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Charged- and neutral-pion production in the S-matrix approach
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The S-matrix approach is used to calculate both charged- and neutral-pion production in nucleon-nucleon (NN)
scattering near threshold. The irreducible pion-rescattering diagram, direct production mechanism, � isobars in
intermediate states, and Z diagrams mediated by heavy isoscalar mesons are included in the calculation. For the
NN distortions, we considered a realistic interaction, within the Bonn family of potentials, which describes the
nucleonic inelasticities above the pion production energy threshold.
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The description of pion production from two-nucleon
collisions very near threshold is a difficult and interesting
problem, which still presents open issues as documented in
recent reviews [1] and calculations [2]. At threshold, chiral
symmetry suppresses the direct production from one nucleon,
and the production cross section results from a delicate balance
of various contributions. A further challenge is posed by the
interaction between the colliding nucleons, which is not as
well known above the pion production threshold as it is below.

The reactions considered here are characterized by above-
threshold energies of the incoming nucleons, a relatively large
momentum- and energy-transfer in the pion emission, and the
suppression of direct production from a single nucleon. In the
model-independent framework of chiral perturbation theory
(χPT) this requires the modification of the counting scheme
and a careful evaluation of contributions beyond leading
order [2,3] such as chiral loops. Most of these chiral loops
were calculated right at threshold kinematics. The effective
operators derived from the χPT should in principle be used
with a χPT NN interaction, which is not yet established
above the pion threshold. When one moves very far from the
threshold, both the transition operators and the NN interactions
have to be constructed in dynamic coupled channel approaches
(see, e.g., Ref. [4]).

Our calculations do not compete with these elaborate
approaches; we claim that close to the threshold it might be
sufficient to use a simplified model based on a one-meson-
exchange picture and the S-matrix prescription described
next. We focus on the energy dependence of the production
operators obtained in this way, and we also adopt a realistic
NN interaction, valid below and well above the production
threshold. Our calculation of the cross sections for all isospin
channels near threshold includes a sufficient number of final
state three-body basis states and employs a newly developed
NN interaction tuned at energies above the pion production
threshold. In these aspects, our results are to be viewed
as complementary to those more fundamental approaches
mentioned above.

Various model calculations indicated that apart from two-
nucleon operators of the pion range, those mediated by
effective σ and ω meson exchange should also be considered

[1,5]. As for the �-isobar resonance, it plays a role since
the excitation energy of this resonance is close to the energy
exchange demanded by pion production [6], but at threshold,
chiral symmetry makes relevant the full content of the πN

scattering amplitude.
Therefore, we include here (i) the usual direct single-

nucleon production operator, (ii) the pion-rescattering diagram
(see Refs. [7–10]) which contains the πN scattering amplitude,
and (iii) the Z diagrams mediated by exchanges of a single σ

or ω meson [5] to represent short-range effects. In Ref. [7],
it is explained why this approach is a good approximation
for calculations with phenomenological NN interactions. In
particular, the effective σ or ω exchange Z diagrams represent
the chiral short-range contact terms and, as mentioned in
Ref. [8], some multipion-exchange diagrams.

We start with transition amplitudes for pion production
defined as matrix elements of an effective pion production
nuclear operator between initial and final state NN wave
functions. We represent the operators of the model irreducible
reaction mechanisms by Feynman diagrams, with free uncor-
related on-mass-shell nucleons before and after pion emission.
The total energy is conserved, i.e., these diagrams define
the corresponding operators on-energy shell. However, when
sandwiched between correlated nucleon wave functions, the
integration over the intermediate momenta necessarily brings
these operators off-energy-shell. Thus an uncertainty arises
about how to treat the energy transfer occurring in the effective
operators, e.g., how to define the energy and retardation of the
exchanged mesons. Two methods appeared in the literature
dealing with this problem for pion production operators, in
particular for the pion rescattering one. First, the energy of the
exchanged pion was fixed by some prescriptions [5,7,8,11,12]
so that the matrix elements can easily be calculated. Although
such simple prescriptions facilitate similar calculations for
heavier nuclei, the pp → ppπ0 cross section was shown to be
rather sensitive to them [11–13]. Second, more recently [11],
for diagrams with pion rescattering distorted by single-meson
exchange in the initial or final state, the energy depen-
dence of the production operator was derived by reducing
these diagrams from a covariant to a time-ordered form. In
Refs. [11,14] it was demonstrated that the latter procedure
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defines different operators from the initial state interaction
(ISI) and final state interaction (FSI) diagrams for pion
rescattering. We have shown [13] that these two operators can
be very well approximated by a simple S-matrix prescription
for the energy of the exchanged pion in the pp → ppπ0

reaction near threshold. In this work, we also adopt this
S-matrix approach for the other pion production reactions.

For the pion-rescattering diagram (Fig. 1), the S-matrix
prescription yields in a shorthand notation [13]

ÔS
rs = f (�)

(�)2 − (
m2

π + �q ′ 2
) , (1)

� = (E2 − ω2)

2
+ (ω1 + Eπ − E1)

2
, (2)

where, as in Ref. [14], E1, E2, ω1, and ω2 are the nucleon
on-shell energies before and after pion emission. Eπ (�qπ ) is
the energy (three-momentum) of the emitted pion, �

(�q ′)
is the exchanged pion energy (three-momentum), and f (�)
is the product of the πN amplitude with the πNN vertex. Its
isospin-nonflip part is derived from [10] and reads

fnonflip(�) = i
gA

f 3
π

{[
2c1m

2
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)
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]
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[
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]}
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where δq is the quark mass difference contribution to the
neutron-proton mass splitting. For the low-energy constants,
we took the values c1 = −0.93, c2 = 3.34, and c3 = −5.29
according to Ref. [15]. We tested also another set of values
adopted in Ref. [16], but the results near threshold were not
very sensitive to those parameter changes. For the isospin-flip
part, the isovector Weinberg-Tomozawa term with Galilean
corrections [10] is employed to obtain

fflip(�) = − gA

8f 3
π

εabcτ
(1)
b τ (2)

c ×
[

(� + Eπ ) − 1

2M

× ( �p + �p ′ − �qπ/2) · (�qπ + �q ′)
]

�σ (2) · �q ′, (4)

where a, b, and c are isospin indices, in particular, a labels
the emitted pion; and εabc is the Levi-Civita tensor. The
initial (final) two-nucleon relative momentum is �p ( �p ′).
The constants gA and fπ are the axial-vector coupling
of the nucleon and the pion decay constant, respectively.

The symmetric implementation of Eq. (2) for the energy
conservation at the two vertices of the diagram of Fig. 1 is
used. This prescription minimizes the deviation between the
S matrix and the time-ordered perturbation theory (TOPT)
results for the rescattering isoscalar diagram [13]. Here the
S-matrix approach is used for all the two-nucleon mecha-
nisms considered. Other prescriptions have been suggested
in the literature: the static approximation (� → 0), the fixed
kinematics approximation (� → mπ/2), and the E-E’ approx-
imation, here called on-shell approximation (� → E2 − ω2).
They were shown to deviate considerably from the TOPT

FIG. 1. The re-scattering diagram and definitions of variables for
the on-mass-shell energies of the different legs.

results for the pp → ppπ0 cross section [13]. Here we also
test them in the charged-pion channels.

The explicit �-isobar propagation contribution is given by
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�

}
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where hA is the �πN coupling. The � propaga-
tors are given by G

(I )
� = (Eπ + F1 − m�)−1 and G

(II )
� =

(E1 − Eπ − m�)−1, with E1 and F1 being the initial and final
nucleon energy, respectively.

In its term proportional to c3, the πN rescattering amplitude
includes part of the effects of the � given by Eq. (5). Therefore,
when the pion rescattering through a virtual � isobar is
included explicitly by means of Eq. (5), its static limit, when
F1 → M,E1 → M + mπ/2, and Eπ → mπ , is subtracted
from the πN scattering amplitude Eq. (3), to avoid double
counting. This redefines the parameter c3 = −5.29 GeV−1 to
c′

3 = c3 − c̃3
�, with c̃3

� = −3.66 GeV−1. We checked that
the results obtained using the full πN scattering amplitude of
Eq. (3) do not differ much from those obtained when the �

propagation is added, as in Eq. (5), provided the replacement
c3 → c̃�

3 is done. The direct production term and the σ and
ω Z diagrams are taken as in Ref. [5]. All αNN (where
α = π, σ, ω) and πN� vertices are multiplied by the same
hadronic form factors as used in the NN potential. The masses
and coupling constants are also taken from the NN interaction
used for the initial and final nucleonic states.

For the initial state, the nucleon-nucleon interaction is
necessarily needed above the pion production threshold, where
phase-shift analysis provides the nonvanishing inelasticity
parameter ρ, indicating the onset of inelastic channels in the
NN interaction. An obvious way to include these channels
into the NN interaction is through nucleon resonances, which
predominantly decay into a nucleon and a pion, as the P33 (�)
and the P11 (N∗(1440)). This is how the recently developed
model of the Ohio group, based on [17], is constructed to
describe the NN scattering data [18]. It contains the two
resonances mentioned as intermediate states in two-meson-
exchange iterative diagrams. The two resonances are described
by a Breit-Wigner type function, fitted to the experimental
widths. The model parameters are given in Table I. Details
will follow in Ref. [19]. We compare cross sections calculated
with the Ohio and the Bonn-B potentials [20], the last
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TABLE I. Parameters for vertices of the Ohio NN interaction. The
meson mass is mα , the coupling constants are g and f , and � is the
cutoff parameter at the vertex.

Vertex Meson mα [MeV]
g2
NNα

4π
fα/gα �NNα [MeV]

NNα π 138.03 13.8 1498
η 547.3 2.00 1300
ω 782.6 23.6 1396
ρ 769 1.1 5.9 1281
a0 980 4.75 1004

σ (T = 1) 494 5.26 1924
σ (T = 0) 495 3.593 1700

η′ 958 1.62 1433
f0 980 2.50 1471

f 2
N�α

4π
�N�α [MeV]

N�α π 138.03 0.224 677
ρ 769 20.45 1508

NN∗(1440)α π 138.03 0.035 800
σ 494 0.015 1119

one representing a generic one-boson-exchange model valid
below the pion production threshold. The explicit inclusion
of iterative diagrams introduces an energy dependence into
the potential, despite the meson propagators themselves being
energy independent.

In Fig. 2, we compare the cross sections calculated
within the S-matrix approach against those obtained with
the frequently used (static, fixed kinematics, and on-shell)
approximations discussed above. For all charge channels,
the deviation is largest for the static approximation, which
overestimates the cross sections by a factor larger than 2 (close
to threshold). The E-E’ (on-shell) approximation also deviates
from the reference S-matrix result. At threshold, it may be
off at maximum by 20% for all cases. For π0 production,
the fixed kinematics approximation practically coincides with
the S matrix, with the largest deviations at high energies.
The deviation from unity in the cross section ratios of Fig. 2
is mainly due to the energy dependence of the rescattering
term. Moreover, as found in Ref. [13], the dominant energy
dependence of that term comes from the rescattering vertex,
with the sensitivity to the energy prescription in the pion
propagator being much smaller. For the heavier mesons in
the Z diagrams, the sensitivity to the energy in the propagators
is further suppressed by the larger masses involved, making

FIG. 3. pp → ppπ 0 cross section. Dotted (J = 0), dashed-
dotted (J � 1), dashed (J � 2), and solid (J � 3) lines with (without)
+’s correspond to the Ohio (Bonn B) potential. Data points are from
Ref. [21].

the pion rescattering decisive for the results of the ratios. In
Figs. 3–5 we compare the cross sections calculated with the
Ohio and the Bonn-B interactions and simultaneously illustrate
the convergence of the amplitude partial waves with increasing
total angular momentum J . In both potentials, the meson
propagators are static. However, in contrast to Bonn-B, the
Ohio potential carries energy dependence in the propagators
of the iterative diagrams with the N� and NN∗ intermediate
states. This energy dependence is compatible with the energy
prescription used for the pion production operator, since both
particles are on-mass shell in intermediate states, consistent
with the S-matrix prescription of Eq. (2). We note that
perfect consistency would call for retardation in the meson
propagators of the potential as well as in the re-scattering
production operator. However, the energy prescription in the
vertex (and consequently the energy for the intermediate N∗
in the boxes) dominates over the retardation effects in the
meson propagators as shown in Ref. [13], justifying the use of
potentials which use static meson propagators.

Very close to threshold, production of pion in S waves
is naturally expected to be dominant. When going beyond
threshold, other partial waves contribute to the production
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FIG. 2. Ratio between the cross section calculated with different approximations and the S-matrix cross section.
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FIG. 4. Same as Fig. 3, but for the pn → ppπ− cross section.
Data points are from Ref. [22].

cross section, and as expected, the importance of channels with
high J increases with increasing laboratory energy Tlab. For
π0 production, the J = 0 channels alone describe the data and
suffice for convergence (Fig. 3). However, for π− production
(Fig. 4) the J = 1 channels are needed in addition. For π+
production (Fig. 5), the convergence is slower than in the
other two reactions, as the J = 2 channels are necessary for
convergence, reflecting the importance of the 1D2 NN channel,
given its coupling to the 5S2 N� channel. It is clear from
Figs. 4 and 5 that the description of the charged-pion reactions
results from the inclusion of partial waves with high J and that
for the π+ production case (last panel of Fig. 2), the energy
dependence of the effective operators is important.

The relative weight of the considered production mecha-
nisms is discussed in detail in Ref. [19]. As in other similar
models, the direct production and rescattering mechanisms
alone are not sufficient to describe the π0 production data.
In our calculations, the data for π0 production are described
by including the Z diagrams with σ and ω exchanges, which
yield about 95% of the cross section for a projectile laboratory
energy of 320 MeV. For π− and π+ production at the same
energy, they contribute about 73% and 36%, respectively. For
π+ production, the Weinberg-Tomozawa term, which does not
contribute to π0 production, is relatively important. The cross
sections obtained do not depend crucially on the NN interaction
models. We want to point out that the energy dependence of
the 1S0 NN phase shift beyond 250 MeV is better described
by the Ohio NN model, which may cause the differences in
the production cross sections for the charged pions, already
visible when only J = 0 contributions are considered. For π+

production, the � contributions dominate and increase with

FIG. 5. Same as Fig. 3, but for the pp → pnπ+ cross section.
Data points are from Ref. [23].

energy. Some of the general trends obtained here were also
found for the Jülich model [24]. In Ref. [24], the short-range
mechanisms are included through ω exchange and adjusted
to reproduce the total pp → ppπ0 cross section close to
threshold. In our calculation, no such adjustment is made.

To conclude, by applying the S-matrix approach to the
energy-dependent production operators, we achieved an over-
all description of the cross sections near threshold for charged-
and neutral-pion production. Certainly, the model is not
complete, e.g., the Coulomb interaction is omitted, and some
of the so-called p-wave operators discussed in Ref. [25]
and considered in [26] are not included. The production
operator via the � isobar does not include ρ exchange, which
may reduce its contribution, and will be investigated in the
future. Nevertheless, our results quantify (i) the sensitivity to
the energy dependence of the effective operators, especially
for the π+ reaction, (ii) the importance of higher partial
waves in the charged-pion production reactions, and (iii) the
dependence on the NN interaction, valid also above the pion
production threshold. These findings should survive in even
more complete calculations of the production operator and
may be tested on the polarization observables.
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