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Addressing the recent criticisms of Kvinikhidze and Miller, we prove that the spectator wave functions and
currents based on “fixed-axis” polarization states (previously introduced by us) are Lorentz covariant, and find
an explicit connection between them and conventional direction-dependent polarization states. The discussion
shows explicitly how it is possible to construct pure S-wave models of the nucleon.
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I. BACKGROUND

In Ref. [1] (referred to as GRP) we propose a new
definition of vector polarization states, which we refer to as
“fixed-axis” states. Using fixed-axis states it is comparatively
easy to construct phenomenological wave functions with a
pure S-wave structure and use them to investigate the role of
angular momentum components in determining the structure
of the nucleon form factors. A detailed discussion of this
phenomenology is presented in GRP.

Kvinikhidze and Miller [2] (referred to as KM) claimed
that the definition of the vector polarization states used in an
earlier version of GRP (available from the eprint archives [3])
were not covariant. The discussion presented in Ref. [3]
was very sketchy, and therefore understandably open to
misinterpretation. The purposes of this article are (i) to present
this new physics in a systematic way and (ii) to answer the
objections of KM.

The remainder of this article is divided into three sections.
In Sec. II, building on the physical intuition introduced in
GRP, we present a coherent discussion of wave functions
and corresponding electromagnetic currents based on the new
fixed-axis polarization vectors and show that they are covariant.
This work is previously unpublished but was available to KM
as a private communication. In Sec. III we compare wave
functions and electromagnetic currents defined with fixed-axis
states to wave functions and electromagnetic currents defined
with helicity states. We show, for the first time, how the
wave functions and electromagnetic currents defined using the
two different bases are related and what this means. Finally,
Sec. IV draws some conclusions.

II. COVARIANCE OF FIXED-AXIS MATRIX ELEMENTS

A. Fixed-axis polarization states for
a bound axial vector diquark

In GRP a basis of fixed-axis polarization vectors are intro-
duced. These are intended to be used only for vector particles
that are constituents of a bound state of four-momentum P . In
analogy with the construction of helicity state polarizations,
fixed-axis polarizations are constructed through a sequence of

steps. The polarization of the diquark is first defined in the
rest frame of the nucleon by expanding the vector in terms
of four-vectors ε0(λ) with angular momentum projections
λ = {1, 0,−1} along the z axis
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This provides a polarization basis for the diquark that is
independent of the magnitude or direction of the momentum
of the diquark. This definition has a number of advantages for
the phenomenological treatment of quark models, and these
will be discussed elsewhere.

When the bound state is at rest the fixed axis can be chosen
to be in any direction. When the bound state is in motion,
we choose the fixed-axis to be in the direction of the three-
momentum of the bound state. Choosing this to be the z axis,
the bound-state four-momentum is P = {Ep, 0, 0, p}, where
Ep =

√
M2 + p2 and M is the mass of the bound state. The

polarization vectors in this frame are obtained by boosting (1)
and become
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where the subscript on the fixed-axis polarization vectors
denotes the momentum of the bound state. Note that, for boosts
in the z direction, there are no Wigner rotations for fixed-axis
polarization vectors.

These polarization vectors satisfy the orthonormality
conditions

ε∗
p(λ′) · εp(λ) = −δλλ′ , (3)
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but differ from helicity states in one important respect.
Helicity-state polarizations are orthogonal to k (the four-
momentum of the diquark), whereas fixed-axis polarizations
are orthogonal to P

P · εp(λ) = 0. (4)

The fixed-axis polarizations are unconventional in the sense
that they describe the polarization of the diquark without
reference to the direction of the three-momentum of the
diquark k. This is a common convention in nonrelativistic
physics but not used before (as far as we know) in relativistic
physics.

B. The spectator wave function

In the spectator theory [4], the structure of a two-body
bound state enters through a matrix element of a field operator
between one constituent (which is on-shell) and the bound state
(also on-shell). This idea was first introduced by Blankenbecler
and Cook in 1960 [5] and has been used extensively to
describe the relativistic structure of the deuteron [6]. In that
application the relativistic deuteron wave function is related to
the covariant d → np vertex function � by the relations

�λ1β;λ(p, P ) = 〈p1, λ1|ψβ(0)|P, λ〉
= ξµ(λ)[SF (p2)�µ(p1, P )C]ββ ′ ūT

β ′ (p1, λ1)

=
∑
λ2,ρ

ψ
ρ
λ1λ2,λ

u
ρ
β(p2, λ2), (5)

where p = 1
2 (p1 − p2), P = p1 + p2 (p1 and p2 are the

four-momenta of the two nucleons with p2
1 = M2), SF is the

propagator of the off-shell nucleon, and ξ (λ) is the polarization
of the deuteron with helicity λ, and the sum is over the
polarizations and ρ spins (where ρ = + are positive-energy
u spinors and ρ = − are negative-energy v spinors) of the
off-shell nucleon. For more discussion, see Ref. [6].

Here we use similar ideas to describe the nucleon as a
bound state of an on-shell “diquark” and an off-shell quark.
The full wave function is composed of contributions from
both scalar and axial vector diquarks; here we focus on the
axial vector contribution only (and we also neglect the isospin
factors—for a complete discussion see GRP). Because the
quark is confined, any singularities that might arise from the
off-shell quark propagator are canceled by a zero in the vertex
function, and we write the axial vector part of the nucleon
wave function as

�α,λn
[k, P ; εp(λ)] ≡ 〈k, εp(λ)|qα(0)|P, λn〉

= ε∗
p µ(λ)�µ

αβ(k, P )uβ (P, λn). (6)

The notation differs from Eq. (5). Here k is the four-momentum
of an on-shell diquark of mass ms, qα(0) is the quark field
operator with spinor index α (suppressed in the following
discussion), u(P, λn) is a nucleon spinor with four-momentum
P and helicity λn, � is the Dirac structure of the wave
function and not the vertex function (it implicitly includes
the propagator), and we have included εp(λ) in the list
of arguments of � for this discussion (but it is usually
suppressed). Equation (6) is very similar to Eq. (5) with the

on-shell spinor now describing the bound state (instead of one
of the constituents) and the axial vector polarization describing
one of the constituents (instead of the bound state).

In applications we have chosen the simplest form possible

�µ(k, P ) = φ γ 5γ µ, (7)

where φ = φ(P · k) is a scalar function of the only variable
available (because k2 = m2

s and P 2 = M2), and we suppress
the Dirac indices α, β. This describes the axial vector diquark
contribution to the nucleon wave function, but there is also a
scalar diquark contribution and isospin factors, not discussed
here.

This matrix element is referred to as the “wave function”
because it has many of the properties of the solution of a
Dirac wave equation. However, its square is not necessarily
a probability density (in common with Klein-Gordon wave
functions) so it is not the familiar wave function from quantum
mechanics.

In analogy with last line of Eq. (5), the wave function (6)
can be written as a superposition of all possible spin states
of the off-shell quark. To display this superposition, use the
polarization states (1) and the ansatz (7) to look at the wave
function in the nucleon rest frame, where P = P0 = {M, 0}.
One quickly sees that the wave function is a four-component
spinor that can be written

�λn
[k, P0; ε0(λ)] =

∑
λq

ψλλq,λn
(k, P0)


χ

λq

0


 , (8)

with χ
λq

= ± 1
2 and 0 the two-component spinors
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)
, χ− 1

2
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0
1

)
, 0 =

(
0
0

)
, (9)

and the spinor index α has been suppressed in favor of
the explicit matrix representation of the four components.
Equation (8) expresses the quark as a superposition of states
with spin “up” and “down” along the fixed axis. Furthermore,
explicit evaluation of the wave function components ψλλq,λn

shows that they are zero unless λn = λq + λ, a consequence
of the conservation of angular momentum (because the λ′s are
the spin projections of the particles along the fixed-axis). The
nonzero components of ψ are

ψλqλ,λn
(k, P0) = φ ×




1 λ = 0, λn = + 1
2

−1 λ = 0, λn = − 1
2

−√
2 λ = +1, λn = + 1

2√
2 λ = −1, λn = − 1

2




,

(10)

where λq = λn − λ in every case. These are simply a factor
of −√

3 times the familiar vector coupling coefficients
〈 1

2 1λqλ| 1
2λn〉 for the coupling of spin 1 and spin 1

2 states to
form a composite state of spin 1

2 . These results may seem
fortuitous but are only a consequence of how we constructed
the wave function in the first place, as discussed in GRP.

The wave function (6) transforms as a spinor. To show
this, first use the properties of the representation S(�) of the
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Lorentz transformation � on the Dirac space, specifically

S(�)u(P, λn) = u(�P, λnW
) (11)

S(�)vµγ µS−1(�) = (�v)µ γ µ, (12)

where here (and in the rest of the article) we suppress reference
to the Dirac indices, v is any four-vector and λnW

is a shorthand
notation for the sum

u(�P, λnW
) ≡

∑
λ′

u(�P, λ′)d1/2
λ′λn

(R�), (13)

where d1/2 are the spin one-half rotation matrices and R�

is the Wigner rotation induced by the transformation �

(the details of which need not concern us throughout this
discussion). Assuming that ε

∗µ
p �µ is a product of Dirac γ

matrices contracted with vectors, we obtain

S(�)�λn
[k, P ; εp(λ)] = �λnW

[�k,�P ; �εp(λ)]. (14)

This is a straightforward generalization of the transformation
law (11) for a Dirac spinor. It is used to connect the rest
frame wave function (8) to the wave function of the moving
nucleon (6).

C. Nuclear current

The spectator wave function enters into the evaluation of
the matrix element of the nuclear current. In the simplest
approximation (the relativistic impulse approximation that
neglects exchange currents) this matrix element is the sum
over products of the initial and final-state wave functions

〈P+, λ+|jµ(q)|P−, λ−〉
=

∑
λ

∫
k

�̄λ+[k, P+; ε+(λ)]jµ(q)�λ−[k, P−; ε−(λ)], (15)

where the integral is over the momentum k of the noninteract-
ing spectator diquark∫

k

≡
∫

d3k

(2π )32Ek

=
∫

d4k

(2π )3
δ+

(
m2

s − k2
)
, (16)

P− and P+ = P− + q are the momenta of the incoming
and outgoing nucleons, λ− and λ+ are their polarizations,
Ek = √

m2
s + k2 is the diquark on-mass shell energy and

ε+(λ) = εp+ (λ) and ε−(λ) = εp− (λ) are the final- and initial-
state diquark fixed-axis polarization vectors for a diquark state
with polarization λ. (These vectors must be initially defined
in a collinear frame, as dicussed below.) In the following
discussion reference to the nucleon helicities and any Wigner
rotations that accompany them will be suppressed; these may
always be added to any final formula by using Eq. (13).

Note that this matrix element factorizes in the sense that it
is a sum of three terms, each one of which is the product of
wave functions.

The matrix element may be divided into a Dirac part and
the polarization sum

Jµ = 〈P+|jµ(q)|P−〉
=

∫
k

ū(P+)Aµ

νν ′ (P−, q, k) u(P−)Dνν ′
+−(P−, q) (17)

where the Dirac part of the current is

Aµ

νν ′ (P−, q, k) = �̄ν(k, P+)jµ(q)�ν ′ (k, P−) (18)

and the polarization sum is

Dνν ′
+−(P−, q) =

∑
λ

εν
+(λ)ε∗ν ′

− (λ). (19)

Evaluation of this spin sum requires careful discussion. The
polarizations are defined with respect to a fixed axis, which we
have chosen to lie along the direction of the three-momentum
of the bound state, so the initial and final polarizations can
only be defined consistently in a frame in which the initial
and final three momenta of the bound states are collinear.
This is not a restriction, because for any two nucleon four-
momenta P± there always exists a Lorentz transformation �−1

that will boost and rotate the two four-momenta so that they
lie along the z direction. Only in this collinear frame are the
definitions of the fixed-axis polarizations for the incoming and
outgoing diquark consistently defined with respect to the same
z axis, permitting the sum over diquark spins to be evaluated
consistently and without error. Once the sum over the spins
has been carried out in this collinear frame, the result can
be boosted and rotated back to the original frame using �.
This construction is qualitatively similar to the procedure used
when constructing helicity states for a two-body system. In
that case the construction also starts from the center-of-mass
(a collinear) frame [7], and the states are then boosted or rotated
to an arbitrary frame.

A simple and elegant way to evaluate the sum (19) is to
exploit the fact that D+− is a sum of direct products of the
four-vectors ε+ and ε− and is therefore a covariant tensor. It
can only depend on a sum of bilinear products of P

µ
+ and

P
µ
− or gµν (the tensors available). Using the constraints P+ ·

ε+ = P− · ε− = 0 and P 2
± = M2

± (allowing for the possibility
that the masses of the incoming and outgoing bound state are
unequal), we see that P+µD

µν
+− = 0 and D

µν
+−P−ν = 0. Hence

the most general form D+− can have is

D
µν
+−(P−, q) =

∑
λ

ε
µ
+εν

− = a1

(
−gµν + P

µ
−P ν

+
b

)

+ a2

(
P− − bP+

M2+

)µ (
P+ − bP−

M2−

)ν

, (20)

where b = P+ · P−. Using the explicit form (2) for the vectors,
we see that Dxx

+− = D
yy
+− = 1 requiring that a1 = 1. The

coefficient a2 can be found from the trace. Using the explicit
forms (2) the trace is

[D+−(P−, q)]µµ = −2 − P+ · P−
M+M−

, (21)

which gives

a2 = − M+M−
b(M+M− + b)

. (22)

For equal masses this reduces to

D
µν
+−(P−, q) = −gµν + 2

P µP ν

P 2
− P

µ
+P ν

−
M2

, (23)
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FRANZ GROSS, G. RAMALHO, AND M. T. PEÑA PHYSICAL REVIEW C 77, 035203 (2008)

where P = 1
2 (P+ + P−) and 2P 2 = M2 + b. This form can

also be obtained by explicit construction using the vectors (2).
Note that this sum satisfies the covariance condition

�α
α′�β

β ′D
α′β ′
+− (P−, q) = D

αβ
+−(�P−,�q). (24)

Using Eq. (24) it is easy to show that the current (15) [or its
alternative form (17)] is covariant. This requires proving that
it transforms like a four-vector

�µ
ν 〈P+|jν(q)|P−〉 = 〈�P+|jµ(�q)|�P−〉 . (25)

Start with the observation that the quark current is a
product of scalar functions and γ matrices, and satisfies the
transformation rule

�µ
νj

ν(q) = S−1(�)jµ(�q)S(�). (26)

Inserting this into the current and using Eq. (14) gives
immediately

�µ
ν〈P+|jν(q)|P−〉
=

∫
k

ū(�P+)Aµ
αβ(�P−,�q,�k) u(�P−)

× [
�α

α′�β
β ′D

α′β ′
+− (P−, q)

]
. (27)

To complete the proof use Eq. (24) and the fact that the
spectator integral over k is covariant∫

k

=
∫

�k

, (28)

so that

�µ
ν 〈P+|jν(q)|P−〉 = 〈�P+|jµ(�q)|�P−〉 . (29)

As mentioned above, the missing Wigner rotations can be
restored by using Eq. (13).

In summary, this section provided a formal proof that both
the fixed-axis wave functions and currents are covariant.

D. Critique of the KM discussion of covariance

KM discuss what they call “two interpretations” of our
calculation. Their “first interpretation” is actually a “misin-
terpretation”; it is based on the assumption that we thought
the spin sum (19) could be evaluated in an arbitrary frame
using the relation (KM5) [we use the notation KM5 to refer to
Eq. (5) in KM, which is equivalent to our Eq. (34) discussed
in the next section.] We did (and still do) relate the fixed-axis
states to helicity states through the rotation (34), but we never
proposed evaluating the spin sum in an arbitrary frame using
this relation. Equation (KM5) can be used to evaluate the spin
sum in a collinear frame, as we did in GRP.

We emphasize that it is essential to start from a collinear
frame to properly define the fixed-axis polarization vectors. It
is clear on physical grounds why a collinear frame is required:
only in such a frame are the two fixed-axis polarization vectors
ε+ and ε− defined with respect to the same axis, an essential
requirement if the fixed-axis sum is to make any sense at all.
(We would have the same problem with a sum of helicity
vectors if the angles used to define the initial and final helicity
vectors were not defined with respect to the same axis.)

Furthermore, the laboratory frame is collinear, and hence these
frames are very “natural.”

The “second interpretation” discussed by KM is based
on the arguments presented in Sec. II above. These were
given to them in the “advisory” review. KM agree that this
interpretation is covariant. So, in spite of the impression
created by KM, the issue is not the covariance of the wave
functions but whether they have the correct structure (to be
discussed below). There is only one “interpretation,” the
covariant one we have presented above.

III. COMPARISON WITH HELICITY MATRIX ELEMENTS

We now discuss an interesting issue raised by KM and only
very briefly addressed by us in our work so far: the comparison
of wave functions and currents defined with fixed-axis states
to wave functions and currents defined with helicity states.

A. Two definitions of the wave function

The wave function (6) can be defined for any type of
polarization vector. Using the notation ξk to denote any
direction-dependent polarization vector with the properties

k · ξk(λ) = 0
(30)

ξ ∗
k (λ′) · ξk(λ) = −δλλ′∑

λ

ξα
k (λ)ξ ∗β

k (λ) = −gαβ + kαkβ

m2
s

, (31)

the spectator wave function is (for simplicity, we continue to
suppress explicit reference to the nucleon helicities and any
Wigner rotations associated with them)

�λn
[k, P ; ξk(λ)] ≡ 〈k, λ|q(0)|P, λn〉

= ξ
∗µ

k (λ)�′
µ(k, P )u(P, λn), (32)

where we continue to suppress all Dirac indices, and the most
general form of �′ is

�′
µ(k, P ) = γ 5(φ1γµ + φ2Pµ + φ3γµ 	k + φ4 Pµ 	k). (33)

Because k2 = m2
s and P 2 = M2, each of the scalar functions

φi can depend only on the one remaining variable P · k, and
the Dirac operator can depend only on linear powers in 	k
and 	P . Terms linear in 	P can be eliminated using the Dirac
equation and any term dependent on kµ will also vanish. (A
similar expansion exists for the fixed-axis wave function, with
the Pα terms replaced by kα .)

The remainder of this subsection will be devoted to finding
an explicit connection between the fixed-axis wave function
(6) and a specific wave function of the type (32). We will do
this in two steps: first we will construct an explicit relationship
between these wave functions in the nucleon rest system, and
then we will boost this to a moving frame.

1. Step 1: rest frame connection

Using B(k) to denote the boost that carries the vector
{ms, 0, 0, 0} into {Ek, 0, 0, k} and R(θ ) to denote the rotation
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through angle θ about the y axis, helicity-state polarization
vectors, denoted by ξhk , are defined by the transformations

ξ
µ

hk(±) = Lµ

h νε
ν
0 (±) = ∓ 1√

2




0
cos θ

±i

− sin θ




ξ
µ

hk(0) = Lµ

h ν εν
0 (0) = 1

ms




k

Es sin θ

0
Es cos θ


 , (34)

where Lh = R(θ )B(k) is the Lorentz transformation (LT) that
converts the ε0 into helicity vectors. It is also convenient to
introduce “rotated” polarization states, denoted by a subscript
r and defined by

ξ
µ

rk(λ) = Lµ
r νε

ν
0 (λ) = Lµ

h ν

∑
λ′

ξν
0 (λ′)dλ′λ(θ )

=
∑
λ′

ξ
µ

hk(λ′)dλ′λ(θ ), (35)

where Lr = R(θ )B(k)R−1(θ ) = LhR
−1(θ ) is the LT that

converts the ε0 into rotated vectors ξr ; so named because they
are related to helicity vectors by a rotation.

It is possible to write the connection (35) between the
vectors ξr and ε0 in a compact manifestly covariant form.
This is because the LT Lr is a boost in the direction of k =
{k sin θ, 0, k cos θ}. This boost depends on two four-vectors
natural to the problem; the direction of the boost, included in
kµ, and the initial rest frame, in this case the rest frame of the
bound state, denoted by P0 = {M, 0, 0, 0}. In the rest frame of
the bound state, Lr can be written

Lµ
r ν = gµ

ν − ms

Ek + ms

(
kµ

ms

+ P
µ

0

M

) (
kν

ms

+ P0ν

M

)

+ 2

(
kµP0ν

msM

)
, (36)

where the noncovariant looking energy is actually Ek = k ·
P0/M . Similarily, the inverse transformation is

(
L−1

r

)µ
ν = gµ

ν − ms

Ek + ms

(
kµ

ms

+ P
µ

0

M

) (
kν

ms

+ P0ν

M

)

+ 2

(
P

µ

0 kν

msM

)
. (37)

Using this, and the orthogonality condition (30) gives, in the
nucleon rest frame,

ε
µ

0 (λ) = ξ
µ

rk(λ) − Mkµ + msP
µ

0

M(msM + P0 · k)
P0 · ξrk(λ). (38)

We can use this transformation to relate the rotated and
fixed-axis wave functions (in the rest frame). Using (38) to
replace the fixed-axis vectors in (6), we get a wave function of
the form (32)

�λn
[k, P0; ε0(λ)]

= ε
∗µ

0 (λ)�µ(k, P0) u(P0, λn)

= ξ
∗µ

rk (λ)
∗

�µ (k, P0) u(P0, λn) ≡ ∗
�λn

[k, P0; ξrk(λ)], (39)

where the transformed Dirac operator (with arguments omit-
ted) is

∗
�µ= �µ − P0µ

msM + P0 · k

(
k · � + ms

M
P0 · �

)
. (40)

In the rest frame, the fixed-axis wave function is equal to
the wave function with a rotated-state polarization vector,
provided the Dirac operator is transformed according to
Eq. (40).

To compare with GRP [see Eq. (6) above], we insert the
simple operator (7) into Eq. (40) and use the Dirac equation to
obtain

∗
�µ (k, P0)u(P0, λn)

= φ γ 5

(
γµ − P0µ

M

	k + ms

Ek + ms

)
u(P0, λn). (41)

Note that
∗
� is a special case of the general form (33).

By construction, we know that ξ
µ

rk

∗
�µ (k, P0)u(P0, λn) has

no dependence on the angle θ , but it is entertaining and
instructive to see how the angular dependence of the individual
terms in Eq. (41) cancel to ensure that this is true. Consider
the λ = 0 case. Using the explicit form for ξ

∗µ

rk = ξ
∗µ

rk (0)

ξ
µ

rk(0) = 1

ms




kcθ

(Es − ms)cθ sθ

0

mss
2
θ + Esc

2
θ


 , (42)

where cθ = cos θ and sθ = sin θ , gives

ξ
∗µ

rk γ 5γµu(P0, λn)

= 1

ms

[
(Es − ms)cθ (σxsθ + σzcθ ) + msσz

k cos θ

]
χ

λn

× (ξ ∗
rk · P0)

M
γ 5 	k + ms

Es + ms

u(P0, λn)

= 1

ms


 k cθ σ · k

Es + ms

k cos θ


χ

λn
, (43)

where the σi are the Pauli matrices and χ
λn

is the two
component nucleon spinor. Forming the special combination
(41) by subtracting the two terms evaluated in Eq. (43)
shows that the lower components cancel, and recalling that
k = k{sθ , 0, cθ } shows that all of the angular dependence in
the upper components also cancels, giving the result

ξ
∗µ

rk (0)
∗

�µ (k, P0)u(P0, λn) = φ

[
σz

0

]
χ

λn

= ε
∗µ

0 (0)�µ(k, P0)u(P0, λn). (44)

We have found an explicit way to write a rotated-basis wave
function with no angular dependence in the nucleon rest frame.
This is a pure S-state wave function, expressed in terms of
polarization vectors satisfying (30).
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2. Step 2: boosting to a moving frame

Some care is needed to correctly transform the corre-
spondence (39) from the rest frame where the nucleon has
momentum P0 to a moving frame where the momentum is P .
This transformation will be represented by the boost Z with
the property P = ZP0. The transformation of the fixed-axis
wave function is straightforward

Z�λn
[k′, P0; ε0(λ)] = �λn

[Zk′, ZP0; Zε0(λ)]

= �λn
[k, P ; εp(λ)], (45)

where Zk′ = k. (In this discussion k′ denotes the momentum
in the rest frame and k the momentum in the boosted frame.)

However, the transformation of helicity or rotated-state
wave function involves a Wigner rotation. In this article we
will develop results for the rotated polarization states defined
in Eq. (35). These are closely related to helicity amplitudes
and, we feel, equivalent for the purposes of this discussion. We
prefer to use them because the formulas are easier to handle,
but, with a little more work, all of the results we obtain can
also be generalized to helicity states.

Under the boost Z, rotated polarization vectors undergo a
Wigner rotation

Zµ
νξ

ν
rk′(λ) =

∑
λ′

ξ
µ

r k(λ′)dλ′λ(ωr ), (46)

where the angle ωr can be found from the rotation

R(ωr ) = R(θ )B−1(k)R−1(θ )ZR(θ ′)B(k′)R−1(θ ′)
= R(θ )R(ωh)R−1(θ ′), (47)

where, for comparison, ωh is the Wigner rotation angle for he-
licity states, and k′ = {Ek′, k′ sin θ ′, 0, k′ cos θ ′} are the coordi-
nates of the initial momentum and k = {Ek, k sin θ, 0, k cos θ}
are the coordinates of the final, boosted momentum. As with
helicity vectors, the angle ωr can be expressed entirely in terms
of P, k, and θ , the final variables after the boost.

Using these relations, the relation (38) can be boosted in
the z direction by first replacing k by k′ (the rest value of k)
and then substituting k′ → k, P0 → P and properly allowing
for the Wigner rotation of the polarization state ξrk . The final
result for the boosted vector (38) using (46) is

εµ
p (λ) =

∑
λ

[
ξ

µ

rk(λ′) − Mkµ + msP
µ

M(msM + P · k)
P · ξrk(λ′)

]
,

dλ′λ(ωr ). (48)

where ωr is the Wigner rotation angle defined in Eq. (47). This
expression preserves the properties (3) and (4).

Using Eq. (48), we can now write the boosted wave function
(45) in terms of the rotated states ξrk

�λn
[k, P ; εp(λ)] = ε∗µ

p (λ)�µ(k, P ) u(P, λn)

=
∑
λ′

ξ
∗µ

rk (λ′)
∗

�µ (k, P ) u(p, λn) dλ′λ(ωr )

=
∑
λ′

∗
�λn

[k, P ; ξrk(λ′)] dλ′λ(ωr ), (49)

where
∗
� is the wave function (32) with the general form �′

replaced by
∗
� from Eq. (41).

Note that the two wave functions, �λn
[k, P ; εp(λ)] and

∗
�λn

[k, P ; ξrk(λ)], are equal in the nuclear rest frame but related
by a Wigner rotation in the moving frame.

B. Two definitions of the current

The nuclear current can also be written directly in terms
of the rotated polarization states. In this section we begin by

considering the current for the specific wave function
∗
�λn

[k, P ; ξrk(λ)] introduced above. Substituting rotated states ξrk

for the fixed axis states in the current (15), substituting the
∗
�

of (41) for the � in Eq. (18), and replacing the polarization
sum D

νν ′β
+− (p, q) by the sum over rotated states, equal to (31),

this current becomes
∗

Jµ
r ≡

∫
k

ū(P+, λ+)
∗

Aµ

νν ′ (P−, q, k)u(P−, λ−)Dνν ′
r (k), (50)

where Dνν ′
r denotes the polarization sum (31) and

∗
A is

∗
Aµ

νν ′ =
∗

�̄ν (k, P+) jµ
∗

�′
ν (k, P−)

=
[
�̄ν −

(
P+ν

M

)
Mk · �̄ + msP+ · �̄

msM + P+ · k

]
jµ

×
[
�ν ′ −

(
P−ν ′

M

)
Mk · � + msP− · �

msM + P− · k

]
. (51)

This current is to be compared with Eq. (17). These two
currents are very closely related by the following connections:
(i) the nuclear wave functions in their rest frames are identical
in both cases because of the correspondence (40) and (ii) in
any frame, both wave functions satisfy the Dirac equation
( 	P − M)� = 0. In applications, we chose the � defined in
Eq. (7). This gives a wave function with a pure S-wave
structure in the nuclear rest frame, the only frame where the
discussion of nuclear shape makes any sense.

The differences between these two currents [Eqs. (17) and
(50)] is subtle and helps to clarify the issues raised by KM.
To explain these differences, we write the fixed-axis current
(17) in an alternate form using the correspondences (49).
Substituting (49) into the fixed-axis current (17) gives

J̃ µ ≡
∫

k

ū(P+, λ+)
∗

Aµ

νν ′(P−, q, k)u(P−, λ−)
∗

Dνν ′
r (P−, q, k),

(52)

where the polarization sum is
∗

Dνν ′
r (P−, q, k) ≡

∑
λλf λi

ξ ν
rk(λf )ξ ∗ν ′

rk (λi)dλf λ(ω+)dλiλ(ω−),

(53)

and ω± are the Wigner rotations for the transformations from
the rest frame to the initial and final nucleon momenta, P±.
We emphasize that the two forms of the current, Eqs. (17) and
(52), are identical

J̃ µ = Jµ. (54)
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Comparing (52) with the rotated current, (50), we see that
the difference is the replacement of the sum Dr (k) by the sum
∗

Dr (P−, q, k). From the rotated state point of view, the spin

sum
∗
D describes a case in which the spin of the spectator

diquark is transformed from λi to λf as it propagates from the
incoming nucleon to the final nucleon and is a departure from
the impulse approximation, where the spin projection should
remain unchanged.

Alternatively, if we want to preserve the impulse approx-
imation exactly, we can use the current (50). This will have
the most important features of the fixed-axis current (17); in
particular, it describes states that are pure S waves in the rest
frame.

We have found that the fixed axis current has many
advantages. It not only provides a good phenomenology for
describing the nucleon form factors but also allows us to
construct orthogonal N and � wave functions, giving a de-
scription of the γ ∗ + N → � transition that is gauge invariant
in a natural way. Furthermore, starting from simple pure
S-state wave functions we can add, by explicit construction,
angular momentum components L > 0 to the wave function
and study their influence. We find that these L 	= 0 components
are essential for a full description of the three form factors
that enter the γ ∗ + N → � transition, providing relativistic
confirmation of results very familiar from nonrelativistic
theory. These results will be described in Ref. [8]. It remains
to be seen whether the current (50) will be as effective; this is
planned for future study.

C. Critique of the KM discussion of these issues

In Sec. IV of their article, KM obtain Eq. (KM26), which
is identical to our final result (17) for the fixed-axis current.
They say that this equation should be compared to the result
that would be obtained using helicity-state polarizations, and
we agree and we have done this. We found a form for the
wave function in a rotated basis that exactly reproduces our
fixed-axis wave function. Our results are Eqs. (39) (rest frame)
and (49) (moving frame). In this respect, the two approaches
are equivalent.

This comparison can be extended to the currents, where
we find a difference. The fixed-axis current (17) can be exactly
transformed into the rotated basis, giving Eq. (52). This differs
from the result we would obtain if we started directly from
the rotated basis, which would give Eq. (50). The difference
between Eqs. (52) and (50) is summarized by the replacement

of the polarization sum Dr from Eq. (31) with the sum
∗
Dr ,

from Eq. (53). In the sum
∗
Dr the spin projection of the

diquark undergoes a Wigner rotation as it propagates from
the initial to the final state and, hence, from the viewpoint
of the rotated basis, is not propagating as a free particle, and
the approximation is not an impulse approximation. So we
agree with KM that the fixed-axis cannot be written exactly
in the form of Eq. (50). The fixed axis current includes some
additional interactions not of the impulse form.

However, it is not clear how physically important this
difference really is. Both currents [Eqs. (52) and (50)]
correspond to nuclear wave functions with a pure S-state

structure [provided, of course, that the specific form (41) is
used for the Dirac structure of the rotated wave function], a
feat that KM seem to suggest is impossible.

In addressing this comparison, KM raise several issues that
they seem believe are serious shortcomings of the fixed-axis
approach. In our language, these are:

(i) The integrand in Eq. (17) is not factorizable into products
of independent wave functions because of factors like
2P 2 = M2 + P+ · P− in the denominator of the spin sum
D+−;

(ii) Evaluation of the current in a simple case [as illustrated
in Eq. (KM30)] will not give terms in the numerator
that will cancel the term 2P 2 = M2 + P+ · P− in the
denominator of the spin sum D+−;

(iii) The transformation � that carries the current from an
arbitrary frame to a collinear frame depends on both
P+ and P− and hence it is misleading to say that the
polarization vectors ε+ (ε−) [used in Eq. (20)] depend
on P+ (P−) only.

All of these objections can be dealt with easily. First, the
integrands of both (17) and (50) clearly display the current as
a sum of the product of three terms (one for each polarization
projection λ). Furthermore, the presence of a term P 2 in the
denominator of the spin sum is natural and expected. Although
such terms appear immediately in the fixed-axis sum, they also
arise eventually from any direction-dependent polarization
sum (31). For example, a “factorizable” term like

γαγ µγβ (kαkβ) = 2kµ 	k − γ µm2
s , (55)

that is part of any calculation of the current (50), must be
averaged over the directions of k (before integrating over k).
The angular integral is most easily evaluated in the Breit frame
(which can always be chosen because the current is covariant).
Assuming the product of the wave functions will be even in
cos θ (true for any form factor in the Breit frame) we may use
the nice identity to evaluate the integral over the azimuthal
angle φ ∫ 2π

0

dφ

2π
kµkν = agµν + b

P µP ν

P 2
+ c

qµqν

Q2
. (56)

The term in Eq. (55) bilinear in k therefore generates
contributions of the form∫ 2π

0

dφ

2π
kµ 	k = aγ µ + b

P µ 	P
P 2

+ c
qµ 	q
Q2

, (57)

which includes a term with P 2 in the denominator. These
factors did indeed appear in Ref. [9] [see Eqs. (19) and (20)]
where the diquark polarization was defined using the helicity
basis.

The third objection should take into account that the
fixed-axis polarization vectors are defined first in a collinear
frame and then boosted to an arbitrary frame. This means that
even if we start from an arbitrary frame, we must first boost
to a collinear frame before we can define the polarization
vectors. If the initial momenta are P ′

+ and P ′
−, and the final

state collinear vector is P+ = �(P ′
+, P ′

−)P ′
+, the fixed-axis

polarization vector ε+ will depend on P ′
+ and P ′

− only through
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the vector P+, which is no different than it would have been if
we started from the collinear frame.

We wish to take issue with a number of other statements in
the KM article. They say (for example) that the boost L−1

k in
the direction −k is not a covariant tensor, and in Eq. (KM14)
they write it in a noncovariant form with explicit factors like
δµ0. But the properties of the Lorentz group tell us how to
transform it from from one frame to another, and it will be
covariant (invariant in form) if we can find a way to write it in
terms of the physical vectors available to us.

This is precisely what we did in this article, and the
technique gave the very nice correspondence (38). In this
problem we have two vectors available, k and the momentum
vector for the bound state at rest, which can be written
P µ = δµ0M ≡ P

µ

0 (we all know that this does not mean that
P µ is not a four-vector). If there were only one vector available,
the boost L−1

k could not be written in a covariant form because
there would be no way to characterize the factors δµ0. But
the second vector, P0, enabled us to express the boost in the
rest frame of the bound state by replacing δµ0 with P

µ

0 . Once
this had been done, the expression could be transformed to an
arbitrary frame by further LT’s.

We do not think rotations about the y axis can be treated
in this way because there is no physical vector defining
the y direction (unless we were to introduce a polarized
nucleon with spin in the y direction, but this would pose
other probelms, we think). This was the reason we introduced
rotated polarization vectors—to avoid explicit references to the
rotations. However, avoiding rotations is not really necessary;
their transformation properties can be handled in the same way
we treat Wigner rotations, but the formulas we obtain are less
elegant.

IV. CONCLUSIONS

To describe the polarization of a diquark bound to a
nucleon, we proposed, in GRP, to use new, so-called fixed-axis

polarization states instead of the usual direction-dependent
polarization states (either helicity or the “rotated” states
defined here). The latter depend on the diquark momentum
k, and therefore on its direction, satisfying ξk · k = 0. In
fact, in the rest frame of the nucleon, both choices can be
made exactly equivalent through an appropriate redefinition
of the vertex function �. Then, in the case of a pure S-state
wave function (easy to construct using the fixed-axis states)
the transformation from diquark fixed-axis polarization states
to direction-dependent states gives a vertex function with just
the right angular dependence on the diquark momentum to
cancel the dependence introduced by the direction-dependent
states. Conversely, a spherically symmetric vertex function,
if taken together with the direction dependent diquark states,
would result in a wave function without spherical symmetry.
Because we want to investigate the consequences of using
wave functions that are spherically symmetric, it is natural
to write these wave functions in terms of fixed-axis diquark
polarizations.

KM criticized this approach, and this article not only
develops new ideas not yet published but also answers most
of the KM objections. In particular, we proved that use of
fixed-axis polarization states is covariant (provided they are
defined correctly) and showed explicitly how vertex functions
and currents using fixed-axis states can be transformed into
martix elements involving direction-dependent states. We have
shown, as a consequence, that it is possible, using any type
of polarization state, to construct a covariant spherically
symmetric nuclear wave function.
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