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Abstract

We present general expressions for the oblique parameters S, T , U , V , W , and X in the SU(2) × U(1)

electroweak model with an arbitrary number of scalar SU(2) doublets, with hypercharge ±1/2, and an
arbitrary number of scalar SU(2) singlets.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Definition of the oblique parameters. The oblique parameters are a useful way to parametrize
the effects of new physics (NP) on electroweak observables when the following criteria are sat-
isfied:

1. The electroweak gauge group is the standard SU(2) × U(1).
2. The NP particles have suppressed couplings to the light fermions with which experiments

are performed; they couple mainly to the Standard Model (SM) gauge bosons γ , Z0, and
W±.

3. The relevant electroweak measurements are those made at the energy scales q2 ≈ 0, q2 =
m2

Z , and q2 = m2
W .
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When this happens, the NP effects may be parametrized by only six quantities, which were
defined by Maksymyk et al. [1], following the work by various other authors [2,3], as1

(1)
α

4s2
Wc2

W

S = AZZ(m2
Z) − AZZ(0)

m2
Z

− ∂Aγγ (q2)

∂q2

∣∣∣∣
q2=0

+ c2
W − s2

W

cWsW

∂AγZ(q2)

∂q2

∣∣∣∣
q2=0

,

(2)αT = AWW(0)

m2
W

− AZZ(0)

m2
Z

,

α

4s2
W

U = AWW(m2
W) − AWW(0)

m2
W

− c2
W

AZZ(m2
Z) − AZZ(0)

m2
Z

(3)− s2
W

∂Aγγ (q2)

∂q2

∣∣∣∣
q2=0

+ 2cW sW
∂AγZ(q2)

∂q2

∣∣∣∣
q2=0

,

(4)αV = ∂AZZ(q2)

∂q2

∣∣∣∣
q2=m2

Z

− AZZ(m2
Z) − AZZ(0)

m2
Z

,

(5)αW = ∂AWW(q2)

∂q2

∣∣∣∣
q2=m2

W

− AWW(m2
W) − AWW(0)

m2
W

,

(6)
α

sWcW

X = ∂AγZ(q2)

∂q2

∣∣∣∣
q2=0

− AγZ(m2
Z)

m2
Z

.

Here, α = e2/(4π) = g2s2
W/(4π) is the fine-structure constant, sW = sin θW and cW = cos θW

are the sine and cosine, respectively, of the weak mixing angle θW , and the AV V ′(q2) are the
coefficients of gμν in the vacuum-polarization tensors

(7)Π
μν

V V ′(q) = gμνAV V ′
(
q2) + qμqνBV V ′

(
q2),

where V V ′ may be either γ γ , γZ, ZZ, or WW , and q = (qα) is the four-momentum of the
gauge boson.

Our definition of the oblique parameters follows [1] and allows for the case in which the NP
scale is not much higher than the Fermi scale: it is not assumed that the AV V ′(q2) are linear
functions of q2. The original definitions [3] made that assumption and, consequently, there were
only the three oblique parameters S, T , and U .

It is convenient to absorb into the oblique parameters the prefactors on the left-hand sides of
Eqs. (1)–(6), by defining

S̄ ≡ α

4s2
Wc2

W

S, T̄ ≡ αT , Ū ≡ α

4s2
W

U,

(8)V̄ ≡ αV, W̄ ≡ αW, X̄ ≡ α

sWcW

X.

It should be stressed that, in the definition of an oblique parameter O , a subtraction of the SM
contribution should always be understood, i.e.,

(9)O = O|NP − O|SM.

1 We follow the convention for the sign of the photon field in [4].
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Therefore, the AV V ′(q2) that we utilize in this paper are in reality

(10)AV V ′
(
q2) = AV V ′

(
q2)∣∣

NP − AV V ′
(
q2)∣∣

SM.

Thus, the contributions to the AV V ′(q2) from loops of gauge bosons—including their longitudi-
nal components viz. the “would-be” Goldstone bosons—cancel.

The subtraction of the SM contributions must also be used in the comparison of NP with
the precision data [5]. One should note that, in such a comparison, one cannot2 simultaneously
determine from the data the SM Higgs-boson mass and the oblique parameters S and T .

Because of gauge invariance,

(11)Aγγ (0) = AγZ(0) = 0.

Therefore, X in Eq. (6) may be rewritten as

(12)X̄ = ∂AγZ(q2)

∂q2

∣∣∣∣
q2=0

− AγZ(m2
Z) − AγZ(0)

m2
Z

.

The parameter 	r . As a practical example of the application of the oblique parameters, we
may consider 	r , defined by the relation [6] (see also [7,8])

(13)Gμ = πα√
2m2

Ws2
W(1 − 	r)

,

where s2
W ≡ 1 − m2

W/m2
Z . The parameter 	r contains the loop corrections to the tree-level rela-

tion among mW , mZ , α, and the muon decay constant Gμ. Let us define

(14)	r ′ = 	r|NP − 	r|SM.

It is possible—provided that the NP fields have suppressed couplings to the light fermions in-
volved in the measurements of α, Gμ, mZ , and mW —to express 	r ′ in terms of the oblique
parameters S, T , and U . Indeed, in that case 	r ′ originates solely in modifications to the gauge-
boson propagators, viz. [7]

(15)

	r ′ = ∂Aγγ (q2)

∂q2

∣∣∣∣
q2=0

+ AWW(0) − AWW(m2
W)

m2
W

− c2
W

s2
W

[
AZZ(m2

Z)

m2
Z

− AWW(m2
W)

m2
W

]
,

where Eq. (11) has been taken into account. One then easily finds that [1]

(16)	r ′ = α

s2
W

(
−1

2
S + c2

WT + c2
W − s2

W

4s2
W

U

)
.

This relation is useful for a comparison of any particular NP model with the experimental data
viz. the measured mass of the W± gauge bosons. Indeed, if one considers the measured values
of α, Gμ, and m2

Z to constitute an experimental input to the SU(2) × U(1) gauge theory, then
the relations (13) and (14) lead to the prediction of the W± mass

(17)m2
W = m2

W

∣∣
SM

(
1 + s2

W

c2
W − s2

W

	r ′
)

.

2 J. Erler and P. Langacker in [5], p. 119.
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Historically, the parameter 	r has played an important role in the study of the SM; for instance,
it has allowed the prediction of the top-quark mass before the actual observation of that particle.3

Aim of this paper. The purpose of this paper is to give formulae for the six oblique parameters
at one-loop level4 in an extension of the SM characterized by an enlarged scalar sector. The
scalar sector of the SM consists of only one SU(2) doublet, with hypercharge 1/2. In our NP
model, which we call the multi-Higgs-doublet-and-singlet model (mHDSM), there is an arbitrary
number of such scalar SU(2) doublets, together with an arbitrary number of scalar SU(2) singlets
with arbitrary hypercharges. It turns out that it is possible to derive simple, closed formulae for
the oblique parameters in the mHDSM, in terms of only five functions of the masses of the scalar
fields, and of the matrix elements of only two mixing matrices.

In the mHDSM, scalars with electric charges 0 or ±1 are decoupled from scalars with any
other electric charges. Therefore, in Section 2 we outline the mHDSM in which all scalar fields
have electric charges 0 or ±1, focusing especially on a general treatment of the mixing of the
scalars. Section 3 contains our formulae for the oblique parameters originating in that sector of
the mHDSM. In Section 4 we develop the formulae to the case in which SU(2) singlets with
electric charges different from 0 and ±1 are present in the mHDSM. Section 5 summarizes the
findings of this paper. A set of three appendices explains some intermediate steps of our compu-
tations; Appendix A compiles various relations satisfied by the mixing matrices of the scalars,
Appendix B presents the needed Feynman integrals, and Appendix C contains the functions of
the scalar masses which occur in the oblique parameters.

2. The model

We consider an SU(2) × U(1) electroweak gauge model including nd scalar SU(2) doublets
φk with hypercharge 1/2, nc complex scalar SU(2) singlets χ+

j with hypercharge 1, and nn real

scalar SU(2) singlets χ0
l with hypercharge 0:

φk =
(

ϕ+
k

ϕ0
k

)
(k = 1,2, . . . , nd), χ+

j (j = 1,2, . . . , nc),

(18)χ0
l (l = 1,2, . . . , nn).

The neutral fields have vacuum expectation values (VEVs)

(19)〈0|ϕ0
k |0〉 = vk√

2
, 〈0|χ0

l |0〉 = ul,

the vk being in general complex; the ul are real since the χ0
l are real fields. As usual, we expand

the neutral fields around their VEVs:

(20)ϕ0
k = vk + ϕ0

k

′
√

2
, χ0

l = ul + χ0
l

′
.

Our treatment of the scalars was previously used in [9]; it is a generalization of the treatment in
[10,11]. The charged fields in (18) can be expressed in terms of the charged mass eigenfields S+

a

3 For references see [5], p. 526.
4 Since we are concerned with the oblique parameters at only the one-loop level, we are allowed to use throughout the

tree-level relation mW = cW mZ .
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by

(21)ϕ+
k =

n∑
a=1

UkaS
+
a , χ+

j =
n∑

a=1

TjaS
+
a ,

with n = nd + nc. Similarly, the neutral fields in (20) are linear combinations of the real neutral
mass eigenfields S0

b :

(22)ϕ0
k

′ =
m∑

b=1

VkbS
0
b , χ0

l

′ =
m∑

b=1

RlbS
0
b ,

with m = 2nd + nn. The dimensions of the matrices in Eqs. (21) and (22) are

(23)U : nd × n, T : nc × n, V : nd × m, R: nn × m.

The matrices

(24)Ũ ≡
(
U
T

)
, Ṽ ≡

(ReV
ImV
R

)

are the diagonalizing matrices for the mass-squared matrices of the charged and neutral scalars,
respectively. The matrix Ũ is n × n unitary, the matrix Ṽ is m × m orthogonal.

Since we are dealing with a spontaneously broken SU(2) × U(1) gauge theory, there are
three unphysical Goldstone bosons, G± and G0, which are “swallowed” by the W± and Z0,
respectively, to become their longitudinal components. For definiteness we assign to them the
indices a = 1 and b = 1, respectively:

(25)S±
1 = G±, S0

1 = G0.

The masses of G± and of G0—in a general ’t Hooft (Rξ ) gauge—are arbitrary and unphysi-
cal: they cannot appear in the final formula for any observable quantity. We have checked, by
computing the oblique parameters in an arbitrary ’t Hooft gauge, that all terms containing those
masses do indeed cancel.

In the SM, T and R do not exist and U = (1), V = (i,1).

3. The results

The parameter T in the mHDSM was computed in our previous paper [9], where an extensive
presentation of its derivation has been given. Therefore, we shall give here only the final result
for that oblique parameter.

For all other five parameters, all that one needs to calculate are the functions

(26)
AV V ′(q2) − AV V ′(0)

q2
,

for V V ′ = ZZ, WW , or γZ, and q2 = m2
V ′ , and

(27)
∂AV V (q2)

∂q2

∣∣∣∣
q2=m2

V

− AV V (m2
V ) − AV V (0)

m2
V

,

for V = Z and V = W , and also the derivatives of Aγγ (q2) and of AγZ(q2) at q2 = 0.
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Fig. 1. Three types of Feynman diagrams occurring in the calculation of the vacuum polarizations.

For a presentation of the Lagrangian of the mHDSM in the physical basis of the scalars we re-
fer the reader to [9]. We remark that the matrices T and R can be eliminated from the Lagrangian
by making use of the unitarity of Ũ and the orthogonality of Ṽ , respectively, in Eq. (24). The
Feynman diagrams which contribute to the vacuum polarizations in the mHDSM are depicted in
Fig. 1.5 Diagrams of type (a) are independent of q2. Therefore they affect only T . It is also nec-
essary to compute type (a) diagrams if we want to demonstrate Eq. (11) in the mHDSM, which
we did; except for this purpose, type (a) Feynman diagrams are irrelevant in the computation of
S, U , V , W , and X, and will henceforth not be considered in this paper.

There are no type (c) diagrams for vacuum polarizations involving either one or two photons—
see the mHDSM Lagrangian in [9]. The type (c) diagrams are only relevant for AWW and AZZ .

In the mHDSM all the oblique parameters, except T , are ultraviolet-finite after summation
over all the Feynman diagrams but before subtraction of the SM expression. The parameter T ,
on the other hand, only becomes non-divergent after the subtraction of the SM Higgs-boson
loops, as shown in [9].

We begin by quoting the result for T̄ from [9]:

T̄ = g2

64π2m2
W

{
n∑

a=2

m∑
b=2

∣∣(U†V
)
ab

∣∣2
F

(
m2

a,μ
2
b

) −
m−1∑
b=2

m∑
b′=b+1

[
Im

(
V†V

)
bb′

]2
F

(
μ2

b,μ
2
b′
)

− 2
n−1∑
a=2

n∑
a′=a+1

∣∣(U†U
)
aa′

∣∣2
F

(
m2

a,m
2
a′

)

+ 3
m∑

b=2

[
Im

(
V†V

)
1b

]2[
F

(
m2

Z,μ2
b

) − F
(
m2

W,μ2
b

)]

(28)− 3
[
F

(
m2

Z,m2
h

) − F
(
m2

W,m2
h

)]}
,

where ma denotes the mass of the charged scalars S±
a and μb denotes the mass of the neutral

scalar S0
b . The second term in the right-hand side (RHS) of Eq. (28) contains a sum over all pairs

of different physical neutral scalars, i.e., 2 � b < b′ � m; similarly, the third term in that RHS
contains a sum over all pairs of different physical charged scalars, i.e., 2 � a < a′ � n. The last
term in the RHS of Eq. (28) consists of the subtraction, from the rest of T̄ , of the SM result. In
that subtraction, mh is the mass of the sole physical neutral scalar of the SM, the Higgs particle.
The well-known [12] function F is given by

(29)F(I, J ) ≡
{

I+J
2 − IJ

I−J
ln I

J
⇐ I 
= J,

0 ⇐ I = J.

5 There are also tadpole diagrams, but they are irrelevant for the computation of the oblique parameters.
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Fig. 2. F(m2
A

,m2
B

)/m2
W

vs. mA and mB .

We depict this function in Fig. 2. Next we write down the results for S̄, Ū , and X̄:

S̄ = g2

384π2c2
W

{
n∑

a=2

[
2s2

W − (
U†U

)
aa

]2
G

(
m2

a,m
2
a,m

2
Z

)

+ 2
n−1∑
a=2

n∑
a′=a+1

∣∣(U†U
)
aa′

∣∣2
G

(
m2

a,m
2
a′ ,m2

Z

)

+
m−1∑
b=2

m∑
b′=b+1

[
Im

(
V†V

)
bb′

]2
G

(
μ2

b,μ
2
b′ ,m2

Z

)

− 2
n∑

a=2

(
U†U

)
aa

lnm2
a +

m∑
b=2

(
V†V

)
bb

lnμ2
b − lnm2

h

(30)+
m∑

b=2

[
Im

(
V†V

)
1b

]2
Ĝ

(
μ2

b,m
2
Z

) − Ĝ
(
m2

h,m
2
Z

)}
,

Ū = g2

384π2

{
n∑

a=2

m∑
b=2

∣∣(U†V
)
ab

∣∣2
G

(
m2

a,μ
2
b,m

2
W

)

−
n∑

a=2

[
2s2

W − (
U†U

)
aa

]2
G

(
m2

a,m
2
a,m

2
Z

)

− 2
n−1∑
a=2

n∑
a′=a+1

∣∣(U†U
)
aa′

∣∣2
G

(
m2

a,m
2
a′ ,m2

Z

)
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−
m−1∑
b=2

m∑
b′=b+1

[
Im

(
V†V

)
bb′

]2
G

(
μ2

b,μ
2
b′ ,m2

Z

)

+
m∑

b=2

[
Im

(
V†V

)
1b

]2[
Ĝ

(
μ2

b,m
2
W

) − Ĝ
(
μ2

b,m
2
Z

)]

(31)− Ĝ
(
m2

h,m
2
W

) + Ĝ
(
m2

h,m
2
Z

)}
,

(32)X̄ = − g2sW

192π2cW

n∑
a=2

[
2s2

W − (
U†U

)
aa

]
G

(
m2

a,m
2
a,m

2
Z

)
.

An explicit SM subtraction occurs in both S̄ and Ū . In X̄, on the other hand, such an explicit SM
subtraction, showing the mass mh of the SM Higgs boson, does not occur, because X̄ relates to
AγZ(q2), and neutral particles—like the SM Higgs boson—do not couple to the photon. Still,
the SM subtraction has been performed in X̄, as elsewhere, in order to remove, from the sum
over the charged scalars S±

a , the Goldstone-boson (a = 1) term. The explicit forms of the two
functions G(I,J,Q) and Ĝ(I,Q) are found in Eqs. (C.2) and (C.5) of Appendix C. Notice that,
contrary to what happens to the function F(I, J ) in Eq. (29), the function G(I,J,Q) does not
vanish when its first two arguments I and J , i.e., the squared masses of the two scalar particles
in the loop of a type (b) diagram, are equal. In S̄, the terms

(33)−2
n∑

a=2

(
U†U

)
aa

lnm2
a +

m∑
b=2

(
V†V

)
bb

lnμ2
b − lnm2

h

are meaningful since

(34)−2
n∑

a=2

(
U†U

)
aa

+
m∑

b=2

(
V†V

)
bb

− 1 = 0,

as can be verified by using Eqs. (A.5), (A.6), (A.8), and (A.9); therefore, the terms (33) are
invariant under a scaling of all the scalar masses by a common factor.

In order to write down formulae for V̄ and W̄ we need the functions H(I,J,Q) and Ĥ (I,Q)

in Eqs. (C.7) and (C.10) of Appendix C. We have

V̄ = g2

384π2c2
W

{
n∑

a=2

[
2s2

W − (
U†U

)
aa

]2
H

(
m2

a,m
2
a,m

2
Z

)

+ 2
n−1∑
a=2

n∑
a′=a+1

∣∣(U†U
)
aa′

∣∣2
H

(
m2

a,m
2
a′ ,m2

Z

)

+
m−1∑
b=2

m∑
b′=b+1

[
Im

(
V†V

)
bb′

]2
H

(
μ2

b,μ
2
b′ ,m2

Z

)

(35)+
m∑[

Im
(
V†V

)
1b

]2
Ĥ

(
μ2

b,m
2
Z

) − Ĥ
(
m2

h,m
2
Z

)}
,

b=2
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W̄ = g2

384π2

{
n∑

a=2

m∑
b=2

∣∣(U†V
)
ab

∣∣2
H

(
m2

a,μ
2
b,m

2
W

)

(36)+
m∑

b=2

[
Im

(
V†V

)
1b

]2
Ĥ

(
μ2

b,m
2
W

) − Ĥ
(
m2

h,m
2
W

)}
.

4. Scalar singlets with electric charge other than 0,±1

Scalar SU(2) singlets with electric charge Q 
= 0,±1 cannot mix with the scalars discussed
in the previous two sections. Moreover, they couple to the photon and Z0 but do not couple to
the W±. Also, there are no off-diagonal couplings among different scalars with the same charge
Q—for the Lagrangian, see [9]. Therefore, without loss of generality, we may confine ourselves
to a single scalar SU(2) singlet, with mass m and electric charge Q. In [9] we have shown that,
for such a scalar,

(37)T̄ = 0.

Since it does not couple to the W± gauge bosons, AWW = 0 and therefore

(38)W̄ = 0

too.
The fact that there are no type (c) diagrams, and that two identical scalars occur in the loop of

type (b) diagrams, greatly facilitates the computation of the other oblique parameters. The results
are

(39)S̄ = Q2g2s4
W

96π2c2
W

G
(
m2,m2,m2

Z

)
,

(40)V̄ = Q2g2s4
W

96π2c2
W

H
(
m2,m2,m2

Z

)
,

and the remaining oblique parameters are proportional to S̄:

(41)Ū = −c2
W S̄,

(42)X̄ = −cW

sW
S̄.

5. Conclusions

In this paper we have calculated the oblique parameters—defined in a fashion appropriate for
new physics at a scale not necessarily much higher than the Fermi scale [1]—in the standard
SU(2) × U(1) electroweak gauge theory supplemented by an arbitrary number of scalar SU(2)

doublets with hypercharge 1/2 and scalar SU(2) singlets with arbitrary hypercharges.
We have found that the oblique parameters may be written in terms of only two mixing ma-

trices U and V , which parametrize the mixing of the charge-1 and charge-0 scalars, respectively.
These matrices take care simultaneously of the mixing of SU(2)-doublet scalars and SU(2)-
singlet scalars, because U is part of a larger unitary matrix Ũ , while ReV and ImV are parts of
a larger real orthogonal matrix Ṽ . The expressions for the oblique parameters require only five
functions F(I, J )/m2 , G(I,J,Q), Ĝ(I,Q), H(I,J,Q), and Ĥ (I,Q), of the squared scalar
W
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masses I and J and of the squared gauge-boson masses Q = m2
W or Q = m2

Z . We have depicted
those functions in Figs. 2–5.

We note that for a model which has a compact spectrum, in the sense that all the scalar
masses—except for the mass of the Higgs particle—are close together, while they are all large
compared to mZ , all those functions are usually smaller than F(I, J )/m2

W , which grows like [13]
(
√

I − √
J )2 and only appears in the parameter T . This is one reason why in general we expect

T to be dominant in the oblique corrections.6 The other reason for the dominance of T is the
relatively large factor g2/(64π2α) = 1/(16πs2

W) contained in T —see Eqs. (8) and (28)—which
multiplies F(I, J )/m2

W ; the oblique parameters other than T have smaller factors.
The functions H(I,J,Q) and Ĥ (I,Q) tend to zero when I/Q and J/Q grow. The function

Ĝ(I,Q) grows like ln(I/Q); pure logarithms of the masses of the scalars also appear in the
expression for S, and they may render that parameter relatively large even if the masses of the
new scalars are all equal. The function G(I,J,Q) is small for I = J but it becomes sizable
whenever I and J are quite far apart, even if they are both much larger than Q, i.e., than the
electroweak scale.
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Appendix A. Mixing-matrix relations

In this appendix we compile some useful relations involving the mixing matrices U and V .
The first set of relations follows from the unitarity of the matrix Ũ and the orthogonality of

the matrix Ṽ defined in Eqs. (24):

(A.1)
m∑

b=1

(
U†V

)
ab

(
V†U

)
ba

= 2
(
U†U

)
aa

,

(A.2)
n∑

a′=1

(
U†U

)
aa′

(
U†U

)
a′a = (

U†U
)
aa

,

(A.3)
n∑

a=1

(
V†U

)
ba

(
U†V

)
ab

= (
V†V

)
bb

,

(A.4)
m∑

b′=1

[
Im

(
V†V

)
bb′

]2 = (
V†V

)
bb

.

Furthermore, since U is nd × n and V is nd × m,

(A.5)
n∑

a=1

(
U†U

)
aa

= nd,

6 One exception is the effective charge in atomic parity violation, in which T is multiplied by a very small factor and
S may dominate [1]. Another exception is the case where only scalar singlets with electric charges other than 0,±1 are
present, because then T = 0 [9].
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(A.6)
m∑

b=1

(
V†V

)
bb

= 2nd.

A second set of relations follows from the convention of placing the vectors pertaining to the
Goldstone bosons in the first columns of Ũ and Ṽ , and also from the explicit form of those
vectors, namely [9,11]

(A.7)Uk1 = vk

v
, Vk1 = i

vk

v
, with v ≡

√√√√ nd∑
k=1

|vk|2 � 246 GeV.

Some ensuing relations are

(A.8)
(
U†U

)
11 = 1,

(A.9)
(
V†V

)
11 = 1,

(A.10)
(
U†V

)
11 = i,

(A.11)
(
U†U

)
a1 = 0 ⇐ a > 1,

(A.12)
(
U†V

)
a1 = 0 ⇐ a > 1,

(A.13)
(
U†V

)
1b

= − Im
(
V†V

)
1b

⇐ b > 1.

Appendix B. Feynman integrals

In this appendix we compute the Feynman integrals which arise in type (b) and type (c) Feyn-
man diagrams.

Diagrams of type (b) lead to

(B.1)igμνA(I, J,Q) = μ̄4−d

∫
ddk

(2π)d

1∫
0

dx
4kμkν

(k2 − 	 + iε)2
,

where μ̄ is the ’t Hooft mass, d the dimension of space–time, and

(B.2)	 = Qx2 + (J − I − Q)x + I.

In Eq. (B.1), Q ≡ q2 is the squared four-momentum of the external gauge bosons, I and J are
the squared masses of the two scalar particles in the loop. Then,

(B.3)A(I,J,Q) = 1

8π2

1∫
0

dx	(div− ln	),

with

(B.4)div = 2

4 − d
− γ + 1 + ln

(
4πμ̄2),

γ being the Euler–Mascheroni constant. Explicitly,
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A(I,J,Q) = 1

8π2

{(
I + J

4
− Q

12

)
(2 div− ln I − lnJ )

+ 2

3
(I + J ) − 5

18
Q − (I − J )2

6Q

(B.5)+
[
(I − J )2

3Q
− I − J

]
I − J

4Q
ln

I

J
+ r

12Q2
f (t, r)

}
.

The function f of

(B.6)t ≡ I + J − Q and r ≡ Q2 − 2Q(I + J ) + (I − J )2

is given by

(B.7)f (t, r) ≡

⎧⎪⎨
⎪⎩

√
r ln | t−√

r

t+√
r
| ⇐ r > 0,

0 ⇐ r = 0,

2
√−r arctan

√−r
t

⇐ r < 0.

The absolute value in the argument of the logarithm takes effect only if

(B.8)Q > (
√

I + √
J )2,

in which case the vacuum polarization has an absorptive part; in Eq. (B.5), though, only the
dispersive part is given, since it is the only one relevant for the oblique parameters.

In diagrams of type (c) the internal particles are a neutral scalar S0
b and a gauge boson V ,

which may be either V = Z0 if we are computing AZZ(q2) or V = W± if we are computing
AWW(q2). We keep the notation of Eq. (B.2) but consider I = μ2

b to be the squared mass of the
neutral scalar and J = m2

V to be the squared mass of the gauge boson. Each vertex of a type
(c) diagram contains one factor of the vector-boson mass mV . In a general ’t Hooft gauge, the
vector-boson propagator, multiplied by m2

V , is

(B.9)
−m2

V gμν + kμkν

k2 − m2
V

− kμkν

k2 − m2
G

,

where mG is the mass of the unphysical Goldstone boson, i.e., mG = m1 when V = W± and
mG = μ1 when V = Z0. The first term in (B.9) leads to a Feynman integral different from the
one of (B.1):

(B.10)igμνĀ(I, J,Q) = μ̄4−d

∫
ddk

(2π)d

1∫
0

dx
−4Jgμν

(k2 − 	 + iε)2
.

Consequently,

(B.11)Ā(I, J,Q) = − J

4π2

1∫
0

dx(div−1 − ln	).

Explicitly,

(B.12)Ā(I, J,Q) = J

8π2

[
−2 div+ ln I + lnJ − 2 + I − J

Q
ln

I

J
+ f (t, r)

Q

]
.
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Fig. 3. G(m2
A

,m2
B

,m2
Z

) vs. mA and mB .

Due to (B.1) and (B.9), the full expression for a type (c) diagram is

(B.13)Ā(I, J,Q) + A(I,J,Q) − A
(
I,m2

G,Q
)
.

The third term in Eq. (B.13) contains the unphysical mass mG and, therefore, it cannot show
up in the final results for the oblique parameters; such terms either cancel internally during the
computation of the scalar contributions to the oblique parameters in the mHDSM, or they cancel
out when the SM contribution is subtracted at the end of that computation.

In the limit Q → 0 both A(I,J,Q) and Ā(I, J,Q) are free from Q−1 divergences and can
be written in terms of the function F(I, J ) in Eq. (29)—see [9].

Appendix C. Functions

In this appendix we derive the functions of the squared masses which actually appear in the
expressions for the oblique parameters.

For terms of the form (26) stemming from type (b) diagrams, we need

(C.1)
A(I,J,Q) − A(I,J,0)

Q
= 1

96π2

[
2 − 2 div+ ln I + lnJ + G(I,J,Q)

]
,

where

G(I,J,Q) ≡ −16

3
+ 5(I + J )

Q
− 2(I − J )2

Q2

(C.2)+ 3

Q

[
I 2 + J 2

I − J
− I 2 − J 2

Q
+ (I − J )3

3Q2

]
ln

I

J
+ r

Q3
f (t, r).

This function is shown in Fig. 3 for Q = m2
Z and for a range of values of mA ≡ √

I and mB ≡√
J . In the case of type (c) diagrams, we have to consider
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(C.3)
Ā(I, J,Q) − Ā(I, J,0)

Q
= 1

8π2

J

Q
G̃(I, J,Q),

where

(C.4)G̃(I, J,Q) ≡ −2 +
(

I − J

Q
− I + J

I − J

)
ln

I

J
+ f (t, r)

Q
.

This is ultraviolet-finite because Ā(I, J,Q) has no ultraviolet divergences proportional to Q.
According to Eq. (B.13), the full function which appears in the computation of type (c) diagrams
is

Ĝ(I,Q) ≡ G(I,Q,Q) + 12G̃(I,Q,Q)

= −79

3
+ 9

I

Q
− 2

I 2

Q2
+

(
−10 + 18

I

Q
− 6

I 2

Q2
+ I 3

Q3
− 9

I + Q

I − Q

)
ln

I

Q

(C.5)+
(

12 − 4
I

Q
+ I 2

Q2

)
f (I, I 2 − 4IQ)

Q
.

Proceeding to terms of the form (27), one has

(C.6)
∂A(I, J,Q)

∂Q
− A(I,J,Q) − A(I,J,0)

Q
= 1

96π2
H(I,J,Q),

which is ultraviolet-finite even for type (b) diagrams. Indeed,

H(I,J,Q) ≡ 2 − 9(I + J )

Q
+ 6(I − J )2

Q2

+ 3

Q

[
−I 2 + J 2

I − J
+ 2

I 2 − J 2

Q
− (I − J )3

Q2

]
ln

I

J

(C.7)+
[
I + J − (I − J )2

Q

]
3f (t, r)

Q2
.

This function is displayed in Fig. 4. Type (c) diagrams give

(C.8)
∂Ā(I, J,Q)

∂Q
− Ā(I, J,Q) − Ā(I, J,0)

Q
= 1

8π2

J

Q
H̃(I, J,Q),

where

H̃ (I, J,Q) ≡ 4 +
(

I + J

I − J
− 2

I − J

Q

)
ln

I

J

(C.9)+ −Q2 + 3Q(I + J ) − 2(I − J )2

rQ
f (t, r).

However, in analogy to the function Ĝ(I,Q), the function occurring in the full contribution of
type (c) diagrams is

Ĥ (I,Q) ≡ H(I,Q,Q) + 12H̃ (I,Q,Q)

= 47 − 21
I

Q
+ 6

I 2

Q2
+ 3

(
7 − 12

I

Q
+ 5

I 2

Q2
− I 3

Q3
+ 3

I + Q

I − Q

)
ln

I

Q

(C.10)+ 3

(
28 − 20

I + 7
I 2

2
− I 3

3

)
f (I, I 2 − 4IQ)

.

Q Q Q I − 4Q
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Fig. 4. H(m2
A

,m2
B

,m2
Z

) vs. mA and mB .

Fig. 5. Ĝ(m2
A

,m2
Z

) and Ĥ (m2
A

,m2
Z

) vs. mA .

The functions Ĝ(I,Q) and Ĥ (I,Q) are shown in Fig. 5, for Q = m2
Z and a range of mA ≡√

I . Asymptotically, with ε ≡ Q/I ,

(C.11)Ĝ(I,Q) =
(

−5

3
+ ln

1

ε

)
− 17

2
ε +O

(
ε2),

(C.12)Ĥ (I,Q) = −1

2
ε − 27

10
ε2 +O

(
ε3).

Notice that, when ε is very small, i.e., when the neutral-scalar masses are much larger than the
Fermi scale, Ĥ (I,Q) → 0 but Ĝ(I,Q) grows logarithmically like − ln ε.

In S̄, Ū , and X̄ there are contributions from the derivatives with respect to q2 of the photon
self-energy, and also of the mixed photon-Z0 self-energy, evaluated at q2 = 0. Those self-
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energies only arise from type (b) diagrams and have two identical charged scalars in the loop.
From equation (B.5), one obtains the very simple expression

(C.13)
∂A(I, I,Q)

∂Q

∣∣∣∣
Q=0

= 1 − div+ ln I

48π2
,

so that no new function beyond F(I, J ), G(I,J,Q), Ĝ(I,Q), H(I,J,Q), and Ĥ (I,Q) is
needed for the oblique parameters.
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