgs by using
the decay mode H±

→ bb̄W± have been performed at the Tevatron [338] and will be studied at the LHC [339,340].
The production and decay of the charged Higgs in the ‘‘Complex two Higgs doublet model’’ was studied in Ref. [334]. In

this model, one violates CP invariance by making the m12 term in Eq. (2) complex. They calculate CP violating asymmetries
for H+ and H− production and decays, including one loop effects. They modified the codes for FeynArts and FormCalc to
incorporate this model. It is found that CP violating asymmetries are substantially smaller than in the MSSM, and do not
exceed 3%.

4.1.2. The type I model
Since both supersymmetric models and Peccei–Quinn models require a type II 2HDM, there has been substantially less

discussion of the type Imodel. Nonetheless, many of the early works on 2HDMs discuss thatmodel and it is often considered
in more general analyses. The seminal paper of Barger et al. [30] analysed numerous constraints on the charged Higgs in the
type I 2HDM, but this was before LEP and a relatively light top quark was assumed. There have been numerous studies since
then, as will be seen in this section.
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Fig. 18. Lower bounds on tanβ in the type I 2HDM as a function of the charged-Higgs mass MH . The solid line is the bound from Ref. [246] and comes
from consideration of Z → bb̄, ϵK , and ∆mBs . The dashed line is the bound in Refs. [46] and [107], which arises from B → Xsγ and is very sensitive to
assumptions and to input parameters.

There are several key features of the type I model [341]. The relative branching ratios of the charged Higgs decaying
into fermions are independent of tanβ . Assuming that there are no decays into lighter scalars – such as H+

→

AW+, hW+, HW+ – the decay into τ+ντ will have a branching ratio of 70% and the decay into cs̄ will have branching
ratio equal to 30%, when mH± is below the top threshold. Above that threshold, H+ decays almost always into tb̄. Since the
couplings to fermions are proportional to cotβ , the charged Higgs becomes fermiophobic in the large tanβ limit. This might
avoid constraints from flavour physics, allowing for the possibility of a charged Higgs in the 100 GeV mass range.

If kinematically possible, one may consider the decays H+
→ SW+, where S may be either h, H , or A. In this case, the

W+ may even be virtual, since in the large tanβ (fermiophobic) limit a three-body decay can still dominate decays into two
fermions [71]. In fact, it was pointed out in that paper that a three-body decay can dominate even if tanβ is not so large,
since the Yukawa couplings of the H+ are small if its mass is below the one of the top quark.

As in the type-II 2HDM, we shall begin by considering the constraints from indirect processes. Since all of these involve
Yukawa couplings, which vanish in the large tanβ limit, they will provide bounds only in the low-tanβ region. As noted
earlier, a recent comprehensive review by Jung et al. [246] has considered many processes within their general ‘‘aligned
2HDM’’. One may use their results to explore the limits from indirect processes in all four 2HDMs, which are all limiting
cases of the general approach of Pich et al.; they give bounds in each of the four 2HDMs that we discuss explicitly (the
bounds for the type II model agree with those in the last subsection).

In the type I 2HDM the strongest bounds come from the process Z → bb̄, from ϵK , and from ∆mBs . The value of Rb, the
ratio of the width Z → bb̄ to the total hadronic width of the Z , has been calculated in 2HDMs [79,297,342], most recently in
Ref. [298]. Comparing it with the experimental result one obtains bounds with vary from tanβ > 2 to tanβ > 1 when the
charged-Higgs mass varies from 80 to 400 GeV. The value of the mass difference between the Bs and the B̄s was calculated
in [343] (someminor but not insignificant errors in the calculation were pointed out in [88]), and this also provides bounds.
Recent calculations by Buras et al. [344,345] of ϵK also give constraints.

Putting all of these together leads to the excluded region in Fig. 18. There, the solid line corresponds to the bounds of Jung
et al. [246] for the processes in the previous paragraph. As they note, other bounds from B → Dτν followed by τ → ℓν are
weaker. In Ref. [246] the bound from B̄ → Xsγ is also weaker, but Ref. [46] – which is primarily concernedwithmodels with
tree-level FCNC and will be discussed in the next section – obtains a stronger bound from that process, shown as the dotted
line in Fig. 18.12 The precise value for radiative b decays is very sensitive to input parameters and to theoretical errors, so
this is not necessarily a disagreement between [46] and [246] (one should also note that tanβ is not directly measurable). In
any event, one can see that there are no substantive bounds onmH± for moderate and large tanβ , which is in sharp contrast
to what happens in the type II 2HDM.

We next proceed to the direct bounds. For the type II 2HDM it was necessary to discuss the branching ratios as a function
of tanβ . That is not needed for the type I 2HDM, since the relative fermionic branching ratios are in this case independent
of tanβ and are, approximately, 65% into τ+ντ and 35% into cs̄ (below the top threshold, which is the relevant case for the
current direct bounds). The combined LEP bound [303] is 78.7GeV. However, this assumes that there are no non-fermionic
decays such as H±

→ AW± (where the W± is virtual). The DELPHI Collaboration [346] also searched for a charged Higgs

12 A separate analysis by Gupta and Wells [107] found results similar to those of Ref. [46].
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Table 4
Branching ratio of the charged Higgs into τν for various values of the charged Higgs mass (in GeV)
and of tanβ . For mH± = 100GeV and tanβ = 1 the remaining 30% branching ratio is into cs̄; for all
the other entries the remaining branching ratio is almost entirely into tb̄.

Charged Higgs mass tanβ = 1 tanβ = 5 tanβ = 10 tanβ = 20

100 0.70 0.95 0.99 1.00

200 0.05 0.20 0.80 0.97

300 0.00 0.05 0.40 0.92

that decays into either τ+ντ , cs̄, or AW ∗; it found a bound of 76.7GeV by assuming that the A was heavier than 12 GeV,
similar results were also reported by the OPAL Collaboration [347].

As for the type II model, the Tevatron also has bounds fromDrell–Yan pair production of a charged Higgs. The CDF bounds
in Ref. [304] have assumed that BR


H+

→ cs̄


= 1, which is never the case in the type I 2HDM, so those bounds do not
apply. The D0 bound [305] has considered the case in which the sum of BR


H+

→ cs̄

and BR


H+

→ τ+ντ

is 1, which

applies here unless there are light scalars. The result is the lower line in Fig. 17. This bound, however, is slightly weaker than
the one derived by Jung, Pich, and Tuzón from indirect processes. Thus, no stronger bounds, as of yet, have been obtained
by the Tevatron on the type I 2HDM.

The ATLAS study of a light charged Higgs possibly being produced in top-quark decays [308] was explicitly focused on
the type II 2HDM. However, the primary difference between the type I and type II models is in the coupling to tb̄. In the
type II model that coupling is large at large tanβ , whereas it is always small for large tanβ in the type I model; both models
give similar results for small tanβ . As a result, the discovery bound at the LHC would correspond to the lower dashed line
in Fig. 17. For large tanβ , the top-quark branching ratio into a charged Higgs is too small to detect in the type I 2HDM.

A study by Aoki et al. [348] of the light charged Higgs at the LHC explicitly focused on the type I and Lepton-Specific
models has very recently appeared. They analyse production rates from top pair production (in which one top decays into
H+b), single top production, and direct production through cs → H+

+ jet. They plot the reach of the LHC for 10 and 30
inverse femtobarns at

√
s = 14 TeV and find that over the range of charged Higgs masses up to 150 GeV, upper bounds on

tanβ between 6 and 10 can be obtained (recall that the very large tanβ limit is fermiophobic in the type I model). Charged
Higgs pair production is also considered, and it is shown that constraints are more parameter-dependent, but the process
might also be detected at the LHC. An analysis at 7 TeV is currently under investigation by the same authors.

For larger charged-Higgs masses the decay into tb̄ will be swamped by background. The τ+ντ decay, which has a
branching ratio as high as 10% in the type II 2HDM, is much less important in the type I 2HDM and typically has a branching
ratio of orderm2

τ/m
2
t ∼ 10−4. This makes detection at the LHC impossible if the primary decay is fermionic.

However, there are also neutral scalars S (which may be h, H , or A in the 2HDM) and one may consider H±
→ SW±. In

the large tanβ limit the charged Higgs is fermiophobic and H±
→ SW± would be the leading decay mode if kinematically

accessible (and it might still be the leading decay mode even if the W± is virtual [336]). We thus see that in the large tanβ
limit the most promising decay modes are – unlike what occurs in the type II model – into a neutral scalar and a W . As
noted in the last subsection, searches of a charged Higgs through the decay mode H±

→ bb̄W± have been studied at the
Tevatron [338] and LHC [339,340]. A plot of the results is premature since there are several additional parameters (such as α
and the scalar mass) but the decay H±

→ bb̄W± offers the best hope. An updated analysis of this mode would be welcome.

4.1.3. The lepton-specific model
In the lepton-specific (LS) 2HDM the same Higgs doublet couples to both the up-type and the down-type (right-handed)

quarks, just as in the type I 2HDM, therefore the charged Higgs is quark-phobic for large tanβ . Indirect bounds arising from
hadronic decays will thus be identical to those in the type I model. But, in contrast to what happens in the type I 2HDM,
at large tanβ the charged Higgs becomes strongly leptophilic in the LS 2HDM, hence the τ+ντ decay mode of the H+ can
be dominant. In fact, as we shall see, that decay can be dominant even above the tb̄ threshold, leading to quite dramatic
experimental signatures.

Some early discussions of the charged Higgs in the LS 2HDM can be found in Refs. [30,32,349]. It has also been discussed
recently in the context of dark-matter models [56] and of neutrino mass models [60]. The most recent comprehensive
analyses of the phenomenology of the charged Higgs in the LS 2HDM are the articles by Su and Thomas [54], by Aoki
et al. [36], and by Logan and MacLennan [55]; we shall follow those analyses closely. The branching ratio of the charged
Higgs into τ+ντ is given in Table 4 (branching ratios below 5% are not shown). Decays intoW±(h,H, A) are not included in
the branching ratio computations; by using MSSM values for the mixing angles and for the light-scalar masses, Logan and
MacLennan have shown that the branching ratios never exceed 10%, rendering irrelevant for the LS 2HDM some detection
strategies involving decays into scalars which have been discussed for the type I and type II 2HDMs.

We see that, for tanβ = 1, the branching ratios are identical to those in the type I model. But, the τ+ντ decay rapidly
becomes dominant as tanβ increases and is significant – and sometimes dominant – even above the tb̄ threshold. Another
important feature is that the total width of the charged Higgs is much lower than in other models, remaining below 1GeV
over the entire mass range for tanβ < 40. Thus one would expect very monochromatic τ s in the decay.
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The indirect bounds from B decays are very similar in the LS and type I 2HDMs, since they are only relevant for tanβ close
to 1, where the Yukawa couplings are identical in both models [246]. The decay B → Xsγ gives precisely the same bound as
shown in Fig. 18 for the type I 2HDM. The decays B → ℓ+ℓ− and b → cτν do not give useful bounds [55]. One can get an
effect from B+

→ τ+ντ , since the charged Higgs can mediate this decay, but that effect also turns out to be negligible for
charged-Higgs masses which are not yet excluded by the direct searches. Logan and MacLennan [55] have also considered
deviations from flavour universality in τ decays, finding an exclusion region for a fairly light charged Higgs that begins at
tanβ = 65 formH± = 100GeV, and rises linearly to tanβ = 200 formH± = 250GeV.

The LEP direct-search limit of 78.6GeV for the type I 2HDM still applies here. OPAL [350] has presented a stronger bound
of 92.0GeVunder the assumption that the branching ratio into τ+ντ is 100%. This assumption is valid for large tanβ and thus,
over the entire range of tanβ , the lower bound will vary from 78.6 to 92.0GeV. At the Tevatron, the D0 bound discussed for
the type I 2HDM also applies in the LS 2HDM, but (as in the former case) it is not stronger than the bounds already imposed
by indirect searches. Similarly, the ATLAS bound discussed in the previous section, for a charged Higgs to be produced in top
decays, applies indifferently in the type I and LS 2HDMs.

There is an additional possibility at the LHC. In all other 2HDMs, detection of the charged Higgs above the tb̄ threshold
is very difficult due to the huge backgrounds; the analyses have had to rely on the small branching fraction of the H+ into
τ+ντ . In the LS model, however, that branching fraction is very large and will (provided tanβ is not too small) dominate.
This sounds promising but, unfortunately, the production rate of H+ through gg → t̄bH+ scales like cot2 β and that will
suppress the result. Still, a sufficient enhancement at intermediate tanβ may occur. As noted by Aoki et al. [36], one could
readily distinguish the type II and LS 2HDMs through the decay rates into leptons as opposed to quark, if the charged Higgs
could be detected.

One can also look for pair production ofH+H− proceeding to τ+ντ τ
−ν̄τ . A similar phenomenonwas studied by Davidson

and Logan [91,351] in the neutrino-specific 2HDM, to be discussed shortly. They looked at charged-Higgs pair production
at the LHC but, in their case, the decays of the charged Higgs studied were into µν and eν. It is clear that τν will be much
more difficult and the missing energy in the τ decay will render irrelevant some of the cuts that Davidson and Logan used.
The possibility of pair production of charged Higgs above the top threshold with the charged Higgs decaying entirely into
τν had not yet, to our knowledge, been studied.

One could look at associated production of the charged Higgs with a neutral Higgs, proceeding to three τ s and missing
energy. The only detailed analysis of this possibility thatwe are aware of is the one of Aoki et al. [36]; at the LHCwith 300 fb−1

of accumulated luminosity, they have found – for scalarmasses of 150 GeV – that the signal is comparable to the background
–which originates primarily fromW±Z – and they have discussed possible cuts. They note that τ misidentification (hadrons
being identified as τ s) may be a serious problem; realistic simulations are necessary. They also studyµµτν events; the rate
is much smaller, since the branching ratio of neutral scalars into muons is much less than the one into τ s, but the resolution
of the muon pair is much better. If the neutral scalar has already been identified, this could provide a very useful tag for the
charged Higgs. Once again, realistic simulations are needed.

Of course, at an eventual ILC, signatures will be very clean and backgrounds negligible, and all of the various 2HDMs will
be readily distinguishable [36].

4.1.4. The flipped 2HDM
In the flipped 2HDM the Yukawa couplings to the quarks are the same as in the type II 2HDM but the Yukawa couplings

to the leptons are proportional to cotβ instead of tanβ . As a result, the various bounds from hadronic processes such as
B → Xsγ are identical in the flipped and type II 2HDMs. Without a cancellation due to New Physics, the lower bound on the
charged-Higgs mass is close to 300 GeV. Although the flipped model has been discussed in several recent general studies
of the four 2HDMs [36,50,246,262], the only paper explicitly dedicated to the phenomenology of the charged Higgs in the
flipped 2HDM that we are aware of is the one by Logan and MacLennan [53].

For moderately large tanβ , branching ratios in the flipped and type II 2HDMs are quite different. For tanβ = 1 the
branching ratios are identical, see the left panel of Fig. 16. But as tanβ increases the branching ratios to leptons become
suppressed, as shown in Fig. 19. One can see that, below the tb̄ threshold, the dominant decay of H+ is into τ+ντ for
tanβ ∼ 1 and into cb̄ or cs̄ for larger tanβ .

As stated above, the indirect bounds on mH± from b → sγ , from ∆mB, and from Rb are identical in the flipped and
type II 2HDMs. The first process yields a lower bound of 295 GeV on mH± and the other two processes exclude the region
tanβ < 1 for higher masses—see Jung et al. [246] for plots of these bounds. As noted earlier, though, it is possible that
New Physics cancels out the effects of the charged Higgs in the loop—even a fairly mild cancellation would weaken the
bounds.

The bound on mH± from LEP [303] explicitly assumed that H+ decays into either τ+ντ or cs̄. While this is true in the
type II 2HDM, it is not true for the flipped 2HDM, since the decay into cb̄ may dominate for large or moderate tanβ . The
ALEPH Collaboration [352] produced bounds independent of the quark flavours and one thus knows thatmH± > 79.3GeV.

At the Tevatron, the bounds discussed earlier also assume that the charged Higgs decays into either cs̄ or τ+ντ . Logan
and MacLennan [53] have analysed these experiments in the context of the flipped 2HDM. Their conclusions are somewhat
similar to Fig. 17, with a lower bound in the low-tanβ region and an upper bound in the high-tanβ region, cf. [53] for the
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Fig. 19. Branching ratios of the charged Higgs in the flipped 2HDM, from Ref. [53]. Decays intoW± and a neutral Higgs boson are not considered. The ratio
of the dominant channels depends quadratically on the strange quark mass, and thus has a sizeable uncertainty.

detailed plots. Just as in the type II 2HDM, there is a large window at intermediate tanβ where the Tevatron is unable to
produce bounds onmH± .

The prospects of detection of the H± at the LHC are less promising than in the type II 2HDM. Firstly, suppose that mH±

is above the top threshold. Then one can study associated production of a charged Higgs with a top. This is similar to what
happens in the type II model. There, some hope was obtained by looking at the relatively rare decay H+

→ τ+ντ . In the
flipped 2HDM, however, that decaymode is negligible for moderate or large tan β . Thus, there is no advantage to the flipped
2HDM over the type II 2HDM. Secondly, suppose that mH± is below the top threshold. The ATLAS and CMS studies looking
for top decays into a charged Higgs assumed that the latter primarily decays into τ+ντ . This is generally not the case in
the flipped 2HDM and it is unlikely that one can get better bounds than the Tevatron. However, an ATLAS study [353,354]
of t → H+b,H+

→ cs̄ shows that the sensitivity (at 1 fb−1 at 7 TeV) is better than the Tevatron. As shown in Refs. [53]
and [355], b-tagging could be used to enhance the detection prospects of t → H+b,H+

→ cb̄ and distinguish between
H+

→ cb̄ and H+
→ cs̄. Such a b-tag would provide sensitivity in the region around the W mass which cannot be probed

at the Tevatron due to backgrounds.
What about charged-Higgs pair production? For mH± < mt the dominant decay mode [31,32] is (for moderate tanβ)

into cb̄, leading to cb̄c̄b final states which will be impossible to detect due to large QCD backgrounds; for a heavier charged
Higgs the tb̄t̄b signal will also be impossible to pick out. Thus, Logan and MacLennan [53] concluded that the prospects for
detection of the charged Higgs at LHC are not bright in the flipped 2HDM (at the ILC, of course, signatures would be easy to
pick out).

4.1.5. Other models
An interestingmodel that has a potentially exciting charged-Higgs phenomenology is the neutrino-specificmodel [91]. In

it, the second Higgs doublet only couples to right-handed neutrinos and has an extremely small vacuum expectation value,
of order eV. Then, the only decay modes of the charged Higgs are into a charged lepton and a right-handed neutrino, the
coupling constant being proportional to the neutrino mass times the appropriate lepton-mixing-matrix element. With the
normal neutrino mass hierarchy, the decay of H+ would be primarily into µ+ν and τ+ν, with a branching ratio of roughly
50% into each; for an invertedmass hierarchy, the decays are primarily into e+ν (roughly 50%), with the remainder intoµ+ν
and τ+ν. Thus, the most dramatic signatures would be H+

→ e+ν and H+
→ µ+ν.

Davidson and Logan [91] have considered the process pp → H+H−
→ ℓ+νℓ′−ν̄. Backgrounds to this process come from

the production ofW+W−, ZZ , Zγ , or t t̄ (inwhich the b quarks in the decay of the tops aremissed). FormH± = 100 (300)GeV,
the production cross section is 300 (5) fb. They have looked at various cuts in order to increase the signal-to-background
ratio. In the mH± = 100GeV case, the luminosity needed for a 5σ discovery is 10 to 70 fb−1 for normal neutrino mass
hierarchy and 8 to 15 fb−1 for inverted hierarchy (the range depends on the allowed range of neutrino masses andmixings).
In the mH± = 300GeV case, the luminosity in the normal-hierarchy case is 55 to 450 fb−1 and, in the inverted-hierarchy
case, 25 to 55 fb−1 (these calculations assumed a 14 TeV LHC). Thus, the signatures in this model are dramatic and within
reach of the upgraded LHC.

The primary interest in the Inert Doublet (ID) model is dark matter and not the charged Higgs, since a candidate for that
matter naturally arises in themodel; most phenomenological studies of the IDmodel have focused on its neutral sector, and
especially on the possibility that the Standard-Model Higgs particle decays into the dark-matter particle. Since the charged
Higgs in the ID model does not couple to fermions, it will only decay into HW± or AW±, where the W± is either real or
virtual, depending on the masses. Cao et al. [175] have considered the associated production of the charged Higgs and a
pseudoscalar at LHC and have found cross sections (which are very sensitive to the masses of both the charged Higgs and
the pseudoscalar) of several hundred fb formasses below200GeV. They have also considered charged-Higgs pair production
and concluded that, even for relatively low values of the charged-Higgsmass, the backgrounds overwhelm the signals. Later,
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Miao et al. [356,357] found results for the production cross section similar to those of Cao et al. and performed a detailed
analysis of possible cuts. They considered eight different benchmark points and tailored the cuts to each of those points. For
two of the points a 5σ discovery of the charged Higgs is possible with a luminosity of 300 fb−1; in both of these pointsmH± is
only 110 GeV—a heavier charged Higgs probably cannot be discovered. Huitu et al. [358] have shown that, if one extends the
ID model by including a scalar singlet, then the charged Higgs could be long-lived, leading to other detection possibilities.
Finally, as noted by Ginzburg [262], the ILC will easily be able to detect and study the charged Higgs up to its kinematic
limit.

As pointed out in Section 3, the Lee–Wick Standard Model is a very unusual 2HDM, in which the second doublet states
have wrong sign kinetic terms and masses and negative norms. The neutral sector of the theory is similar to an inert model,
but the charged sector is identical [198] to a type II 2HDM with tanβ = 1 and with the sign differences for the three
point Higgs-Higgs-γ , Z and the Yukawa couplings, as well as a factor of −1 for each charged Higgs propagator. Carone and
Primulando [198] analysed Bq − B̄q mixing, B → Xsγ , Rb from Z-decay, Generally, the effects are of opposite sign to the
conventional 2HDM, but the constraints turn out to be similar. They found that the lower bound on the charged Higgs mass
from Bd − B̄d, Bs − B̄s and b → Xsγ are given by 303, 354 and 463 GeV, respectively, and that no further bounds can be found
from Rb.

4.2. Models with tree-level flavour-changing neutral currents

4.2.1. The type III model
The most general Yukawa couplings of two Higgs doublets are given by [359,360]

Q̄Lη
U
1 URΦ̃1 + Q̄Lη

D
1DRΦ1 + Q̄Lη

U
2 URΦ̃2 + Q̄Lη

D
2DRΦ2 + H.c., (92)

where the ηk (k = 1, 2) are 3×3matrices;we have not included leptonic Yukawa couplings for simplicity.With our standard
definitions and assuming real vevs, the fermion mass matrices are

MF
=

v
√
2


ηF1 cosβ + ηF2 sinβ


, (93)

with F = U,D. Defining [46]

κF
≡ ηF1 cosβ + ηF2 sinβ (94)

and the orthogonal combination

ρF
≡ −ηF1 sinβ + ηF2 cosβ, (95)

one can move to the (‘‘Higgs’’) basis where only one doublet, called H1, has a vev, thus generating fermion mass matrices
and coupling with κF . The other doublet, H2, has zero vev and couples with ρF . The coupling of the charged Higgs boson
then is

H+Ū

VρDPR − ρUVPL


D + H.c., (96)

where V is the CKM matrix, and the ρU,D matrices have been rotated by the same unitary matrices that diagonalize κU,D.
Of course, all the charged-Higgs couplings are flavour-changing, but the neutral sector will have tree-level FCNC couplings
unless ρU and ρD are diagonal. This occurs if either ηU1 = ηD1 = 0 (the type I model) or ηD1 = ηU2 = 0 (the type II model);
these relations translate into ρF

= κF cotβ and ρF
= −κF tanβ , respectively, and, since the κF are diagonal, the ρF then

are diagonal too.
In the type III 2HDM, neither of these assumptions is made. The Cheng–Sher [206] Ansatz, discussed in Section 4, is

ρF
ij = λFij


2mimj

v
, (97)

with the λF of O(1). In Section 3 we have shown how this Ansatz is being challenged by current experiments.
Other versions of the 2HDMinclude the aligned2HDM[37], inwhich it is assumed that theYukawa-couplingmatricesηF1,2

are proportional. That model has no tree-level FCNC andwas discussed in the last section (see [246] for a detailed analysis of
the charged-Higgs phenomenology of the aligned 2HDM). In another 2HDM, Mahmoudi and Stal [46] used the Cheng–Sher
parametrization and noted that, if one assumes that the λij are diagonal, then both the aligned 2HDM and the various Z2
models arise as special cases; we shall include that model in this section. One can also find interesting phenomenological
possibilities by considering specific Yukawa textures [361,362].

We first discuss direct searches. The LEP bounds on charged-Higgs masses will still apply, but the relative branching
ratios to τ+ντ vs. cs̄ are parameter-dependent. Still, a bound of around 75 to 80 GeV is expected based on the energy scale.
Hadronic colliders can extend the reach. In 1999, He and Yuan [316] discussed a newmethod of detecting charged Higgs in
models with tree-level FCNC. The idea is that, if a model has a large t̄cH coupling (H is a neutral Higgs), then, from isospin
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symmetry, there will be a large b̄cH+ coupling and one can produce a charged Higgs through the s channel, since the b and
c content of the proton is not negligible. Although this process can exist in standard 2HDMs, it is suppressed by the small
Vcb CKM-matrix element.

In the type III 2HDM, (ρUV )cb ≈ ρU
ctVtb + ρU

ccVcb ≈ ρU
ct , whereas (VρD)cb ≈ ρD

sb. The latter is, in the Cheng–Sher Ansatz,
much smaller, therefore the dominant vertex involves c̄RbL and not – as in the standard Type I or Type II 2HDM – c̄LbR.
With the Cheng–Sher Ansatz this vertex will be quite large, O(


mcmb/v2) ∼ 1%. He and Yuan [316] find that, for a 14 TeV

LHC with 100 fb−1 luminosity, one would get, for mH+ = 300 (800)GeV, over 130,000 (380) single-top events from the
charged-Higgs decay and (if kinematically accessible) about 180,000 (4000) events H+

→ W+h → W+(bb̄, τ+τ−). With
appropriate cuts, this can by seen over the Standard-Model rate (from W ∗) up to charged Higgs masses below 350GeV,
whereas for heavier masses, the signature is not observable.

A study of this process H+
→ tb̄ at the Tevatron, where the rates are of course smaller, was carried out by the D0

Collaboration [363], which was however unable to set bounds on mH± unless the coupling of the charged Higgs to qiq̄j was
substantially higher than expected in the type III 2HDM. Further analysis of the D0 results was carried out by Cardenas
and Rodríguez [364]. They looked at a charged Higgs above the tb̄ threshold and found that, if λtt = λtc = 2.8 (5.0),
then mH± must be above 230 (264)GeV. Below the tb̄ threshold, they found from top decays that the lower bound on
mH± is 145 (160)GeV for λtt = λtc = 2.8 (5.0) (the value 2.8 is the perturbative validity upper bound [365]). For λtt =

λtc = 1, no substantive bound could be found on mH± . Single-top production at the LHC will provide a good probe of the
model.

As in the type I and type II models, one can set bounds on the parameters of the type III 2HDM from indirect processes.
The first discussion of bounds on mH± from B → Xsγ in the type III 2HDM was Ref. [216], but this was long before NLO
corrections, which are important, had been calculated. A comprehensive study is difficult because of the large number of
parameters in the type III 2HDM. A simplified analysis, in which only λtt and λbb are non-zero, was performed by Bowser-
Chao et al. [232]. This has the advantage of a smaller parameter space and of the fact that only charged-Higgs loops are
relevant—unlike the general case, where neutral-Higgs loops are important too. They allowed for the possibility that those
two couplings are complex—the relative phase determines whether the charged-Higgs loops interfere destructively or
constructively, and can also give rise to a non-zero neutron electric dipole moment (EDM). Their results are shown in
Fig. 20 for three different values of |λttλbb|. On the x axis is the phase angle, which is 180◦ in the type I and type II models.
The type II model corresponds to the middle figure at θ = 180◦; and one can see the bound of roughly 300 GeV of that
model. The shaded region is excluded by the experimental upper bound on the neutron EDM. Note that, for a reduction by
a factor of two of |λttλbb|, the lower bound on mH± drops almost to the observed lower bound from LEP (this work was
done in 1999 and the experimental constraints are much tighter now, but NLO effects have been calculated and lower the
curves only a little, resulting in similar results). They also gave bounds from B–B̄mixing and Rb, but the experimental results
have changed a bit since then and the results are rather sensitive to those changes. The important aspect of the paper by
Bowser-Chao et al. is that, through slightly lower values of |λttλbb|, one can substantially lower the bound on mH± in the
type III 2HDM.

Themost comprehensive analysis of B → Xsγ and of B–B̄mixing in the type III 2HDMwas the one by Xiao and Guo [233]
and also, with a specific focus on B → (K ∗, ρ)γ , the study of Xiao and Zhuang [366]. There are numerous plots in these two
papers. From the B–B̄ mass difference, and assuming that only λbb and λtt are non-zero, they [233,366] find that λtt < 1.7
for any mH± < 300GeV; moreover, even for such small values of λtt , there is an excluded region: from 0.75 to 1.6 for
mH± = 200GeV, from 0.95 to 1.4 for mH± = 300GeV, and from 1.15 to 1.25 for mH± = 400GeV. They also present results
similar to those of Bowser-Chao et al. for B → Xsγ , although they use a different set of parameters and also improved,
updated data. They provide a comprehensive set of formulae which can easily be employed for other parameter choices.

Of course, if additional λij are taken to be non-zero the parameter space becomes quite large. Some recent analyses that
discuss other λij include the work of Diaz et al. [367], in which the effects of non-zero λsb and λtc were discussed (λsb was
found to be unbounded, λtc was found to be smaller than 1), and of Idarraga et al. [368], who also considered bounds from
leptonic B decays but chose very large λµµ and λττ . Also note that, if neutral fields are allowed in the loop, one could get an
effect proportional to λ2bs, which is, however, negligible.

The possibility of s-channel charged-Higgs production at the LHCmay provide the best method of detection, and detailed
simulations would be welcomed.

As discussed in Section 3, the BGL andMFV couplings can be obtained from the type III model with the Cheng–Sher ansatz
replaced by another ansatz (which may depend on parameters and which will vary for different models). Thus, everything
in this section would apply to these models, but with λij not being of O(1).

5. The scalar sector of the 2HDM

The scalar sector of the 2HDM has many interesting features. In its most general form, the potential apparently has 14
independent parameters. However, the fact that the Higgs doubletsΦ1 andΦ2 are not physical observables – only the scalar
mass eigenstates are physical particles – means that we have the freedom to redefine those doublets, provided we preserve
the form of their kinetic terms. These basis changes of the Higgs doublets allow one to absorb some of the parameters in the
potential and are essential to understand the number of physical parameters really present in it.
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a

b

c

Fig. 20. Contours of the branching ratio of b → sγ as a function of the charged-Higgs mass and of the phase θ between λtt and λbb , for three different
values of |λttλbb|. The shaded areas are excluded by the experimental bound on the neutron electric dipole moment.
Source: This figure is from Ref. [232].

For several good reasons – the most usual of which is preventing the occurrence of FCNC in the 2HDM – it is common
to impose a variety of global symmetries on the 2HDM, thus reducing the number of free parameters. In a highly non-
intuitive result, it has been proven that there are only six such symmetries which have distinct effects on the scalar
potential. The six models resulting from each of those symmetries have different physical implications: different spectra of
scalars, different interactions with gauge bosons, and, in some cases, predictions of massless axions or potential darkmatter
candidates.
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It is the scalar potential that determines the vacuum of the 2HDM, and that vacuum, unlike what happens in the
SM, is not unique: with two doublets the possibility arises that the vacuum of the model spontaneously breaks the CP
symmetry—which in fact is precisely the reason why T. D. Lee first proposed the 2HDM in 1973 [9]. However, for certain
values of the parameters in the potential, vacua which violate the electromagnetic symmetry, giving mass to the photon,
are also possible. Those have, of course, to be avoided. Even if one considers only vacua which preserve both CP and
the usual gauge symmetries of the SM, the 2HDM has a rich vacuum structure: some of the possible 2HDM potentials
can display so-called ‘‘inert vacua’’, in which one of the neutral scalars does not couple to gauge bosons at all (and can
easily be made to decouple from fermions as well). Some other potentials may have two different electromagnetism-
preserving minima, with different predictions for the masses of the gauge bosons, for instance. The 2HDM has however
a feature which distinguishes it from other multi-Higgs models, such as SUSY, the Zee model, or the 3HDM: its vacua are
stable and no tunnelling from a neutral, CP-conserving vacuum to a deeper, CP- or charge-breaking vacuum, is possible.
And vice-versa: any CP- or charge-breaking minimum that one finds is guaranteed to be the global minimum of the
model.

However, not all values of the parameters of the 2HDM potential ensure that there is a stable minimum, unless one can
be sure that the potential is bounded from below. This basic requirement allows one to impose constraints on the quartic
scalar couplings. A renormalization-group improvement of those constraints translates in possibly severe bounds on the
masses of the physical scalar particles. In the following we shall analyse these questions. We shall discuss the vacuum
structure of the potential, derive general formulae for the scalar masses, present bounds on quartic couplings obtained from
the requirement that the potential is bounded from below, and discuss the symmetries of the scalar potential and their
extension to the Yukawa sector.

5.1. The scalar potential, notation 1

The most general renormalizable, i.e.quartic, scalar potential may be written [369]

VH = m2
11Φ

Ď
1Φ1 + m2

22Φ
Ď
2Φ2 −


m2

12Φ
Ď
1Φ2 + H.c.


+

1
2
λ1


Φ

Ď
1Φ1

2
+

1
2
λ2


Φ

Ď
2Φ2

2
+ λ3


Φ

Ď
1Φ1

 
Φ

Ď
2Φ2


+ λ4


Φ

Ď
1Φ2

 
Φ

Ď
2Φ1


+


1
2
λ5


Φ

Ď
1Φ2

2
+ λ6


Φ

Ď
1Φ1

 
Φ

Ď
1Φ2


+ λ7


Φ

Ď
2Φ2

 
Φ

Ď
1Φ2


+ H.c.


, (98)

where ‘‘H.c.’’ stands for the Hermitian conjugate. The parameters m2
11, m

2
22, and λ1,2,3,4 are real. In general, m2

12 and λ5,6,7
are complex. Thus, the Higgs potential in Eq. (98) depends on six real and four complex parameters, i.e.a total of fourteen
degrees of freedom. However, as we shall see below, the freedom to redefine the basis means that in reality only eleven
degrees of freedom are physical.

In Eq. (98) we are following the definitions of Davidson and Haber [359]; often other definitions are used, in which the
same symbol may be employed for quantities which differ from ours in sign, a factor of two, or complex conjugation.

5.2. The scalar potential, notation 2

An alternative notation for the scalar potential, which has been championed by Botella and Silva [370], is

VH =

2
a,b=1

µabΦ
Ď
aΦb +

1
2

2
a,b,c,d=1

λab,cd

ΦĎ

aΦb
 
ΦĎ

cΦd

, (99)

where, by definition,

λab,cd = λcd,ab. (100)

In Eq. (99) Hermiticity implies

µab = µ∗

ba and λab,cd = λ∗

ba,dc . (101)

The notation of Eq. (99) is useful for the study of invariants, basis transformations, and symmetries. The correspondence
between notations 1 and 2 is given by

µ11 = m2
11, µ22 = m2

22,

µ12 = −m2
12, µ21 = −m2

12
∗

λ11,11 = λ1, λ22,22 = λ2,
λ11,22 = λ22,11 = λ3, λ12,21 = λ21,12 = λ4,
λ12,12 = λ5, λ21,21 = λ∗

5,
λ11,12 = λ12,11 = λ6, λ11,21 = λ21,11 = λ∗

6,
λ22,12 = λ12,22 = λ7, λ22,21 = λ21,22 = λ∗

7.

(102)
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Once again, one must be careful when confronting Eq. (99) to similar equations written in other papers, since the same
symbol may be used in different papers for quantities which differ in sign, a factor of two, or complex conjugation.

5.3. The scalar potential, notation 3

The previous two notations consider the scalar doublets Φa (a = 1, 2) individually. A third notation emphasizes the
presence of field bilinearsΦĎ

aΦb in the scalar potential. An early use of bilinears is due to Velhinho et al. [371]; the notation
has later been much employed by Nagel [372], by Maniatis et al. [373–375], by Nishi [376–378], and by Ivanov [379–381].
Following Nishi [376] we write:

VH =

3
µ=0

Mµrµ +

3
µ,ν=0

Λµνrµrν, (103)

where

Λµν = Λνµ (104)

and

r0 =
1
2


Φ

Ď
1Φ1 + Φ

Ď
2Φ2


,

r1 =
1
2


Φ

Ď
1Φ2 + Φ

Ď
2Φ1


= Re


Φ

Ď
1Φ2


,

r2 = −
i
2


Φ

Ď
1Φ2 − Φ

Ď
2Φ1


= Im


Φ

Ď
1Φ2


,

r3 =
1
2


Φ

Ď
1Φ1 − Φ

Ď
2Φ2


.

(105)

In Eq. (103) we have adopted an Euclidean metric. It differs from the notation of Ivanov [380], who pointed out that rµ
parametrizes the gauge orbits of the Higgs fields in a space equipped with a Minkowski metric.

Notation 3 is convenient for studies of features such as the existence and number of minima of the scalar potential. Since
the Yukawa couplings involve the Higgs doublets individually rather than bilinears, notation 3 cannot be applied for studies
of the full theory with both scalars and fermions.

The correspondence between notations 1 and 3 is given by

Mµ =

m2

11 + m2
22, − 2Re


m2

12


, 2 Im


m2

12


, m2

11 − m2
22


, (106)

Λµν =

(λ1 + λ2)/2 + λ3 Re (λ6 + λ7) −Im (λ6 + λ7) (λ1 − λ2)/2
Re (λ6 + λ7) λ4 + Re (λ5) −Im (λ5) Re (λ6 − λ7)

−Im (λ6 + λ7) −Im (λ5) λ4 − Re (λ5) −Im (λ6 − λ7)
(λ1 − λ2)/2 Re (λ6 − λ7) −Im (λ6 − λ7) (λ1 + λ2)/2 − λ3

 . (107)

The correspondence between notations 2 and 3 is given by

Mµ =

2
a,b=1


σµ

ab µba, (108)

Λµν =
1
2

2
a,b,c,d=1


σµ

ab (σν)cd λba,dc, (109)

where σ0 is the 2 × 2 identity matrix and σ1,2,3 are the three Pauli matrices.

5.4. Basis transformations

The doublets Φa are not physical—only the scalar mass eigenstates, corresponding to particles, are physical. Thus, any
combination of the doublets which respects the symmetries of the theory will produce the same physical predictions. We
call any combination of (Φ1,Φ2) a basis for the doublets.Wemay rewrite the potential in terms of newdoubletsΦ ′

a, obtained
from the original ones by a (global) basis transformation

Φ ′

a =

2
b=1

UabΦb, (110)
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where U is a 2 × 2 unitary matrix. Under this unitary basis transformation the gauge-kinetic terms are unchanged, but the
coefficients of the potential in notation 2 transform as

µ′

ab =

2
c,d=1

Uac µcd U∗

bd =

UµUĎ


ab , (111)

λ′

ab,cd =

2
e,f ,g,h=1

Uae Ucg λef ,gh U∗

bf U
∗

dh. (112)

The basis transformation of Eq. (110) induces a transformation of the 4-vector in Eq. (105) given by

r ′

0 = r0, r ′

i =

3
j=1

Rij (U) rj (113)

where [376]

Rij (U) =
1
2
tr

UĎσiUσj


. (114)

The matrix R belongs to SO(3) and the transformation of U into R (U) is the SU(2) →SO(3) two-to-one13 mapping. Under
this rotation of the 3-vector ri, the parameters of the scalar potential in notation 3 transform as

• scalars,

M ′

0 = M0, Λ′

00 = Λ00, (115)

• vectors,

M ′

i =

3
j=1

RijMj, Λ′

0i =

3
j=1

RijΛ0j, (116)

• and a symmetric tensor

Λ′

ij =

3
k,l=1

RikRjlΛkl. (117)

We see in Eqs. (111) and (112) that the overall phase of U does not impact the change of the parameters of the potential.
As a result, one may consider U ∈ SU(2). We then parametrize

U =


eiχ cψ ei(χ−ξ)sψ

−ei(ξ−χ)sψ e−iχ cψ


, (118)

where cψ = cosψ and sψ = sinψ; a similar notation will be used below for multiples of the angle ψ . Then, in notation 1,
the parametersm2

ij and λi of Eq. (98) transform as

m2
11

′
= m2

11c
2
ψ + m2

22s
2
ψ − Re


m2

12e
iξ  s2ψ , (119)

m2
22

′
= m2

11s
2
ψ + m2

22c
2
ψ + Re


m2

12e
iξ  s2ψ , (120)

m2
12

′
= ei(2χ−ξ)


1
2


m2

11 − m2
22


s2ψ + Re


m2

12e
iξ  c2ψ + i Im


m2

12e
iξ  , (121)

λ′

1 = λ1c4ψ + λ2s4ψ +
1
2
λ345s22ψ + 2s2ψ


c2ψRe


λ6eiξ


+ s2ψRe


λ7eiξ


, (122)

λ′

2 = λ1s4ψ + λ2c4ψ +
1
2
λ345s22ψ − 2s2ψ


s2ψRe


λ6eiξ


+ c2ψRe


λ7eiξ


, (123)

λ′

3 = λ3 +
1
4
s22ψ (λ1 + λ2 − 2λ345)− s2ψc2ψRe


(λ6 − λ7) eiξ


, (124)

λ′

4 = λ4 +
1
4
s22ψ (λ1 + λ2 − 2λ345)− s2ψc2ψRe


(λ6 − λ7) eiξ


, (125)

13 Note that R (U) = R (−U).
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λ′

5 = e2i(2χ−ξ)


1
4
s22ψ (λ1 + λ2 − 2λ345)+ Re


λ5e2iξ


+ ic2ψ Im


λ5e2iξ


− s2ψc2ψRe


(λ6 − λ7) eiξ


− is2ψ Im


(λ6 − λ7) eiξ


, (126)

λ′

6 = ei(2χ−ξ)


−

1
2
s2ψ


λ1c2ψ − λ2s2ψ − λ345c2ψ − i Im


λ5e2iξ


+ cψc3ψRe


λ6eiξ


+ sψ s3ψRe


λ7eiξ


+ ic2ψ Im


λ6eiξ


+ is2ψ Im


λ7eiξ


, (127)

λ′

7 = ei(2χ−ξ)


−

1
2
s2ψ


λ1s2ψ − λ2c2ψ + λ345c2ψ + i Im


λ5e2iξ


+ sψ s3ψRe


λ6eiξ


+ cψc3ψRe


λ7eiξ


+ is2ψ Im


λ6eiξ


+ ic2ψ Im


λ7eiξ


, (128)

where

λ345 := λ3 + λ4 + Re

λ5e2iξ


. (129)

A basis transformation may be utilized to eliminate some of the degrees of freedom in the scalar potential. This implies
that not all the parameters in that potential have physical significance. Thus, the three parameters in Eq. (118) may be used
to absorb three out of the 14 parameters in the scalar potential. As a result, there are only 11 physical degrees of freedom
in the potential and, thus, only eleven independent observables. Note, though, that we are still discussing the most general
potential; when one imposes a global symmetry (see Section 5.6 ahead) on the 2HDM, the number of parameters which
may be eliminated through basis transformations may be less than three.

5.5. GCP transformations

The standard CP transformation for a Higgs doublet reads

Φ

t, x⃗


→ ΦCP t, x⃗ = Φ∗

t,−x⃗


. (130)

The reference to the time (t) and space (x⃗) coordinates will henceforth be suppressed.
However, in the presence of several identical doublets, the possibility of arbitrary basis transformations should be

included in the definition of the CP transformation. Let us illustrate this problem with a simple example. We start from
the basis (Φ1,Φ2) and the usual definition of CP:

ΦCP
1 = Φ∗

1 , ΦCP
2 = Φ∗

2 . (131)

Now we perform a basis transformation

Φ1 =
1

√
2


Φ ′

1 + eiπ/4 Φ ′

2


,

Φ2 =
1

√
2


−e−iπ/4 Φ ′

1 + Φ ′

2


.

(132)

Substituting Eqs. (132) into Eqs. (131), we obtain
1

√
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Φ ′

1

CP
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
Φ ′
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Φ ′
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Φ ′
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1
√
2


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
Φ ′

1
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Φ ′

2

∗
,

which leads to
Φ ′

1

CP
=

1 + i
2


Φ ′

1

∗
−

i
√
2


Φ ′

2

∗
,

Φ ′

2

CP
= −

i
√
2


Φ ′

1

∗
+

1 − i
2


Φ ′

2

∗
.

(133)

This is clearly not the usual CP transformation, which means that Eq. (131) is too restrictive as a definition of CP. Even the
usual CP transformation may look different from Eq. (131) in a different basis.
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As a result, we must consider a more general version of the CP transformation, which we denote with the superscript
‘GCP’14:

Φa → ΦGCP
a =

2
b=1

XabΦ
∗

b ,

ΦĎ
a → ΦGCPĎ

a =

2
b=1

X∗

abΦ
T
b ,

(134)

where X is an arbitrary unitary matrix. GCP transformations were first discussed by Lee and Wick [399]. Their explicit use
for quarks is due to Bernabéu et al. [400]. GCP transformations in the scalar sector were developed by the Vienna group
[382,383,401,402]. Note that, unlike the standard CP transformation of Eq. (130), GCP transformations are such that the
square of the transformation is not, in general, equal to unity (see Section 5.6.3)—as we already see in the practical example
of Eq. (133).

Under the GCP transformation in Eq. (134), the gauge-kinetic terms stay invariant but the coefficients µab and λab,cd
transform as

µGCP
ab =

2
c,d=1

Xacµ
∗

cdX
∗

bd =

Xµ∗XĎ


ab , (135)

λGCPab,cd =

2
e,f ,g,h=1

XaeXcf λ
∗

eg,fhX
∗

bgX
∗

dh. (136)

We next turn to the interplay between GCP transformations and basis transformations. If the GCP transformation is given
by Eq. (134), thenΦ ′

a =


b UabΦb has a GCP transformation given by

Φ ′

a →

Φ ′

a

GCP
=

2
b=1

X ′

abΦ
′

b
∗
, (137)

where

X ′
= UXUT . (138)

The fact thatUT , rather thanUĎ, appears in Eq. (138) is crucial. If one hadUĎ, then onewould be able to find a basis such thatX
was diagonal. Because one hasUT in Eq. (138) it is not possible to reduce, through a basis transformation, all GCP transformations
to the standard CP transformation of Eq. (130). However, Ecker et al. [383] have proved that for every matrix X there exists a
unitary matrix U such that

X ′
= UXUT

=


cos θ sin θ

− sin θ cos θ


, (139)

with 0 ≤ θ ≤ π/2. The value of θ may be determined through either one of twoways: (i) the (twice degenerate) eigenvalue
of

X + XT

 
X∗

+ XĎ

is 4 cos2 θ ; (ii) the eigenvalues of XX∗ are e±2iθ .

The GCP transformation in Eq. (134) induces the following transformation of the four-vector in Eq. (105):

rGCP0 = r0, rGCPi =

3
j=1

R̄ij (X) rj (140)

where [375]

R̄ (X) = R (X) R̄2,

Rij (X) =
1
2
tr

XĎσiXσj


, (141)

R̄2 = diag (1,−1, 1) .

Both R̄2 and R̄ (X) are improper rotations, i.e.O(3) matrices with determinant −1. For the simplified form of X in Eq. (139)
one has

R̄ (X) =

cos(2θ) 0 − sin(2θ)
0 −1 0

sin(2θ) 0 cos(2θ)


. (142)

14 These are known in the literature by many authors as Generalized CP transformations [382–398].
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5.6. The six classes of symmetry-constrained scalar potentials

The large number of free parameters in the scalar potential of the 2HDM reduces the theory’s predictive power. Any
symmetry that we may impose on the 2HDM to constrain its scalar potential is therefore welcome. Also, as we discussed in
previous sections, the 2HDM is in general plagued by flavour-changing neutral currents; these, however, may be eliminated
– or strongly suppressed – by imposing an internal symmetry on the 2HDM.

Symmetries leaving the kinetic terms unchanged may be of either one of two types:
1. One may relateΦa to some unitary transformation ofΦb,

Φa → ΦS
a =

2
b=1

SabΦb, (143)

where S is a unitary matrix. We then require the potential to be invariant under this transformation. As a result of this
invariance,

µab =

2
c,d=1

SacµcdS∗

bd, (144)

λab,cd =

2
e,f ,g,h=1

SaeScf λeg,fhS∗

bgS
∗

dh. (145)

These are known as Higgs Family (HF) symmetries.15
2. One may relateΦa with some unitary transformation ofΦ∗

b :

Φa → ΦGCP
a =

2
b=1

XabΦ
∗

b , (146)

where X is an arbitrary unitary matrix. We then require that the potential be invariant under this symmetry:

µab =

2
c,d=1

Xacµ
∗

cdX
∗

bd,

λab,cd =

2
e,f ,g,h=1

XaeXcf λ
∗

eg,fhX
∗

bgX
∗

dh. (147)

These are known as GCP symmetries.

Under the basis transformationΦa → Φ ′
a = UabΦb of Eq. (110) the specific forms of the HF and GCP symmetries get altered,

respectively, into:

S ′
= USUĎ, (148)

X ′
= UXUT . (149)

Therefore, a symmetry relation among the coefficients of the scalar potential will, in general, appear as a different relation
if the coefficients of the potential are written using a different basis for the Higgs doublets.

One may, of course, impose on a theory several HF symmetries and/or GCP symmetries simultaneously. Ivanov [380] has
proved that, no matter what combination of HF and/or GCP symmetries one imposes on the scalar potential of the 2HDM,
one always ends up with one of six distinct classes of potentials. This issue was studied further by Ferreira et al. [386]. In
Table 5we present an example of a symmetry in each of the six classes of symmetries found by Ivanov, and the constraints on
the parameters of the potential following from that specific symmetry. The number of physical parameters in the potential
may in general, within each one of Ivanov’s classes, be further reduced by choosing a specific basis for the scalar doublets,
much in the same way as the general 2HDM potential has 14 parameters which may, however, be reduced to 11 through a
suitable basis choice; the number of physical parameters for each class is given in the last column of Table 5.

The six specific symmetries given as examples in Table 5 are the following:
• U(2) is the strongest (most general) HF symmetry,

S =


e−iξ cos θ e−iψ sin θ
−eiψ sin θ eiξ cos θ


, (150)

where ξ , θ , and ψ are arbitrary.

15 Notice that this is not the situation considered in Eqs. (110)–(112). There, the coefficients of the Lagrangian do change under the transformation.
In contrast, Eqs. (143)–(145) imply the existence of a HF symmetry of the scalar potential because the coefficients of VH are unchanged.



G.C. Branco et al. / Physics Reports 516 (2012) 1–102 51

Table 5
The six classes of symmetries (I–VI) of the scalar potential and a practical example of a symmetry in each of those classes. The number in the last column
is the minimal number of parameters (n) in the scalar potential, obtainable in a specific basis.

Class Symmetry m2
11 m2

22 m2
12 λ1 λ2 λ3 λ4 λ5 λ6 λ7 n

I U(2) m2
11 0 λ1 λ1 − λ3 0 0 0 3

II CP3 m2
11 0 λ1 λ1 − λ3 − λ4 0 0 4

III CP2 m2
11 0 λ1 −λ6 5

IV U(1) 0 0 0 0 6
V Z2 0 0 0 7
VI CP1 real real real real 8

• CP3 is a GCP symmetry with

X =


cos θ sin θ

− sin θ cos θ


, (151)

the first-quadrant angle θ being generic, i.e.different from the two specific values 0 and π/2.
• CP2 is the GCP symmetry of Eq. (151) but with θ = π/2, i.e.

X =


0 1

−1 0


. (152)

• U(1) is a restricted version of the HF symmetry of Eq. (150) with

S =


e−iξ 0
0 eiξ


, (153)

where ξ is arbitrary.16
• Z2 is the symmetry under φ2 → −φ2,

S =


1 0
0 −1


. (154)

• CP1 is the standard CP symmetry, with

X =


1 0
0 1


. (155)

Some of these models may be further simplified by choosing an appropriate basis for the Higgs doublets:

• A specific basis may be chosen in the CP2 model [359] such that λ5 is real and λ6 = λ7 = 0, hence that model only has
five parameters.

• In the U(1) model one may render λ5 real through a rephasing of the doublets, so that the model only has seven
parameters.

• Onemay perform a real rotation of the doublets in the CP1model such thatm2
12 becomes zero [9], hence that model only

has nine parameters.

It should be noted that the scalar potential of the minimal supersymmetric Standard Model (MSSM) does not fall into
any of Ivanov’s symmetry classes. In fact, in the tree-level scalar potential of the MSSM one has [47,373,403]

λ1 = λ2 =
g2

+ g ′2

4
, λ3 =

g2
− g ′2

4
, λ4 = −

g2

2
, λ5 = λ6 = λ7 = 0, (156)

where g and g ′ are the gauge coupling constants of SU(2) andU(1), respectively. This ismuch similar to theU(2)-symmetric
2HDM, with the crucial difference that the latter has λ3 +λ4 = λ1, while in the MSSM λ3 +λ4 = −λ1. It is often stated that
the scalar sector of theMSSM is a particular case of a 2HDM, but that statement is potentiallymisleading: the relations among
the quartic couplings in Eq. (156) are renormalization-group (RG) invariant in the MSSM, but only due to the presence of
extra particles—namely the gauginos; analogous relations among the couplings of a 2HDMare not RG-protected if the 2HDM
is not supersymmetrized [392,403]. An RG analysis of the relations between couplings shown in Table 5 was undertaken
in [393,394]. The list of possible potential symmetries increases when one considers field transformations which do not
leave the gauge-kinetic terms invariant, as was shown recently by Battye et al. [395] and by Pilaftsis [396]; of course, those
extra symmetries lead to relations among the parameters of the potential which are not RG-invariant. See also the discussion
on custodial symmetry in Appendix F.

The remainder of this section is devoted to a careful explanation of Table 5, following the presentation in [386].

16 See, though, the discussion after Eq. (162).
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5.6.1. Higgs family symmetries
Higgs Family symmetries have a long history in the 2HDM. Glashow and Weinberg [27] and, separately, Paschos [28]

have introduced the discrete Z2 symmetry

Z2 : Φ1 → Φ1, Φ2 → −Φ2, (157)

and extended it to the quark sector in order to avoid flavour-changing neutral currents. This symmetry enforces m2
12 = 0

and λ6 = λ7 = 0.
We may consider the Z2 symmetry in a different scalar basis,

Φ ′

1 = 2−1/2 (Φ1 + Φ2) ,

Φ ′

2 = 2−1/2 (Φ1 − Φ2)
(158)

obtaining the interchange symmetry

Π2 : Φ ′

1 ↔ Φ ′

2. (159)

This is equivalent to applying Eq. (148) in the form

1
2


1 1
1 −1


1 0
0 −1


1 1
1 −1


=


0 1
1 0


. (160)

TheΠ2 symmetry enforcesm2
22 = m2

11, Im

m2

12


= 0, λ2 = λ1, λ7 = λ∗

6 , and Im (λ5) = 0. Thus,

• the constraints obtained by applying Z2 are apparently different from those obtained by applyingΠ2;
• however, the two symmetries are equivalent, since applying Z2 in a given basis is the same as applying Π2 in a basis

obtained from the first one through the transformation (158);
• the Z2-symmetric and Π2-symmetric potentials must lead to exactly the same physical predictions – we say that they

are in the same class – because physical observables cannot depend on the basis in which we choose to write the Higgs
doublets.

Eq. (148) constitutes a conjugacy relation within the group U(2). Thus, HF symmetries associated with matrices S and
S ′ which are in the same conjugacy class of U(2) correspond to the same model. Moreover, symmetries S and S ′ related by
an overall phase transformation (S ′

= eiξ S) also lead to the same physics, since that overall phase transformation does not
affect the bilinearsΦĎ

aΦb.
Ferreira and Silva [404] have shown that there are only two classes of HF symmetries generated by one single generator

in the scalar potential of the 2HDM: the discrete Z2 symmetry and a continuous U(1) symmetry

Φ1 → e−iθΦ1, Φ2 → eiθΦ2, (161)

for an arbitrary θ . This U(1) symmetry (suitably extended to the quark sector) was first introduced by Peccei and Quinn [12]
in connection with the strong-CP problem. The Higgs potential invariant under U(1) has m2

12 = 0 and λ5 = λ6 = λ7 = 0
and is therefore also invariant under Z2.

It is important to note that, for instance, a potential invariant under

S2/3 =


e−i2π/3 0

0 ei2π/3


(162)

is automatically invariant under the full Peccei–Quinn U(1) group. Even though we only want to enforce a symmetry group
Z3 = {S2/3, S22/3, S

3
2/3 = 1}, we automatically obtain a potential with full U(1) symmetry. In fact, invariance under any Zn

group, with n > 2, will lead us to a U(1)-invariant potential. Another possibility of obtaining the same result is to choose
an irrational multiple of π for the angle θ in Eq. (161). This is an important point because continuous symmetries, when
broken, may lead to massless scalars (Goldstone bosons). An innocent-looking discrete symmetry may have the same effect
on the scalar potential as a continuous symmetry and therefrom arises the possibility of undesired massless scalars.

We must however point out two caveats to the discussion in the preceding paragraph. The first caveat is that we are
assuming a renormalizable theory, from which we exclude all terms in the potential with dimension larger than four. If,
however, we take the reasonable view that the 2HDM is just the low-energy limit of a larger theory, and decide to include
effective operators of dimensions five, six, or above, then the equivalence between different symmetries (such as the Zn
with n > 2, all of them leading to the same U(1)-invariant scalar potential) might no longer be verified. The second caveat
pertains to the fermionic sector: given a specific symmetry of the scalar sector, there are in general many ways of extending
that symmetry to the fermion sector, often with completely different effects on the Yukawa terms. We shall return to this
issue in more detail in Section 5.12.

One may also impose a symmetry with multiple generators on the scalar potential. For example, the scalar potential
invariant under both Z2 and Π2 in the same basis has m2

11 = m2
22, m

2
12 = 0, λ1 = λ2, and λ6 = λ7 = Im (λ5) = 0. Thus,
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the potential invariant under Z2 × Π2 only has five parameters (m2
11, λ1, λ3, λ4, and Re (λ5)) and, indeed, one may show

[359,386] that it is equivalent, in a different basis, to a potential with CP2 symmetry:

Z2 ×Π2 ⇔ CP2 ⇔ Class III. (163)

The U(2)-invariant potential may similarly be obtained [386] through the imposition of the CP3 and U(1) symmetries in the
same basis, as can easily be seen in Table 5.

One can also prove [397] that the existence of either the Z2 (or, equivalently,Π2), U(1), orU(2) symmetries is sufficient to
guarantee the existence of a basis choice inwhich all the parameters of the scalar potential are real. That is, the corresponding
scalar Higgs sectors are explicitly CP-conserving. Therefore, allmodels belonging to the classes in Table 5 have CP-conserving
scalar potentials.

5.6.2. CP symmetries
Wenowwant to discuss the potentials obtained by imposing one single GCP symmetry.Writing X as in Eq. (139), Ferreira

et al. [386] have shown that there are only three classes of potentials obtainable by imposing a single GCP symmetry: CP1
(class VI), CP2 (class III), and CP3 (class II). The potential CP1 results from applying the GCP symmetry with the matrix X in
Eq. (139) with θ = 0:

Φ1 → Φ∗

1 , Φ2 → Φ∗

2 ; (164)

this is the standard CP symmetry, which forces all coefficients in the potential to be real. The potential CP2 results from
applying the GCP symmetry with the matrix X in Eq. (139) with θ = π/2:

Φ1 → Φ∗

2 , Φ2 → −Φ∗

1 . (165)

The potential CP3 results from applying the GCP symmetry with any other (arbitrary) angle θ ≠ 0, π/2. The theories with
symmetry CP2 and CP3 are (of course) CP conserving, but they have potentials more restrictive than CP1.

In the CP3 symmetry, any single angle θ different from 0 or π/2 in Eq. (139) leads to the same potential. However, if one
wants to extend the CP symmetry to the Yukawa sector, different values of θ will have different consequences for the quark
masses—only θ = π/3 allows for six massive quarks [391].

As mentioned regarding Eq. (163), we may reach class III of 2HDM scalar potentials either by requiring symmetry under
the GCP transformation of Eq. (152) or, alternatively, by requiring joint symmetry under Z2 andΠ2. There are, indeed, many
other ways to obtain the class III scalar potential. Similarly [386]

U(1)×Π2 ≡ CP3 ≡ Class IV. (166)

In general, there aremanypossible symmetries leading into any of the six classes of symmetry-constrained 2HDMpotentials.
The different symmetries are equivalent with respect to the scalar potential, but they may differ when one tries to extend
them to the Yukawa sector. Ferreira et al. [386] have proved that (i) except for the class VI potential, all other five
classes of potentials can be obtained through multiple applications of HF symmetries; (ii) one can obtain all six classes
of scalar potentials through multiple applications of the standard CP symmetry in different bases. An interesting geometric
interpretation of these properties is presented in [398].

5.6.3. The square of the GCP transformation
Applying the GCP transformation twice to the scalar fields,


ΦGCP

a

GCP
=

2
b=1

Xab

ΦGCP

b

∗
=

2
b,c=1

XabX∗

bcΦc, (167)

one obtains a HF symmetry with S = XX∗. Thus, (GCP)2 provides a distinction among the three GCP symmetries:

(CP1)2 = 1,
(CP2)2 = −1,

(CP3)2 =


cos 2θ sin 2θ

− sin 2θ cos 2θ


. (168)

While (CP2)2 is reduced to the identity transformation through a global hypercharge transformation [375], (CP3)2 is a non-
trivial HF symmetry of the class II scalar potential [386].
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5.6.4. Symmetries and bilinears
Ivanov’s description of the possible classes of scalar potentials in the 2HDM ismost conveniently summarized by looking

at the corresponding vectors and tensor of Eq. (116) and (117). We start by looking at the implications of the symmetries
we have studied so far on the vector r⃗ = {r1, r2, r3}, whose components were introduced in Eq. (105). Notice that a unitary
transformation U on the fields Φa induces an orthogonal transformation R on the vector of bilinears r⃗ , given by Eq. (114).
For every pair of unitary transformations ±U of SU(2), one can find some corresponding transformation R of SO(3), in a
two-to-one correspondence. We then see what these symmetries imply for the coefficients of Eq. (103) (recall the Λµν is
a symmetric matrix). Below, we list the transformation of r⃗ under which the scalar potential is invariant, followed by the
corresponding constraints on the quadratic and quartic scalar potential parameters,Mµ andΛµν .

• The class I symmetry implies

r⃗ → R r⃗,

M0
0
0
0

 ,
Λ00 0 0 0

0 Λ11 0 0
0 0 Λ11 0
0 0 0 Λ11

 , (169)

where R is an arbitrary 3× 3 orthogonal matrix of unit determinant. Thus the vectorsMi andΛ0i vanish while the tensor
Λij is proportional to the unit matrix. It is evident that class I has only three parameters in the scalar potential.

• For class II, the vectors Mi and Λ0i once again vanish while the tensor Λij has two – instead of three, as in class I –
degenerate eigenvalues. For instance, if one applies the GCP transformation of Eq. (151)

r⃗ →

 c2 0 s2
0 −1 0

−s2 0 c2


r⃗,

M0
0
0
0

 ,
Λ00 0 0 0

0 Λ11 0 0
0 0 Λ22 0
0 0 0 Λ11

 . (170)

It is evident that for this symmetry class there are four parameters in the scalar potential.
• In class III, the vectorsMi andΛ0i vanish and the eigenvalues of the tensorΛij are all different. For instance, if one applies

the GCP transformation of Eq. (152)

r⃗ →


−r1
−r2
−r3


,

M0
0
0
0

 ,
Λ00 0 0 0

0 Λ11 Λ12 Λ13
0 Λ12 Λ22 Λ23
0 Λ13 Λ23 Λ33

 , (171)

but the 3 × 3 real symmetric matrix
Λ11 Λ12 Λ13
Λ12 Λ22 Λ23
Λ13 Λ23 Λ33


may be diagonalized and has in general three distinct eigenvalues. Therefore, in this symmetry class the scalar potential
has five parameters.

• For class IV, the vectorsMi andΛ0i are parallel and, moreover, in the subspace orthogonal to those vectors the tensorΛij
has degenerate eigenvalues. For instance, with the U(1) symmetry of Eq. (153), we have

r⃗ →

c2 −s2 0
s2 c2 0
0 0 1


r⃗,

M0
0
0
M3

 ,
Λ00 0 0 Λ03

0 Λ11 0 0
0 0 Λ11 0
Λ03 0 0 Λ33

 . (172)

It is evident that there are six independent parameters in this scalar potential.
• For class V, the vectors Mi and Λ0i are parallel and the tensor Λij has three non-degenerate eigenvalues. For instance,

with the Z2 symmetry of Eq. (154),

r⃗ →


−r1
−r2
r3


,

M0
0
0
M3

 ,
Λ00 0 0 Λ03

0 Λ11 Λ12 0
0 Λ12 Λ22 0
Λ03 0 0 Λ33

 , (173)

but the 2 × 2 real symmetric matrix
Λ11 Λ12
Λ12 Λ22


may be diagonalized and has in general distinct eigenvalues. Therefore, the class V scalar potential has seven parameters.
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• For class VI, the vectorsMi andΛ0i lie on the same plane and the tensorΛ has one eigenvector orthogonal to that plane.
For instance, with the CP1 symmetry of Eq. (155),

r⃗ →

 r1
−r2
r3


,

M0
M1
0
M3

 ,
Λ00 Λ01 0 Λ03
Λ01 Λ11 0 Λ13
0 0 Λ22 0
Λ03 Λ13 0 Λ33

 , (174)

but the 2 × 2 real symmetric matrix
Λ11 Λ13
Λ13 Λ33


may be diagonalized and has in general distinct eigenvalues. Therefore, in this symmetry class the scalar potential has
nine parameters.

Since each unitary transformation of the fields Φa induces an SO(3) transformation on the vector of bilinears r⃗ ,
and since the standard CP transformation corresponds to an inversion of r2, i.e.to a Z2 transformation on the vector r⃗ ,
Ivanov [380] actually considered all possible O(3) transformations acting on r⃗ . He has identified the following six classes
of transformations: (i) Z2; (ii) (Z2)2; (iii) (Z2)3; (iv) O(2); (v) O(2)⊗ Z2; and (vi) full O(3). No other independent symmetry
transformations are possible.

5.7. Bounded from below limits

Stability of the 2HDM potential requires that it be bounded from below, i.e. that there is no direction in field space along
which the potential tends to minus infinity. This is a basic requirement for any physical theory – the existence of a stable
minimum, around which one can perform perturbative calculations – which is satisfied by the scalar potential of the SM
through the trivial condition λ > 0, where λ is the quartic coupling of the SM scalar potential.

The 2HDM scalar potential of Eq. (98) is much more complicated than the SM’s, and ensuring its stability requires that
one studies all possible directions along which the fieldsΦ1 andΦ2 (or rather, their respective eight component fields) tend
to arbitrarily large values. In general, the existence of a non-trivial minimum – by which we mean the fields Φi acquiring
non-zero vacuum expectation values – implies two conditions on the potential’s parameters. They have to be such that: the
quartic part of the scalar potential, V4, is positive for arbitrarily large values of the component fields, but the quadratic part
of the scalar potential, V2, can take negative values for at least some values of the fields.

The restrictions on V4 need to be handled carefully:

• Demanding that V4 > 0 for allΦi → ∞ is a strong stability requirement. This may, however, be too strong, since several
interesting models are excluded by it. For instance, in tree-level SUSY potentials there is a direction (⟨Φ1⟩ = ⟨Φ2⟩) for
which V4 = 0.

• We can also demand stability in amarginal sense, by requiring V4 ≥ 0, for any direction in field space tending to infinity.
• The equality in the marginal stability bound comes at a price: if there is a given direction in field space such that V4 → 0,

it is necessary to demand that, along that specific direction, one has V2 ≥ 0.

A simpleway to obtain necessary conditions on the quartic parameters of the potential is to study its behaviour along specific
field directions. Considering for instance the direction |Φ1| → ∞ and |Φ2| = 0, the expression (98) for the potential renders
it obvious that one can have positive values for V4 if and only if λ1 ≥ 0. Likewise, the direction |Φ1| = 0 and |Φ2| → ∞

gives us the condition λ2 ≥ 0. And if one takes |Φ1|
2

= r cos θ , |Φ2|
2

= r sin θ (with 0 < θ < π/2 and r → +∞)
but such that ΦĎ

1Φ2 = 0 (for instance considering only non-zero upper components for Φ1 and lower ones for Φ2), the
bounded-from-below condition becomes

lim
r→+∞

r2

λ1

2
cos2 θ +

λ2

2
sin2 θ + λ3 sin θ cos θ


= r2f (θ) ≥ 0 , ∀θ . (175)

Minimizing f (θ)with respect to θ to obtain its smallest value and demanding that it be larger or equal to zero, one finds that
the coefficients λi need to obey λ3 ≥ −

√
λ1λ2. By studying several such directions, it is possible to reach other conditions

on the couplings, and we can gather all as

λ1 ≥ 0, λ2 ≥ 0,

λ3 ≥ −


λ1λ2, λ3 + λ4 − |λ5| ≥ −


λ1λ2 , (176)

where we have taken λ5 to be real. In [373,406] it was proven that, in potentials where one has λ6 = λ7 = 0, these are
actually necessary and sufficient conditions to ensure the positivity of the quartic potential along all directions. As we can
see from the discussion in Section 5.6, most of the possible symmetry-constrained 2HDM scalar potentials fall unto this
category—there is at least a basis where λ6 = λ7 = 0 holds, for the Z2, U(1), CP2, CP3 and U(2)models. For the remaining
possibilities – a model with CP1 symmetry, or a model with no symmetry at all (other than the gauge ones), one can find
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necessary and sufficient conditions for boundedness, involving λ6 and λ7 in the work of [373] – unfortunately, they do not
have a simple analytical expression, like those of Eq. (176), but they can be handled numerically. In [373], all possible cases
– strong stability, marginal stability, analysis of the quadratic terms –were considered. Equivalent conditions, for the strong
stability requirements, were found in [380]. Again, they are not easily translated into analytical bounds. It is not difficult,
though, to find necessary conditions involving λ6 and λ7. For the case they are real [405,407], one finds

2 |λ6 + λ7| <
λ1 + λ2

2
+ λ3 + λ4 + λ5. (177)

As mentioned earlier, the requirement of strong stability is too constraining, in the sense that it actually excludes
potentially interesting models. The obvious example is the SUSY potential, for which the quartic couplings are related to
the gauge coupling constants, and they are given by Eq. (156). With these couplings, the last bound in Eq. (176) is saturated.
Likewise, in the CP3 model, for which λ5 = λ3 + λ4 − λ1 and λ1 = λ2, the last bound in Eq. (176) gives us λ1 + λ3 + λ4 ≥ 0
and λ1 ≥ λ1, the latter clearly demanding the equality, lest the model be excluded.

Formost cases, the conditions (176) are allweneed. They become specially important if onewishes to analyse the stability
of the potential including higher order corrections. Clearly theywere obtained through tree-level analysis, requiring that the
tree-level potential always be convex. But one may wonder whether those conditions ensure that the one-loop corrected
effective potential is also bounded from below. The one-loop corrections to the tree-level potential are of the form

V (φi) = Vtree(φi) +
1

64π2


α

m4
α(φi)


log


m2
α(φi)

µ2


−

3
2


, (178)

where the sum runs over all helicity states of the particles of massesmα present in the theory, andµ is the renormalization
scale.Wehave kept the dependence on the fieldsφi explicit. Unbounded frombelow limits are found analysing the behaviour
of the potential for very large values of the fields φi, at which point one should worry about the appearance of potentially
large contributions from the logarithms in the expression above. A renormalization group (RG) improvement of the bounds
then amounts to considering only the tree-level expressions we have already discussed, but considering the values of the
couplings which appear in those expressions at different renormalization scales. In other words, we take the bounds from
Eqs. (176) and run the couplings therein, using the β-functions of the model (see Appendix E), along a range of scales µ—
from the weak scale MZ to an upper scale Λ; at all scales in the interval chosen, the bounds must hold, and in this way
combinations of parameters which at one scale might be acceptable would violate the bounds at another scale.

This type of analysis was performed in the SM [408–413]. There, the Higgs potential quartic coupling λ has a β-function
with a sizeable negative contribution from the top quark Yukawa. The top being so heavy, this term tends to decrease the
value of λ at higher renormalization scales. Thus, if the starting value (at the weak scale, say) of λ is small, the coupling may
well become negative at some higher scale, and the potential would suddenly be unbounded from below. In this manner we
can thus put a lower bound on λ and thus on the Higgs mass. On the other hand, if the starting value of λ is too large, the RG
evolution of the coupling will increase its value immensely and eventually the theory becomes non-perturbative. We will
return to this when we consider another class of theoretical bounds, in which one requires unitarity of all 2HDM processes
involving scalars, which we will look into in Appendix A. Thus, the RG analysis allows us to impose both higher and lower
bound on the mass of the Higgs particles.

In the 2HDM the same type of phenomena can occur, and was treated in, for instance, [97,407,409,414–417]. If for
instance the Φ1 is made to couple to the up quarks, the β-function for the λ1 quartic coupling will have a large negative
top Yukawa contribution, and a similar analysis to the SM case will hold. Now, however, many other quartic couplings are
present and more bounds need to be obeyed. Nonetheless, the main conclusions hold: smaller values for some of the λi at
the weak scale are disfavoured as they lead to unbounded from below potentials at higher scales; and large values of those
couplings lead to Landau poles at high scales, thus a breakdown of perturbation theory. These translate into bounds on the
several Higgs masses. Several observations are in order:

• Clearly the bounds obtained will depend on what the upper renormalization scale Λ is. Usually this is taken to be the
gauge unification scale, ∼1016 GeV. Varying this scale will change (mostly) the upper bounds on the masses—the upper
bound on the lightest CP-even scalar can change from about 300 to about 100 GeV, if one varies Λ from 103 to 1016

GeV [97].
• The precise values for the bounds have a noticeable dependence on the value of the top pole mass. This is to expected

since the top quark Yukawa is what drives most of the quartic coupling RG evolution. Typically, at most some of the
bounds can change by roughly ∼10 GeV for a 5 GeV change in the top pole mass [97,407].

• Most of the analysis performed considered a 2HDM with an intact Z2 symmetry. However, as shown in [97], the soft
breaking term m12 has a crucial importance in the bounds obtained, which are increasingly relaxed the more the
magnitude of m12 increases. Roughly speaking, with Λ = 1016 GeV, the exact Z2 model gives us an upper bound on
the lightest CP-even Higgs mass of roughly 100 GeV, which is easily raised to about 185 GeV for the soft broken model
[97,407]. For some cases, like the charged Higgs mass, large values of the soft breaking term eliminate the upper bound
obtained for the exact symmetry (roughly 160 GeV).
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• In [407] other 2HDM theories were considered, namely the inert vacua (see Section 5.8) of the Z2 potential, the
Peccei–Quinn U(1)model and the model without Z2 symmetry (dubbed the CP1 model in Section 5.6. The Peccei–Quinn
and CP1 model bounds obtained do not differ significantly from the Z2 case. The inert model has quite restrictive bounds
on the two CP-even scalars.

• In [407] these bounds were also applied to theories in which the vacuum of the theory spontaneously breaks CP (again,
see Section 5.8). Such theories always have them12 term,which can be quite large. However, it was found that the lightest
Higgs scalar has a very low upper bound, roughly 85 GeV.

• These analyses only take into account the top Yukawa coupling, coupled to only one of doublets. Even for a theory with
flavour changing neutral interactions, this can be considered a good approximation.

The general conclusion is that requiring that the potential be bounded from below in the range of scales fromMZ toΛ can
severely limit the parameters of the theory, namely the masses of the scalar eigenstates. However, such bounds are heavily
model-dependent—they depend on whether the 2HDM considered has a symmetry, or if that symmetry is softly broken,
and they depend immensely on what the upper scale Λ is taken to be. Notice, for instance, that we simply do not know
what the value ofΛ should be; if one thinks of the 2HDM as an effective theoryΛ should be taken as the scale above which
new fields have to be considered, and it could be as low as 1 TeV. Hence, great care must be exercised when applying such
bounds, lest one exclude regions of parameter space which may well be important.

5.8. Spontaneous symmetry breaking

If the scalar potential of the 2HDM is bounded from below, being a quartic polynomial function it will certainly have a
global minimum somewhere. This same argument applies to the SM, but there we can only have two types of minima: the
‘‘trivial’’ one, for which the Higgs acquires zero vevs, and the usual one, where electroweak symmetry breaking occurs, away
from the origin, for ⟨Φ⟩ = v/

√
2. In particular, vacua which break electric charge or CP conservation are impossible in the

SM. Inwhat follows,we consider a vacuumany stationary point of the potential, regardless ofwhether it is aminimumornot.
In the 2HDM, the vacuum structure is much richer. We can have three types of vacua (other than the trivial case,

⟨Φ1⟩ = ⟨Φ2⟩ = 0):
• ‘‘Normal’’ (N) vacua, with vevs which do not have any complex relative phase and can thus be trivially rendered real:

⟨Φ1⟩N =


0
v1
√
2


, ⟨Φ2⟩N =


0
v2
√
2


, (179)

where v =


v21 + v22 = 246 GeV17 and one defines tanβ = v2/v1. This solution, of course, is the 2HDM equivalent of

the SM vacuum. We can distinguish a special case here, in which the minimization conditions allow for one of the vevs
v1, v2 to be zero. These are called ‘‘inert models’’, already discussed in Section 2.3. Notice that, unlike the passage to the
Higgs basis (in which only one of the doublets has a vev, as well), the inert vacua are found in the basis where a Z2 (or
U(1), or other) symmetry is manifest.

• CP breaking vacua, where the vevs do have a relative complex phase, that is

⟨Φ1⟩CP =

 0
v̄1
√
2
eiθ

 , ⟨Φ2⟩CP =

 0
v̄2
√
2

 , (180)

with real values for v̄1 and v̄2. The moniker ‘‘CP breaking’’ is not the most appropriate, since such vacua are possible even
in potentials where the CP symmetry is not defined (due to it being explicitly broken)—see for instance [418]. Also, the
presence of a phase in (180) is not a guarantee of spontaneous CP breaking (see Section 6).

• Charge breaking (CB) vacua, in which one of the vevs carries electric charge,

⟨Φ1⟩CB =


α

√
2
v′

1
√
2

 , ⟨Φ2⟩CB =

 0
v′

2
√
2

 , (181)

with real numbers v′

1, v
′

2,α. Due to the presence of a non-zero vev in an upper component (charged) of the fields, this vac-
uum breaks electrical charge conservation, causing the photon to acquire amass. Thus, they are to be avoided at all costs.

Given our definition for the charge (such that the lower components of fields are neutral), the vacuumwill break the charge
and lead to a massive photon if and only if

⟨ϕ+

1 ⟩ ⟨ϕ0
2⟩ = αv′

2 ≠ 0. (182)

17 Notice, however, that certain 2HDMpotentials can havemore than one solution of this type, with different values for v. See the discussion for Eq. (202).
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One can give a definition for a charge breaking vacuum which does not depend on our definition of charge or on our basis
choice [419],⟨ϕ+

1 ⟩ ⟨ϕ0
2⟩
2 +

⟨ϕ0
1⟩ ⟨ϕ+

2 ⟩
2 − 2 Re


⟨ϕ+

1 ⟩ ⟨ϕ0
2⟩, ⟨ϕ

0∗
1 ⟩⟨ϕ+∗

2 ⟩


≠ 0. (183)

Charge preserving vacua (many times called ‘‘aligned vacua’’) for the 2HDMand formodelswith additional singlets or triplets
were studied in Ref. [420].

That all possible vacua in the 2HDM reduce to one of the three forms of Eqs. (179)–(181) can be seen using the freedom
to choose a particular gauge in SU(2)L × U(1)Y . Let us write the two doublets in the following simplified manner:

Φ1 =


|ϕ+

1 | eiθ
+

1

|ϕ0
1 | e

iθ01


, Φ2 =


|ϕ+

2 | eiθ
+

2

|ϕ0
2 | e

iθ02


. (184)

The complex phases above will, in general, be functions of the space–time coordinates. Then, the local gauge transformation
U1, given by the SU(2)L matrix

U1 =


u11 u12

−u∗

12 u∗

11


(185)

with

u11 =
|ϕ0

2 |
|ϕ0

2 |
2 + |ϕ+

2 |2

u12 = −
|ϕ+

2 |
|ϕ0

2 |
2 + |ϕ+

2 |2
ei(θ

+

2 −θ02 ), (186)

eliminates the upper components of Φ2. A combined hypercharge and SU(2)L gauge transformation can then be used to
eliminate the phases of the upper and lower components ofΦ1, through the matrix

U2 =


e−iθ+

1 0
0 e−iθ01


. (187)

Of course, these phases θ+

1 and θ01 are not the same that appear in Eq. (184) (they have been changed by the gauge
transformation U1), but that is irrelevant for the argument. The final form of the doublets is thus

Φ1 =


Re(ϕ+

1 )

Re(ϕ0
1)


, Φ2 =


0
ϕ0
2


. (188)

This is almost of the form of Eq. (181), but it has a complex lower component inΦ2 [409]. However, that phase is physically
irrelevant, since it can always be absorbed through a trivial basis transformation—a rephasing ofΦ2,Φ2 → e−iθ02Φ2. As such,
the form of the vevs in Eq. (181) is indeed the most general one we need: there exists always a basis for which the most
generic vacuum will have that form. This conclusion could also have been reached through a series of basis changes, plus a
gauge transformation [419]. That method has the advantage of being easily generalized for an N-Higgs doublet model.

Let us now look in more detail at the solutions of the minimization conditions. Writing the potential in terms of the vevs
ṽi (for any of the three sets (179)–(181)), a stationary point of the potential is found if the set of equations ∂V/∂ṽi = 0 has
solutions. In terms of the notation introduced in Section 5.2, and for completely general vacuum expectation values such
that ⟨Φa⟩ = ṽa/

√
2,18 the extremum conditions may be written as

2
b=1


µab +

1
4

2
c,d=1

λab,cd ṽ
∗

d ṽc


ṽb = 0 (for a = 1, 2). (189)

Multiplying by ṽ∗
a leads to

2
a,b=1

µab(ṽ
∗

a ṽb) = −
1
4

2
a,b,c,d=1

λab,cd (ṽ
∗

a ṽb) (ṽ
∗

d ṽc). (190)

18 Notice that we are using ṽa/
√
2 for the complex vev ⟨Φa⟩, while va = |ṽa| is real.
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If one performs a basis transformation such as the one presented in (110), the vevs are transformed as

ṽa → ṽ′

a =

2
b=1

Uabṽb. (191)

And, for a GCP transformation like in (134), the vevs transform as

ṽa → ṽGCPa = Xaα

2
α=1

ṽ∗

α. (192)

The different CB and CP stationary points are determined by a set of three equations, a normal one by only two. In fact,
since the 2HDM potential depends on eight real component fields, any stationary point ought to be the solution of a set of
eight equations on eight unknownswhich arise from (189). However, given that one can always choose the simplified forms
of the vevs in Eqs. (179)–(181), most of those equations are trivially satisfied.

As was shown in [405] (and later in [373,377,380]), the CB vevs can always be obtained analytically, and are given byv′2
1 + α2

v′2
2

v′

1v
′

2

 = 2


λ1 λ3 2Re(λ6)
λ3 λ2 2Re(λ7)

2Re(λ6) 2Re(λ7) 2(λ4 + Re(λ5))

−1 m2
11

m2
22

−2Re(m2
12)

 . (193)

This expressionhas an important consequence: if Eq. (193) admits a solution, it is unique, up to trivial sign changes (α → −α,
v′

1 → −v′

1 and v
′

2 → −v′

2) with no physical impact. Charge breaking is in fact impossible in several symmetry-constrained
2HDM.

Likewise, the CP vacua vevs can always be obtained analytically in terms of the potential’s parameters. Restricting
ourselves to potentials where the CP symmetry is defined – i.e., where it is not explicitly broken, see Section 6 – we obtain v̄21

v̄22
v̄1v̄2 cos θ

 = 2


λ1 λ3 + λ4 − Re(λ5) 2Re(λ6)

λ3 + λ4 − Re(λ5) λ2 2Re(λ7)
2Re(λ6) 2Re(λ7) 4Re(λ5)

−1 m2
11

m2
22

−2Re(m2
12)

 . (194)

Again, up to physically irrelevant sign changes, the CP vacuum is unique.
The normal vacuum turns out to be the most difficult to solve. In fact, for many potentials, the minimization conditions

cannot be solved analytically. The equations ∂V/∂v1 = 0 and ∂V/∂v2 = 0 give, for the most general 2HDM potential,

m2
11v1 − Re(m2

12)v2 +
λ1

2
v31 +

λ345

2
v1v

2
2 +

1
2


3Re(λ6)v21v2 + Re(λ7)v32


= 0

m2
22v2 − Re(m2

12)v1 +
λ2

2
v32 +

λ345

2
v2v

2
1 +

1
2


Re(λ6)v31 + 3Re(λ7)v2v21


= 0, (195)

where λ345 = λ3 + λ4 + Re(λ5). A few important observations about these equations:

• For some models (unbroken Z2, U(1), CP2, CP3 and U(2)) these equations can be solved analytically. However, the
presence of soft breaking terms may prevent that.

• For any models in whichm2
12 = λ6 = λ7 = 0 (for instance, models with a Z2 symmetry or higher), Eqs. (195) may admit

solutions of the form v1 ≠ 0, v2 = 0 and v1 = 0, v2 ≠ 0. In the first case we have

v21 = −
2m2

11

λ1
, (196)

in the second

v22 = −
2m2

22

λ2
, (197)

as long that, of course, m2
11 < 0 or m2

22 < 0. These lead to the so-called Inert models [160,162]. The name derives from
the fact that, unlike solutions of Eq. (195) which have v1 ≠ 0, v2 ≠ 0, these vacua lead to scalar particles which do
not couple to gauge bosons, and can easily be made to decouple from fermions. As such, these models provide excellent
candidates for dark matter.

• The Eqs. (195) do not, in general, have a unique solution. Even when they do not admit inert vacua they can
lead, depending on the values of the parameters, to several sets of vevs {v1, v2} which are not related by trivial
sign changes [418]. In [421] it was however proven that there can be no more than two such solutions which are
simultaneously minima of the potential.
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5.9. Vacuum stability

In the SM there is only one possible type of vacuum, other than the trivial one. Indeed, in that theory the scalar potential
is such that one can only have one minimum. In theories with more than one scalar, however, there is the possibility that
minima of different natures occur, and thus that the theory may allow for tunnelling from one minimum to another. An
example of this behaviour occurs in SUSY models, where the existence of many charged and/or coloured scalar fields gives
rise to possible charge and/or colour breaking minima [422]. These minima would imply massive photons and/or gluons,
and as such one wishes to avoid them. Hence, it is desirable to impose bounds on the theory’s parameters to ensure that the
globalminimum preserves the SM’s symmetries.

Colour breaking is impossible in the 2HDM, but we have already seen, in Section 5.8, that charged vevs are possible. Also,
one may have CP breaking vevs. Thus, the question arises: can these vacua of different natures coexist with one another?
Could one tunnel, for instance, from a normal minimum to a deeper charge-breaking one? In other words, given aminimum
in the 2HDM, is it stable? The limited number of scalars, and the inexistence of cubic terms in the potential, in the 2HDM
allows us to treat this question in a fully analytical way. It has been possible to show that [405,418,423]:

• For a potential where a normal stationary point and a charge breaking one exist, with vevs as given by Eqs. (195) and
(193), the difference in the values of the scalar potential at both those vacua (respectively VN and VCB) is given by

VCB − VN =


M2

H±

4v2


N


(v′

1v2 − v′

2v1)
2
+ α2v22


, (198)

where (M2
H±/4v2)N is the ratio of the squared mass of the charged scalar to the sum of the square of vevs, v2 = v21 + v22 ,

as computed in the normal stationary point.

The significance of (198) is plain: if the normal stationary point is a minimum (which implies that M2
H± > 0) then one will

necessarily have VCB − VN > 0. That is, if there is a normal minimum, any CB stationary point will lie above it—the normal
minimum is stable against charge breaking. In [405] it was also proven that in that case the CB stationary point is necessarily
a saddle point. Thus, normal and CBminima cannot coexist in the 2HDM. Of course, it is possible to choose sets of parameters
of the potential such that the global minimum of the potential breaks charge—but in that case no normal minima will exist.

• For a potential where a normal stationary point and a CP breaking one exist, with vevs as given by Eqs. (195) and (194),
the difference in the values of the scalar potential at both those vacua (respectively VN and VCP ) is given by

VCP − VN =


M2

A

4v2


N


(v̄1v2 cos θ − v̄2v1)

2
+ v̄21v

2
2 sin

2 θ

, (199)

where (M2
A/4v

2)N is the ratio of the squared mass of the pseudoscalar to the sum of the square of vevs, v2 = v21 + v22 , as
computed in the normal stationary point.

The significance of (199) is plain: if the normal stationary point is a minimum (which implies that M2
A > 0) then one will

necessarily have VCP − VN > 0. That is, if there is a normal minimum, any CP stationary point will lie above it—the normal
minimum is stable against CP breaking. In [421] it was also proven that in that case the CP stationary point is necessarily a
saddle point. Thus, normal and CP minima cannot coexist in the 2HDM. Of course, it is possible to choose sets of parameters
of the potential such that the global minimum of the potential breaks CP—but in that case no normal minima will exist.

• No CB and CP minima can coexist either. This derives from the fact that for the CP vacuum the square of the charged
Higgs mass is given by

(M2
H±)CP = −

1
2
[λ4 − Re(λ5)](v̄21 + v̄22), (200)

whereas in a CB vacuum one of the squared mass matrix eigenvalues is

M2
CB =

1
2
[λ4 − Re(λ5)](v′

1
2
+ v′

2
2
+ α2). (201)

As we see, the sign of λ4 − Re(λ5) determines that both these vacua cannot be simultaneously minima. Thus, if a CP
minimum exists the (unique) CB stationary point, if it exists, cannot be a minimum as well, and vice-versa.

• Unlike the CB and CP cases, the normal minimization conditions allow for multiple solutions, so that one can have an N1
vacuum with vevs {v1,1, v2,1} and an N2 vacuum with different vevs {v1,2, v2,2}. In that case, the difference in the values
of the potential in those two vacua (respectively, VN1 and VN2 ) is given by

VN2 − VN1 =
1
4

M2
H±

v2


N1

−


M2

H±

v2


N2

 (v1,1v2,2 − v2,1v1,2)
2, (202)
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where (M2
H±/v

2)N1 is the ratio of the squared mass of the charged scalar to the sum of the square of vevs, (v2)N1 =

v1,1
2
+ v2,1

2, as computed in the N1 stationary point, and analogously for (M2
H±/v

2)N2 .

Eq. (202) shows us that there is nothing favouring N1 over N2, the deepest stationary point will be determined by the values
of the parameters—as it should be, since both vacua have the same symmetries.

In Ref. [421] it was proven that it is possible to have two coexisting normal minima. Numerical examples of this were
found in [418] for the particular case of a softly broken U(1) model, where it was shown that one may have a curious

situation: a minimum N1 with

v21,1 + v22,1 = 246 GeV, and all particles having their known masses; and a deeper N2

minimum, for which

v21,2 + v22,2 ≠ 246 GeV (possibly much larger or smaller). The N2 minimum would have the same

unbroken symmetries as N1 but with a completely different mass spectrum of scalars, fermions and gauge bosons. This was
seen to happen only for a very small portion of the parameter space. Of course, it is very easy to pick sets of parameters for
which N1 would be the global minimum, with N2 above it or not even existing.

The main consequences of this vacuum analysis are:

• Minima of different natures cannot coexist in the 2HDM.
• Whenever a normal minimum exists in the 2HDM, the global minimum of the potential is normal. No tunnelling to a

deeper CB or CP minimum is possible.
• If a CP (CB) violating minimum exists, it is the global minimum of the theory, and thoroughly stable. No tunnelling to a

deeper normal or CB (CP) minimum can occur.

5.10. Mass matrices for neutral minima

In order to determine whether a given stationary point is a minimum, one needs to analyse the second derivatives of
the potential, meaning the scalar mass matrices. For the sake of completeness, we include here the expressions for these
matrices for neutral minima. The mass matrices for CB stationary points can be found in [405]. A discussion in the MSSM
with explicit CP violation, which approaches the 2HDM in a given limit, can be found in Ref. [424].

• Normal minima

With vevs given by (195) and determined by (179), the squared mass for the charged scalar is given by the eigenvalues
of a 2 × 2 matrix whose entries are

[M2
H± ]ij =

∂2VH

∂ϕ+

i ∂ϕ
−

j
. (203)

This matrix has a zero eigenvalue (corresponding to the Goldstone boson which gives mass to the W) so that the charged
scalar squared mass is

M2
H± = −

v2

2v1v2
V̄ , (204)

where we have defined the quantity

V̄ = −2Re(m2
12)+ [λ4 + Re(λ5)]v1v2 + Re(λ6)v21 + Re(λ7)v22 . (205)

Let us now assume for a moment the potential is explicitly CP conserving (i.e. we will work in a basis without imaginary
couplings). The pseudoscalar mass matrix is the 2× 2 matrix of the second derivatives of the imaginary parts of the neutral
components,

[M2
A ]ij =

1
2

∂2VH

∂ Im(ϕ0
i )∂ Im(ϕ

0
j )

=
v1v2

v2
M2

A


v2

v1
−1

−1
v1

v2

 , (206)

where the entries of this matrix have been simplified through the minimization conditions. It has one zero eigenvalue
(corresponding to the Goldstone boson which gives mass to the Z), so that the pseudoscalar squared mass is found to be

M2
A = M2

H± +
1
2
[λ4 − Re(λ5)] v2. (207)

As for the CP-even scalars, they are the eigenvalues of the symmetric 2 × 2 matrix, given by

[M2
h ]ij =

1
2

∂2VH

∂Re(ϕ0
i )∂Re(ϕ

0
j )

=


A C
C B


, (208)
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where the matrix’s entries are given by

A = m2
11 +

3λ1
2
v21 +

λ345

2
v22 + 3Re(λ6)v1v2,

B = m2
22 +

3λ2
2
v22 +

λ345

2
v21 + 3Re(λ7)v1v2,

C = −Re(m2
12)+

3
2


Re(λ6)v21 + Re(λ7)v22


+ λ345v1v2, (209)

where we have defined λ345 = λ3 + λ4 + Re(λ5). The mass eigenstates of this matrix are traditionally represented as h and
H , respectively the lightest and heaviest state. The diagonalization angle α of the matrix (208) is defined19 as

H = − cosα Re(ϕ0
1)− sinα Re(ϕ0

2)

h = sinα Re(ϕ0
1)− cosα Re(ϕ0

2) (210)

so that one gets, after trivial calculations,

tan 2α =
2C

A − B
. (211)

If we are dealing with the most general 2HDM potential with complex couplings, then there will be mixing between the
CP even and odd scalar particles. The neutral scalars will be the eigenvalues of a 4 × 4 matrix,

[M2
N ]ij =


[M2

h ] [M2
I ]

[M2
I ]

T
[M2

A ]


, (212)

composed of three 2 × 2 blocks. [M2
h ] and [M2

A ] are as given in Eqs. (208) and (206), respectively, whereas [M2
I ] is given by

the matrix

[M2
I ] =


AI BI
CI DI


, (213)

whose entries are

AI =
1
2
v2 [Im(λ5)v2 + 2 Im(λ6)v1] ,

BI = Im(m2
12)− Im(λ5)v1v2 −

3
2
Im(λ6)v21 −

1
2
Im(λ7)v22,

CI = −Im(m2
12)+ Im(λ5)v1v2 +

1
2
Im(λ6)v21 −

3
2
Im(λ7)v22,

DI = −
1
2
v1 [Im(λ5)v1 + 2 Im(λ7)v2] . (214)

Obviously, one of the eigenvalues of [M2
N ] will be zero.

• Inert minima

Recall that one needs m2
12 = λ6 = λ7 = 0 to obtain inert vacua, and they obey the minimization conditions (196)

or (197). Considering, for example, the case v2 = 0 and v1 = v/
√
2, the scalar mass spectrum is greatly simplified. The

CP-evenmass matrix is diagonal (so that in this basis onemay consider α = β = 0), and the expressions for themasses are:

M2
H± = m2

22 +
1
2
λ3v

2

M2
A = M2

H± +
1
2
[λ4 − Re(λ5)] v2

M2
H = M2

A + Re(λ5) v2

M2
h = λ1v

2. (215)

In inertmodelswherewe further haveλ5 = 0 (those arising from aU(1) symmetry, for instance) A andH will be degenerate.
Also, notice that though we maintained the notation h and H , it is now not guaranteed that they correspond to the lightest
and heaviest CP-even states—that will depend on the specific values for the parameters. In fact, notice that the state ‘h’ can

19 Clearly this is a basis-dependent definition, as is that of tanβ . None of these angles are basis invariant quantities, though their difference is [359].



G.C. Branco et al. / Physics Reports 516 (2012) 1–102 63

be made much heavier or much lighter than the remaining three—it is the only one depending on the coupling λ1. It can be
shown that the H and A states do not couple to the Z or to the fermions, hence the name ‘‘inert’’.

• CP breaking minima

It onlymakes sense to speak ofminimawith spontaneous CP violation if that symmetry is defined—i.e. if it is not explicitly
broken by the potential. As explained in Section 6, that corresponds to the existence of a basis where all parameters are real.
We now write all masses in such a basis, for a vacuum with vevs such as (180). The charged scalar mass is now, as was
mentioned before,

M2
H± = −

1
2
[λ4 − λ5](v̄

2
1 + v̄22). (216)

Given that the vevs now have an imaginary component, there will be a mixing between the real and imaginary components
of ϕ0

i . The neutral Higgs squared masses are thus the eigenvalues of a 4 × 4 symmetric matrixM2
CP . Using the minimization

conditions (194) to simplify, the entries of this matrix are given by:

M2
CP(1, 1) = λ1v̄

2
1 cos

2 θ + 2λ6v̄1v̄2 cos θ + λ5v̄
2
2

M2
CP(1, 2) = λ6v̄

2
1 cos

2 θ + (λ3 + λ4)v̄1v̄2 cos θ + λ7v̄
2
2

M2
CP(1, 3) = (λ6v̄2 + λ1v̄1 cos θ)v̄1 sin θ

M2
CP(1, 4) = (λ6v̄1 cos θ + λ5v̄2)v̄1 sin θ

M2
CP(2, 2) = λ5v̄

2
1 cos

2 θ + 2λ7v̄1v̄2 cos θ + λ2v̄
2
2

M2
CP(2, 3) = [λ7v̄1 cos θ + (λ3 + λ4 + λ5)v̄2]v̄1 sin θ

M2
CP(2, 4) = (λ7v̄2 + λ5v̄1 cos θ)v̄1 sin θ

M2
CP(3, 3) = λ1v̄

2
1 sin

2 θ

M2
CP(3, 4) = λ6v̄

2
1 sin

2 θ

M2
CP(3, 4) = λ5v̄

2
1 sin

2 θ. (217)

This matrix has a zero eigenvalue, corresponding to the Z Goldstone boson.

5.11. The Higgs basis

After spontaneous electroweak symmetry breaking with neutral vacua, the fields acquire the vacuum expectation values
v1/

√
2 and v2eiδ/

√
2; where v1 and v2 are real, without loss of generality. It is convenient to rotate into a new basis of scalar

fields such that the vev is all in the first field, while the second field has no vev. This is known as the Higgs basis {H1,H2},
obtained through Ha =

2
b=1 UabΦb, where [425]

U =
1
v


v1 v2 e−iδ

−v2 v1 e−iδ


(218)

=
e−iδ/2

v


v1 eiδ/2 v2 e−iδ/2

−v2 eiδ/2 v1 e−iδ/2


, (219)

is unitary, and v =


v21 + v22 = (

√
2GF )

−1/2
= 246 GeV. This rotates the vev into H1, allowing us to parametrize

H1 =


G+

(v + H + iG0)/
√
2


, H2 =


H+

(R + iI)/
√
2


, (220)

where G+ and G0 are the Goldstone bosons, which, in the unitary gauge, become the longitudinal components of the W+

and of the Z0, and H , R and I are real neutral fields.
Notice that there are infinitely many Higgs basis. Indeed, we may change the phase of H2,

H2 → eiξH2 (221)

while keeping the vev in H1. Under this phase transformation, the fields R and I are rotated by
R
I


→


cos ξ sin ξ

− sin ξ cos ξ


R
I


. (222)
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In going from a generic basis to the Higgs basis, the couplings in the scalar potential get rotated. Comparing Eq. (118)
with Eq. (219) without the overall phase e−iδ/2, we find

tanβ =
v2

v1
,

χ = δ/2,
ξ = δ. (223)

Thus, the potential coefficients in the Higgs basis are obtained from those in the generic basis, through Eqs. (119)–(128),
with β , χ , and ξ as defined in Eq. (223). The quadratic (quartic) coefficients of the scalar potential in the Higgs basis are
denoted by m̄2

ij (λ̄i).
In the Higgs basis, the stationarity conditions are simply given by

m̄2
11 = −

1
2
λ̄1v

2,

m̄2
12 =

1
2
λ̄6v

2. (224)

Let us count the parameters in the Higgs basis: the complex parameter m̄2
12 is determined by m̄2

11, λ̄1, and λ̄6. Thus,
we would seem to have 12 parameters for the most general 2HDM potential. However, the fact that one may rephase
H2 implies that only the relative phases of the complex parameters λ̄5, λ̄6, and λ̄7 have physical significance. We are
thus left with 11 physical parameters, as expected (we can view m2

11 as determining v2). However, as observed earlier,
potentials to which symmetries have been imposed will display, in the Higgs basis, a smaller number of parameters.
As first pointed out by Lavoura [426] and subsequently greatly expanded by Davidson and Haber [359], the coefficients
of the potential in the Higgs basis are observable, up to the overall phase of the complex parameters. The only
physically meaningful phases are Im(λ̄∗

5λ̄
2
6), Im(λ̄

∗

5λ̄
2
7), and Im(λ̄6λ̄∗

7). These are proportional to the quantities J1, J2, and
J3 (respectively), introduced by Lavoura and Silva [425] as basis-invariant signals of the CP violation in the 2HDM present
after spontaneous electroweak symmetry breaking. Notice that only two are independent; for example, J1 and J3. However,
since in a given theory λ̄6 may vanish while Im(λ̄∗

5λ̄
2
7) does not, all three must be considered when searching for CP

violation.

5.12. Yukawa couplings in the Higgs basis

The most generic Yukawa interactions that one can write with two doublets and the fermionic content of the SM are
given by

LY = −

2
j=1


Q̄L

ΦjY d

j nR + Φ̃jY u
j pR


+ L̄LΦjY e

j ℓR

+ H.c. (225)

In this equation, Φ̃j = iτ2Φ∗

j ; QL, LL, nR, pR and ℓR are 3-vectors in flavour space—the nR correspond to the negative-charged
quarks, and pR to the positive-charged ones20; LL and ℓR are the leptonic fields; and Y d

j , Y
u
j and Y e

j are generic 3× 3 complex
matrices containing the Yukawa couplings for, respectively, the down, up and leptonic sector. In the initial basis (Φ1,Φ2),
the doubletΦ1 has vacuum expectation value (vev) ṽ1/

√
2 and the doubletΦ2 has vev ṽ2/

√
2, where ṽ1 and ṽ2 are allowed

to be complex. We define

v =


|ṽ1|

2
+ |ṽ2|

2
. (226)

Experimentally, v ≈ 246 GeV. Notice that v is, by definition, real and positive.
Let us define the Higgs basis (H1,H2) byH1 having vev v/

√
2. whileH2 has vanishing vev.21 The transformation from one

basis to the other is

Φ1 =
1
v


ṽ1H1 + ṽ∗

2H2

, (227)

Φ2 =
1
v


ṽ2H1 − ṽ∗

1H2

. (228)

20 Which, after diagonalization, will yield the down and up type quarks.
21 The definition used in Eq. (218) was useful for comparison with the basis-change formulae of Eqs. (119)–(128). This definition differs from the first by
an irrelevant phase such as in Eq. (221).
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Let us define the matrices

Mn =
1

√
2


ṽ1Y d

1 + ṽ2Y d
2


, (229)

Nn =
1

√
2


ṽ∗

2Y
d
1 − ṽ∗

1Y
d
2


. (230)

Then
2

j=1

ΦjY d
j =

√
2
v
(MnH1 + NnH2) . (231)

The matrixMn in Eq. (229) is the mass matrix of the down-type quarks. Notice that Nn in Eq. (230) may be written as

Nn =
ṽ∗

2

ṽ1
Mn −

v2
√
2ṽ1

Y d
2 (232)

= −
ṽ∗

1

ṽ2
Mn +

v2
√
2ṽ2

Y d
1 . (233)

It is convenient to pass to the mass basis of the quarks, in which the mass matrices are diagonal. To do so, we bi-diagonalize
Mn, via a simultaneous rotation on the left-handed and right-handed quark fields:

UL
ĎMnUn

R = Md, (234)

UL
ĎNnUn

R = Nd, (235)

where Md = diag (md,ms,mb) is diagonal with real and positive diagonal elements. In the sector of the up-type quarks,

Mp =
1

√
2


ṽ∗

1Y
u
1 + ṽ∗

2Y
u
2


, (236)

Np =
1

√
2


ṽ2Y u

1 − ṽ1Y u
2


, (237)

and
2

j=1

Φ̃jY u
j =

√
2
v


Mp

iτ2H∗

1


+ Np


iτ2H∗

2


. (238)

The bi-diagonalization proceeds as

UL
ĎMpU

p
R = Mu, (239)

UL
ĎNpU

p
R = Nu, (240)

whereMu = diag (mu,mc,mt) is diagonal with real and positive diagonal elements. Notice that the UL matrix has to be the
same in Eqs. (235) and (240).

If, after the bi-diagonalization, thematrixNd (Nu) is not diagonal, then there are scalar tree-level flavour-changing neutral
interactions in the down (up) sector, and the FCNC couplings for those interactions are obtained from the entries of Nd (Nu).
In the generic basis of Eq. (225), the condition for non-existence of FCNC is also quite simple: if the matrices Y d

1 and Y d
2 (Y u

1
and Y u

2 ) commute, there is no tree-level FCNC in the down-quark (up-quark) sector [383]. This, of course, is trivial if, for
instance, Y x

2 is zero, as is obtained in models with Natural Flavour Conservation, which were discussed in Section 2.

5.13. Basis transformations and Yukawa couplings

We start from the Lagrangian

L = LH + LY, (241)

where

−LH ==

2
a,b=1

µab(Φ
Ď
aΦb)+

1
2

2
a,b,c,d=1

λab,cd(Φ
Ď
aΦb)(Φ

Ď
cΦd), (242)

−LY = q̄L

Y d
1Φ1 + Y d

2Φ2

nR +


Y u
1 Φ̃1 + Y u

2 Φ̃2

pR

+ H.c. (243)
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The Lagrangian can be rewritten in terms of new fields obtained from the original ones by simple basis transformations

Φa → Φ ′

a =

2
α=1

Uaα Φα,

qL → q′

L = UL qL,
nR → n′

R = UnR nR,

pR → p′

R = UpR pR, (244)

where U ∈ U(2) is a 2× 2 unitary matrix, while

UL,UnR,UpR


∈ U(3) are 3× 3 unitary matrices. Under these unitary basis

transformations, the gauge-kinetic terms are unchanged, but the coefficients µab and λab,cd are transformed as

µab → µ′

ab =

2
α,β=1

Uaα µαβ U∗

bβ , (245)

λab,cd → λ′

ab,cd =

2
α,β,γ ,δ=1

Uaα Ucγ λαβ,γ δ U∗

bβ U
∗

dδ, (246)

while the Yukawa matrices change as

Y d
a → Y d ′

a =

2
α=1

UL Y d
α UĎ

nR


UĎ

αa

Y u
a → Y u ′

a =

2
α=1

UL Y u
α UĎ

pR


U⊤

αa . (247)

Notice that we have kept the notation of showing explicitly the indices in scalar-space, while using matrix formulation for
the quark flavour spaces. The basis transformations may be utilized in order to absorb some of the degrees of freedom ofµ,
λ, Y d, and/or Y u, which implies that not all parameters in the Lagrangian have physical significance.

5.14. Symmetries and Yukawa couplings

The symmetries we have discussed in Section 5.6 were imposed on the scalar sector, but they have to be extended to the
full Lagrangian. By their definition, they leave the gauge kinetic terms invariant, but will affect the Yukawa terms, where the
scalars are coupled to the fermions. As such, one needs to consider how the fermion fields transformunder such symmetries,
and whether or not their impact on the Yukawa sector leads to viable models.

5.14.1. Family symmetries
We will now assume that the Lagrangian in Eq. (241) is invariant under the symmetry

Φa → ΦS
a =

2
α=1

Saα Φα,

qL → qSL = SL qL,

nR → nS
R = SnR nR,

pR → pSR = SpR pR, (248)

where S ∈ U(2), while

SL, SnR, SpR


∈ U(3). As a result of this symmetry, the parameters in the Lagrangian have to obey

the following equations:

µab =

2
α,β=1

Saα µαβ S∗

bβ , (249)

λab,cd =

2
α,β,γ ,δ=1

Saα Scγ λαβ,γ δ S∗

bβ S
∗

dδ, (250)

Y d
a =

2
α=1

SL Y d
α SĎnR


SĎ

αa , (251)

Y u
a =

2
α=1

SL Y u
α SĎpR


S⊤

αa . (252)



G.C. Branco et al. / Physics Reports 516 (2012) 1–102 67

Under the basis transformation of Eq. (244), the specific form of the symmetry in Eq. (248) is altered as

S ′
= U S UĎ, (253)

S ′

L = UL SL U
Ď
L , (254)

S ′

nR = UnR SnR UĎ
nR, (255)

S ′

pR = UpR SpR UĎ
pR. (256)

5.14.2. CP symmetries
We will now assume that the Lagrangian in Eq. (241) is invariant under the CP symmetry

Φa →

2
α=1

Xaα Φ
∗

α,

qL → XL γ
0C q∗

L ,

nR → XnR γ
0C n∗

R,

pR → XpR γ
0C p∗

R. (257)

As a result of this symmetry,22 the parameters of the Lagrangian need to obey

µ∗

ab =

2
α,β=1

X∗

αaµαβXβb, (258)

λ∗

ab,cd =

2
α,β,γ ,δ=1

X∗

αaX
∗

γ cλαβ,γ δXβbXδd, (259)

Y d ∗

a =

2
α=1

XaαXL Y d
α XĎ

nR, (260)

Y u ∗

a =

2
α=1

X∗

aαXL Y u
α XĎ

pR. (261)

Under the basis transformation of Eq. (244), the specific form of the symmetry in Eq. (257) is altered as

X ′
= U X U⊤, (262)

X ′

L = UL XL U⊤

L , (263)

X ′

nR = UnR XnR U⊤

nR, (264)

X ′

pR = UpR XpR U⊤

pR. (265)

5.14.3. Symmetries of the scalar–scalar and scalar–fermion interactions
Wemaynowaskwhether the six symmetry classes of theHiggs potential shown in Table 5 can be extended to the fermion

sector in a way consistent with experiment. This issue is complicated by the fact that the fermion fields can transform, for
a given scalar symmetry, under infinitely many ways, as detailed in Eqs. (251) and (252) for Higgs-family symmetries, and
Eqs. (260) and (261) for GCP symmetries. Let us deal with those two types of symmetries separately.

• Higgs family symmetries extended to the Yukawa sector

As an example of how complex this issue can become, consider that even for a simple Z2 symmetry in the scalars, for
which the Φ2 doublet flips its sign, we can choose an extremely elaborate transformation law for the quark fields, with
arbitrary unitary 3×3 matrices SL, SnR and SpR. To further complicate matters, the field transformation laws can correspond
to an Abelian symmetry (with a single generator, or a set of generators which commute amongst themselves), or a more
general and complex non-Abelian one (with several non-commuting generators). In the scalar sector, all but the class I
models (with a full U(2) symmetry) can be obtained via an Abelian symmetry.

22 Eq. (258) can be written in Higgs-family matrix form as µ∗
= XĎ µ X , in an obvious notation. This is equivalent to µ∗

= X∗ µ X⊤ . Similar rewritings
are also possible for Eqs. (259)–(261), sometimes complicating comparisons.
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As such, extensions of scalar symmetries to the Yukawa sector are usually specific examples, where one chooses
a particular form for the fermion transformation matrices. There are many such examples. For instance, the various
implementations of the Z2 symmetry (or the U(1) one) which preclude the occurrence of tree-level FCNC [27,28]—the so-
called type I, II, X (lepton specific) and Y (flipped) 2HDMs. Such models are said to have ‘‘Natural Flavour Conservation’’,
and their phenomenology was already discussed in Section 2. Another example would be the BGL model [237], which
does contain FCNC which are naturally small due to a flavour-dependent fermionic symmetry. A third example would be
a recent application of a Z3 symmetry to the 2HDM Lagrangian, with interesting consequences regarding the origin of CP
violation [427].

The extension of generic Abelian symmetries into the quark sector was only fully mapped recently by Ferreira and
Silva [428]. That calculation was greatly simplified by the usage of the full freedom of choosing a basis of both scalar and
fermionic fields, as explained in the previous sections: it turns out that it is always possible, for a transformation involving a
single transformationmatrix SX , to go to a basis of fields for which all suchmatrices are diagonal, containing, in general, only
complex phases. Meaning, it is always possible to choose a basis of fields such that the fermionic transformation matrices
of Eqs. (251) and (252) are reduced, through transformations like (254)–(256), to the form

SL = diag(eiα1 , eiα2 , eiα3) ,
SnR = diag(eiβ1 , eiβ2 , eiβ3) ,

SpR = diag(eiγ1 , eiγ2 , eiγ3) . (266)

Thus, all the freedom in choosing the fermions’ transformation laws is reduced to the choice of the arbitrary (real) phases
αi, βi and γi. Even this immense simplification, though, yields millions of possible specific symmetry implementations—that
is, of possible different models.

However, as explained in detail in [428], it turns out that the simultaneous requirements of six massive quarks23 and
an acceptable CKM matrix are extremely powerful and curtail immensely the number of allowed models. The reason for
that is that the effect of the phases αi on the CKM matrix, or in the quark squared-mass matrices, is tantamount to setting
many of their entries to zero. Very easily, for arbitrary choices of the αi, one obtains a line or column of zeros in the mass
matrices, or a diagonal block on the CKMmatrix. Surprisingly, then, the transformation laws of the quark fields are extremely
constrained. The authors of [428] have shown that there are only 246 possible forms for the Yukawa matrices for both
the up and down quarks. Up to physically unimportant permutations, these involve only 34 forms of Yukawa matrices. As
such, there is effectively a maximum of only 34 possible ways of extending the Abelian Higgs-family symmetries (that is,
the models like classes IV and V, with symmetries like Z2 or the Peccei–Quinn U(1)) to the quark sector. Most of these
symmetry-constrained Yukawamatrices lead to tree-level scalar FCNC. However some of them have already been shown to
have naturally small FCNC,which are CKMsuppressed, the aforementioned BGLmodels; or to be such that one can easily find
values of parameterswhich satisfy all experimental constraints, such as themass differences of neutral kaons and B-mesons,
which typically are difficult to accommodate when tree-level FCNC are present.

In addition, the general analysis of these Abelian symmetries leads to some wide-reaching conclusions:

• Imposing Z2 on the scalars does not imply a continuous symmetry in theHiggs sector, but itmay or not imply a continuous
symmetry in the Yukawa sector, depending on how the symmetry is extended into the fermions.

• Imposing Z3 on the scalars does imply a continuous symmetry in the Higgs sector, but it may or not imply a continuous
symmetry in the Yukawa sector,depending on how the symmetry is extended into the fermions.

• Imposing Zn, with n ≥ 4, on the scalars implies always a continuous symmetry, both in the Higgs sector and in the
Yukawa sector.

This analysis also permits us to qualify the statement we made in Section 5.6.1, following Eq. (162): the imposition on the
scalar potential of any discrete symmetry Zn, with n > 2, always leads to the same potential, the Peccei–Quinn one of class
IV. However, as we mentioned there, the extension of those symmetries to the fermion sector might be able to ‘‘lift the
degeneracy’’ of these symmetries—and in fact it does. The results of [428] show very clearly that: (a) imposing Z2 on the
Yukawa terms is different from imposing Zn, with n > 2; (b) imposing Z3 on the Yukawa terms is different from imposing
any other Zn, n > 3; and (c), that imposing any Zn, with n ≥ 4, always leads to the same form of Yukawamatrices. As such, in
terms of Zn symmetries, the 2HDM Lagrangian falls under three classes: Lagrangians with a Z2 symmetry; Lagrangians with
a Z3 symmetry; and Lagrangians with any other Zn, n ≥ 4, which always lead to the same symmetry constraints, regardless
of the value of n.

Also, notice that, since any finite discrete group has an Abelian subgroup, the classification of [428] is important even
when considering non-Abelian family symmetries. The discussion above concerns extensions of the Z2 and U(1) scalar
symmetries to the fermion sector. That leaves out, of the three possible Higgs-family symmetries, the models invariant
under the full U(2) group—dubbed class I in Section 5.6. However, up until now it has been impossible to extend the U(2)
symmetry in a satisfactory way to the Yukawa sector—all attempts to do so have lead to zero mass quarks, for instance. A
proof of impossibility has not yet been obtained, and the question remains open.

23 Or three massive charged leptons, for the argument is trivially extended to the leptonic sector.
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• GCP symmetries extended to the Yukawa sector

By comparison with Higgs-family symmetries, it is much simpler to extend the three possible scalar GCP symmetries to
the Yukawa sector. In fact, as we discussed in Section 5.6.2, any GCP transformation on the doublets can be reduced to a
simple rotation matrix of the form of Eq. (139). As it turns out, the Vienna group has also shown [383] that a similar result is
attained for the generic 3×3 transformationmatrices of the quark fields in Eqs. (260) and (261). That is, it is always possible,
through a judicious choice of basis of quark fields, to reduce the transformation matrix of the left doublets to the form

XL H⇒

 cosα sinα 0
− sinα cosα 0

0 0 1


, (267)

with some angle 0 ≤ α ≤ π/2. A similar form is obtained for the matrices XnR and XpR in Eqs. (260) and (261), with
independent angles β and γ in the same range as α. The extremely simple form of the fermion transformation matrices
imposes severe constraints on the Yukawa couplings. In fact, the constraints are so serious that no ambiguity occurs in the
fermionic sector when one extends the scalar GCP symmetries to it: each of the three GCP models have only one possible
implementation on the fermion sector. Recalling that the three GCP scalar models can be parameterized in terms of the
angle θ in the simplified GCP transformation of Eq. (139), it was concluded that [391]:

• For the CP1 symmetry (class VI), with θ = 0, there is only one way to extend the scalar symmetry to the fermion sector
which does not entail massless quarks or charged leptons: by forcing all Yukawa couplings to be real. We are thus left
with a Lagrangian with generic real matrices Y d

1 , Y
d
2 , Y

u
1 and Y u

2—as such the model has tree-level scalar FCNC, which are
not in any way ‘‘naturally suppressed’’. In this model, CP violation must needs arise spontaneously, through a relative
phase between the two vevs.

• For the CP2 symmetry (class III), with θ = π/2, there is no way to extend the symmetry to the Yukawa sector without
obtaining at least one massless charged fermion. As such, the CP2 model may be considered ruled out by experiment.
However, onemight also take the point of view that the CP2 symmetry is an approximate one, broken by somemanner of
mechanism, and as such the massless fermions it predicts will gain a (small) mass somehow, corresponding to the first
generations of particles. The phenomenology of such models was explored in great detail in [387–389,429].

• For the CP3model (class II), with any 0 < θ < π/2, a remarkable thing happens: all values of θ ≠ π/3 lead to amassless
quark or charged lepton. Only θ = π/3 leads to an acceptable fermion mass spectrum. The Yukawa matrices which
result from such a symmetry are extremely constrained—the quark sector ends up depending only on ten independent
parameters (seven moduli and three phases). Nonetheless, this model is capable of fitting all quark masses and the
elements of the CKM matrix with relative ease. The model does possess tree-level FCNC, but they end up being quite
suppressed, in a ‘‘natural’’ way. The model also possesses a unique feature, in the sense that CP violation arises in a
completely novel way—we will return to this point in Section 6.7. However, the value of the Jarlskog invariant predicted
by this model is several orders of magnitude below its SM value, which leads to values of the unitarity triangle angles α
and β practically equal—a prediction of the model in contradiction with the most recent experimental data [293].

In conclusion, when one extends the three GCP scalar symmetries to the Yukawa sector, one obtains: arbitrary FCNC
for the CP1 case; massless quarks and charged leptons for the CP2 case; a single CP3 symmetry leading to three massive
generations of fermions, with naturally small FCNC but predictions for heavy meson phenomenology which do not agree
with experiment.

6. CP violation

6.1. CP invariance and CP violation at the Lagrangian level: scalar potential

6.1.1. Two Higgs doublets
The scalar potential for ndSU(2) doublets is the most general renormalizable polynomial consistent with the gauge

invariance and can be written

V =

nd
a,b=1

µabΦ
Ď
aΦb +

1
2

nd
a,b,c,d=1

λab,cd

ΦĎ

aΦb
 
ΦĎ

cΦd

. (268)

Hermiticity of V implies:

µ∗

ab = µba, λ∗

ab,cd = λba,dc . (269)

One may redefine the nd doublets through unitary transformations without changing the physics. Those transformations
are called Higgs-basis transformations (HBT), defined by:

Φa
HBT
−→Φ ′

a =

nd
b=1

VabΦb, ΦĎ
a

HBT
−→Φ ′

a
Ď

=

nd
b=1

V ∗

abΦ
Ď
b , (270)
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where V is an nd × nd unitary matrix acting in the space of the Higgs doublets. Under a HBT the couplings µ and λ
transform as:

µab
HBT
−→µ′

ab =

nd
m,n=1

VamµmnV
Ď
nb,

λab,cd
HBT
−→ λ′

ab,cd =

nd
m,n,p,q=1

VamVcpλmn,pqV
Ď
nbV

Ď
qd. (271)

The most general CP transformation that leaves the kinetic energy invariant is:

Φa
CP

−→

nd
b=1

UabΦ
∗

b , ΦĎ
a

CP
−→

nd
b=1

U∗

abΦ
T
b , (272)

whereU is an nd×nd unitarymatrix operating in the space of the Higgs doublets. This is the definition of a CP transformation
for the scalar doublets in models with several such doublets. It combines what would be the CP transformation for a single
Higgs doublet with a Higgs basis transformation, due to the existence of several doublets with the same quantum numbers.

For two Higgs doublets the most general Higgs potential is explicitly written in Eq. (98). Hermiticity only allows for four
of the coefficients –m2

12, λ5, λ6, and λ7 – to be complex. However, that potential contains an excess of parameters. There is no
loss of generality in redefining the two Higgs doublets in such a way that the quadratic terms are diagonal, thus eliminating
m2

12. Furthermore, one of the remaining three phases can still be eliminated through a rephasing of one of the doublets. Thus,
there are (at most) only two independent CP-violating phases in the potential of a 2HDM.

In this section we address the question of what are the necessary and sufficient conditions for the potential V to be
CP-invariant. At this stage we analyse the potential prior to gauge-symmetry breaking. We want to derive HBT-invariant
conditions following the generalmethod proposed in [400] and described in detail in [430].We investigatewhat restrictions
for the couplings µ and λ are implied by CP invariance [431].

From the potential of Eq. (268) and the definition of the CP transformation given by Eq. (272), it is clear that the necessary
and sufficient condition for V to conserve CP is the existence of an nd×nd unitarymatrixU satisfying the following relations:

µ∗

ab =

nd
m,n=1

UĎ
amµmnUnb, λ∗

ab,cd =

nd
m,n,p,q=1

UĎ
amU

Ď
cpλmn,pqUnbUqd. (273)

From Eq. (273), using the property of invariance of the trace under similarity transformations, one can derive necessary
conditions for CP invariance fully expressed in terms of the couplings µ and λ. Examples of such relations are:

I1 ≡ Tr

µZYZ −ZZYµ = 0, (274)

I2 ≡ Tr

µZ2Z −ZZ2µ = 0, (275)

where we have introduced the following nd × nd Hermitian matrices:

Zab ≡

nd
m=1

λab, mm, (276)

Zab ≡

nd
m=1

λam,mb, (277)

(ZY )ab ≡

nd
m,n=1

λab,nmµmn, (278)

(Z2)ab ≡

nd
m,n=1

λap,nmλmn,pb. (279)

It is clear that the Eqs. (274) and (275) are HBT invariant. These two conditions have the remarkable property of being
necessary and sufficient conditions for V to conserve CP in the case of two Higgs doublets, barring the consideration of
special isolated points such as m2

11 = m2
22 in the basis where m2

12 = 0, or the special isolated point where λ6 = −λ7 with
generic λ1 and λ2 [431]. It should be emphasized that these isolated points are of measure zero and are unstable under
renormalization, since they do not correspond to any symmetry. In order to check that these two conditions are sufficient
let us express I1 and I2 in terms of the parameters of the potential after diagonalization of the quadratic terms, i.e.when
m2

12 = 0:

I1 =
i
2


m2

11 − m2
22

2
Im


λ6λ

∗

7


, (280)

I2 = i

m2

11 − m2
22


Im


λ5λ

∗

6
2
+ λ5λ

∗

7
2
+ 2λ5λ∗

6λ
∗

7 + λ∗

6λ7 (λ2 − λ1)

. (281)
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Choosing λ5 to be real, which can be done without loss of generality, from I1 = 0 we obtain that λ6 and λ7 have either equal
phases of phases differing by π . Then the condition I2 = 0 implies

Im

λ5

λ∗

6 + λ∗

7

2
= 0. (282)

In the case where λ6 and λ7 have equal phases, we find from Eq. (282) that the phase is either 0 or π/2. The case
arg λ6 = arg λ7 = 0 obviously corresponds to a CP-invariant V , with the matrix U in Eq. (272) being the 2 × 2 identity
matrix. It can be easily checked that the case arg λ6 = arg λ7 = π/2 also corresponds to a CP-invariant V with

U =


1 0
0 −1


. (283)

Notice that at this stage we are assumingm2
11 ≠ m2

22 and |λ6| ≠ |λ7|.
Let us now consider the singular points which are unstable under renormalization and, therefore, of limited interest. It

is clear from the explicit form of I1 and I2 that in the special cases m2
11 = m2

22 or λ6 = −λ7 both conditions I1 = I2 = 0
are trivially verified irrespective of the values of the phases. Yet, it is still possible to have CP violation in this region of
parameters. In these cases, barring again cases of special isolated points, the following basis-invariant necessary condition
for CP conservation is useful:

I3 ≡ Tr

Z2Z3Z −ZZ3Z2 = 0, (284)

where Z3 is one further nd × nd Hermitian matrix given by

(Z3)ab ≡

nd
m,n,p,r,s=1

λam,rpλmr,nsλpn,sb. (285)

An important characteristic of I3 is the fact that, unlike I1 and I2, it is built exclusively from the quartic couplings λ. Therefore,
non-vanishing of this invariant necessarily signals hard CP violation.

Let us consider the case wherem2
12 = 0, λ1 = λ2, and λ6 = λ7. In that case the quartic couplings by themselves conserve

CP, provided one chooses

U =


0 1
1 0


. (286)

This CP symmetry is only broken by m2
11 ≠ m2

22, i.e.by the quadratic terms, and therefore one may say that this
potential corresponds to ‘‘hidden’’ soft CP breaking. In this example, both I1 and I3 vanish identically, whilst I2 =

4i

m2

11 − m2
22


Im


λ5λ

∗

6
2.

Another interesting example of soft symmetry breaking with two Higgs doublets is obtained by taking λ1 = λ2 and
λ6 = −λ7. In this case the quartic couplings by themselves conserve CP, provided one now chooses U

U =


0 1

−1 0


. (287)

Once again we have an example of hidden soft CP breaking for m2
11 ≠ m2

22. In this example all three CP-odd invariants
defined above vanish and an additional CP-odd invariant is necessary. In Ref. [432] the following condition was provided:

I4 ≡ Im
2

a,b,...,i=1


λac,bdλce,dgλeh,fiµgaµhbµif


. (288)

It was pointed out in [359] that, under Higgs basis transformations, the given relations λ1 = λ2 and λ6 = −λ7
remain invariant, this case being a special isolated point in the 2HDM scalar-potential parameter space. In the language of
Ref. [379] this corresponds to the absence of the triplet in the decomposition of the quartic Higgs potential into irreducible
representations of the SU(2) Higgs basis transformation for two Higgs doublets.

More examples of hidden soft symmetry breaking can be written, based on different U matrices, such as

U =


0 i
1 0


or U =


0 −i
1 0


. (289)

In both these cases I1 does not automatically vanish.
Under a HBT the specific form of U for a given CP transformation changes in the following way:

U ′
= VUV T . (290)
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Invariance under CP of the 2HDM potential for U given by Eq. (286) will therefore look different in a different Higgs basis.
Taking V as

V =
1

√
2


1 1
1 −1


, (291)

one obtains:

U ′
=


1 0
0 −1


. (292)

This two Higgs doublet model with the reflection symmetryΦ2 → −Φ2 softly broken by the quadratic terms proportional
tom2

12 in Eq. (98) was considered in Refs. [433–435].

6.1.2. Three Higgs doublets
In this subsection we briefly mention the case of three Higgs doublets. The total number of independent CP-violating

phases in the scalar potential is given by [431]:

Nphases =
1
4


n2
d(n

2
d − 1)


− (nd − 1), (293)

the second term corresponds to the number of phases one can eliminate by rephasing the Higgs fields. In general there are
sixteen independent phases for nd = 3. Models with three Higgs doublets are much more involved than those with only
two. Three Higgs doublets were considered [436] in an attempt to introduce CP violation in an extension of the SM with
NFC [27,28]. Natural flavour conservation means that the Higgs neutral currents conserve all quark flavours for all values of
the parameters of the theory, i.e., this conservation is a consequence of the group structure and the representation content
of the theory and not of a special choice of parameters. NFC with several Higgs doublets was implemented in Ref. [436]
by requiring invariance of the Lagrangian under separate reflections under which any one of the doublets (and perhaps
some fermions) change sign. Discrete symmetries of this kind were used to insure that only one Higgs couples to the right-
handed up quarks and another to the right-handed down quarks. It was pointed out in Ref. [436] that for three ormore Higgs
doublets the scalar potential that is invariant under these reflections need not conserve CP. On the other hand it was shown
in [437–439] that with three Higgs doublets it is possible to violate CP spontaneously while having NFC. In the three Higgs
doublets model proposed by Weinberg [436], a Z2 × Z2 × Z2 symmetry, under separate reflections of the Higgs doublets of
the form φi → −φi, together with an appropriately chosen transformation for the quark fields, ensures NFC and leads to a
strong reduction in the number of parameters. The Higgs potential is given by:

V =

3
i=1


mi Φ

Ď
i Φi + aii


Φ

Ď
i Φi

2
+


i<j


2bij


Φ

Ď
i Φi

 
Φ

Ď
j Φj



+ 2cij

Φ

Ď
i Φj

 
Φ

Ď
j Φi


+


dij eiθij


Φ

Ď
i Φj

2
+ h.c.


. (294)

There are three different dij eiθij terms, and only these can be complex. It was pointed out by Weinberg that in general one
cannot rotate away simultaneously the three phases θij. A relevant CP-odd invariant relevant to this model is:

IW2 = Im
nd

a,...,i=1

[Zabcd Ybe ZefghZfi Zicha]. (295)

Its explicit form is:

IW2 = d12d13d23 [(m3 − m2)(a11 − b23)− (m3 − m1)(a22 − b13)

+ (m2 − m1)(a33 − b12)] sin(θ12 − θ13 + θ23). (296)

Assuming non-degenerate values for themi, a non-vanishing IW2 indicates a non-vanishing (θ12 − θ13 + θ23).
In the general case of three Higgs doublets it is possible to build relevant simpler CP-odd invariants [431], which are

irrelevant for the case of two Higgs, since they trivially vanish in that case.
The softly broken three Higgs doublets model of Weinberg and relevant CP-odd invariant in this case is also discussed in

Ref. [431].
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6.2. CP violation after spontaneous symmetry breaking

6.2.1. Spontaneous CP violation
The idea of spontaneous CP breaking was suggested by Lee [9] in the early stages of unified gauge theories. In order to

have spontaneous CP violation, one must have a Lagrangian which is CP invariant but after spontaneous gauge symmetry
breaking the vacuum is not CP invariant. One has to be careful in correctly identifying a vacuum as CP violating. This has to
do with the fact that often a CP invariant Lagrangian allows not only for a single CP transformation, but for a whole class of
CP transformations. In order to have a genuine spontaneous CP violation, the following two conditions have to be satisfied:

(i) The Lagrangian is invariant under a CP transformation which may be physically interpreted as CP.
(ii) There is no transformation which can be physically interpreted as CP which leaves both the vacuum and the Lagrangian

invariant.

In the Standard Model there is only one Higgs doublet. Hermiticity requires that the parameters of the scalar potential be
real and, as a result the scalar potential of the Standard Model cannot violate CP. Furthermore, spontaneous CP violation
is also ruled out, in this case, due to the possibility of using a U(1) gauge transformation to make the vacuum expectation
value of the neutral Higgs real and positive.

Since we are working in the framework of relativistic quantum field theory, the CPT theorem applies [440–443], so
spontaneous CP breaking also implies spontaneous T breaking and vice-versa.

For definiteness, let us consider an extension of the SMwhere n SU(2)× U(1) scalar doublets are introduced. In order to
include the possible existence of symmetries of the Lagrangian under which the scalar doublets transform non-trivially, one
has to consider the most general CP transformation which leaves invariant the kinetic energy terms of the scalar potential.
Thus, we consider the following CP transformation for the scalar doublets:

CPΦi(CP)Ď =

n
j=1

UijΦ
∗

j (297)

corresponding to Eq. (272). Assuming that the vacuum is CP invariant, meaning that:

CP|0⟩ = |0⟩ (298)

one can readily derive from Eqs. (297) and (298) the following relation [444]:

n
j=1

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩. (299)

If the vacuum is such that none of the CP symmetries allowed by the Lagrangian satisfy Eq. (299), then this means that the
vacuum is not CP invariant and we say that CP is spontaneously broken.

From the previous discussion, one concludes that in the presence of extra symmetries imposed on the Lagrangian, one
has to be specially careful in analysing whether a particular vacuum violates CP or not. The point is that the presence of an
extra symmetry in the Lagrangian may allow for non-trivial possibilities for the matrix U in Eq. (297), which may satisfy
Eq. (299), even in the case of complex minima. This can be best understood through a simple example:

6.2.2. An example
Let us consider an extension of the SM with two Higgs doublets, where a Z2 symmetry is introduced, with the scalars

transforming as:

Φ1 −→ −Φ1, Φ2 −→ Φ2. (300)

A possible motivation for the introduction of a Z2 symmetry, is the requirement of natural flavour conservation (NFC) in the
Higgs sector [27,28]. Indeed, if the right-handed down quarks are odd under Z2,

dR −→ −dR (301)

while all other fields are even, then down quarks receive mass only from Φ1, while up quarks receive mass only from Φ2,
thus satisfying the NFC principle.

The most general gauge symmetry invariant Higgs potential, consistent with the Z2 symmetry, can be written as

V = V0 +


λ5


Φ

Ď
1Φ2

 
Φ

Ď
1Φ2


+ h.c.


(302)

where V0 denotes the part of the potential which does not depend on the relative phase of theΦi. It is clear that for λ5 > 0,
the minimum of the potential is at:

⟨φ0
1⟩ = v1ei

π
2 ; ⟨φ0

2⟩ = v2. (303)
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One could be tempted to think that this vacuum violates CP ‘‘maximally’’. This is not the case, as it can be seen from Eq. (299).
Indeed, the presence of the Z2 symmetry allows for various choices of matrix U which defines the CP properties of Φ1, Φ2.
Apart from the trivial one, one may choose:

U =


−1 0
0 1


. (304)

It is clear that with this choice of U , Eq. (299) is satisfied,
−1 0
0 1

 
v1ei

π
2

v2

∗

=


v1ei

π
2

v2


(305)

thus proving that the vacuum of Eq. (303) is CP invariant. At this stage, it is worth noting that one encounters an entirely
analogous situation in the Minimal Supersymmetric Standard Model (MSSM) where one of the possible minima also has a
relative phase of π/2, which does not lead to spontaneous CP violation. It has been shown [445,446] that one may achieve
spontaneous CP violation in an extension of the MSSM where one introduces a singlet scalar.

Coming back to the previous discussion, one may wonder whether this is a generic feature of vacua with ‘‘calculable’’
vacuum phases. This question was addressed in detail by Branco et al. in Ref. [444]. It was shown that indeed this is the
case for most vacua with calculable phases arising from the presence of extra symmetries in the Higgs potential. Another
interesting example is the case of S3 symmetry introduced in a Higgs potential with three Higgs doublets, transforming as a
three dimensional reducible representation of S3. The most general renormalizable Higgs potential can be written [447]:

V = V0 + λ1


Φ

Ď
i Φj


+ λ2

 
Φ

Ď
i Φi

 
Φ

Ď
i Φj + h.c.


+ λ3

 
Φ

Ď
i Φi

 
Φ

Ď
j Φk + h.c.


+ λ4

 
Φ

Ď
i Φj

 
Φ

Ď
i Φk


+ h.c.


+ λ5

 
Φ

Ď
i Φj

 
Φ

Ď
kΦi


+ h.c.


+ λ6


Φ

Ď
i Φj

2
+ h.c.


(306)

where V0 denotes the part of the potential with no phase dependence. In each square bracket a sum is understood over all
independent permutation of i, j, k with i ≠ j ≠ k. It can be readily verified that there is a region of parameter space where
the vacuum has the following phase structure:

φ0
i


= v exp


i
2π
3
(k − 1)


; k = 1, 2, 3


φ0
2


= v2. (307)

It can be easily shown using an argument analogous to the one used in the Z2 example that, contrary to naïve intuition, the
vacuumof Eq. (307) is CP and T invariant. Onemaywonderwhether this is a universal feature. Namely, onemay askwhether
calculability of vacuum phases necessarily implies CP invariant vacua. In Ref. [444] it was shown that this is not the case. A
counterexample was found [444] based on the group ∆(27) which is a dihedral-like subgroup of SU(3) with 27 elements.
In this example, a CP-violating vacuum with calculable phases was found.

6.2.3. A survey of models with spontaneous CP violation
At this stage, the following question is in order: What is the minimal extension of the SM where one may achieve

spontaneous CP violation while at the same time not entering in conflict with experiment? In order for a given model to be
a candidate for a realistic example of spontaneous CP violation, it should satisfy the following conditions:

(i) The CP violating phase arising from the vacuum should be able to create a complex CKMmatrix, leading to CP violation
through W-mediated weak currents.

(ii) Themodel should be able to avoid in a plausibleway, i.e. without unreasonable fine tuning, the stringent experimental
constraints arising from FCNC processes, as well as from the knowledge of the location of the upper vertex of the Unitarity
Triangle [7].

First let us explain why the model should satisfy the condition (i). At present, there is strong evidence for a complex
CKM matrix even if one allows for the presence of New Physics beyond the SM [448]. The best evidence arises from the
non-vanishing of the rephasing invariant angle γ [7] which does not receive important contributions from New Physics. It
is non-trivial for a model with spontaneous CP violation to satisfy at the same time both constraints (i) and (ii). The reason
has to do with the fact that in order to have spontaneous CP violation, the Lagrangian has to be CP invariant, which requires
real Yukawa couplings. Then the phase arising from the vacuum expectation value must give rise to complex quark mass
matricesMu, Md, in such a way that the weak basis invariant ICP defined by

ICP ≡ Tr [Hu,Hd]3 (308)

does not vanish [400], withHu = MuM
Ď
u andHd = MdM

Ď
d . The non-vanishing of ICP has to be achievedwithout generating too

large FCNC, so that condition (ii) is satisfied. This is the source of the difficulty in constructing realisticmodels of spontaneous
CP violation. In the sequel we shall present a simple model which satisfies both conditions in an elegant way. We consider
next some of the minimal models with spontaneous CP violation which have been considered in the literature.
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A. Lee’s model [9]
As previously mentioned, this is the first model of spontaneous CP violation proposed in the literature. Lee introduced

two doublets but no extra symmetry in the Higgs potential. In this case it was shown by Lee that there is a non-singular
region of the Higgs parameter space where the vacuum conserves electric charge but violates CP. At the time Lee suggested
hismodel, therewere only two incomplete generations, since charm had not been discovered. Therefore in Lee’s model with
only two generations CP arises exclusively from Higgs exchange. If we implement Lee’s model in the framework of three
generations, it turns out that although there is only one phase (θ ) arising from the vacuum, one can generate a non-trivial
CP violating phase in VCKM . This can be seen by noting that the two quark mass matrices can be written

Md =
1

√
2
(v1Y d

1 + v2eiαY d
2 ), Mu =

1
√
2
(v1Y u

1 + v2e−iαY u
2 ), (309)

where Y d
i , Y

u
i are real matrices. From Eq. (309) it follows that one generates a complex Hd, with its imaginary part given by:

ImHd = v1v2


Y d
2 Y

dĎ
1 − Y d

1 Y
dĎ
2


sin θ (310)

with an analogous expression for Hu. It is clear from Eq. (310) that in spite of having only one phase θ arising from the
vacuum, the structure of Hd, Hu is such that the invariant ICP , given in Eq. (308), does not vanish, which is sufficient to have
a non-trivially complex CKMmatrix. One concludes that in Lee’s model with three generations, there are two sources of CP
violation, Higgs exchange plus CKM mechanism. Therefore, the Lee model satisfies condition (i). However, the model has
difficulty in satisfying condition (ii), since it leads, in general, to too large FCNC, unless one assumes very large Higgsmasses,
in the range 1–10 TeV, or invokes some suppression mechanism [433].
B. Models with natural flavour conservation in the Higgs sector

We have seen in the previous section that in the case of two Higgs doublets, the imposition of NFC in the Higgs sector
eliminates the possibility of generating spontaneous CP violation. However, this is no longer true for three Higgs doublets,
where it was shown [436] that one can generate genuine spontaneous CP violation. However, it was also shown [437] that
in this model VCKM is real, which is in disagreement with present experiment [7,448].
C. A minimal realistic model with spontaneous CP violation

Now we present what we consider to be the minimal extension of the SM where one can generate spontaneous CP
violation, leading to a complex CKMmatrix, having no conflict with the experimentally suppressed FCNC processes.

Let us consider an extension of the SM which consists of the addition of a vector-like singlet quark D and a complex
scalar singlet S. The vector-like quark may be the down-type or the up-type. For definiteness, we consider that it is of the
down-type with electrical charge Q = −1/3. For simplicity, we introduce a Z2 symmetry, under which the new fields are
odd,

Z2 : DL −→ −DL, DR −→ −DR, S −→ −S (311)

while all the SM fields are even. Strictly speaking, the introduction of the Z2 symmetry is not necessary. However, its presence
in the model provides a simple solution [449] to the strong CP problem [450–455]. As a result of the Z2 symmetry, the
couplings dLiDRΦ are forbidden but the mass term and couplings:

MDLDR + (fjS + fj′S∗)DLd
j
R + h.c. (312)

are allowed by gauge and Z2 invariance. As a result the 4 × 4 quark mass matrix has the form:

Md =


md 0
MD M


, (313)

where md stands for the 3 × 3 mass matrix connecting standard quarks, the zero reflects the presence of the Z2 symmetry
and MD is a 1 × 3 matrix given by:

(MD)j =

fjV exp(iα)+ fj′V exp(−iα)


. (314)

We have assumed that CP is broken by the vacuum with:

⟨S⟩ = V exp(iα). (315)

It can be shown [456] that the presence in the scalar potential of terms like (S2 + S∗2), (S4 + S∗4), implies that there is
a region of parameters where the minimum is at the ⟨S⟩ of Eq. (315), with α a non-trivial phase. This vacuum breaks CP
spontaneously. Note that although one has only one phase α arising from the vacuum, due to the arbitrariness of the real
couplings fj, fj′,Md is an arbitrary 1×3 complexmatrix. ThematrixMd is diagonalized by the usual bi-unitary transformation:

UĎ
L MdUR =


d 0
0 D


(316)
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where d = diag.(md,ms,mb) and D denotes the mass of the physical Q = −1/3 vector-like quark. The unitary matrix UL can
be written in block form:

UL =


K R
S T


. (317)

The matrix K stands for the usual 3 × 3 CKMmatrix, which is determined by the relation:

K−1(meffm
Ď
meff ) K = d2 (318)

where

meffm
Ď
meff = mdmd

Ď
−

mdMD
ĎMD md

Ď

M̃2
(319)

where M̃2
= MDMD

Ď
+ M2. The crucial point is that the two terms contributing to meffm

Ď
meff are of the same order of

magnitude, since both MD and M are SU(2) × U(1) invariant mass terms which are expected to be of the same large mass
scale. As a result, a non-trivial complex CKM matrix is generated and the CP violating phase is not suppressed by the large

scale of MD and M . Of course, this can be explicitly checked by evaluating Tr

Hu,meffm

Ď
meff

3
. It is worth summarizing the

main features of this class of models, where spontaneous CP violation is achieved through the introduction of at least one
vector-like isosinglet quark and a complex singlet scalar:
(i) They provide a simple framework for having spontaneous CP violation, while at the same time generating a complex

CKMmatrix.
(ii) The 3 × 3 quark mixing matrix connecting standard quarks is not unitary. However, deviations from unitarity are

naturally suppressed by the ratio m2/M2 where m and M denote the mass of the standard quarks and the mass of
the heavy isosinglet quark(s), respectively. These deviations from unitarity lead to Z-mediated flavour changing neutral
currents, (FCNC) which are again naturally suppressed by the ratio m2/M2. This is a general feature of models with
vector-like quarks [457–466]. If themass of the new quark is of order 1 TeV, the FCNC are sufficiently suppressed so that
they do not enter in conflict with the stringent limits on ∆S = 2 tree level transitions. Yet, one may have significant
contributions to Bd–Bd mixing [467–473] and Bs–Bs mixing which could be detected at LHCb and in super-B factories.

6.3. CP-violating quantities from the scalar potential

As shown in Section 5.11, in the 2HDM one may define the ‘Higgs basis’ as a basis (H1,H2) for the scalar SU(2) doublets
such that the neutral component of H1 has real and positive vacuum expectation value v/

√
2 while H2 has vanishing vev. In

the Higgs basis the doublets are given by Eq. (220), where G± and G0 are the three ‘would-be Goldstone bosons’ while H±

are the two physical charged scalars. The three physical neutral scalars S1,2,3 are the linear combinations of H , R, and I given
by Eq. (373), where T is a matrix of SO(3).

However, as was also stressed in Section 5.11, the Higgs basis is not uniquely defined, because, when one rotates H2 as
in Eq. (221), the conditions for the Higgs basis, viz. the vev of H2 being zero and the vev of H1 being real and positive, remain
satisfied. The rotation (221) implies

R
I


→ O


R
I


, (320)

where O ∈ SO(2), cf. Eq. (222).
Under a CP transformation, besides the change in the sign of the space coordinates, H1 transforms to its complex

conjugate24 while H2 transforms to its complex conjugate apart from an arbitrary phase:

H1

t, r⃗
 CP

→ H∗

1


t,−r⃗


, H2


t, r⃗
 CP

→ eiζH∗

2


t,−r⃗


. (321)

Thus, in a CP transformation,
R
I


CP
→ O′


R
I


, (322)

where O′
∈ O(2) but detO′

= −1.
Our task in this section consists in finding quantities which depend solely on the scalar potential and are invariant under

basis transformations but change sign under CP. The solution to this problem [425] hinges on the matrix

ϵ =


0 1

−1 0


, (323)

24 In second-quantized field theory one must employ, instead of the complex conjugate, the transpose of the Hermitian conjugate.
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which has the property

O ϵ OT
= ϵ detO (324)

for any O ∈ O(2).
The scalar potential of a general 2HDM in the Higgs basis is in Eq. (376). The quantities m̄2

11 and m̄2
12 are functions of the

vev v and of the quartic couplings λ̄1 and λ̄6, respectively, through Eq. (224). When one expands the scalar potential as a
function of the component fields of H1 and H2, one finds terms of the following forms25:

aSS, where aS is a real coefficient and S is a neutral combination of fields which is invariant under both the basis
transformation of Eq. (320) and the CP transformation in Eq. (322). For instance, S may be H2, H3, G02, H−H+, G−G+,
R2

+ I2, and so on.
bS1R + bS2I


S, where bS1 and bS2 are real coefficients.

cS11R
2
+ cS22I

2
+

cS12 + cS21


RI

S, where the cSab (a, b = 1, 2) are real coefficients and, without loss of generality,

cS21 = cS12.

Considering for instance V2 in Eqs. (378)–(380), we see that bH1 = v2 Re λ̄6, bH2 = −v2 Im λ̄6, and that c11 = −c22 =

(v2/4)Re λ̄5, c12 = c21 = −(v2/4)Im λ̄5 (in V2 there are also terms m2
+
H−H+, (v2/2)λ̄1H2, and (m2

+
/2 + v2λ̄4/4)(R2

+ I2),
which are of the form aSS). If we also consider V3 in Eq. (383f), we find for instance bH

−H+

1 = v Re λ̄7 and bH
−H+

2 = −v Im λ̄7.
It is clear that, under the basis transformation of Eq. (320),

bS1
bS2


→ O


bS1
bS2


,


cS11 cS12
cS21 cS22


→ O


cS11 cS12
cS21 cS22


OT , (325)

and similarly, under the CP transformation of Eq. (322),
bS1
bS2


CP
→ O′


bS1
bS2


,


cS11 cS12
cS21 cS22


CP
→ O′


cS11 cS12
cS21 cS22


O′T . (326)

Using the matrix ϵ of Eq. (323), it is then easy to construct basis-invariant, CP-violating quantities like
bS1, bS2


ϵ


bS

′

1

bS
′

2


or


bS1, bS2

 cS′

11 cS
′

12

cS
′

21 cS
′

22


ϵ


bS1
bS2


.

For instance, from the tensors explicitly given above one obtains


bH1 , bH2

 c11 c12
c21 c22


ϵ


bH1
bH2


= −

v6

4
Im

λ̄26λ̄

∗

5


, (327)


bH

−H+

1 , bH
−H+

2

c11 c12
c21 c22


ϵ


bH

−H+

1

bH
−H+

2


= −

v4

4
Im

λ̄27λ̄

∗

5


, (328)


bH1 , bH2


ϵ


bH

−H+

1

bH
−H+

2


= v3 Im


λ̄6λ̄

∗

7


. (329)

One easily sees that, indeed,

J1 ∝ Im

λ̄26λ̄

∗

5


, J2 ∝ Im


λ̄27λ̄

∗

5


, J3 ∝ Im


λ̄6λ̄

∗

7


, (330)

are the only basis-invariant CP-violating quantities in the potential of Eq. (376).
By taking into account Eq. (381) and T ∈ SO(3), the quantity in Eq. (327) may be written [474]

−
v6

2
Im


λ̄26λ̄

∗

5


= M23


(M13)

2
− (M12)

2
+ (M22 − M33)M12M13

=

m2

1 − m2
2

 
m2

1 − m2
3

 
m2

2 − m2
3


T11T12T13. (331)

This shows that there is CP violation in the 2HDM if all the matrix elements in the first row of the mixing matrix T are
non-zero and, moreover, the three physical neutral scalars are non-degenerate.26 This can be confirmed by considering, for

25 We do not consider terms containing G±H∓ , which are trickier to handle.
26 If two of the physical neutral spin-0 fields, say Sj and Sk , are degenerate, then thematrix T may be redefined in such a way that either T1j or T1k becomes
zero, which is a CP-conserving situation.
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instance, the interactions in Eq. (375h). They tell us that, for j = 1, 2, 3, if T1j ≠ 0, then Sj is a scalar; therefore, T11T12T13 ≠ 0
implies that all three physical neutral spin-0 fields are scalars, contrary to our knowledge that in the CP-conserving 2HDM
one of those fields must be a pseudoscalar.

If we then consider the interactions in line (383e) and take into account Eq. (384), we find that

v2Im

λ̄6λ̄

∗

7


=

3
j,k,l=1

ϵjklm2
kT1kcjT1l. (332)

Indeed, the interactions in line (383e) indicate that, if cj ≠ 0, then Sj is a scalar. CP conservation would then require either
Sk or Sl (j ≠ k ≠ l ≠ j) to be a pseudoscalar; correspondingly, either T1j or T1k, respectively, ought to vanish.

One should note that in the generic 2HDM J1, J2, and J3 are not all independent. One might in principle choose only J1 and
J2 as the two independent basis-invariant signals of CP violation. However, J1 = J2 = 0 in a particular 2HDM with λ̄5 = 0,
yet there might still be CP violation through J3 ≠ 0. Different particular cases of the 2HDMmay require different choices for
a minimum set of independent J-invariant and, to cover all the particular cases, we need J1, J2, and J3, even though they are
not all independent.

An important point made in Refs. [431,432,475] concerns spontaneous symmetry breaking (SSB). Quantities like J1, J2,
and J3 involve the vev v and therefore refer to CP violation after SSB; the Lagrangian before SSB does not involve v. Of course,
all laboratory CP-violating observables concern CP violation after SSB, but early Universe phenomena, such as leptogenesis,
involve CP violation before SSB. The quantities J1, J2, and J3 are the only ones needed to study CP violation in the scalar
potential after SSB. In an earlier section, we found that one needs the four invariants I1,2,3,4 in order to study CP violation
before SSB. Interestingly, four quantities are needed in order to study CP violation in the generic 2HDM before SSB, but only
three quantities are required after SSB.

The comparison between the I ’s and the J ’s is also of theoretical interest. If some I is non-vanishing, then there is CP
violation at the Lagrangian level. If all the I ’s vanish but some J do not, then there is spontaneous CP violation. The theory is
CP conserving only when all the I ’s and J ’s vanish. For discussions see, for instance, [375,376,397,476].

We end this section with an open problem. Through the minimization conditions, one can determine (at least implicitly,
or numerically) the vevs in terms of the couplings of the scalar potential. Therefore, one should be able to write J1,2,3 in
terms of I1,2,3,4 together with, possibly, some CP-conserving quantities. As far as we know, this has not yet been achieved.

6.4. CP-violating quantities with scalars and fermions

6.4.1. The general method
In this section we discuss a systematic method for the construction of basis-invariant quantities which was developed

by Botella and Silva [370]. The main focus of their work was on basis-invariant signals of CP violation, which we designate
by J-invariants. Yet, they pointed out that their strategy applies to any other property; for example, their method has later
been applied [477] to R-parity in supersymmetric models. The method applies with any gauge group G and can also be used
in an effective field theory including nonrenormalizable interactions.

To illustrate the main idea, we start with a generic Lagrangian of the form

LI =


i,j

gijαiβj +

k,l

hklαkγl


Φ + H.c., (333)

where the gi,j and hk,l are coupling constants and the α, β , and γ are field operators with their respective U(α), U(β), and
U(γ ) flavour spaces, and also transforming like some multiplet of the gauge group G. As an example, in the SM we have,
after SSB,

LI =


i,j


ūL, d̄L


i


(Mu)ij


1
0


uRj + (Md)ij


0
1


dRj


+ H.c., (334)

and the flavour spaces are U(3)L, U(3)uR, and U(3)dR, respectively. In perturbation theory, one can generate interactions
mediated by any power of LI . For example, to second order in perturbation theory, we will find interactions mediated by

(gijαiβjΦ) (hklαkγlΦ). (335)

Hence, a given property of the theory (say CP violation) may show up at some order of perturbation theory as a suitable
product of couplings.

Under a basis transformation the couplings transform as,

gij →


kl

U(α)ki gkl U(β)lj,

hij →


kl

U(α)ki hkl U(γ )lj. (336)
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The strategy in looking for basis invariant quantities consists in taking products of couplings (as in the perturbative
expansion), contracting over the internal flavour spaces and taking a trace at the end. For example, the quantities

Hu = MuMĎ
u , Hd = MdM

Ď
d , HuHd (337)

are tensors in the U(3)L space and their traces are weak-basis invariants. The same is true for the trace of the U(3)uR tensor
MĎ

uMu.
In so doing,we have already traced over the basis transformations that could lead to the spurious phases brought about by

basis transformations. Therefore, the imaginary parts of such traces are unequivocal signs of CP violation [478]. For example,
the J-invariant of the three-family SM is

J ∝ Im

tr

HuHdH2

uH
2
d


. (338)

A detail concerns spontaneous symmetry breaking (SSB). After SSB, the physical degrees of freedom of the neutral scalars
are shifted fields ηi, related to the original ones (φi) by the vevs (vi) as

φi = vi + ηi. (339)

This reparameterizes a Lagrangian term; for instance,

µijφ
Ď
i φj = µijv

∗

i vj + µijv
∗

i ηj + µijη
Ď
i vj + µijη

Ď
i ηj. (340)

In thisway, vi becomes an integral part of new couplings like

µijv

∗

i


ηj. Thus, in the construction of basis invariants involving

the scalar sector, onemust consider combinations of couplings both with andwithout vevs. This greatly simplifies the study
of the scalar sector over the analysis in the previous section. In addition, the minimization conditions provide relations
between the couplings in the scalar potential which must be used in identifying the correct number of independent CP-
violating invariants.

This discussion motivates the following prescription for the construction of J-invariants:

• identify all the scalar and fermion flavour spaces in the theory;
• make a list of all the couplings according to their transformation properties under weak basis transformations, including

the vacuum expectation values (which transform as vectors under the scalar basis change); make use of the stationarity
conditions of the scalar potential to reduce the number of parameters;

• construct invariants by contracting over internal flavour spaces in all possible ways, taking traces at the end (in order
to be systematic it is advisable to do this firstly in the fermion sector, using this to define new scalar tensors, and then
perform the analysis of the scalar sector);

• take the imaginary part to obtain a basis-invariant signal of CP violation.

In general, a minimal set of CP-violating quantities is not easy to find, since one could in principle go to arbitrary order
in perturbation theory. The identification of the number of independent J-invariants may, at best, be done in a case-by-case
way through a careful study of the sources of CP violation in the model. Moreover, different particular cases of a model may
require different choices for the minimum set of fundamental J-invariants.

6.4.2. Invariants with scalars
We can use the technique of the previous section to reproduce the CP-violating invariants of the scalar sector after SSB.

One finds [370,432],

J1 ∝ Im


2

a,...,f=1

v∗

a Yae v
∗

b Ybf Zecfd vc vd


, (341)

J2 ∝ Im


2

a,...,h=1

v∗

b v
∗

c Zbgge Zchhf Zeafd va vd


, (342)

J3 ∝ Im


2

a,b,c,d=1

v∗

aYab Zbd,dc vc


. (343)

These, it may be shown, are equivalent to the J invariants defined in Eqs. (330).
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6.4.3. Invariants with scalars and fermions
In looking for invariants probing CP violation and involving both scalars and fermions we follow Botella and Silva [370].

We start from the Yukawa Lagrangian in Eq. (225). The Yukawa-couplingmatrices Y d
a (a = 1, 2) are 3×3 complexmatrices.

Their rows (columns) are acted upon by unitary U(3)L (U(3)dR) transformations on the space of left-handed quark doublets
(right-handed down-type quark singlets). Similarly, the Yukawamatrices Y u

a are 3×3 complexmatrices. Its rows (columns)
are acted upon by unitary U(3)L (U(3)uR) transformations on the space of left-handed quark doublets (right-handed, up-type
singlets). Combinations such as Y d

a Y
d
b
Ď and Y u

a Y
u
b
Ď have both indices in the left-handed-doublet space. As a result, in

T d
ab = tr


Y d
a Y

d
b
Ď

, (344a)

T u
ab = tr


Y u
a Y

u
b
Ď
, (344b)

all quark spaces have been traced over. These quantities depend only on the scalar indices a and b. As a result, they can be
combined with the va, Yab, and Zabcd to construct weak-basis invariants depending on both scalars and fermions. The lowest
order basis-invariant measures of CP violation involving both scalars and fermions are [370]

Jd = Im


2

a,b,c=1

vav
∗

bYbcT d
ca


(345a)

Ju = Im


2

a,b,c=1

vav
∗

bYbcT u
ca


. (345b)

Expressing these invariants in the quark mass basis, we find

Jd ∝ Im


m2

12

nG
i=1

mdi (Nd)
∗

ii


, (346a)

Ju ∝ Im


m2

12

nG
i=1

mui (Nu)
∗

ii


, (346b)

where nG is the number of generations andmdi (mui) is the mass of the i-th down-type (up-type) quark. In the simplest case
of nG = 1, there is no CP violation in the CKM matrix, there are only two independent CP-violating invariants – which we
may take to be J1 and J3 – in the scalar sector, and there are only two independent invariants – Jd and Ju – involving both the
scalars and the fermions. For nG = 2, there is still no CP violation in the CKMmatrix, J1 and J3 apply to the scalar sector, and
there are a total of eight invariants in the scalar–fermion interactions, which were explicitly constructed in Ref. [370]. For
nG = 3, J1 and J3 apply to the scalar sector, there are 18 invariants in the scalar–fermion interactions, and there is now also
one CP-violating invariant in the CKMmatrix, given by Eq. (338).

6.5. CP basis invariants and the bilinear formalism

The basis invariant quantities of Eqs. (274), (275), (284) and (288) determine whether or not a given 2HDM scalar
potential is explicitly CP-conserving. They have extremely simplified expressions in terms of the bilinear formalism
introduced in Section 5.3, as was shown in Refs. [375,376]. We follow the notation of the Heidelberg group [372,373,375]
and introduce the vectors ξ and η and the matrix E, given, in terms of the parameters of the 2HDM potential defined in
Eq. (98), as

ξ =
1
2

−2 Re(m2
12)

2 Im(m2
12)

m2
11 − m2

22

 , η =
1
4

 Re(λ6 + λ7)
−Im(λ6 + λ7)
1
2
(λ1 − λ2)

 ,

E =
1
4

λ4 + Re(λ5) −Im(λ5) Re(λ6 − λ7)
−Im(λ5) λ4 − Re(λ5) −Im(λ6 − λ7)

Re(λ6 − λ7) −Im(λ6 − λ7)
1
2
(λ1 + λ2)− λ3

 . (347)

Then, the I invariants of Section 6.1.1 may be written as27

I1 = (ξ × η)T . Eξ, (348)

27 In fact, these four invariants are linear combinations of those in Section 6.1.1, but their usage is equivalent.
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I2 = (ξ × η)T . Eη, (349)

I3 = (ξ × (Eξ))T . E2ξ, (350)

I4 = (η × (Eη))T . E2η. (351)

The extremely simple form of these equations, and the appearance of external products between vectors in them, leads to
meaningful geometrical interpretations for CP-violating/preserving potentials [375,376]. See also [380,421].

As for the basis invariant quantities Ji of Eqs. (341)–(343), which determine whether a given vacuum preserves or breaks
CP, they too can be written, in an extremely simplified manner, in terms of the bilinear formalism. Let us introduce the
vector r = (r1, r2, r3)T , with the ri defined in Eq. (105). Then [375],

J1 = (ξ × η)T . ⟨r⟩, (352)

J2 = (ξ × (Eξ))T . ⟨r⟩, (353)

J3 = (η × (Eη))T . ⟨r⟩, (354)

where ⟨r⟩ corresponds to the vector r evaluated at some stationary point of the theory.28

6.6. CP violation and symmetries

As discussed in Section 5.6, there are six classes of 2HDM symmetry-constrained potentials. Those symmetries, and their
impact on the parameters of the potential, were shown in Table 5. Leaving aside the extension of these symmetries to the
Yukawa sector – where, as we have seen in Section 5.14.3, each symmetry has very different consequences – each of those
models corresponds to a very specific and different type of scalar physics. For instance, a model with a Peccei–Quinn [12]
U(1) symmetry (class IV) can have a vacuum with a massless scalar, an axion. That is not possible, whatever the vacuum,
for models with the Z2 or CP1 symmetries (classes V and VI).

Another aspect for which the six classes behave very differently concerns the possibility of CP breaking – explicitly or
spontaneously – for each potential. This question is better handled using the bilinear formalism formulae presented in
Section 6.5. A systematic analysis of all possible potentials was carried out in [397]. Briefly, this consists of:

• One may wish to consider models with an exact symmetry, out of the six considered, or to softly-break that symmetry
via the inclusion of generic dimension-two terms (real or, in the case ofm2

12, even complex).
• Prior to spontaneous symmetry breaking, it is necessary to determine whether CP is a valid symmetry of the potential,

or if it is explicitly broken. This is best achieved computing the four I invariants of Eqs. (348)–(351).
• For any given model, the extremum conditions need to be solved, to prove that a certain vacuum, which might break CP

spontaneously, is possible.
• Having proved that a given sets of vevs is a possible solution of the extremum conditions, one must verify whether

that vacuum effectively breaks CP. This is best achieved through the calculation of the three invariant quantities of
Eqs. (352)–(354).

If any of the Ii invariants is different from zero, the potential is not CP-conserving, and CP is not a defined symmetry of the
potential (for all possible CP definitions of the form of Eq. (134)). If all Ii = 0 then the potential is CP-conserving; a given
vacuum is CP-conserving if and only if all invariants Ji = 0. A CP-conserving scalar sector has some very distinct physical
properties: there is a well-defined pseudoscalar state A, and there are two well-defined CP-even states h and H; as a result,
though triple vertices of the form ZZh and ZZH are possible, no vertex like ZZA is allowed.

In [397] the bilinear formalism of Refs. [373–375] was used to compute all invariant quantities. As shown in the previous
section, the formulae for the I and J CP basis invariants are extremely simple in the bilinear formalism, and that allowed
a general analysis of all possible models, without even an explicit calculation of the vevs (a major simplification, since
solving the extremum conditions can be analytically impossible in some models). The conclusions of the study of [397]
are summarized in Table 6. Some obvious observations are drawn from this table:

• Any scalar potential with an exact symmetry is CP-conserving.
• If the symmetry of the potential is continuous (i.e., classes I, II and IV) no CP violation is possible, be it explicitly or

spontaneously, even with generic soft-breaking terms.
• Discrete symmetries allow for the possibility of spontaneous symmetry breaking; however, with the exception of the

class VI model, that is only possible via the inclusion of a soft-breaking term.29

Though a general analysis of CP breaking in the scalar sector is achievable, the study of the CP properties of the theory
requires that one takes into account the Yukawa terms. And some of the models of Table 6 may well end up having CP
conserved in the scalar sector but violated by the fermion–scalar interactions, much like the SM.

28 These, too, are linear combinations of the invariants of Eqs. (341)–(343).
29 For the potential with a Z2 symmetry this was well-known for a long time [433].
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Table 6
CP properties of the six symmetry-constrained classes of 2HDM scalar potentials. We consider both the case of
exact symmetries and their soft breaking via dimension-two terms. In this table, ‘‘Yes’’ means that it is possible to
choose the parameters of the potential such as to enable that particular form of CP violation.

Symmetry class Exact Softly-broken
Explicit CPV Spontaneous CPV Explicit CPV Spontaneous CPV

I - U(2) – – – –
II - CP3 – – – –
III - CP2 – – Yes Yes
IV - U(1) – – – –
V - Z2 – – Yes Yes
VI - CP1 – Yes Yes Yes

6.7. Two models with an original source of CP violation

In the SM, the source of CP violation is explicit breaking, via Yukawamatrices which are complex. This leads to a complex
CKM matrix, and in turn to a non-zero Jarlskog invariant. In such models, then, CP is not defined a priori, since it is not
a symmetry of the Lagrangian—it is broken by hard, dimension four, Yukawa terms. The MSSM can be another example:
in [479] it was shown that radiative Higgs-sector CP violation can be quite large in the MSSM. In effect, after quantum
effects are included, one obtains, as a limit, the potential of a general CP-violating 2HDM.

In the 2HDM, as has been explained in previous sections, there is the possibility of spontaneous breaking of CP. A complex
phase can appear in the vacuumof the theory and lead to CP breaking. The presence of such a phase, however, is not sufficient
to guarantee CP violation—one needs to calculate the J invariants of Eqs. (341)–(343) and verify whether at least one of them
is non-zero. An example of a model where this happens is the classic paper by Branco and Rebelo [433]—they considered a
scalar potential with a Z2 symmetry, extended to the fermion sector in a particular way, and also required CP conservation
at the Lagrangian level. Hence, all of the model’s parameters are real. Since the exact symmetry forbids any CP-breaking
vacuum, they added a real soft breaking term to the scalar potential, and thus generated a complex CKM matrix. In such a
model some (or all) of the Ji invariants are non-zero, and there is CP violation in the scalar–scalar interactions, as well as in
the fermion sector.

In this section wewill briefly describe two versions of the 2HDM in which CP violation arises in ways which are different
from the two usual ones described above.

6.7.1. The CP3 model
In [391] a 2HDM was built with the CP3 symmetry extended to the fermion sector. We recall (see Eq. (151)) that this

corresponds to a transformation on the scalar fields of the form
Φ1
Φ2


=


cos θ sin θ

− sin θ cos θ

 
Φ∗

1
Φ∗

2


. (355)

In [391] it was shown that the only value of the angle θ which leads to six massive quarks (and three massive charged
leptons) is θ = π/3. Also, the transformation laws of the quark fields under this symmetry are uniquely determined (again,
by the requirement of six massive quarks). One finds that the Yukawa coupling matrices for the down quarks have a very
simple form,

Y d
1 =

a11 a12 a13
a12 −a11 a23
a31 a32 0


, Y d

2 =

 a12 −a11 −a23
−a11 −a12 a13
−a32 a31 0


, (356)

in a special basis where all the aij coefficients are real. Indeed, in that basis all the parameters of the potential are real. An
analogous form is found for the Y u matrices for the up quarks, with different coefficients bij.

The scalar potential of the CP3 model (class II of Table 5) has a continuous symmetry which will be broken if both scalar
fields acquire a vev—which then implies the appearance of a massless axion. As such, one needs to add real soft breaking
terms to the potential, which givemass to thewould-be axion. One then finds that, with such a soft breaking term, a vacuum
with a complex relative phase between the vevs is possible—of the form ⟨Φ1⟩ = v1, ⟨Φ2⟩ = v1eiδ . However, as shown in
Table 6, even such a vacuum does not provoke CP breaking in the scalar sector—all Ji invariants are equal to zero, even if
δ ≠ 0. Still, it was shown in [391] that the Jarlskog invariant is directly proportional to sin δ. As such, in this model a vacuum
with a complex relative phase is possible and does lead to CP violation, even if its scalar sector preserves CP. This then, is a
new type of CP violation:

• The Lagrangian does preserve CP because there is a basis for which all of its parameters are real. Thus, no explicit CP
breaking occurs, as in the SM.
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• The scalar sector preserves CP because, even for a vacuumwith a complex phase δ, all of the basis-invariant quantities Ji
which measure CP violation in the scalar–scalar interactions are zero.

• However, CP breaking does occur, and it is spontaneous, since δ ≠ 0 implies a non-zero Jarlskog invariant.

It is interesting that the scalar sector does the deed (spontaneously break the symmetry) but it is the fermion sector which
pays the consequences (providing CP violation). To the best of our knowledge, this type of CP violation is unheard of in the
literature—it arises spontaneously, but the scalar sector remains CP-conserving.

The model’s interest is increased by the limited number of free parameters it contains—12 independent Yukawa
couplings, and 6 scalar potential parameters (counting the soft breaking terms). It is easy to fit the six quark masses and
a quartet of moduli of CKM matrix elements (in theory all one needs to fit the entire CKM matrix [430]). This model has
FCNC (the matrices Y d

1 and Y d
2 do not in general commute with one another), so care must be taken to ensure that it is in

agreement with the stringent FCNC bounds which arise from meson physics. Remarkably, the model does manage to fit
the mass differences of the K , Bs and Bd mesons, as well as the ϵK parameters and the unitarity triangle angle β , as obtained
from Bmeson decays. However, the fits performed lead to a value of the Jarlskog invariant at least three orders of magnitude
smaller than the SM value; this would seem to indicate a relation between the unitarity triangle angles, α ≃ β , which goes
against observational data [293].

6.7.2. A specific Z3 model
Recently [427] a model was proposed wherein one extended a Z3 symmetry in the scalar sector to the Yukawa terms, in

a particular way. The scalar sector therein resulting is identical to that of the Peccei–Quinnmodel; the Yukawamatrices one
obtains are extremely simple, having the form

Y d
1 , Y

u
1 ∼

0 0 0
0 0 ×

× × 0


, Y d

2 ∼


× × 0
0 0 0
0 0 ×


, Y u

2 ∼

0 0 ×

× × 0
0 0 0


,

where the symbol× denotes a non-zeromatrix entry, in general complex. These Yukawamatrices were first found in [428].
If, on top of the Z3 symmetry, we apply the standard CP transformation, all terms in the Lagrangian are forced to be real.

Again, since the matrices Y d
1 and Y d

2 (and Y u
1 and Y u

2 ) do not in general commute, this model has FCNC.
Once more, the Peccei–Quinn model has an axion if both scalar fields acquire a non-zero vev. Thus, it is necessary to add

a soft-breaking m2
12 term to the potential. However, unlike what happened for the CP3 model of the previous section, it is

impossible to obtain a vacuum of the form ⟨Φ1⟩ = v1, ⟨Φ2⟩ = v1eiδ , with δ ≠ 0, unless the soft breaking term m2
12 is itself

complex (and has phase−δ).30 However, even despite the introduction of a complex soft breaking term, the scalar potential
remains CP-conserving, before of after spontaneous symmetry breaking—check Table 6. As such, this too is an unusual source
of CP violation:
• The model has a scalar sector which is CP-conserving.
• CP violation occurs due to an explicit breaking of the CP symmetry, via a complex coefficient in the scalar potential.
• However, unlike the case of the SM, this CP breaking is soft, not hard, since the complex coefficient is a dimension-two

term of the Lagrangian.

The FCNC which arise in this model have an extra surprise: it is easy to show that all FCNC couplings are real, so that no
CP violation occurs in FCNC interactions. Indeed, this model reproduces perfectly the type of CP violation one obtains in
the SM—all quark masses, CKMmatrix elements, meson mass differences and CP-violating quantities can be fitted with the
model’s eleven parameters (see [427]). Remarkably, one is capable of fitting all observables with some of the scalar masses
as low as∼150GeV, even in the presence of FCNC. Further, themodel’s scalar sector also satisfies constraints onNewPhysics
arising from the oblique parameters of Appendix D, as well as the LEP2 constraints on the lightest Higgs mass [7].

As such, this model suggests that even though the CKM mechanism for CP violation is well established experimentally,
the origin for a complex CKMmatrix need not necessarily be that of the SM—a hard breaking of CP through dimension-four
terms. In the 2HDM with a Z3 symmetry, the possibility exists that the origin of all CP violation is a soft, dimension-two,
term.

7. Recent results from the LHC

The 35 inverse picobarns of the 2010 Large Hadron Collider (LHC) run were not useful in constraining the Higgs sector.
Over the summer of 2011, the LHC collectedmore than one inverse femtobarn of data, and at the Hadron ColliderWorkshop
in November 2011 the ATLAS and CMS Collaborations presented [480] the combined results for that summer run. They
presented upper bounds on the cross section for Standard Model Higgs boson production as a function of the Higgs boson
mass. The main plot, the so-called ‘‘Brazil bands’’ plot, is shown in Fig. 21. The solid line in this plot gives the upper bound,
at 95% confidence level, on the measured cross section for Higgs boson production relative to the Standard Model cross
section, assuming Standard Model decay signatures. One cannot quickly draw conclusions about 2HDMs from this plot,

30 The reason for this drastic difference in behaviour is the fact that in the CP3 model the λ5 quartic coupling is non-zero, unlike what happens for the
Peccei–Quinn potential.
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Fig. 21. Combined results of the ATLAS and CMS Collaborations presented at the Hadron Collider Workshop in November 2011. The solid line is the
experimental upper bound, at 95% confidence level, on the cross section for Higgs boson production divided by the cross section of the Standard Model.
The dashed line is the expected 95% exclusion bound, and the green and yellow bands are the one- and two-standard deviation bands around that expected
bound.

which is meaningful only for Standard Model Higgs boson decays. As seen throughout this report, in many 2HDMs, and
for a substantial region of the parameter space, one expects very different branching ratios from those of the Standard
Model.

Nonetheless, there is one circumstance in which the plot can directly lead to information about 2HDMs. That is when
the primary decay modes of the h and H of the (CP-conserving) 2HDM are intoW+W− and ZZ . In the Standard Model, these
decays dominate for Higgs boson masses above 130 GeV, and thus the branching ratios into W+W− and ZZ would be the
same, since the total branching ratio is 100% and the only difference between theW+W− and ZZ branching ratios would be
the SU(2) couplings and phase–space.

If the primary decays are into W+W− and ZZ , then the only differences in the event rate between the Standard Model
Higgs boson and the h and H scalars of the 2HDMwould occur in the production cross section, which proceeds through top-
quark loops. For the h (H), this is equal to the Standard Model cross section times cos2 α/ sin2 β (sin2 α/ sin2 β). Clearly, one
can adjust α such as tomake either one or the other of the neutral scalars h orH invisible, but the sum of the cross sections of
h and H is independent of α. Note that the one exception would be in the type II model with large tanβ , since then bottom-
quark loops can affect the production cross section of h and H . Including this possibility would add an additional parameter
and, for illustrative purposes, we shall not include those loops here. One should keep in mind that, as noted in Section 2,
large tanβ has difficulties with perturbativity and unitarity, and requires fine-tuning.

Consider the case tanβ = 1. Then, the sum of the cross sections for h and H production, where both the h and H decay
into W+W− and ZZ , is twice the cross section for the Higgs boson of the Standard Model. That means that at least one of
those cross sections must be larger than the one of the Standard Model. From the plot in Fig. 21, one can see that if both the
h and H have masses in between 140 and 480 GeV, then the production cross section for each of them is below the Standard
Model; therefore, this case is experimentally excluded. Suppose instead that tanβ is very large. Then, sin2 β ∼ 1 and the
sum of the cross sections for h and H production is similar to the one of the Standard Model.

We can thus exclude the regions shown in Fig. 22. For tanβ = 1, the entire parameter space in between 140 and 480 GeV
is excluded, as well as some regions beyond. For tanβ = 10 a much smaller region is excluded. It is a rather complicated
shape due to the complex structure of the lines in Fig. 21. As more data is collected, the islands are expected to gradually
merge and move outwards, eventually excluding most of the region—unless, of course, a signal is found, in which case a
region will remain. It must be once again emphasized that these exclusion regions are only valid if the primary decay of both
the h and H are into W+W− and ZZ—and, as can be seen from Section 2, this is not the case for a substantial part of the
parameter space in various 2HDMs.

In general, for each of the four models described in Section 2 it is possible to find bounds analogous to those depicted in
Fig. 22, but for various values of α. However, these bounds will often be quite weak, since a value of α can always be found
that makes either h or H gauge-phobic, thereby eliminating all LHC bounds.

All of this may have changed due to LHC experimenters presenting, in December 2011 [481,482], evidence for a peak in
the γ γ channel at a mass of approximately 125 GeV. If this evidence is confirmed, then Fig. 22 will become irrelevant. What
would such a discovery mean for 2HDMs?

The cross section for pp → h → γ γ is consistentwith the StandardModel, but substantial discrepancies are still allowed.
In the Standard Model, a Higgs boson with mass 125 GeV has a branching ratio of approximately 0.002 to γ γ . In the 2HDM,
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Fig. 22. For tanβ = 1 and tanβ = 10, and assuming that both h and H decay primarily into W+W− and ZZ . The excluded regions are those inside the
contours.

the branching ratios can differ, as seen inmany of the plots in Section 2, although there is usually a region of parameter space
in which the branching ratio is similar. The production cross sections will also be different. It is clear that one will usually be
able to find a set of parameters inwhich the recent results can be accommodated. If the branching ratios intoW+W−, ZZ , bb̄,
and τ+τ− can also be observed, then these will correspond to other regions of parameter space, which might be mutually
exclusive. Thus it might be possible to rule out some of the 2HDMs in Section 2—or else, if the Standard Model predictions
are not verified, these 2HDMs might constitute viable alternatives. This possibility has recently been discussed [483]. Note
that failure to find a heavy Higgs boson at the LHC is not necessarily a problem; the more Standard-Model-like is the h field,
the more gauge-phobic will the H be, and thus it could easily evade detection.

Clearly, one will need information about the other decay modes of this 125 GeV state, and such information should be
forthcoming shortly.

8. Conclusions

The Large Hadron Collider has begun taking data, and a flood of information is imminent.Within a short time, the deepest
question in particle physics in a generation, the nature of electroweak symmetry breaking, will definitively be addressed.
In the Standard Model, one assumes the simplest possible scalar sector, and the properties of the Higgs boson in that model
have been studied extensively.

The simplest extension of the electroweak Higgs sector is the addition of another scalar doublet. The purpose of this
reviewarticle is to discuss this extension in detail. The phenomenology of Two-Higgs-Doubletmodels is extremely rich, since
it contains a chargedHiggs, a pseudoscalar and two neutral scalars, flavour-changing neutral currents, andmore possibilities
for CP violation and baryogenesis.

Themost general 2HDM has tree level flavour changing neutral currents, which can be phenomenologically problematic.
The most studied versions of the 2HDM use a discrete symmetry to avoid tree level FCNCs, and the phenomenology of the
neutral sector of these versions was studied in Section 2, focusing on the bounds from the Tevatron and expectations from
the LHC. In Section 3, we studied models that do contain FCNC at tree level. In Section 4, the phenomenology of the charged
Higgs in these models was analysed.

The theoretical structure of 2HDMs is quite complex. One can have CP-violating, CP-conserving and charge breaking
minima, there are several bases that one can choose, as well as a number of invariants. The theoretical structure is discussed
in Section 5, including renormalization group analyses, vacuum stability bounds, symmetry-constrained Lagrangians, etc.
In Section 6, CP violation in the Higgs sector is studied in detail.

Many important topics have not been included. The most important is supersymmetry, which automatically requires at
least two Higgs doublets. There are extremely comprehensive reviews of the Higgs sector of supersymmetric models, and
we referred the reader to those reviews. Other than a brief discussion in Section 6, we have not included models with three
ormore Higgs doublets, andwe have, for simplicity, not consideredmodels with singlets. In addition, the phenomenological
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focus has been on the Tevatron and the LHC. While a linear collider would be enormously helpful in a detailed study of the
scalar sector, it is sufficiently far in the future that we did not discuss it here; the questions that a linear collider would
answer will likely be very different within a couple of years.

While the LHC will help elucidate the nature of the Higgs sector, it will be several years before the various couplings can
be measured precisely enough to test many of the models in this review, although some will be tested sooner. Of course,
paraphrasing Sidney Coleman, it is possible that the entire structurewill be swept into the dustbin of history by a thunderbolt
from Geneva. We may know very shortly.

Note added in proof

Following the announcement, in December 2011, of evidence for a neutral state with mass 125 GeV, several papers have
considered the implications of such a state in the context of 2HDMs. Burdman et al. [484] posed the question whether this
could be the pseudoscalar of the 2HDM. If this were the case, then the decays of the 125 GeV state into ZZ would be absent;
a definitive answer as to whether these decays proceed will be forthcoming within the next few months. Ferreira et al.
[485] considered the possibility that the 125 GeV state could be the heavier neutral scalar of a 2HDM; then, the lighter Higgs
would have to be gauge-phobic in order to have escaped detection at LEP. Chen and He [486] studied the 125 GeV state in
the context of a 2HDM with a fourth generation of fermions. Then, the additional fermions in the loop would substantially
increase the production cross section, but the possible decay of the scalar into fourth generation neutrinos would suppress
the branching ratios of visible decays; Chen and He looked at this problem considering the 125 GeV state to be either the
pseudoscalar or the light scalar of a 2HDM. Blum and D’Agnolo [487] used an effective field theory approach, integrating out
the heavy fields and parameterizing their effects as modifications to the couplings of the 125 GeV state. Blankenburg et al.
[488] considered neutral flavour-changing decays of the 125 GeV state, somewhat in the spirit of the type III model but in a
more general context.
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Appendix A. Unitarity limits

The theoretical bounds discussed in Section 5.7 arise from the condition that the potential must have a minimum,
viz. they prevent the existence of directions in field space along which the potential is unbounded from below. There
are other theoretical bounds that one must impose on the potential, namely, all the (tree-level) scalar–scalar scattering
amplitudes must respect unitarity. This is equivalent to requiring that the J = 0 partial waves (usually denoted a0)
for scalar–scalar scattering satisfy |a0| < 1/2 in the high-energy limit.31 In the SM, this requirement is equivalent to
ensuring that the quartic coupling in the scalar potential is not too large; in the original work by Lee et al. [489,490] the

bound mH <


8π

√
2/ (3GF ) ≃ 1 TeV was thus obtained. Extending this bound to the 2HDM is complicated, due to the

richer scalar spectrum and, consequently, to the need to take into account many scattering amplitudes; the existence of
many quartic couplings also complicates matters. This leads to an analysis of the eigenvalues of the S matrix in the scalar
sector.

Early work on the unitarity bounds in the 2HDM was undertaken in [491–493]. A comprehensive study of all the
scattering amplitudes and of their relevance for a CP-conserving scalar potential with a Z2 symmetrywas presented in [494].
That work was later generalized in [98,495] by allowing the presence the following quantities:

L1 =
1

2v2


m2

H cos2 α + m2
h sin

2 α +
sin 2α
2 tanβ


m2

h − m2
H


+

2m2
12

v2 sin 2β


1 − tan2 β


,

L2 =
1

2v2


m2

H sin2 α + m2
h cos

2 α +
sin 2α tanβ

2


m2

h − m2
H


+

2m2
12

v2 sin 2β tan2 β


tan2 β − 1


,

L3 =
1

v2 sin 2β


sin 2α

2


m2

H − m2
h


− 2m2

12


,

L4 =
2m2

+

v2
, L5 =

2m2
12

v2 sin 2β
, L6 =

2M2
A

v2
, (357)

31 The same conditionmust be satisfied by the amplitudes for gauge boson–scalar scattering, but we need not worry about those, since they yield no new
bounds.
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which are functions of themasses of the physical scalars, of the angles α and β , and the soft-breaking parameterm2
12 (notice

that we are assuming a CP-conserving vacuum). The unitarity bounds can be, and usually are, expressed in terms of these
quantities. We shall however, for consistency, express them in the notation adopted in this review. The Li are written, in
terms of the couplings of the scalar potential in Eq. (98), as

λ1 = 2(L1 + L3), (358)
λ2 = 2(L1 + L3), (359)
λ3 = 2(L3 + L4), (360)

λ4 =
1
2
(L5 + L6 − 2L4), (361)

λ5 =
1
2
(L5 − L6). (362)

The computation of the S matrix for scalar–scalar scattering amplitudes allows the determination of its eigenvalues; the
relevant ones are given by32

a± =
3
2
(λ1 + λ2)±


9
4
(λ1 − λ2)

2
+ (2λ3 + λ4)

2, (363)

b± =
1
2
(λ1 + λ2)±

1
2


(λ1 − λ2)

2
+ 4λ24, (364)

c± =
1
2
(λ1 + λ2)±

1
2


(λ1 − λ2)

2
+ 4λ25, (365)

e1 = λ3 + 2λ4 − 3λ5 (366)
e2 = λ3 − λ5, (367)
f+ = λ3 + 2λ4 + 3λ5, (368)
f− = λ3 + λ5, (369)
f1 = λ3 + λ4, (370)
p1 = λ3 − λ4. (371)

The requirement of tree-level perturbative unitarity translates as

|a±| , |b±| , |c±| , |f±| ,
e1,2 , |f1| , |p1| < 8π. (372)

From all these conditions, the one on |a±| is the most restrictive one, but all others also contribute to place severe upper
bounds on the scalar masses. Under the assumption that the Z2 symmetry is unbroken and for small values of tanβ ≃ 0.5,
Akeroyd et al. have thus found that m+ < 691GeV, mA < 695GeV, mh < 435GeV, and mH < 638GeV; for larger values
of tanβ the bound onmh becomes quite stronger, dropping below 100GeV for tanβ ≃ 6. Despite the constraints from LEP
data [7], such low values for mh are not forbidden, since the production cross section of a Zh pair at LEP is suppressed by a
factor of sin2(α − β).

However, the presence of the soft-breaking term m2
12 greatly relaxes these bounds—for large enough values of m2

12 the
bound on mh becomes independent of β and approximately equal to 670 GeV. The unitarity bounds of the 2HDM thus are
quite dependent on the values of some parameters, but may in some cases be quite constraining, even ruling out entire
sections of parameter space due to conflicts with experimental findings.

Appendix B. Gauge interactions

In the Higgs basis of Eq. (220), the charged field H+ is physical and has mass m+, the neutral fields H , R, I are linear
combinations of the physical neutral fields S1, S2, S3:H

R
I


= T

S1
S2
S3


, (373)

where the 3 × 3 matrix T is orthogonal. Without loss of generality we shall assume T to have determinant +1. The field
Sj (j = 1, 2, 3) has massmj.

32 For a CP-violating potential, in which the λ5 coupling is complex, just replace λ5 by |λ5| [496].
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The gauge-kinetic Lagrangian

Lg =

2
k=1

(DµHk)
Ď

DµHk


(374)

may be developed as [497]

Lg = (∂µG−)(∂µG+)+ (∂µH−)(∂µH+)+
(∂µG0)(∂µG0)

2
+

3
j=1

(∂µSj)(∂µSj)
2

(375a)

+m2
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2
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Appendix C. Scalar–scalar interactions

The scalar potential in the Higgs basis is given by

V = m̄2
11H

Ď
1H1 + m̄2

22H
Ď
2H2 −


m̄2

12H
Ď
1H2 + H.c.


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
, (376)

where, as before, the parameters in the Higgs basis are denoted by m̄ij and λ̄i. The vacuum expectation value of the potential
is

V0 ≡ ⟨0 |V | 0⟩ = m̄11
v2

4
= −λ̄1

v4

8
. (377)

We now present general expressions for masses and couplings written in the Higgs basis, for any neutral vacuum. These are,
of course, written in a different basis from the results of Section 5.10 and as such cannot be trivially compared. The mass
terms for the scalars are given by the part of the potential which is bilinear in the fields:

V2 = m2
+
H−H+

+
1
2


H R I


M

H
R
I


. (378)

The mass of the charged Higgs is given by

m2
+

= m̄2
22 + λ̄3

v2

2
, (379)

while

M =

 λ̄1 v
2 Re λ̄6 v2 −Im λ̄6 v2

Re λ̄6 v2 m2
+

+

λ̄4 + Re λ̄5


v2/ 2 −Im λ̄5 v2/ 2

−Im λ̄6 v2 −Im λ̄5 v2/ 2 m2
+

+

λ̄4 − Re λ̄5


v2/ 2

 . (380)

The symmetric matrixM is diagonalized by the orthogonal matrix T :

T TMT = diag

m2

1,m
2
2,m

2
3


, (381)

so that

V2 = m2
+
H−H+

+

3
j=1

m2
j

S2j
2
. (382)

Like we said before, we assume det T = +1 without loss of generality.
The part of V which is trilinear in the fields may be written

V3 =


G−G+

+


G0
2

2


3

j=1

SjT1j
m2

j

v
(383a)

+G+H−

3
j=1

Sj

T2j + iT3j

 m2
j − m2

+

v
(383b)

+G−H+

3
j=1

Sj

T2j − iT3j

 m2
j − m2

+

v
(383c)

+G0

S1S2T13

m2
1 − m2

2

v
+ S3S1T12

m2
3 − m2

1

v
+ S2S3T11

m2
2 − m2

3

v


(383d)

+ vH−H+

3
j=1

cjSj (383e)

+

3
j,k,l=1

SjSkSl


v

2
cj (δkl − T1kT1l)+

1
v


m2

+
−

m2
j

2


T1jT1kT1l +

m2
k − m2

+

v
T1jδkl


(383f)

where [425]

cj ≡ T1jλ̄3 + T2j Re λ̄7 − T3j Im λ̄7. (384)

A thorough analysis of the trilinear Higgs couplings for the most general 2HDM potential, considering one-loop corrections,
was undertaken in [498].
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Appendix D. The oblique parameters

D.1. Definition

Let the vacuum polarization tensors be written

Π
µν

VV ′ (q) = gµνAVV ′


q2

+ qµqνBVV ′


q2

, (385)

where VV ′ may be either γ γ , γ Z0, Z0Z0, or W+W−, and q = (qα) is the four-momentum of the gauge bosons. Let us
moreover define

ĀVV ′


q2


= AVV ′


q2


2HDM − AVV ′


q2


SM, (386)

where SM denotes the Standard Model with a Higgs particle of mass mH . Then, the oblique parameters of the 2HDM are
defined [499]

S =
16πc2W

g2


ĀZ0Z0


m2

Z


− ĀZ0Z0 (0)

m2
Z

−
∂ Āγ γ


q2


∂q2


q2=0

+
c2W − s2W
cW sW

∂ Āγ Z0

q2


∂q2


q2=0


, (387a)

T =
4π
g2s2W


ĀW+W− (0)

m2
W

−
ĀZ0Z0 (0)

m2
Z


, (387b)

U =
16π
g2


ĀW+W−


m2

W


− ĀW+W− (0)

m2
W

− c2W
ĀZ0Z0


m2

Z


− ĀZ0Z0 (0)

m2
Z

− s2W
∂ Āγ γ


q2


∂q2


q2=0

+ 2cW sW
∂ Āγ Z0


q2


∂q2


q2=0


, (387c)

V =
4π
g2s2W

 ∂ ĀZ0Z0

q2


∂q2


q2=m2

Z

−
ĀZ0Z0


m2

Z


− ĀZ0Z0 (0)

m2
Z

 , (387d)

W =
4π
g2s2W

 ∂ ĀW+W−


q2


∂q2


q2=m2

W

−
ĀW+W−


m2

W


− ĀW+W− (0)

m2
W

 , (387e)

X =
4πcW
g2sW


∂ Āγ Z0


q2


∂q2


q2=0

−
Āγ Z0


m2

Z


m2

Z


. (387f)

These parameters are finite and, in principle, observable. In practice, they will be measurable in practical electroweak
experiments on the 2HDM provided

the measurements are performed at one of the energy scales q2 ≈ 0, q2 = m2
W , or q2 = m2

Z , and
themeasurements are performedwith light fermionswhich couplemainly to the gauge bosons γ , Z0, andW±, but couple
only very weakly to the scalar particles.

D.2. Formulae

The expressions for the oblique parameters in multi-Higgs-doublet models have been derived in [497,500]. We give here
those expressions in the particular case of the 2HDM. For T one has [497]

T =
1

16πs2Wm2
W


3

j=1


1 − T 2

1j


F

m2

+
,m2

j


(388a)

−T 2
11F


m2

2,m
2
3


− T 2

12F

m2

3,m
2
1


− T 2

13F

m2

1,m
2
2


(388b)

+3
3

j=1

T 2
1j


F

m2

Z ,m
2
j


− F


m2

W ,m
2
j


(388c)

−3

F

m2

Z ,m
2
H


− F


m2

W ,m
2
H


, (388d)
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where

F (x, y) =

x + y
2

−
xy

x − y
ln

x
y

⇐ x ≠ y,

0 ⇐ x = y.
(389)

Line (388a) is a positive definite contribution to T coming from the neutral scalars not having the samemass as the charged
scalar, while line (388b) is a negative definite contribution to T resulting from the neutral scalars not all having the same
mass. Line (388d) is the subtraction of the SM equivalent of line (388c).

The expressions for S, U , and X involve the following two functions:

G (x, y) = −
16
3

+ 5 (x + y)− 2 (x − y)2 + 3

x2 + y2

x − y
− x2 + y2 +

(x − y)3

3


ln

x
y

+

1 − 2 (x + y)+ (x − y)2


f

x + y − 1, 1 − 2 (x + y)+ (x − y)2


, (390)

Ĝ (x) = −
79
3

+ 9x − 2x2 +


−10 + 18x − 6x2 + x3 − 9

x + 1
x − 1


ln x +


12 − 4x + x2


f

x, x2 − 4x


, (391)

where

f (z, w) =


√
w ln

 z −
√
w

z +
√
w

 ⇐ w > 0,

0 ⇐ w = 0,

2
√

−w arctan
√

−w

z
⇐ w < 0.

(392)

One has

S =
1

24π


s2W − c2W

2
G (z+, z+)+ T 2

11 G (z2, z3)+ T 2
12 G (z3, z1)+ T 2

13 G (z1, z2)

+

3
j=1


T 2
1j Ĝ


zj

+ ln

m2
j

m2
+


− Ĝ (zH)− ln

m2
H

m2
+


, (393)

U =
1

24π


3

j=1


1 − T 2

1j


G

w+, wj


−

s2W − c2W

2
G (z+, z+)− T 2

11G (z2, z3)− T 2
12G (z3, z1)− T 2

13G (z1, z2)

+

3
j=1

T 2
1j


Ĝ

wj

− Ĝ


zj


− Ĝ (wH)+ Ĝ (zH)


, (394)

X =
c2W − s2W
48π

G (z+, z+) , (395)

where

za ≡
m2

a

m2
Z

and wa ≡
m2

a

m2
W

(396)

for a = +, 1, 2, 3,H .
The expressions for the oblique parameters V andW involve the following two functions:

H (x, y) = 2 − 9 (x + y)+ 6 (x − y)2 + 3

−

x2 + y2

x − y
+ 2


x2 − y2


− (x − y)3


ln

x
y

+ 3

x + y − (x − y)2


f

x + y − 1, 1 − 2 (x + y)+ (x − y)2


, (397)

Ĥ (x) = 47 − 21x + 6x2 + 3

7 − 12x + 5x2 − x3 + 3

x + 1
x − 1


ln x + 3


28 − 20x + 7x2 − x3

 f x, x2 − 4x


x − 4
.

(398)
One has

V =
1

96πc2W s2W


s2W − c2W

2
H (z+, z+)+ T 2

11H (z2, z3)+ T 2
12H (z3, z1)+ T 2

13H (z1, z2)

+

3
j=1

T 2
1jĤ


zj

− Ĥ (zH)


, (399)
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W =
1

96πs2W


3

j=1


1 − T 2

1j


H

w+, wj


+

3
j=1

T 2
1jĤ


wj

− Ĥ (wH)


. (400)

Appendix E. Renormalization-group equations

The one-loop renormalization-group (RG) equations for a general gauge theory were presented in [501,502]. For the
specific case of the multi-Higgs-doublet SU(2)× U(1) gauge theory, they were given in [39,403,503].

Let µ be the mass parameter used in the regularization of ultraviolet divergences in loop integrals. Let D denote the
dimensionless differential operator 16π2 (d/d lnµ) = 16π2µ (d/dµ). Let gs, g , and g ′ denote the gauge coupling constants
of SU(3)colour, SU(2), and U(1), respectively. The normalization of g ′ is such that the U(1) charge of the Higgs doublets
is+1/2. The one-loop RG equations for the gauge coupling constants do not depend of the Yukawa and scalar couplings and
are

Dgs =


−11 +

4
3
nF


g3
s , (401)

Dg =


−

22
3

+
4
3
nF +

1
6
nH


g3, (402)

Dg ′
=


20
9

nF +
1
6
nH


g ′3, (403)

where nF is the number of fermion generations and nH is the number of Higgs doublets. In the 2HDMwith three families of
fermions this is therefore

Dgs = −7g3
s , (404)

Dg = −3g3, (405)

Dg ′
= 7g ′3. (406)

The one-loop RG equations for the Yukawa-coupling matrices defined in Eq. (225) do not depend on the scalar couplings
and are

DY d
j = adY d

j +

nH
k=1

TjkY d
k +

nH
k=1


−2 Y u

k Y
u
j
ĎY d

k +
1
2
Y u
k Y

u
k
ĎY d

j + Y d
j Y

d
k
Ď
Y d
k +

1
2
Y d
k Y

d
k
Ď
Y d
j


, (407)

DY u
j = auY u

j +

nH
k=1

T ∗

jkY
u
k +

nH
k=1


−2 Y d

k Y
d
j
Ď
Y u
k +

1
2
Y d
k Y

d
k
Ď
Y u
j + Y u

j Y
u
k
ĎY u

k +
1
2
Y u
k Y

u
k
ĎY u

j


, (408)

DY e
j = aeY e

j +

nH
k=1

TjkY e
k +

nH
k=1


Y e
j Y

e
k
ĎY e

k +
1
2
Y e
kY

e
k
ĎY e

j


, (409)

where

ad = −8g2
s −

9
4
g2

−
5
12

g ′2, (410)

au = −8g2
s −

9
4
g2

−
17
12

g ′2, (411)

ae = −
9
4
g2

−
15
4

g ′2, (412)

and

Tjk = 3 tr

Y d
j Y

d
k
Ď
+ Y u

j
ĎY u

k


+ tr


Y e
j Y

e
k
Ď
. (413)

Of course, in the context of the 2HDMwe should set nH = 2 in Eq. (407)–(409).
Let the scalar potential be

V =


j,k

µ
j
kΦ

Ď
j Φk +

1
2


j,k,l,m

Λ
jl
kmΦ

Ď
j ΦkΦ

Ď
l Φm, (414)
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withΛjl
km = Λ

lj
mk.

33 The one-loop RG equations for the quartic couplings are

DΛ
jl
km = 2

nH
p,q=1


2Λjp

kqΛ
ql
pm +Λ

jp
kqΛ

lq
pm +Λ

jp
qkΛ

ql
pm +Λjl

pqΛ
pq
km +Λjq

pmΛ
pl
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
−


9g2

+ 3g ′2

Λ

jl
km +

9g4
− 6g2g ′2

+ 3g ′4

4
δ
j
kδ

l
m + 3g2g ′2δjmδ

l
k

+

nH
p=1


TkpΛjl

pm + TmpΛ
jl
kp + T ∗

jpΛ
pl
km + T ∗

lpΛ
jp
km


− 4 tr


Y e
j
ĎY e

kY
e
l
ĎY e

m


− 12 tr


Y d
j
Ď
Y d
k Y

d
l
Ď
Y d
m + Y u

k
ĎY u

j Y
u
m
ĎY u

l + Y d
j
Ď
Y u
l Y

u
m
ĎY d

k

+Y u
k
ĎY d

mY
d
l
Ď
Y u
j − Y u

m
ĎY d

k Y
d
l
Ď
Y u
j − Y d

j
Ď
Y u
l Y

u
k
ĎY d

m


. (415)

The one-loop RG equations for the quadratic couplings are

Dµ
j
k = 2

nH
p,q=1

µp
q


2Λjq

kp +Λ
jq
pk


. (416)

In the specific case of the 2HDM, with the notation of Eq. (98), one has

µ1
1 = m2

11, µ2
2 = m2

22, µ1
2 = −m2

12, µ2
1 = −m2

12
∗
, (417)

Λ11
11 = λ1, Λ22

22 = λ2, Λ12
12 = Λ21

21 = λ3, Λ12
21 = Λ21

12 = λ4, (418)

Λ11
22 = λ5, Λ22

11 = λ∗

5, (419)

Λ11
21 = Λ11

12 = λ6, Λ21
11 = Λ12

11 = λ∗

6, Λ12
22 = Λ21

22 = λ7, Λ22
12 = Λ22

21 = λ∗

7. (420)

Therefore, from Eq. (416),

Dm2
11 = 6λ1m2

11 + (4λ3 + 2λ4)m2
22 − 12 Re


m2

12λ
∗

6


, (421)

Dm2
22 = (4λ3 + 2λ4)m2

11 + 6λ2m2
22 − 12 Re


m2

12λ
∗

7


, (422)

Dm2
12 = −6


λ6m2

11 + λ7m2
22


+ (2λ3 + 4λ4)m2

12 + 6λ5m2
12

∗
. (423)

For the quartic couplings, in a 2HDM where the up-type quarks couple only to the doublet Φ1, and if we only consider
the contribution from the top-quark Yukawa coupling λt (with the normalization mt = λtv/

√
2, with v = 246 GeV), the

one-loop RG equations are

Dλ1 = 12λ21 + 4λ23 + 4λ3λ4 + 2λ24 + 2 |λ5|
2
+ 24 |λ6|

2

+
3
4
(3g4

+ g ′4
+ 2g2g ′2)− 3λ1(3g2

+ g ′2
− 4λ2t )− 12λ4t , (424a)

Dλ2 = 12λ22 + 4λ23 + 4λ3λ4 + 2λ24 + 2 |λ5|
2
+ 24 |λ7|

2
+

3
4
(3g4

+ g ′4
+ 2g2g ′2)− 3λ2(3g2

+ g ′2), (424b)

Dλ3 = (λ1 + λ2) (6λ3 + 2λ4)+ 4λ23 + 2λ24 + 2 |λ5|
2
+ 4


|λ6|

2
+ |λ7|

2
+ 16 Re


λ6λ

∗

7


+

3
4
(3g4

+ g ′4
− 2g2g ′2)− 3λ3(3g2

+ g ′2
− 2λ2t ), (424c)

Dλ4 = 2 (λ1 + λ2) λ4 + 8λ3λ4 + 4λ24 + 8 |λ5|
2
+ 10


|λ6|

2
+ |λ7|

2
+ 4 Re


λ6λ

∗

7


+ 3g2g ′2

− 3λ4(3g2
+ g ′2

− 2λ2t ), (424d)

Dλ5 = (2λ1 + 2λ2 + 8λ3 + 12λ4) λ5 + 10

λ26 + λ27


+ 4λ6λ7 − 3λ5(3g2

+ g ′2
− 2λ2t ), (424e)

Dλ6 = (12λ1 + 6λ3 + 8λ4) λ6 + (6λ3 + 4λ4) λ7 + 10λ5λ∗

6 + 2λ5λ∗

7 − 3λ6(3g2
+ g ′2

− 3λ2t ), (424f)

Dλ7 = (12λ2 + 6λ3 + 8λ4) λ7 + (6λ3 + 4λ4) λ6 + 10λ5λ∗

7 + 2λ5λ∗

6 − 3λ7(3g2
+ g ′2

− λ2t ). (424g)

33 The correspondence with the notation of Eq. (99) isΛjl
km = λjk,lm; using the tensorΛ allows for a more compact writing of the formulae below.
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Appendix F. Custodial symmetry

The experimentally measured value for the observable ρ = m2
W/

m2

Z cos
2 θW


is extremely close to one [7]. In the SM,

the tree-level prediction for that observable is exactly one. The fundamental reason for that prediction is an approximate
symmetry that the SM Lagrangian possesses. Indeed, if one writes the SM Higgs doublet as Φ =


ϕ1 + iϕ2
ϕ3 + iϕ4


, then the SM

scalar potential only depends on ΦĎΦ = ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4 . Therefore, the potential automatically has SO(4) symmetry.
The group SO(4) is isomorphic to SU(2) × SU(2), which is larger than the SM gauge group SU(2)L × U(1)Y . On the other
hand, this symmetry SO(4) is respected neither by the scalar gauge-kinetic terms – specifically, those involving the weak-
hypercharge coupling g ′ – nor by the Yukawa terms, linear in Φ , since the up-type and down-type quarks have different
masses. Thus, SO(4) is not a symmetry of the full SM Lagrangian, rather a symmetry only of the scalar potential; it is usually
regarded as an approximate symmetry, since in the scalar sector it is only broken by (small) g ′ terms in the kinetic energy,
and dubbed ‘custodial symmetry’ [8,504].

In the 2HDM, there is no SO(4) symmetry in the most general scalar potential, thus the possibility of large contributions
to ρ from that sector alone arises. If one wants to avoid them, one may impose custodial symmetry on the 2HDM potential.
Following the work of Pomarol and Vega [505], we first define the 2 × 2 matrices

Mij =

Φ̃i |Φj


=


ϕ0
i
∗

ϕ+

j
−ϕ−

i ϕ0
j


. (425)

We further define an SU(2)L × SU(2)R group under which these matrices transform as

Mij → LMijRĎ, (426)

with L, R ∈ SU(2). The quantities tr(MĎ
ijMkl) are invariant under this SO(4) = SU(2)L ×SU(2)R. This corresponds to the same

SO(4) custodial symmetry of the SM scalar potential.
Pomarol and Vega have considered two separate situations. In case 1 they have used onlyM11 andM22. The most general

scalar potential invariant under SO(4) is then

V1 =
1
2
m2

11tr(M
Ď
11M11)+

1
2
m2

22tr(M
Ď
22M22)− m2

12tr(M
Ď
11M22)

+
1
8
λ1


tr(MĎ

11M11)
2

+
1
8
λ2


tr(MĎ

22M22)
2

+
1
4
λ3tr(M

Ď
11M11)tr(M

Ď
22M22)

+
1
2
λ4


tr(MĎ

11M22)
2

+
1
2


λ6tr(M

Ď
11M11)+ λ7tr(M

Ď
22M22)


tr(MĎ

11M22). (427)

Notice that tr(MĎ
iiMjj) = Φ

Ď
i Φj + Φ

Ď
j Φi. This allows us to identify, in Eq. (427), the relations that one obtains for the usual

parameters of the 2HDM potential in Eq. (98). We find

• Case 1: all the parameters are real, and λ4 = λ5.

At a neutral vacuum ⟨ϕ0
i ⟩ = vi, one has

⟨Mij⟩ =


v∗

i 0
0 vj


. (428)

This vacuum is not invariant under the full group SU(2)L × SU(2)R. However, if v∗

i = vj, then ⟨Mij⟩ is proportional to the
2 × 2 identity matrix and the vacuum preserves a group SU(2)V (the ‘‘V’’ stands for ‘‘vectorial’’), corresponding to identical
matrices, i.e. L = R, in Eq. (426). This remaining group preserved by the vacuum is the custodial-symmetry group. However,
most authors refer to the potential invariant under SU(2)L × SU(2)R as displaying a custodial symmetry, and we shall also
employ that terminology.

In case 2 of Pomarol and Vega the potential is built only withM12. It reads

V2 = m2
11tr(M

Ď
12M12)− m2

12 (detM12 + h.c.)+
1
2
λ1


tr(MĎ

12M12)
2

+ λ4 det(MĎ
12M12)+

1
2


λ5 det(M12)

2
+ h.c.


+


λ6 detM12 tr(M

Ď
12M12)+ h.c.


. (429)

The following constraints on the parameters of the 2HDM scalar potential ensue:

• Case 2:m2
11 = m2

22, λ1 = λ2 = λ3, and λ6 = λ7.

Notice thatm2
12, λ5, λ6, and λ7 remain complex in this case. The vacuum preserves SU(2)V if and only if v1 = v∗

2 .
In both cases, there is a dramatic prediction for the scalar masses: the charged Higgs H± is degenerate with the

pseudoscalar A. This is easy to see from Eq. (207) in the Case 1 model. In both cases of Pomarol and Vega, the potential
conserves CP, even with the complex couplings of case 2. There is thus a well-defined pseudoscalar particle.
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Gérard and Herquet [506] have proposed a twisted custodial symmetrywhich generalizes the formalism presented above.
They observed that the transformation matrix R need not be the same forM11 and M22, namely

M11 → LM11RĎ, M22 → LM22R′Ď. (430)

This extra freedom has a limitation, though: since the hypercharge is proportional to the diagonal generator of SU(2)R, the
matrices R and R′ must be related through R′

= XĎRX , with X = diag

eiγ /2, e−iγ /2


. A specific choice for the phase γ yields

the custodial mass relationm2
±

= m2
A; but a different choice imposes degeneracy between the charged Higgs and one of the

CP-even scalars,m2
±

= m2
h .

As we know, in the general 2HDM the masses of the H±, H , A, and h are arbitrary, since they depend on arbitrary
quartic terms in the potential. In the MSSM, the quartic terms are constrained to be gauge couplings, and one finds the
relationship m2

H± = m2
A + m2

W . This would rule out decays H±
→ W±A. The twisted symmetry allows for a scenario

where the pseudoscalar is light (leading to possible decays h → AA, as discussed in Section 2). A mass spectrum with
mA < mH± ,mH < mh leads to the possibility of the Standard Model-like Higgs decaying into charged Higgs. Any of the four
flavour conserving models can be accommodated in this scenario. A detailed discussion of the phenomenology of the model
can be found in Ref. [507].

One might wonder about the apparent ambiguity that one has in constructing the 2HDM custodial-symmetric potential
in the manner displayed above. For instance, tr(MĎ

11M12) is also invariant under SU(2)L × SU(2)R, and we might insert one
such term in the potential, together with many others. So there would seem to be many more models to be considered.
Grzadkowski et al. [508], Haber and O’Neil [390], and Nishi [509] have shown that the models Case 1 and Case 2 are indeed
related by a basis change—they are not different models, rather they have the same physical predictions. Furthermore,
basis-invariant methods were developed to identify whether a given potential has custodial symmetry or not. Grzadkowski
et al. and Nishi have used the bilinear formalism to find such conditions for the scalar sector alone. Haber and O’Neil used
a different formulation and analysed the Yukawa sector as well. The basis-invariant conditions of Grzadkowski et al. are
particularly simple: a necessary and sufficient condition for a potential to possess custodial symmetry is the existence of a
three-vector v such that

Ev = 0, ξ · v = 0, η · v = 0, (431)

with E, ξ, and η defined in Section 6.5. Still regarding the twisted symmetry, Haber and O’Neil [390] argued that the choice
of the phase γ discussed above is tantamount to a basis choice. They also showed that in the region of parameter space
where the twisted scenario arises CP is not perfectly well defined, and thus the distinction between scalar and pseudoscalar
particles is not clear.

Extending the custodial symmetry to the Yukawa sector [390,510] requires the equality of the up-type and down-
type-quark mass matrices. Thus, the custodial symmetry is broken by the hypercharge interactions and also by the mass
differences amongst quarks.

Notice that, even though we refer to the custodial symmetry as being a symmetry, it does not correspond to any of
the six proper symmetries of the 2HDM potential discussed in Section 5.6. For instance, the renormalization-group (RG)
running preserves the relations among parameters of the potential following from any of the six symmetries of Table 5,
whereas it does not preserve the relations following from custodial symmetry. It is easy to see, by using the β-functions of
Eqs. (424d)–(424e), that the Case 1 relation λ4 = λ5 is unstable under the RG, i.e. βλ4 ≠ βλ5 .

34 The fundamental reason why
custodial symmetry cannot appear in Table 5 is that those symmetries were obtained by requiring invariance of the scalar
gauge-kinetic terms, while the custodial transformations do not leave them invariant. In fact, the largest symmetry group
of the 2HDM scalar gauge-kinetic terms was identified in [511] as U(2) × SU(2), promoted to Sp(2) × SO(4) in the limit
g ′

→ 0. If one relaxes the requirement of invariance of the gauge-kinetic terms, then the list of possible symmetries of the
potential increases, as shown in [395,396], and includes custodial symmetry.
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