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Abstract. Using the formalism of the Bethe-Salpeter equation (BSE), the Higgsonium bound state
is studied. The conditions for the formation of Higgsonium bound states are discussed in the SM
and in a simple extension thereof.
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INTRODUCTION

The Standard Model (SM) of particle physics involves a very minimalistic idea of the
electroweak symmetry breaking scenario. Consequently it results with only one real
scalar field and in fact its last directly unobserved particle — the Higgs boson. However,
being inspired by the family pattern of the SM fermionic sector, it is quite natural to
consider extensions of the SM with a richer structure in the scalar sector. By doubling
the doublets or/and adding gauge singlets such next-to-minimal extensions of the SM
have been considered and studied from various perspectives. Clear motivations for such
extensions are to reduce some SM shortcomings, like a better agreement with precision
electroweak fits, the theoretical problem of mass hierarchy or the dark matter problem.

Having more interacting scalar bosons one can expect qualitative changes in the scalar
boson sector. In some circumstances the binding forces between scalars can appear
strong enough to produce bound states. What the spectrum of appearing bound states
is and how they exhibit their existence in collider experiments are important questions.
Most notably, with the running of LHC, what do we observe if Higgsonium is realized
in Nature?

The simplest model to be chosen for an actual calculation is the extension of the
SM that involves the addition of a real scalar singlet S to the SM Lagrangian. The
phenomenological implications for singlet extension SM (xSM) have been studied from
the collider and cosmological perspectives [1]. The latter typically require a small
mixing with the SM Higgs, and from the perspective of bound states it reduces to the
SM. In such circumstances it was shown in [2] that a super-heavy Higgs of mH 4 1 TeV
would be needed to form a bound state. In our model we will consider a large mixing,
which could produce two scalars H1 and H2 both having masses of a few hundred GeV.
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MODEL

In what follows I will consider the xSM, where the SM is obtained by putting the new
couplings to zero. The Lagrangian density for the xSM model is

L = (DμH)†DμH +
1
2

∂μ S∂ μS−V (H,S), (1)

where H denotes the complex Higgs doublet and S the real scalar. The term linear in S
is chosen to vanish after the spontaneous breaking. The potential is given by

V (H,S) = λ (H†H− v2

2
)2 +

δ1

2
H†H S (2)

+
δ2

2
H†H S2 +δ1v2S +

κ2

2
S2 +

κ3

3
S3 +

κ4

4
S4.

In the unitary gauge the charged component of the Higgs doublet H becomes the
longitudinal components of the charged W -bosons, and the imaginary part of the neutral
component becomes the longitudinal component of the Z-boson. In the unitary gauge
the Higgs field doublet reads B

0
1√
2
(h+ v)

:
. (3)

With our notation the mass terms in the scalar potential become

Vmass =
1
2

D
μ2

h h2 + μ2
S S2 + μ2

hShS
<
, (4)

where

μ2
h = 2λv2 , μ2

S = κ2 +δ2v2 , μ2
hS = 2δ1v . (5)

The mass eigenstate fields H1,2 are linear combinations of the Higgs scalar field h and
the singlet scalar field S. Explicitly, the inverse transformation reads

h = c H1− s H2 ,

S = s H1 + c H2 , (6)

where c = cosθ , s = sinθ , and the mixing is determined as [3]

tanθ =
x

1+
√

1+ x2
, x =

μ2
hS

μ2
S −μ2

h

. (7)

For positive x and for the heavier singlet (x < 0), we have for the mixing angle

tanθ =
1+

√
1+ x2

|x| . (8)
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The terms in the scalar potential that break the discrete S→−S symmetry are propor-
tional to the couplings δ1 and κ3, and we do not consider these terms to be very small.
We assume they are large enough to form a bound state and a sufficiently strong commu-
nication with the rest of the Standard Model. The small mixing scenario with the light
singlet-like scalar has been considered in [4].

In this paper we will consider a relatively large mixing angle θ with Higgs masses
less than 200 GeV, which could be promising for experimental observation in the LHC
era. For such a case the constraints from electroweak precision observables and their
implications for LHC Higgs phenomenology have already been analyzed in [1].

The mass eigenstates satisfy in any case

M2
1 = μ2

h c2 + μ2
S s2 + μ2

hScs

M2
2 = μ2

h s2 + μ2
S c2−μ2

hScs . (9)

The rest of the scalar potential contains four new parameters which are added to the
SM:

Vint =
λ
4

h4 +
κ4

4
S4 +λvh3 +

κ3

3
S3 +

δ2

2
h2S2 +

δ1

2
h2S +

δ2

v
hS2 . (10)

Based on nonrelativistic considerations, the cubic interaction should be sufficiently
enhanced against the quartic one, otherwise no bound state can be formed.

The purely cubic interaction between mass eigenstates can be written as

Vcub = g111H3
1 +g112H2

1 H2 +g122H1H2
2 +g222H3

2 , (11)

where the new g couplings are known cubic polynomials of sinθ and cosθ .
It is advantageous to evaluate new quartic couplings between physical states, i.e.,

V4 =
g111

4
H4

1 +
g1112

4
H3

1 H2 +
g1122

4
H2

1 H2
2 +

g1222

4
H1H3

2 +
g2222

4
H4

2 (12)

where the λ ’s are known quartic polynomials of sine and cosine of the mixing angle.
Higgsonium, just like any other two-body state in quantum field theory, is described

by the two-body BSE

Γ =
N

k
VG[2]Γ (13)

where we use the shorthand notation
L

k = i
L d4q

(2π)4 , and where G[2] is the two-particle
propagator of the constituent Higgses H1. In momentum space it can be conventionally
written as

G[2](k,P) = D(k +P/2,M2
1)D(−k +P/2,M2

1) , (14)

D(k,M2) =
1

k2−M2− iε
. (15)

Let us assume that the attractive interaction between heavy Higgses H2 is strong
enough to form a bound state. Within the xSM, the irreducible BSE kernel in lowest
order reads

V = 6λ1111 + ∑
x=s,t,u

2
4g2

112

x−M2
2

+
36g2

111

x−M2
1

#
, (16)
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where the first term represents the purely constant interaction, and s, t,u are the usual
Mandelstam variables. Lower indices show which field — H1 or/and H2 — belong to a
given interaction vertex.

It is advantageous to explicitly divide out the solution which is independent of the
relative momenta of the constituents. Following the notation in [2], the original BSE can
be rewritten in the form

Γp(p,P) = ΓI(P)
N

k
Vp(k, p,P)G[2](k,P)+

N
k
Vp(k, p,P)G[2](k,P)Γp(k,P) , (17)

where

VI = Vc +Vs , Vp = Vt +Vu . (18)

The first term is supposed to collect all constant terms, i.e., the ones that do not depend
on the relative momenta. In our tree approximation, the kernel reads

VI = 6λ1111 +
4g2

221

P2−M2
1

+
36g2

222

P2−M2
2

, (19)

where the full solution of the BSE is given by the sum

Γ(p,P) = ΓI(P)+Γp(p,P) . (20)

The equation for the function ΓI(P) is purely algebraic, viz.

ΓI(P) =
VI

L
k Γp(k,P)G[2](k,P)

1−VI
L

k G[2](k,P)
. (21)

The BSE represents a singular equation which can be solved by some known method.
One possibility is to perform a Wick rotation in the relative momenta of the constituents,
while keeping the four-momentum-squared P2 timelike.

Another well-known possibility is the Minkowski solution, performed by using the
unique integral representation of the kernels and amplitudes that appear in the BSE
[6, 7].

The bound-state vertex function can be expressed as

Γ(P, p) =

1N
−1

dη
∞N

−∞

dα
ρ [n](α,η)

[F(α,η;P, p)]n
, (22)

where n is an integer and all the singularities are trapped by the zeros of the denomi-
nator in Eq. (22), which reads

F(α,η;P, p) = α− (p2 +P.pz+
P2

4
)− iε . (23)
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Recall the known property of super-renormalizable models studied in previous work
[5]: the function ρ [n] becomes smoother and smoother according as n is increased. In
practice, the BSE was solved for generalized Wick-Cutkosky models, but only for the
lowest n values, i.e., n = 1,2. The studied models were very simple, with at most a cubic
scalar interaction.

Here, having a quartic interaction as well, the generated inhomogeneous term is
represented by ΓI(P), which is just a real constant for a given discrete value of bound-
state mass

√
P2. To avoid more complicated distributions, we naturally assume

Γ(P, p) = ΓI(P)+

1N
−1

dη
∞N

−∞

dα
ρp(α,η)

[F(α,η;P, p)]
, (24)

where ρp(α,η) is supposed to be a real function, and not a delta distribution. It fully
corresponds to the function Γp, and one should note that its structure is fully driven by
a pure triplet Higgs interaction. Furthermore, we explicitly choose n = 1 in the integral
representation (24), following the easiest integral representation of the inhomogeneous
term in the expression, i.e.,

L
k Vp(k, p,P)G[2](k,P). This integral corresponds to the

Feynman scalar triangle diagram.
One can show that the BSE can be converted to a regular integral equation for ρp. It

reads

ρp(α,η) =
1

α−M2
1

⎡
⎣ΓI(P)ρI(α,η)+

1N
−1

dz

∞N
−∞

daρp(a,z)V (α,η,a,z)

⎤
⎦ , (25)

where ρI,V are known regular functions, and the constant term arises due to the quartic
interaction

ΓI(P) =

V R
I

1L
−1

dz
∞L
−∞

daρp(a,z)IF(P2;a,z)

1−V R
I I[R]

B (P2)
, (26)

with V R
I the renormalized constant interaction, and IF , IB the known one-loop triangle

and one-loop bubble integrals, respectively.
In order to renormalize, the momentum-subtraction renormalization scheme with zero

momentum scale is used, i.e.,

V R
I = 6λ R

1111 +
4g2

112

P2−M2
2

+
36g2

111

P2−M2
1

, (27)

where λ R
1111 is the renormalized quartic coupling of heavier Higgs-mass eigenstates H1.
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RESULTS

After a suitable normalization, the BSE for the weight function (25) is solved by the
method of iteration. The coupling constants are varied so as to obtain a real discrete
spectrum of Higgsonia.

First I present the results for a SM Higgs. The only known input is the Higgs vacuum
expectation value (VEV) v = 275 GeV, while the Higgs mass and the cubic coupling
depend on the experimentally unknown λ , satisfying mh =

√
2λv and λ3 = 2λv. There

are no bound states below a certain critical coupling λ3. The first Higgsonium state of
mass M = 2mh is formed when mh = 1.3 TeV. Such a result does not provide a reliable
answer, and even raises more questions.

Such a heavy Higgs boson is ruled out by electroweak precision tests. Furthermore,
for such a fat Higgs, the Higgs sector of the SM represents a strongly-coupled field
theory, and our BSE becomes a merely rough estimate of reality. In addition, switching
on the top-quark Yukawa coupling, the fat Higgs becomes a broad resonance and its fast
decay should prevent the formation of bound states.

To have a reasonable model which is not completely ruled out by electroweak oblique
correction constraints, we assume relatively light scalars in the xSM. There are no bound
state unless the new cubic coupling is large enough. To compare various quantities, all
dimensionful quantities are scaled in units of Higgs VEV v. Then, roughly speaking,
the new cubic coupling must be several times larger than the rest of the Lagrangian
parameters. This is the main conclusion from the numerical inspection of the large region
of xSM parameter space.

Here, I present the first preliminary numerical results. The parameters used as input
are the following: v = 275 GeV, λ = 0.20, δ1 = 1.20v, δ2 = 0.40, κ2 = 0.10v, κ3 = 5.0v,
κ4 = 0.20.

This gives rise to two massive eigenstates M1 = 179.5 GeV, M2 = 177.7 GeV, cou-
plings g111 4 280 GeV, g222 4 400 GeV, λ1111 4 0.33, and the appropriate mixing
cosθ = 0.696. Solution of the BSE gives bound states 20% lighter than the Higgs pro-
duction threshold:

MB = 0.8×2.0×M1 = 286 GeV . (28)
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