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1. Introduction

It is now experimentally firmly established that the neutrinos are massive and that leptons

of different families mix in the charged weak interaction — see [1] for reviews and [2, 3]

for recent fits. Lepton mixing is given by a 3 × 3 unitary matrix (Uαj), with α = e, µ, τ

corresponding to the lepton flavours and j = 1, 2, 3 corresponding to the neutrino mass

eigenstates. According to the most recent three-flavour neutrino oscillation update [3], at

the 3σ level, the results for neutrino mixing are

|Ue3|2 ≤ 0.056, 0.25 ≤ sin2 θ⊙ ≤ 0.37, 0.36 ≤ sin2 θatm ≤ 0.67, (1.1)

where

sin2 θ⊙ ≡ |Ue2|2

1 − |Ue3|2
, (1.2)

sin2 θatm ≡ |Uµ3|2

1 − |Ue3|2
. (1.3)

Moreover, at the 3σ level the neutrino mass differences satisfy [3]

7.05 × 10−5 eV2 ≤ ∆m2
⊙ ≡ m2

2 −m2
1 ≤ 8.34 × 10−5 eV2, (1.4)

2.07 × 10−3 eV2 ≤ ∆m2
atm ≡

∣

∣m2
3 −m2

1

∣

∣ ≤ 2.75 × 10−3 eV2, (1.5)

the sign of m2
3 −m2

1 being unknown.
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The bounds (1.1) suggest that the lepton mixing might be tri-bimaximal, i.e. that

the lepton mixing matrix might be, apart from unphysical rephasings and from possible

Majorana phases,

U = UHPS ≡







2/
√

6 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2






. (1.6)

The phenomenological hypothesis U = UHPS has been put forward by Harrison, Perkins and

Scott (HPS) [4]. However, it turns out that, at the model-building level, it is quite awkward

to enforce U = UHPS through symmetries. In particular, all existing models for U = UHPS

involve some form of vacuum alignment, i.e. two subsectors of the scalar sector having

vacuum expectation values (VEVs) aligned in different directions; some papers where this

problem has been discussed are found in [5], for more papers see the vast bibliography

of [6].1

In this paper we adopt the milder hypothesis that lepton mixing is trimaximal, i.e. that

|Ue2|2 = |Uµ2|2 = |Uτ2|2 =
1

3
. (1.7)

Trimaximal mixing relaxes some of the HPS assumptions [4], since it allows for a nonzero

Ue3 as well as for sin2 θatm 6= 1/2. Our main purpose in this paper is to show that trimax-

imal lepton mixing may be enforced through a simple model which involves no vacuum

alignment.

In section 2 we make a brief phenomenological study of trimaximal mixing, proceeding

in section 3 to present the simplest version of our model. In section 4 we consider some

variations on the model. Our conclusions are found in section 5.

2. Trimaximal mixing

It follows from the trimaximal-mixing assumption |Ue2|2 = 1/3 and equation (1.2) that

sin2 θ⊙ =
1

3
(

1 − |Ue3|2
) ≥ 1

3
, (2.1)

which is somewhat disfavoured experimentally, since the best-fit value for sin2 θ⊙ is 0.304 <

1/3 [3]. The situation becomes worse for the trimaximal-mixing hypothesis when Ue3 is

nonzero; indeed, a recent fit [2] found |Ue3|2 = 0.016 ± 0.010, in agreement with |Ue3|2 =

0.01
+0.016
−0.011 in [3], which is not yet a significant indication for a nonzero Ue3. In any case, the

trimaximal-mixing hypothesis might be testable soon through more accurate measurements

of |Ue2| and |Ue3|.
A trimaximal lepton mixing matrix U has the moduli of two of its matrix elements

of the same column fixed. This means that only two parameters remain in U ,2 which can

be taken as |Ue3|, or the mixing angle θ13 and a Dirac phase. Clearly, for the latter a

1An alternative approach consists in using extra dimensions for model building, see for instance [7].
2Besides, two Majorana phases are present in U if the neutrinos are Majorana fermions.
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convention has to be adopted. Using the convention for the Dirac phase δ promulgated

by [8], we find

tan 2θatm =
1 − 2 |Ue3|2

|Ue3| cos δ
√

2 − 3 |Ue3|2
. (2.2)

In the following, we shall employ the parameterization of a trimaximal mixing matrix:

U = diag
(

eiδe , eiδµ , eiδτ
)

UHPS







c 0 se−iψ

0 1 0

−seiψ 0 c






diag

(

eiβ1 , eiβ2 , eiβ3

)

, (2.3)

where c = cos θ and s = sin θ. The mixing angle θ parameterizes how much lepton mix-

ing deviates from tri-bimaximality. The phase ψ is of Dirac type.3 The phases δe,µ,τ ,

together with one of the phases βj , are unphysical; only the phase differences 2 (β1 − β2)

and 2 (β2 − β3) can be physical, if the neutrinos happen to be of Majorana type. The

modification (2.3) of the HPS mixing matrix has recently also been considered in [9].

From equations (2.3) and (1.6),

|Ue3|2 =
2

3
s2, (2.4)

sin2 θatm =
1

2
+

cs cosψ
√

3
(

1 − |Ue3|2
) . (2.5)

Therefore,
(

sin2 θatm − 1

2

)2

≤ |Ue3|2
2

1 − 3
2 |Ue3|

2

(

1 − |Ue3|2
)2 . (2.6)

This inequality can also be obtained directly from equation (2.2). The inequality (2.6)

relates, when the mixing is trimaximal, the maximal possible departure from maximal

atmospheric-neutrino mixing, i.e. from sin2 θatm = 1/2, to the value of |Ue3|.

3. A simple model

Introduction. Let us assume that the neutrinos are Majorana fermions. Then, in the

weak basis in which the charged-lepton mass matrix is diagonal, the effective mass La-

grangian for the light neutrinos is

Lneutrino mass =
1

2

(

νTeL, ν
T
µL, ν

T
τL

)

C−1Mν







νeL
νµL
ντL






+ H.c., (3.1)

where C is the Dirac-Pauli charge-conjugation matrix in Dirac space and Mν is a 3 × 3

symmetric matrix in flavour space. The lepton mixing matrix U diagonalizes Mν :

UTMν U = diag (m1,m2,m3) , (3.2)

3Note that the phase ψ corresponds to a Dirac phase convention different from that of δ.
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the neutrino masses m1,2,3 being non-negative real. Using the parameterization of a tri-

maximal U in equation (2.3), we shall denote

µj ≡ mje
−2iβj for j = 1, 2, 3. (3.3)

Then, if we assume the phases δe,µ,τ to vanish, we have

diag (µ1, µ2, µ3) =







c 0 −seiψ
0 1 0

se−iψ 0 c







(

UTHPSMνUHPS

)







c 0 se−iψ

0 1 0

−seiψ 0 c






. (3.4)

Thus, up to the phase transformation given by the phases δe,µ,τ , trimaximal mixing means

that the vector (1, 1, 1)T is an eigenvector of Mν with eigenvalue µ2. This means that, in

the phase convention δe = δµ = δτ = 0 for Mν , the sum of the matrix elements of Mν over

all rows and columns of Mν is equal (to µ2). It is the purpose of this section to construct

a model based on this idea.

The group ∆(27). ∆(27) is a discrete group with 27 elements. It has two inequivalent

triplet irreducible representations (irreps), 3 and 3∗, and nine inequivalent singlet irreps,

1(p,q) (p, q = 0, 1, 2). The triplet irreps of ∆(27) are faithful, the singlet irreps are non-

faithful. The group ∆(27) is generated by two transformations, C and T . In the 3, those

transformations are represented as

3 : C →







0 0 1

1 0 0

0 1 0






, T →







1 0 0

0 ω 0

0 0 ω2






, with ω ≡ e2πi/3 =

−1 + i
√

3

2
. (3.5)

Notice that the matrices representing C and T belong to SU(3), therefore ∆(27) may be

viewed as a subgroup of SU(3). In the 3∗,

3∗ : C →







0 0 1

1 0 0

0 1 0






, T →







1 0 0

0 ω2 0

0 0 ω






. (3.6)

In the singlet irreps,

1(p,q) : C → ωp, T → ωq. (3.7)

The relevant tensor products of irreps of ∆(27) are

3 ⊗ 3 = 3∗ ⊕ 3∗ ⊕ 3∗, (3.8)

3 ⊗ 3∗ = ⊕2
p,q=0 1(p,q). (3.9)

Multiplets and symmetries. In our model we consider only the lepton sector and

the electroweak interactions. The gauge group is the standard SU(2) × U(1). There are

three left-handed-lepton doubletsDαL = (ναL, αL)T and three right-handed charged-lepton

singlets αR (α = e, µ, τ). We add to these standard multiplets four right-handed neutrino

singlets in order to enable the seesaw mechanism [10]. Those four right-handed neutrinos

are divided in two sets, three ναR and one ν0R. In the scalar sector, there are four Higgs

doublets, once again divided in two sets: three φα and one φ0. We need moreover a scalar

gauge singlet S. The SU(2)×U(1) and ∆(27) assignments of all these multiplets are given

in table 1.
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DαL αR ναR ν0R φα φ0 S

SU(2) × U(1) (2,−1) (1,−2) (1, 0) (1, 0) (2, 1) (2, 1) (1, 0)

∆(27) 3 3∗ 3 1(1,0) 3∗ 1(0,0) 1(1,0)

Table 1: Fermion and scalar multiplets of our model.

Additional Z2 symmetries. Besides the gauge group and ∆(27), we impose three extra

Z2 symmetries ze,µ,τ :

zα : αR → −αR, φα → −φα, (3.10)

while all other multiplets remain unchanged. Each zα has the purpose of “gluing” αR to

φα in the Yukawa couplings; this is the same idea as in [11] (see also [12]). Since the zα
do not commute with ∆(27), the horizontal symmetry group employed in our model is

actually much larger than ∆(27).

Yukawa couplings. Let us first consider the Yukawa couplings of the αR. They are

LαR Yukawas = −y1

∑

α=e,µ,τ

D̄αLαRφα + H.c. (3.11)

According to equation (3.8), ∆(27) would allow two other couplings,

−y2

(

D̄eLµRφτ + D̄µLτRφe + D̄τLeRφµ
)

−y3

(

D̄eLτRφµ + D̄µLeRφτ + D̄τLµRφe
)

+ H.c.
(3.12)

These terms would destroy trimaximal mixing. It is for this reason that we have introduced

into our model the symmetries zα, which remove the terms (3.12) from the Lagrangian.

The masses of the charged leptons are mα = |y1vα|, where vα is the VEV of the neutral

component of φα. If we manage ve,µ,τ to be all different, then the charged leptons will be

non-degenerate in mass as desired.

The Yukawa couplings of the right-handed neutrinos are given by

LνR Yukawas = −y4

∑

α=e,µ,τ

D̄αLναR (iτ2φ
∗
0) +

y5

2
νT0RC

−1ν0R S + H.c. (3.13)

Soft breaking of the symmetries. Soft breaking of (super)symmetries plays an impor-

tant role in many models. Soft breaking is usually needed in models which want to explain

mixing features through some symmetries. It has been emphasized that successful models

need a residual symmetry [13]; for instance, in [11, 14] the residual symmetry after soft

breaking is the µ–τ interchange symmetry, which leads to maximal atmospheric-neutrino

mixing and to Ue3 = 0.

In the present model, we break ∆(27) softly in two steps. Firstly we allow it to be

broken, by terms of dimension three, down to the Z3 symmetry generated by the transfor-

mation C, which is denoted Z3(C). Secondly we allow Z3(C) to be softly broken by terms

of dimension two. We thus have the soft-breaking chain

∆(27)
dim3−→ Z3(C)

dim 2−→ {e}, (3.14)

– 5 –
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where {e} symbolizes the trivial group consisting only of the unit element.

The soft-breaking terms of dimension three occur in the Lagrangian of bare Majorana

masses

LMajorana masses =
M∗

0

2

∑

α=e,µ,τ

νTαRC
−1ναR

+M∗
1

(

νTeRC
−1νµR + νTµRC

−1ντR + νTτRC
−1νeR

)

+
M∗

2

2

(

νTeR + ω νTµR + ω2 νTτR
)

C−1ν0R + H.c. (3.15)

The soft-breaking terms of dimension two occur in the scalar potential

V = ceφ
†
eφe + cµφ

†
µφµ + cτφ

†
τφτ + · · · , (3.16)

the coefficients (with dimension mass squared) ce, cµ and cτ being all different, thereby

breaking Z3(C). This is needed in order to obtain, upon spontaneous symmetry breaking,

different VEVs ve,µ,τ and, therefore, different charged-lepton masses:

me : mµ : mτ = |ve| : |vµ| : |vτ | . (3.17)

Furthermore, we might include in V all terms like φ†eφµ, etc. This would also break the

symmetries zα softly and would avoid all potential problems with spontaneous breaking of

discrete symmetries in our model.

Seesaw mechanism. From equations (3.13) and (3.15), we see that there are in our

model Majorana and Dirac neutrino mass matrices

MR =











M0 M1 M1 M2

M1 M0 M1 ω2M2

M1 M1 M0 ωM2

M2 ω2M2 ωM2 MN











, MD =











a 0 0

0 a 0

0 0 a

0 0 0











, (3.18)

respectively. We have defined MN = y∗5v
∗
S , where vS is the VEV of the scalar singlet S, and

a = y∗4v0, where v0 is the VEV of the neutral component of φ0. The seesaw mechanism [10]

tells us that

Mν = −MT
DM

−1
R MD. (3.19)

After some algebra one finds that Mν is of the form

Mν =







x+ y z + ω2y z + ωy

z + ω2y x+ ωy z + y

z + ωy z + y x+ ω2y






, (3.20)

where

x = −a2 M0 +M1

(M0 −M1) (M0 + 2M1)
, (3.21)

z = a2 M1

(M0 −M1) (M0 + 2M1)
, (3.22)

y = −a2 M2
2

MN (M0 −M1)
2 . (3.23)

– 6 –
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It is clear that

Mν







1

1

1






= (x+ 2z)







1

1

1






. (3.24)

Therefore, our model predicts trimaximal mixing.

A further prediction. We compute

UTHPSMνUHPS =







x− z + 3
2 y 0 i 3

2 y

0 x+ 2z 0

i 3
2 y 0 x− z − 3

2 y






. (3.25)

Comparing this result with equation (3.4), we see that

µ2 = x+ 2z =
−a2

M0 + 2M1
(3.26)

and

x− z +
3

2
y = µ1c

2 + µ3s
2e2iψ , (3.27)

x− z − 3

2
y = µ3c

2 + µ1s
2e−2iψ , (3.28)

i
3

2
y = cs

(

µ3e
iψ − µ1e

−iψ
)

. (3.29)

Therefore,

µ1

µ3
=

(

c− iseiψ

c− ise−iψ

)2

, (3.30)

hence
m1

m3
=

1 + 2cs sinψ

1 − 2cs sinψ
. (3.31)

Comparing this result with equations (2.4) and (2.5), one finds that

|Ue3|2
(

2 − 3 |Ue3|2
)

−
(

1 − |Ue3|2
)2

(

2 sin2 θatm − 1
)2

=
1

3

(

m2
3 −m2

1

)2

(m1 +m3)
4 , (3.32)

cf. inequality (2.6). The prediction (3.32) relates the deviation from tri-bimaximal lepton

mixing to the mass ratio m1/m3. Using the experimental value of ∆m2
atm, then, the sum

of neutrino masses m1 +m3 is determined by the deviation from tri-bimaximal mixing.

With the experimental 3σ bounds (1.1) and (1.5), one finds

m1 +m3 ≥ 0.060 eV. (3.33)

If |Ue3|2 is smaller than the bound (1.1) and/or if sin2 θatm deviates from 1/2, then the

lower bound (3.33) on m1 +m3 is strengthened. However, the fourth power of m1 +m3 in

equation (3.32) dampens this effect.

Taking the experimental values of ∆m2
atm and ∆m2

⊙ as input, equation (3.32) deter-

mines the smallest neutrino mass mmin, which is m1 for the normal and m3 for the inverted

– 7 –
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Figure 1: The minimal neutrino mass and the sum of the neutrino masses, for both types of

spectra, as a function of |Ue3|2. We have fixed the mass-squared differences at the mean values

given in [3] and assumed that atmospheric mixing is maximal.

spectrum, as a function of |Ue3|2 and sin2 θatm. In figure 1 we have depicted mmin as a

function of |Ue3|2, fixing sin2 θatm at 0.5 and using the mean values ∆m2
atm = 2.4×10−3 eV2

and ∆m2
⊙ = 7.65 × 10−5 eV2 from [3]. We also show the sum of the neutrino masses for

both the normal and the inverted spectra. We see that at large |Ue3|2 the sum of the

neutrino masses is safely below present cosmological bounds [15].

Parameter counting and the number of predictions. The neutrino mass ma-

trix (3.20) is a five-parameter mass matrix because it has three complex parameters, with

only their relative phases having a physical meaning. One can easily show with equa-

tion (3.25) that M†
νMν has only four parameters. The neutrino masses, the mixing angles

and the Dirac phase follow all from M†
νMν , only for the investigation of the Majorana

phases we need in fact Mν .

Therefore, the four parameters in M†
νMν determine seven observables. As a con-

sequence, there must be three predictions. Indeed, those predictions are given by equa-

tions (2.1) and (2.2), which follow from trimaximal mixing alone, and equation (3.32),

which is a result of our specific model.

As for Mν , the difference of the two Majorana phases can be expressed in terms of

its five parameters; this constitutes the additional prediction if we consider Mν instead of

M†
νMν . However, in our model, we expect no significant result for the effective neutrino

mass in neutrinoless double β-decay as compared to the general case, since one Majorana

phase is competely free and |Ue3|2 is small.

– 8 –
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4. Variations on the model

4.1 Use of a CP symmetry

The model presented in the previous section does not possess µ–τ interchange symmetry,

which would require, in the Mν of equation (3.20), y = 0, leading to two degenerate

neutrinos. Alternatively, though, we may impose on the model a CP symmetry which

interchanges the µ and τ families [16], viz.







νeR
νµR
ντR






(t, ~r )

CP−→ i γ0 C







ν̄TeR
ν̄TτR
ν̄TµR






(t,−~r ) , ν0R (t, ~r )

CP−→ i γ0 C ν̄
T
0R (t,−~r ) , (4.1)

and so on. Such a CP symmetry would force M0,1,2 in equation (3.15) to be real, hence

x, y and z in equations (3.20)–(3.23) to be real. One would thus obtain a neutrino mass

matrix with three parameters only, which fulfils

SMνS = M∗
ν with S =







1 0 0

0 0 1

0 1 0






. (4.2)

As shown in [16], a neutrino mass matrix obeying equation (4.2) predicts sin2 θatm =

1/2, maximal CP violation, i.e. eiδ = ±i, and vanishing Majorana phases. Therefore, a

restricted version of our model, including the CP symmetry (4.1), has these predictions in

addition to those of trimaximal mixing.

4.2 One more right-handed neutrino

If one wants to have trimaximal mixing without the extra prediction (3.32), one may

introduce into the model one more right-handed neutrino, ν ′0R, transforming as 1(2,0) under

∆(27). This leads to one extra term

y6

2
ν ′T0RC

−1ν ′0R S
∗ + H.c. (4.3)

on the right-hand side of equation (3.13), and to two extra couplings

M∗
3

2

(

νTeR + ω2 νTµR + ω νTτR
)

C−1ν ′0R +M∗
4 ν

T
0RC

−1ν ′0R + H.c. (4.4)

on the right-hand side of equation (3.15). Equations (3.18) would then read

MR =















M0 M1 M1 M2 M3

M1 M0 M1 ω2M2 ωM3

M1 M1 M0 ωM2 ω2M3

M2 ω2M2 ωM2 MN M4

M3 ωM3 ω2M3 M4 M ′
N















, MD =















a 0 0

0 a 0

0 0 a

0 0 0

0 0 0















, (4.5)
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DLα αR ναR φα

T T T ∗ T T 2

Table 2: Generalizing T .

with m′
N = y∗6vS . Instead of equation (3.20) one would then have

Mν =







x+ y + t z + ω2y + ωt z + ωy + ω2t

z + ω2y + ωt x+ ωy + ω2t z + y + t

z + ωy + ω2t z + y + t x+ ω2y + ωt






. (4.6)

This still predicts trimaximal mixing but the extra prediction (3.32) disappears.

4.3 Use of ∆(3n2) or other symmetry groups

We may generalize the symmetry T by using, instead of equation (3.5),

3 : C =







0 0 1

1 0 0

0 1 0






, T =







1 0 0

0 σ 0

0 0 σ∗






, with σ = e2πi/n (n ≥ 3). (4.7)

The transformation properties of the multiplets under T would then be as shown in table 2;

fields not shown in that table transform trivially under T .

All fields transform under C in the same way as in section 3. Apart from T , all other

details of the model are the same, in particular the soft breaking as given by equation (3.14).

Thus, the matrix MR would remain unchanged, since its form is fixed by the transformation

C.

Let us consider n ≥ 4. Then the main conclusions are the following:

• The fermionic sector and, therefore, the matrix Mν is the same for all n, as given in

equation (3.18).

• The terms in equation (3.12) are automatically forbidden, therefore the Z2 symme-

tries of equation (3.10) are not needed.

• The symmetry group is ∆(3n2), softly broken by terms of dimension three to Z3(C).

A detailed discussion of ∆(3n2) is given in [17]. Actually, the terms of dimension four

in the Lagrangian are invariant under all the permutations. This leads to the symmetry

group ∆(6n2)—see [17].

There is still another way to produce the present model. Consider cyclic permutations

(or all permutations), plus family lepton-number symmetries U(1)α and the Z2 symmetries

of equation (3.10). The scalar doublets carry no lepton number. The neutrino ν0R and the

scalar singlet S may either carry lepton number or not. The U(1)α are softly broken by

terms of dimension three, the residual symmetry being once again Z3(C).

All the groups considered here produce identical models as far as the terms in the

Lagrangian involving the fermion fields are concerned; the only differences which may arise

occur in the terms of dimension four in the scalar potential.
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5. Conclusions

In this paper we have focused our attention on trimaximal lepton mixing, with a two-

parameter lepton mixing matrix, which generalizes tri-bimaximal mixing. Our main mo-

tivation was to allow for a deviation of |Ue3|2 from zero; recent studies point out that

possibility [2, 3]. Trimaximal mixing correlates the deviation of |Ue3|2 from zero with a

deviation of sin2 θ⊙ from 1/3 and of sin2 θatm from 1/2 — see equations (2.1) and (2.2). A

particular consequence is sin2 θ⊙ ≥ 1/3, which is slightly disfavoured by the data at the

moment, but in any case might be tested soon.

We have also constructed a seesaw model (or rather a class of models) where trimaximal

mixing is enforced by a family symmetry group. In this model, the mass matrix of the

light neutrinos, given by equation (3.20), has five physical parameters; it includes not only

the predictions of trimaximal mixing but also equation (3.32) which relates the deviation

from tri-bimaximal lepton mixing to the ratio m1/m3 of neutrino masses. As for a family

symmetry group, we have considered several possibilities; one of the most straightforward

ones is based on the group ∆(27). We have also considered a restricted version of our model

by imposing, in addition, a non-standard CP transformation; in this way we are lead to a

three-parameter neutrino mass matrix which predicts not only trimaximal mixing but also

sin2 θatm = 1/2.

Our model has some peculiarities, like the need of four (or more) right-handed neutrino

singlets; the fourth neutrino singlet couples to the the three usual ones denoted by ναR
(α = e, µ, τ) via a scalar gauge singlet. In the mass terms of the ναR, the symmetry

group is broken softly down to a Z3. An outstanding feature of the model is that no

vacuum alignment is required, despite its scalar content of four Higgs doublets and the

scalar singlet. This is to be contrasted with models for tri-bimaximal mixing which are

plagued by the intricacies of vacuum alignment.
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