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The pattern of a large approximate degeneracy of the excited hadron spectra (larger than the chiral
restoration degeneracy) is present in the recent experimental report of Bugg. Here we try to model this
degeneracy with state of the art quark models. We review how the Coulomb Gauge chiral invariant and
confining Bethe-Salpeter equation simplifies in the case of very excited quark-antiquark mesons,
including angular or radial excitations, to a Salpeter equation with an ultrarelativistic kinetic energy
with the spin-independent part of the potential. The resulting meson spectrum is solved, and the excited
chiral restoration is recovered, for all mesons with J > 0. Applying the ultrarelativistic simplification to a
linear equal-time potential, linear Regge trajectories are obtained, for both angular and radial excitations.
The spectrum is also compared with the semiclassical Bohr-Sommerfeld quantization relation. However,
the excited angular and radial spectra do not coincide exactly. We then search, with the classical Bertrand
theorem, for central potentials producing always classical closed orbits with the ultrarelativistic kinetic
energy. We find that no such potential exists, and this implies that no exact larger degeneracy can be
obtained in our equal-time framework, with a single principal quantum number comparable to the
nonrelativistic Coulomb or harmonic oscillator potentials. Nevertheless we find it plausible that the large
experimental approximate degeneracy will be modeled in the future by quark models beyond the present
state of the art.
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I. INTRODUCTION

In the recent report of Bugg [1–4] a large degeneracy
emerges from the spectra of the angularly and radially
excited resonances produced in p �p annihilation by the
Crystal Ball Collaboration at LEAR in CERN [5]. This
degeneracy may be the third remarkable pattern of the
excited spectra of hadronic resonances.

A long time ago, Chew and Fautschi remarked the
existence of linear Regge trajectories [6] for angularly
excited mesons and baryons [7,8]. A similar linear aligning
of excited resonances was also reported for radial excita-
tions [9].

Recently, Glozman et al. [3,10,11], Jaffe et al. [12], and
Afonin [13], have been systematically researching the
degeneracy of chiral partners in excited resonances, both
in models and in lattice QCD. Le Yaouanc et al. [14] and
Bicudo et al. [15,16] developed a model of spontaneous
symmetry breaking. Viewed retrospectively, this already
included the degeneracy of chiral partners in the limit of
high radial or angular excitations [17], both in light-light
and in heavy-light hadrons. This earlier work was based on
the Bogoliubov transformation and used the Coulomb
gauge or the local coordinate gauge QCD truncations.
Here the formalism will be extended to include spin-
dependent interactions explicitly.

The recent data on highly excited mesons, observed by
LEAR at CERN [1,4,5] and of excited baryons observed by
the Crystal Barrel Collaboration at ELSA [18], stress the
interest of possible patterns in the excited hadronic reso-

nance spectra. While we still have to wait for new experi-
ments focused on excited mesonic resonances to confirm
the report of Bugg, say in PANDA, GLUEX, or BESIII, it
is important to research theoretical models of the excited
hadrons.

Here we address the question, is it possible to build an
equal-time quark model, with linear trajectories, with ex-
cited chiral symmetry, and, also, with a principal quantum
number? We adopt the framework of the Coulomb gauge
confinement, of the mass gap equation, and of the equal-
time Bethe-Salpeter equation. In Sec. II we review and
expand earlier work on chiral symmetry breaking and
mesonic bound states, and show in detail the equations
for the simplest potential. We also show how for excited
states (and for J > 0) the Bethe-Salpeter equation simpli-
fies to a Schrödinger-like Salpeter equation, with ultrarela-
tivistic (massless) kinetic energies and a chiral symmetric
equal-time potential. In Sec. III we solve the equation with
the method of the double diagonalization of the equal-time
Hamiltonian and show how linear equal-time potentials
and massless quarks produce linear Regge trajectories,
both for angular and radial excitations. We also compare
them with the Bohr-Sommerfeld semiclassical quantiza-
tion. We then address in Sec. IV the large degeneracy,
where both radial and angular excitations are degenerate.
Extending to ultrarelativistic particles the techniques of the
classical Bertrand theorem on closed orbits, we verify that
no instantaneous 2-body potential may exactly produce the
desired large degeneracy. Nevertheless, we present plau-
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sible solutions to this modeling problem in the conclusion,
Sec. V.

II. QUARK MASS GAP AND BOUND STATES IN
EQUAL TIME

We first review earlier work on chiral symmetry break-
ing with equal-time confining quark-quark potentials, and
show the example of the simplest possible model of this
class of potentials, which continues to be explored [19].
Importantly, the Hamiltonian of this model can be approxi-
mately derived from QCD,

 H �
Z
d3x
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up to the first cumulant order, of two gluons [16,20–22]. In
the modified coordinate gauge the cumulant is
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b
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and this is a simple density-density harmonic effective
confining interaction. m0 is the current mass of the quark.
The infrared constant U confines the quarks but the meson
spectrum is completely insensitive to it. The important
parameter is the potential strength K0, the only physical
scale in the interaction, and all results can be expressed in
units of K0. A reasonable fit of the hadron spectra is
achieved with K0 ’ 0:3
 0:05 GeV.

The relativistic invariant Dirac-Feynman propagators
[14], can be decomposed in the quark and antiquark
Bethe-Goldstone propagators [23], used in the formalism
of nonrelativistic quark models,
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where S � sin�’� � mc�����������
k2�m2

c

p , C � cos�’� � k�����������
k2�m2

c

p and ’

is a chiral angle. In the noncondensed vacuum, ’ is equal
to arctanm0

k . In the physical vacuum, the constituent quark

mass mc�k�, or the chiral angle ’�k� � arctanmc�k�
k , is a

variational function which is determined by the mass gap

equation. We anticipate examples of solutions, for different
light current quark masses m0, depicted in Fig. 1.

There are three equivalent methods to derive the mass
gap equation for the true and stable vacuum, where con-
stituent quarks acquire the constituent mass [19]. One
method consists in assuming a quark-antiquark 3P0 con-
densed vacuum, and in minimizing the vacuum energy
density. A second method consists in rotating the quark
and antiquark fields with a Bogoliubov-Valatin canonical
transformation to diagonalize the terms in the Hamiltonian
with two quark or antiquark second quantized fields. A
third method consists in solving the Schwinger-Dyson
equations for the propagators. Any of these methods lead
to the same mass gap equation and quark dispersion rela-
tion. Here we replace the propagator of Eq. (3) in the
Schwinger-Dyson equation,
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FIG. 1. The constituent quark masses mc�k�, solutions of the
mass gap equation, for different current quark masses m0.
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where, with the simple density-density harmonic interac-
tion [14], the integral of the potential is a Laplacian and the
mass gap equation and the quark energy are finally,
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k2

E�k� � kC�k� �m0S�k� �
’0�k�2

2
�
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U
2
:

(5)

Numerically, this equation is a nonlinear ordinary differ-
ential equation. It can be solved with the Runge-Kutta and
shooting method. Examples of solutions for the current
quark mass mc�k� � k tan’, for different current quark
masses m0, are depicted in Fig. 1.

The Salpeter-RPA equations for a meson (a color singlet
quark-antiquark bound state) can be derived from the
Lippman-Schwinger equations for a quark and an anti-
quark, or replacing the propagator of Eq. (3) in the
Bethe-Salpeter equation. In either way, one gets [23]
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where k1 � k� P
2 , k2 � k� P

2 , and P is the total momen-
tum of the meson.

The Salpeter-RPA equations of Bicudo et al. [15] and of
Llanes-Estrada et al. [24] are obtained deriving the equa-
tion for the positive energy wave function �� and for the
negative energy wave function ��. Solving for �, one gets
the Salpeter equations of Le Yaouanc et al. [14]. This
results in four potentials V��, respectively, coupling �� �
r�� to ��, in the bound-state Salpeter equation,

 

�
�2T � V����� � V���� � M��

V���� � �2T � V����� � �M��:
(7)

The relativistic equal-time equations have twice as many
coupled equations as the Schrödinger equation. The nega-
tive energy component �� is smaller than the positive
energy component by a factor of the order of 1=M in units
of K0 � 1. Thus when M is large, and this is the case for
most excited mesons, the negative energy components can
be neglected and the Salpeter equation simplifies to a
Schrödinger equation.

Importantly, the potentials V�� � V�� and V�� �
V�� include the usual spin-tensor potentials [25], pro-
duced by the Pauli ~	 matrices in the spinors of Eq. (3).
They are detailed explicitly in Table I. Because we are
interested in highly excited states, where both hri and hki
are large, we consider the limit where mc

k ! 0. This implies
that the potentials, used in Table I, ’0�k� ! 0, C�k� ! 1,
and G�k� � 1� S�k� ! 1. Then using the textbook matrix
elements of the spin-tensor potentials, the bound-state
Salpeter equation decouples into two different equations
depending only on J and not explicitly on L or S. Without
the chiral degeneracy there would be four different reso-
nances for each j, one with s � 0 and j � l and three with
s � 1 and j � l� 1, l, l� 1. With the chiral degeneracy
we get only two different equations, one for j � 0 with
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dk2 � 2k� 1
k2 �

j�j�1�
k2 ;

V�� � 1
k2 ;

(8)

and another for j � 1 with
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dk2 � 2k� 2
k2 �

j�j�1�
k2 ;

V�� � 0
k2 :

(9)

Thus states with different l and equal j, i.e. with different
parity, are degenerate, and chiral symmetry is restored.

TABLE I. The positive and negative energy spin-independent, spin-spin, spin-orbit, and tensor
potentials, computed exactly in the framework of the simple density-density harmonic model of
Eq. (2). ’0�k�, C�k�, and G�k� � 1� S�k� are all functions of the constituent quark(antiquark)
mass.
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This chiral degeneracy applies to all angular momenta,
except for j � 0. In Table II we show the masses of the
different light-light mesonic solutions of Eqs. (8) and (9),
including tachyons, corresponding to the limit where
mc 
 k.

This limit is equivalent to simply allowing the quark
mass to vanish, except in the j � 0 case where technically
a finite quark mass is necessary to avoid tachyons. The j �
0 case is a subtle one, because neglecting the mass mc is
equivalent to considering the chiral limit, and this is
equivalent to changing from the physical vacuum to the
chiral invariant vacuum which is a false, unstable vacuum.
A detailed inspection shows that the different potentials
� d2

dk2 , 2k, 1
k2 are bound from below and positive definite in

the sense that all their eigenvalues are positive. However
� 1

k2 is unbound from below. It turns out that for j � 0 all
the solutions of Eq. (8), including all radial excitations, are
tachyons [26], relevant for the structure of the chiral in-
variant false vacuum of QCD [27], corresponding to a
different solution of the mass gap equation mc � 0. Even
when a very small regularizing quark mass mc is assumed,
constant for simplicity, the tachyons persist. This is con-
firmed by the numerical solutions of the regularized
Salpeter equation, shown in Table II. Technically, in the
j � 0 case, it is necessary to rescale the momentum and
mass,

 k=mc ! k0; Mmc
2 ! M0; (10)

where any finite solution M0 in fact corresponds to a large
massM � M0=m2

c, and where a wave function with a finite
k0 corresponds to a wave function with small momentum
k � k0mc. A long time ago Le Yaouanc et al. [14] showed
that in the chiral limit the pseudoscalar and the scalar
possess tachyonic solutions. Very recently Bicudo showed
that this number of tachyons is infinite [26]. Only with a
finite mc quark mass, do the scalar and pseudoscalar me-
sons have positive masses. But then the excited scalar and
pseudoscalar states are not degenerate, in contradistinction
with the chiral degeneracy of the excited mesons with
j > 0.

For excited mesons with j > 0, the spectrum in Table II
is very well approximated by the solutions of the pair of
Schrödinger-like equations,
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�
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dk2 � 2k�
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k2 �
j�j� 1�
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�
��k� � M��k�; (11)

 

�
�
d2

dk2 � 2k�
2
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j�j� 1�

k2

�
��k� � M��k�; (12)

obtained when the negative energy component �� are
neglected in Eqs. (8) and (9).

This result for a quadratic potential, together with the
recent work of Wagenbrunn and Glozman [10] for a linear
potential, where the highly excited spectra only depends
explicitly on j and not on l, indicates that any chiral
invariant potential should also show the same chiral degen-
eracy in the very excited spectra. Notice it is well known
that several different chiral invariant potentials lead to
chiral symmetry breaking in the vacuum and in the
ground-state hadrons [28], now they all are expected to
recover chiral degeneracy of the excited spectra.

III. LINEAR REGGE TRAJECTORIES AND
SEMICLASSICAL QUANTIZATION WITH THE

LINEAR POTENTIAL

Our simple results of Eqs. (13) and (15) are extended to a
linear potential [24,29], to get the linear Regge trajectories.
Both from the quark modeling of the heavy quarkonium,
and from lattice QCD static potentials, it is suggested that
the long range confining quark potential is linear. Notice
that Szczepaniak and Swanson [30], in the Coulomb gauge,
were able to derive from QCD the linear potential.

Continuing with the limit where m
k ! 0, and aiming at

large total angular momenta j, we assume for the radial
equation, the minimal extension of Eqs. (11) and (12) of
Sec. II for a linear potential,

 �2p� 	r�� � E�; (13)

where, in momentum space, the position r is an operator,

TABLE II. Masses of the first angular and radial excitations of the different light-light
tachyons and mesons in the chiral limit of a vanishing quark mass m. Each column includes
both positive and negative parity degenerate states, except for the pseudoscalar and scalar
tachyonic states, which are simply avoided with a sufficiently large constituent quark mass. The
meson masses are separated in two different families with the same J because two different
Salpeter equations (8) and (9) exist for each J.

n Pseudoscalar Scalar j � 1 j � 1 j � 2 j � 2 j � 3 j � 3

0 2�10�1i
m2

3�10�2i
m2 3.71 4.59 6.15 6.45 7.65 7.84

1 2�10�3i
m2

3�10�4i
m2 6.49 7.15 8.43 8.69 9.72 9.89

2 2�10�5i
m2

3�10�6i
m2 8.76 9.32 10.45 10.68 11.61 11.76

3 2�10�7i
m2

3�10�8i
m2 10.77 11.27 12.30 12.51 13.38 13.52

4 2�10�9i
m2

3�10�10i
m2 12.61 13.08 14.05 14.25 15.12 15.26
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�������������������������������������
�
d2

dp2 �
j�j� 1�

p2

s
; (14)

neglecting now the terms �1
k2 or �2

k2 . In configuration space,
r is the c number and the operator is the momentum p,
replaced in Eq. (13) by

 p̂ �

������������������������������������
�
d2

dr2 �
j�j� 1�

r2

s
: (15)

Again, the usual centrifugal barrier for spinless particles is
extended for fermions in the chiral restoration limit sub-
stituting L2 by J2, consistent with the result of Sec. II.

Logically, Eq. (13) together with Eq. (15) is the simplest
possible configuration space equation for the linear poten-
tial in the limit of chiral symmetry restoration. Therefore
this simple model should reproduce the results of
Wagenbrunn and Glozman [10], except for a constant
energy shift, since in Wagenbrunn and Glozman [10] the
j � 0 pion is massless, while in Eq. (13) the j � 0
ground state clearly has a positive zero point energy.

Numerically, we simply have to solve a Salpeter equa-
tion (or Schrödinger equation with ultrarelativistic kinetic
energy) except that, in the centrifugal barrier, the spherical
angular momentum l is now replaced by the total angular
momentum j. Equation (13) is solved with the method of
the double diagonalization of the equal-time Hamiltonian.
Using finite differences, first we diagonalize the bounded
from below p̂ operator � d2

dr2 �
j�j�1�
r2 . Then we apply the

square root, well defined in this diagonal basis. After
returning to the original position space basis, we diagonal-
ize the full Hamiltonian. This provides us automatically
with the full spectrum including the angularly and radially
excited states.

The results are shown in Table III. In Figs. 2 and 3 we
graphically demonstrate that the angular excitations and
the radial excitations of this simple spectrum are disposed
in linear Regge trajectories,

 j ’ �0 � �M2; n ’ �0 � �M2: (16)

This agrees qualitatively with the experimental spectrum
[1], where the linear Regge trajectories are also present. As
anticipated, in the limit of large excitations, our trajectories
are also parallel to the ones of Wagenbrunn and Glozman
[10].

Interestingly, with the semiclassical Bohr-Sommerfeld
quantization relation,

 

I
pdq ’ nh; (17)

and with the energy 2pc� 	r of Eq. (13) the linear
trajectories can also be derived. The linear trajectories
for the angular excitations can be derived from the circular
classical orbits,

 

(
2�2
 r

2p� ’ lh

	 � c
r
2
p

) l ’
1

8	c@
E2; (18)

where we also used the centripetal acceleration. The linear
trajectories corresponding to radial excitations can be de-
rived [31] from the linear classical orbits with L � 0,

 

Z E=	

�E=	

E� 	jrj
2c

dr ’ nh) n ’
1

4
	c@
E2: (19)

Thus, in our units of @ � c � 	 � 1 we get for the Regge
slopes, respectively,

 � �
1

8
; � �

1

4

; (20)

TABLE III. Masses of the light-light mesons, in dimensionless units of 	 � 1, computed with
the ultrarelativistic equal-time chiral degenerate Schrödinger equation (13). The j � 0 mesons
are distant from the experimental spectrum, but chiral degeneracy is theoretically plausible for
the very excited mesons.

j n � 0 n � 1 n � 2 n � 3 n � 4 n � 5 n � 6 n � 7 n � 8

0 3.16 4.71 5.89 6.87 7.73 8.51 9.21 9.87 10.49
1 4.22 5.46 6.48 7.38 8.17 8.90 9.58 10.21 10.81
2 5.08 6.13 7.05 7.87 8.61 9.30 9.95 10.56 11.13
3 5.81 6.74 7.58 8.34 9.04 9.70 10.31 10.90 11.45
4 6.46 7.31 8.08 8.79 9.45 10.08 10.67 11.23 11.77
5 7.05 7.83 8.55 9.22 9.86 10.45 11.02 11.56 12.08
6 7.60 8.32 9.00 9.64 10.24 10.82 11.36 11.89 12.39
7 8.11 8.79 9.43 10.04 10.62 11.17 11.70 12.21 12.70
8 8.59 9.23 9.84 10.43 10.98 11.51 12.03 12.52 12.99
9 9.04 9.65 10.24 10.80 11.33 11.85 12.34 12.82 13.29
10 9.47 10.06 10.62 11.16 11.68 12.18 12.66 13.12 13.58
11 9.88 10.45 10.99 11.51 12.01 12.49 12.96 13.42 13.86
12 10.28 10.82 11.35 11.85 12.34 12.81 13.26 13.71 14.14
13 10.66 11.19 11.69 12.18 12.65 13.11 13.56 13.99 14.41
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in excellent agreement with the slopes of Figs. 2 and 3, and
with the slopes of the recent Bethe-Salpeter calculation of
Wagenbrunn and Glozman [10].

The important point we want to stress is that we find
quantitative discrepancies with the experiment, although
our theoretical results show linear Regge trajectories and
comply the chiral degeneracy. In particular, experimen-
tally, the radial and angular slopes defined in Eq. (16)
should be almost identical [1],

 �exp � 0:877 GeV�2; �exp � 0:855 GeV�2; (21)

while our theoretical slopes, depicted in Figs. 2 and 3 and
semiclassically computed in Eq. (20), differ by 
=2.
Moreover, the meson masses in Table III do not exactly
comply with the large degeneracy emerging in the obser-
vations of Bugg. Identical slopes would be necessary to
reproduce this large experimental degeneracy.

IV. USING CLASSICAL CLOSED ORBITS TO
SEARCH FOR A POTENTIAL WITH A PRINCIPAL

QUANTUM NUMBER

To better model the large degeneracy, we enlarge our
class of timelike central potentials, searching for the best
possible potential of this class.

Actually the model of Sec. III, with a linear potential
only, is oversimplified. To fit the correct positive intercepts
�0 and �0 of Eq. (16), it is standard in quark models to
include in the potential a constant negative energy shift and
a negative short range Coulomb potential. Moreover the
result of Sec. II indicates that any chiral invariant potential
should comply with the chiral degeneracy in the very
excited spectra.

To try to solve the large degeneracy problem, it is then
natural to extend our simple linear potential 	r of Eq. (13)
to a wider class of hadronic potentials. We ask for a
spectrum with a principal quantum number, similar to the
nonrelativistic spectra of the Coulomb potential or of the
harmonic oscillator potential, where the principal quantum
numbers are, respectively, n� l� 1 and 2n� l� 3

2 . The
difference here is that our kinetic energy is the ultrarela-
tivistic one T � 2pc whereas in the nonrelativistic case
T � p2

2� .
Notice that in the nonrelativistic case, classical closed

orbits coincide with a quantum principal number. We can
also address this problem searching for classical closed
orbits with an ultrarelativistic kinetic energy. When all
the classical orbits are closed then the Hermann-
Jacobi-Laplace-Runge-Lenz vector is conserved, because
this vector does not precess. In the Hamilton-Jacobi for-
malism, this vector commutes with the Hamiltonian. The
same commutation then also occurs in the quantum
Schrödinger formalism, the formalism we are using now.
Then a larger symmetry group, including the angular mo-
mentum and the Hermann-Jacobi-Laplace-Runge-Lenz
vector exists. Finally this implies that a principal quantum
number exists.

Thus, rather than solving the ultrarelativistic
Schrödinger equation for all the possible different central
potentials (there are infinite possible different potentials),
we prefer to extend the Bertrand theorem techniques to the
search of classical closed orbits with the ultrarelativistic
kinetic energy. For simplicity we consider a kinetic energy
T � pc and a general potential V�r�, used for a single
particle in a central potential, comparable to our two-
body problem in the center of mass frame.
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FIG. 3. We show we show the quasilinear Regge trajectories,
of n as a function ofM2. Each line corresponds to a fixed angular
j, increasing from left to right. The M are the masses of the light-
light mesons, in dimensionless units of 	 � 1, computed with
the ultrarelativistic equal-time chiral degenerate Schrödinger
equation (13). In gray we also show the trajectories with j � 1
of Ref. [10].
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FIG. 2. We show the quasilinear Regge trajectories, of j as a
function of M2. Each line corresponds to a fixed radial n,
increasing from left to right. The M are the masses of the
light-light mesons, in dimensionless units of 	 � 1, computed
with the ultrarelativistic equal-time chiral degenerate
Schrödinger equation (13). In gray we also show the trajectories
with n � 0 and starting at j � 1 of Ref. [10].
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Let us consider classical planar trajectories for an ultra-
relativistic quark with the speed of light, and with momen-
tum,

 p �
p
c

v �
p
c

_rêr �
p
c
r _
ê
; (22)

subject to a central force,

 F � �
d
dr
Vêr; (23)

where the notation is obvious. In the plane we have two
constants, the angular momentum L and the energy E,

 L �
p
c
r2 _
ê?; E � pc� V�r�: (24)

Then Newton’s law produces the equation for the radius as
a function of time,

 

�
E� V

c2
_r
�
:
�

L2

E�V
c2 r3 � �

d
dr
V: (25)

To study the condition to get closed orbits it is convenient
to replace the variable time t by the polar coordinate 
 and
the function r by its inverse u � 1=r. Then the equation
simplifies to
 

d2

d
2 u� u � J�u�;

J�u� � �
E� V�1=u�

c2L2

d
du
V�1=u�:

(26)

To get the nonrelativistic case one only has to replace in the
right-hand side of Eq. (26) the factor E�V�1=u�

c2 ! m. Thus
the ultrarelativistic equation has two independent constants
E and cL while the classical case has only one constant
m=L.

The theorem of Bertrand can be addressed considering a
trajectory u close to the circular trajectory u0,

 u � u0 � �; (27)

where we fix the angular momentum L and the trajectory is
defined by the inverse radius u and derivative at 
 � 0 and
by the energy E. Defining,

 �2 � 1�
d
du
Jju�u0

; (28)

we get, to leading order in �,

 

d2�

d
2
� �2� � 0; � � h1 cos��
� 
0�: (29)

Thus for very small perturbations to the circular orbit, the
condition for a closed orbit is that � is an integer number
(if we want the orbit to close right after one turn) or rational
(if we want it to close after a finite number of turns).
Importantly this implies that � is constant, since it cannot
change continuously from one orbit with u0 to the next one.
This restricts the class of possible potentials,

 

d
du
Jju�u0

� 1� �2 �
f2� 1

u0
�

c2L2u0
2 � 2�

u0

f0

df� 1
u0
�

du0
; (30)

and the problem here is that, unlike in the nonrelativistic
limit, the equation still depends on the parameter cL, and
thus the closed orbits are possible, but there is no potential
for which all orbits are closed, since the closing depends on
cL.

In the nonrelativistic case it is well known that this
problem has two solutions because the first term in the
right-hand side is absent. Then the solutions of Eq. (30),
producing closed orbits close to the circular one, are the
power law potential with V�r��r�

2�2. For instance the
natural � correspond to the powers �1, 2, 7, 14 . . . For
more general orbits, we can go up to the third order in the
Fourier series for �,

 � � h0 � h1 cos�
� h2 cos2�
� h3 cos3�
 (31)

and this already produces Bertrand’s theorem, stating that
the closed orbit condition is

 �2��2 � 1���2 � 4� � 0: (32)

This includes only the Coulomb and the harmonic oscil-
lator cases, which indeed have all orbits simply closed for a
nonrelativistic kinetic energy.

Again, for an ultrarelativistic kinetic energy there is no
potential with all orbits closed.

V. CONCLUSION

Here we study possible quark models for the large
degeneracy in the experimental meson spectra reported
by Bugg [1].

We start with a semirelativistic chiral invariant quark
model, with relativistic kinetic energy, with negative en-
ergy components, but with an instantaneous potential. For
excited states all the different spin-tensor potentials [32–
34] merge and we arrive at a Schrödinger-like ultrarelativ-
istic potential quark model with a simple J2 dependence,
leading to the chiral degeneracy of the excited spectra.
Using this Schrödinger-like quark model, it is conveniently
simple to show that the linear potential, well known for a
spectrum with linear Regge trajectories, fails to reproduce
the large degeneracy.

The most ambitious approach to the large degeneracy
consists in asking for a model with a principal quantum
number. Here we apply the equivalent method of searching
for classical closed orbits. Unfortunately we find that this
large symmetry does not exist, neither for the linear po-
tential nor for any other central potential, in our ultrarela-
tivistic and instantaneous framework.

Another possible approach is the one of an approximate
large degeneracy. The linear and radial excitations are so
regular in the framework of the ultrarelativistic and equal-
time quark model that approximate patterns occur in the
spectrum. Notice that in Eq. (20), in Figs. 2 and 3, and in
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Table III, an increment of 3 in j is approximately equiva-
lent to an increment of 2 in n. For instance the meson with
j � 5, n � 0 has a similar mass to the one with j � 2, n �
3. Notice that the j � 5 state may have l � 4, 5, or 6, while
the j � 2 state may have l � 1, 1, or 3. We get an approxi-
mate but relatively large degeneracy of states with different
l ranging from 1 to 6. To agree with the experiment, we
only need to have an increment in n much closer to the
increment in j.

Thus, both for the principal quantum number, and for an
approximate degeneracy, a departure from the ultrarelativ-
istic and equal-time quark model is necessary. It is plau-
sible that either retardation, string effects, or coupled
channel effects should improve the theoretical model. For
instance Morgunov et al. [35] already showed that includ-
ing the angular momentum of the rotating linear confining
string changes the slopes of the angular Regge trajectories.
Moreover, if one could succeed to include retardation
properly in the confining quark model, then one might
search again for the possible existence of a principal quan-

tum number. And coupled channels might also affect dif-
ferently the angular and radial excitations of the spectrum.

In any case the large degeneracy apparent in the data
analysis of Bugg, supported by the solid pattern of linear
angular and radial Regge trajectories, remains quite plau-
sible from a theoretical perspective. More experimental
data on the remarkable patterns of excited resonances are
welcome.
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